1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#include "src/hydrogen.h"
8#include "src/lithium-inl.h"
9#include "src/lithium-allocator-inl.h"
10#include "src/string-stream.h"
11
12namespace v8 {
13namespace internal {
14
15static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
16  return a.Value() < b.Value() ? a : b;
17}
18
19
20static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
21  return a.Value() > b.Value() ? a : b;
22}
23
24
25UsePosition::UsePosition(LifetimePosition pos,
26                         LOperand* operand,
27                         LOperand* hint)
28    : operand_(operand),
29      hint_(hint),
30      pos_(pos),
31      next_(NULL),
32      requires_reg_(false),
33      register_beneficial_(true) {
34  if (operand_ != NULL && operand_->IsUnallocated()) {
35    LUnallocated* unalloc = LUnallocated::cast(operand_);
36    requires_reg_ = unalloc->HasRegisterPolicy() ||
37        unalloc->HasDoubleRegisterPolicy();
38    register_beneficial_ = !unalloc->HasAnyPolicy();
39  }
40  DCHECK(pos_.IsValid());
41}
42
43
44bool UsePosition::HasHint() const {
45  return hint_ != NULL && !hint_->IsUnallocated();
46}
47
48
49bool UsePosition::RequiresRegister() const {
50  return requires_reg_;
51}
52
53
54bool UsePosition::RegisterIsBeneficial() const {
55  return register_beneficial_;
56}
57
58
59void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
60  DCHECK(Contains(pos) && pos.Value() != start().Value());
61  UseInterval* after = new(zone) UseInterval(pos, end_);
62  after->next_ = next_;
63  next_ = after;
64  end_ = pos;
65}
66
67
68#ifdef DEBUG
69
70
71void LiveRange::Verify() const {
72  UsePosition* cur = first_pos_;
73  while (cur != NULL) {
74    DCHECK(Start().Value() <= cur->pos().Value() &&
75           cur->pos().Value() <= End().Value());
76    cur = cur->next();
77  }
78}
79
80
81bool LiveRange::HasOverlap(UseInterval* target) const {
82  UseInterval* current_interval = first_interval_;
83  while (current_interval != NULL) {
84    // Intervals overlap if the start of one is contained in the other.
85    if (current_interval->Contains(target->start()) ||
86        target->Contains(current_interval->start())) {
87      return true;
88    }
89    current_interval = current_interval->next();
90  }
91  return false;
92}
93
94
95#endif
96
97
98LiveRange::LiveRange(int id, Zone* zone)
99    : id_(id),
100      spilled_(false),
101      kind_(UNALLOCATED_REGISTERS),
102      assigned_register_(kInvalidAssignment),
103      last_interval_(NULL),
104      first_interval_(NULL),
105      first_pos_(NULL),
106      parent_(NULL),
107      next_(NULL),
108      current_interval_(NULL),
109      last_processed_use_(NULL),
110      current_hint_operand_(NULL),
111      spill_operand_(new (zone) LOperand()),
112      spill_start_index_(kMaxInt) {}
113
114
115void LiveRange::set_assigned_register(int reg, Zone* zone) {
116  DCHECK(!HasRegisterAssigned() && !IsSpilled());
117  assigned_register_ = reg;
118  ConvertOperands(zone);
119}
120
121
122void LiveRange::MakeSpilled(Zone* zone) {
123  DCHECK(!IsSpilled());
124  DCHECK(TopLevel()->HasAllocatedSpillOperand());
125  spilled_ = true;
126  assigned_register_ = kInvalidAssignment;
127  ConvertOperands(zone);
128}
129
130
131bool LiveRange::HasAllocatedSpillOperand() const {
132  DCHECK(spill_operand_ != NULL);
133  return !spill_operand_->IsIgnored();
134}
135
136
137void LiveRange::SetSpillOperand(LOperand* operand) {
138  DCHECK(!operand->IsUnallocated());
139  DCHECK(spill_operand_ != NULL);
140  DCHECK(spill_operand_->IsIgnored());
141  spill_operand_->ConvertTo(operand->kind(), operand->index());
142}
143
144
145UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
146  UsePosition* use_pos = last_processed_use_;
147  if (use_pos == NULL) use_pos = first_pos();
148  while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
149    use_pos = use_pos->next();
150  }
151  last_processed_use_ = use_pos;
152  return use_pos;
153}
154
155
156UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
157    LifetimePosition start) {
158  UsePosition* pos = NextUsePosition(start);
159  while (pos != NULL && !pos->RegisterIsBeneficial()) {
160    pos = pos->next();
161  }
162  return pos;
163}
164
165
166UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
167    LifetimePosition start) {
168  UsePosition* pos = first_pos();
169  UsePosition* prev = NULL;
170  while (pos != NULL && pos->pos().Value() < start.Value()) {
171    if (pos->RegisterIsBeneficial()) prev = pos;
172    pos = pos->next();
173  }
174  return prev;
175}
176
177
178UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
179  UsePosition* pos = NextUsePosition(start);
180  while (pos != NULL && !pos->RequiresRegister()) {
181    pos = pos->next();
182  }
183  return pos;
184}
185
186
187bool LiveRange::CanBeSpilled(LifetimePosition pos) {
188  // We cannot spill a live range that has a use requiring a register
189  // at the current or the immediate next position.
190  UsePosition* use_pos = NextRegisterPosition(pos);
191  if (use_pos == NULL) return true;
192  return
193      use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
194}
195
196
197LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
198  LOperand* op = NULL;
199  if (HasRegisterAssigned()) {
200    DCHECK(!IsSpilled());
201    switch (Kind()) {
202      case GENERAL_REGISTERS:
203        op = LRegister::Create(assigned_register(), zone);
204        break;
205      case DOUBLE_REGISTERS:
206        op = LDoubleRegister::Create(assigned_register(), zone);
207        break;
208      default:
209        UNREACHABLE();
210    }
211  } else if (IsSpilled()) {
212    DCHECK(!HasRegisterAssigned());
213    op = TopLevel()->GetSpillOperand();
214    DCHECK(!op->IsUnallocated());
215  } else {
216    LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
217    unalloc->set_virtual_register(id_);
218    op = unalloc;
219  }
220  return op;
221}
222
223
224UseInterval* LiveRange::FirstSearchIntervalForPosition(
225    LifetimePosition position) const {
226  if (current_interval_ == NULL) return first_interval_;
227  if (current_interval_->start().Value() > position.Value()) {
228    current_interval_ = NULL;
229    return first_interval_;
230  }
231  return current_interval_;
232}
233
234
235void LiveRange::AdvanceLastProcessedMarker(
236    UseInterval* to_start_of, LifetimePosition but_not_past) const {
237  if (to_start_of == NULL) return;
238  if (to_start_of->start().Value() > but_not_past.Value()) return;
239  LifetimePosition start =
240      current_interval_ == NULL ? LifetimePosition::Invalid()
241                                : current_interval_->start();
242  if (to_start_of->start().Value() > start.Value()) {
243    current_interval_ = to_start_of;
244  }
245}
246
247
248void LiveRange::SplitAt(LifetimePosition position,
249                        LiveRange* result,
250                        Zone* zone) {
251  DCHECK(Start().Value() < position.Value());
252  DCHECK(result->IsEmpty());
253  // Find the last interval that ends before the position. If the
254  // position is contained in one of the intervals in the chain, we
255  // split that interval and use the first part.
256  UseInterval* current = FirstSearchIntervalForPosition(position);
257
258  // If the split position coincides with the beginning of a use interval
259  // we need to split use positons in a special way.
260  bool split_at_start = false;
261
262  if (current->start().Value() == position.Value()) {
263    // When splitting at start we need to locate the previous use interval.
264    current = first_interval_;
265  }
266
267  while (current != NULL) {
268    if (current->Contains(position)) {
269      current->SplitAt(position, zone);
270      break;
271    }
272    UseInterval* next = current->next();
273    if (next->start().Value() >= position.Value()) {
274      split_at_start = (next->start().Value() == position.Value());
275      break;
276    }
277    current = next;
278  }
279
280  // Partition original use intervals to the two live ranges.
281  UseInterval* before = current;
282  UseInterval* after = before->next();
283  result->last_interval_ = (last_interval_ == before)
284      ? after            // Only interval in the range after split.
285      : last_interval_;  // Last interval of the original range.
286  result->first_interval_ = after;
287  last_interval_ = before;
288
289  // Find the last use position before the split and the first use
290  // position after it.
291  UsePosition* use_after = first_pos_;
292  UsePosition* use_before = NULL;
293  if (split_at_start) {
294    // The split position coincides with the beginning of a use interval (the
295    // end of a lifetime hole). Use at this position should be attributed to
296    // the split child because split child owns use interval covering it.
297    while (use_after != NULL && use_after->pos().Value() < position.Value()) {
298      use_before = use_after;
299      use_after = use_after->next();
300    }
301  } else {
302    while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
303      use_before = use_after;
304      use_after = use_after->next();
305    }
306  }
307
308  // Partition original use positions to the two live ranges.
309  if (use_before != NULL) {
310    use_before->next_ = NULL;
311  } else {
312    first_pos_ = NULL;
313  }
314  result->first_pos_ = use_after;
315
316  // Discard cached iteration state. It might be pointing
317  // to the use that no longer belongs to this live range.
318  last_processed_use_ = NULL;
319  current_interval_ = NULL;
320
321  // Link the new live range in the chain before any of the other
322  // ranges linked from the range before the split.
323  result->parent_ = (parent_ == NULL) ? this : parent_;
324  result->kind_ = result->parent_->kind_;
325  result->next_ = next_;
326  next_ = result;
327
328#ifdef DEBUG
329  Verify();
330  result->Verify();
331#endif
332}
333
334
335// This implements an ordering on live ranges so that they are ordered by their
336// start positions.  This is needed for the correctness of the register
337// allocation algorithm.  If two live ranges start at the same offset then there
338// is a tie breaker based on where the value is first used.  This part of the
339// ordering is merely a heuristic.
340bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
341  LifetimePosition start = Start();
342  LifetimePosition other_start = other->Start();
343  if (start.Value() == other_start.Value()) {
344    UsePosition* pos = first_pos();
345    if (pos == NULL) return false;
346    UsePosition* other_pos = other->first_pos();
347    if (other_pos == NULL) return true;
348    return pos->pos().Value() < other_pos->pos().Value();
349  }
350  return start.Value() < other_start.Value();
351}
352
353
354void LiveRange::ShortenTo(LifetimePosition start) {
355  LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
356  DCHECK(first_interval_ != NULL);
357  DCHECK(first_interval_->start().Value() <= start.Value());
358  DCHECK(start.Value() < first_interval_->end().Value());
359  first_interval_->set_start(start);
360}
361
362
363void LiveRange::EnsureInterval(LifetimePosition start,
364                               LifetimePosition end,
365                               Zone* zone) {
366  LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
367                         id_,
368                         start.Value(),
369                         end.Value());
370  LifetimePosition new_end = end;
371  while (first_interval_ != NULL &&
372         first_interval_->start().Value() <= end.Value()) {
373    if (first_interval_->end().Value() > end.Value()) {
374      new_end = first_interval_->end();
375    }
376    first_interval_ = first_interval_->next();
377  }
378
379  UseInterval* new_interval = new(zone) UseInterval(start, new_end);
380  new_interval->next_ = first_interval_;
381  first_interval_ = new_interval;
382  if (new_interval->next() == NULL) {
383    last_interval_ = new_interval;
384  }
385}
386
387
388void LiveRange::AddUseInterval(LifetimePosition start,
389                               LifetimePosition end,
390                               Zone* zone) {
391  LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
392                         id_,
393                         start.Value(),
394                         end.Value());
395  if (first_interval_ == NULL) {
396    UseInterval* interval = new(zone) UseInterval(start, end);
397    first_interval_ = interval;
398    last_interval_ = interval;
399  } else {
400    if (end.Value() == first_interval_->start().Value()) {
401      first_interval_->set_start(start);
402    } else if (end.Value() < first_interval_->start().Value()) {
403      UseInterval* interval = new(zone) UseInterval(start, end);
404      interval->set_next(first_interval_);
405      first_interval_ = interval;
406    } else {
407      // Order of instruction's processing (see ProcessInstructions) guarantees
408      // that each new use interval either precedes or intersects with
409      // last added interval.
410      DCHECK(start.Value() < first_interval_->end().Value());
411      first_interval_->start_ = Min(start, first_interval_->start_);
412      first_interval_->end_ = Max(end, first_interval_->end_);
413    }
414  }
415}
416
417
418void LiveRange::AddUsePosition(LifetimePosition pos,
419                               LOperand* operand,
420                               LOperand* hint,
421                               Zone* zone) {
422  LAllocator::TraceAlloc("Add to live range %d use position %d\n",
423                         id_,
424                         pos.Value());
425  UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
426  UsePosition* prev_hint = NULL;
427  UsePosition* prev = NULL;
428  UsePosition* current = first_pos_;
429  while (current != NULL && current->pos().Value() < pos.Value()) {
430    prev_hint = current->HasHint() ? current : prev_hint;
431    prev = current;
432    current = current->next();
433  }
434
435  if (prev == NULL) {
436    use_pos->set_next(first_pos_);
437    first_pos_ = use_pos;
438  } else {
439    use_pos->next_ = prev->next_;
440    prev->next_ = use_pos;
441  }
442
443  if (prev_hint == NULL && use_pos->HasHint()) {
444    current_hint_operand_ = hint;
445  }
446}
447
448
449void LiveRange::ConvertOperands(Zone* zone) {
450  LOperand* op = CreateAssignedOperand(zone);
451  UsePosition* use_pos = first_pos();
452  while (use_pos != NULL) {
453    DCHECK(Start().Value() <= use_pos->pos().Value() &&
454           use_pos->pos().Value() <= End().Value());
455
456    if (use_pos->HasOperand()) {
457      DCHECK(op->IsRegister() || op->IsDoubleRegister() ||
458             !use_pos->RequiresRegister());
459      use_pos->operand()->ConvertTo(op->kind(), op->index());
460    }
461    use_pos = use_pos->next();
462  }
463}
464
465
466bool LiveRange::CanCover(LifetimePosition position) const {
467  if (IsEmpty()) return false;
468  return Start().Value() <= position.Value() &&
469         position.Value() < End().Value();
470}
471
472
473bool LiveRange::Covers(LifetimePosition position) {
474  if (!CanCover(position)) return false;
475  UseInterval* start_search = FirstSearchIntervalForPosition(position);
476  for (UseInterval* interval = start_search;
477       interval != NULL;
478       interval = interval->next()) {
479    DCHECK(interval->next() == NULL ||
480           interval->next()->start().Value() >= interval->start().Value());
481    AdvanceLastProcessedMarker(interval, position);
482    if (interval->Contains(position)) return true;
483    if (interval->start().Value() > position.Value()) return false;
484  }
485  return false;
486}
487
488
489LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
490  UseInterval* b = other->first_interval();
491  if (b == NULL) return LifetimePosition::Invalid();
492  LifetimePosition advance_last_processed_up_to = b->start();
493  UseInterval* a = FirstSearchIntervalForPosition(b->start());
494  while (a != NULL && b != NULL) {
495    if (a->start().Value() > other->End().Value()) break;
496    if (b->start().Value() > End().Value()) break;
497    LifetimePosition cur_intersection = a->Intersect(b);
498    if (cur_intersection.IsValid()) {
499      return cur_intersection;
500    }
501    if (a->start().Value() < b->start().Value()) {
502      a = a->next();
503      if (a == NULL || a->start().Value() > other->End().Value()) break;
504      AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
505    } else {
506      b = b->next();
507    }
508  }
509  return LifetimePosition::Invalid();
510}
511
512
513LAllocator::LAllocator(int num_values, HGraph* graph)
514    : zone_(graph->isolate()),
515      chunk_(NULL),
516      live_in_sets_(graph->blocks()->length(), zone()),
517      live_ranges_(num_values * 2, zone()),
518      fixed_live_ranges_(NULL),
519      fixed_double_live_ranges_(NULL),
520      unhandled_live_ranges_(num_values * 2, zone()),
521      active_live_ranges_(8, zone()),
522      inactive_live_ranges_(8, zone()),
523      reusable_slots_(8, zone()),
524      next_virtual_register_(num_values),
525      first_artificial_register_(num_values),
526      mode_(UNALLOCATED_REGISTERS),
527      num_registers_(-1),
528      graph_(graph),
529      has_osr_entry_(false),
530      allocation_ok_(true) {}
531
532
533void LAllocator::InitializeLivenessAnalysis() {
534  // Initialize the live_in sets for each block to NULL.
535  int block_count = graph_->blocks()->length();
536  live_in_sets_.Initialize(block_count, zone());
537  live_in_sets_.AddBlock(NULL, block_count, zone());
538}
539
540
541BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
542  // Compute live out for the given block, except not including backward
543  // successor edges.
544  BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
545
546  // Process all successor blocks.
547  for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
548    // Add values live on entry to the successor. Note the successor's
549    // live_in will not be computed yet for backwards edges.
550    HBasicBlock* successor = it.Current();
551    BitVector* live_in = live_in_sets_[successor->block_id()];
552    if (live_in != NULL) live_out->Union(*live_in);
553
554    // All phi input operands corresponding to this successor edge are live
555    // out from this block.
556    int index = successor->PredecessorIndexOf(block);
557    const ZoneList<HPhi*>* phis = successor->phis();
558    for (int i = 0; i < phis->length(); ++i) {
559      HPhi* phi = phis->at(i);
560      if (!phi->OperandAt(index)->IsConstant()) {
561        live_out->Add(phi->OperandAt(index)->id());
562      }
563    }
564  }
565
566  return live_out;
567}
568
569
570void LAllocator::AddInitialIntervals(HBasicBlock* block,
571                                     BitVector* live_out) {
572  // Add an interval that includes the entire block to the live range for
573  // each live_out value.
574  LifetimePosition start = LifetimePosition::FromInstructionIndex(
575      block->first_instruction_index());
576  LifetimePosition end = LifetimePosition::FromInstructionIndex(
577      block->last_instruction_index()).NextInstruction();
578  BitVector::Iterator iterator(live_out);
579  while (!iterator.Done()) {
580    int operand_index = iterator.Current();
581    LiveRange* range = LiveRangeFor(operand_index);
582    range->AddUseInterval(start, end, zone());
583    iterator.Advance();
584  }
585}
586
587
588int LAllocator::FixedDoubleLiveRangeID(int index) {
589  return -index - 1 - Register::kMaxNumAllocatableRegisters;
590}
591
592
593LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
594                                    int pos,
595                                    bool is_tagged) {
596  TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
597  DCHECK(operand->HasFixedPolicy());
598  if (operand->HasFixedSlotPolicy()) {
599    operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
600  } else if (operand->HasFixedRegisterPolicy()) {
601    int reg_index = operand->fixed_register_index();
602    operand->ConvertTo(LOperand::REGISTER, reg_index);
603  } else if (operand->HasFixedDoubleRegisterPolicy()) {
604    int reg_index = operand->fixed_register_index();
605    operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
606  } else {
607    UNREACHABLE();
608  }
609  if (is_tagged) {
610    TraceAlloc("Fixed reg is tagged at %d\n", pos);
611    LInstruction* instr = InstructionAt(pos);
612    if (instr->HasPointerMap()) {
613      instr->pointer_map()->RecordPointer(operand, chunk()->zone());
614    }
615  }
616  return operand;
617}
618
619
620LiveRange* LAllocator::FixedLiveRangeFor(int index) {
621  DCHECK(index < Register::kMaxNumAllocatableRegisters);
622  LiveRange* result = fixed_live_ranges_[index];
623  if (result == NULL) {
624    result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
625    DCHECK(result->IsFixed());
626    result->kind_ = GENERAL_REGISTERS;
627    SetLiveRangeAssignedRegister(result, index);
628    fixed_live_ranges_[index] = result;
629  }
630  return result;
631}
632
633
634LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
635  DCHECK(index < DoubleRegister::NumAllocatableRegisters());
636  LiveRange* result = fixed_double_live_ranges_[index];
637  if (result == NULL) {
638    result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
639                                   chunk()->zone());
640    DCHECK(result->IsFixed());
641    result->kind_ = DOUBLE_REGISTERS;
642    SetLiveRangeAssignedRegister(result, index);
643    fixed_double_live_ranges_[index] = result;
644  }
645  return result;
646}
647
648
649LiveRange* LAllocator::LiveRangeFor(int index) {
650  if (index >= live_ranges_.length()) {
651    live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
652  }
653  LiveRange* result = live_ranges_[index];
654  if (result == NULL) {
655    result = new(zone()) LiveRange(index, chunk()->zone());
656    live_ranges_[index] = result;
657  }
658  return result;
659}
660
661
662LGap* LAllocator::GetLastGap(HBasicBlock* block) {
663  int last_instruction = block->last_instruction_index();
664  int index = chunk_->NearestGapPos(last_instruction);
665  return GapAt(index);
666}
667
668
669HPhi* LAllocator::LookupPhi(LOperand* operand) const {
670  if (!operand->IsUnallocated()) return NULL;
671  int index = LUnallocated::cast(operand)->virtual_register();
672  HValue* instr = graph_->LookupValue(index);
673  if (instr != NULL && instr->IsPhi()) {
674    return HPhi::cast(instr);
675  }
676  return NULL;
677}
678
679
680LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
681  if (operand->IsUnallocated()) {
682    return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
683  } else if (operand->IsRegister()) {
684    return FixedLiveRangeFor(operand->index());
685  } else if (operand->IsDoubleRegister()) {
686    return FixedDoubleLiveRangeFor(operand->index());
687  } else {
688    return NULL;
689  }
690}
691
692
693void LAllocator::Define(LifetimePosition position,
694                        LOperand* operand,
695                        LOperand* hint) {
696  LiveRange* range = LiveRangeFor(operand);
697  if (range == NULL) return;
698
699  if (range->IsEmpty() || range->Start().Value() > position.Value()) {
700    // Can happen if there is a definition without use.
701    range->AddUseInterval(position, position.NextInstruction(), zone());
702    range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
703  } else {
704    range->ShortenTo(position);
705  }
706
707  if (operand->IsUnallocated()) {
708    LUnallocated* unalloc_operand = LUnallocated::cast(operand);
709    range->AddUsePosition(position, unalloc_operand, hint, zone());
710  }
711}
712
713
714void LAllocator::Use(LifetimePosition block_start,
715                     LifetimePosition position,
716                     LOperand* operand,
717                     LOperand* hint) {
718  LiveRange* range = LiveRangeFor(operand);
719  if (range == NULL) return;
720  if (operand->IsUnallocated()) {
721    LUnallocated* unalloc_operand = LUnallocated::cast(operand);
722    range->AddUsePosition(position, unalloc_operand, hint, zone());
723  }
724  range->AddUseInterval(block_start, position, zone());
725}
726
727
728void LAllocator::AddConstraintsGapMove(int index,
729                                       LOperand* from,
730                                       LOperand* to) {
731  LGap* gap = GapAt(index);
732  LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
733                                                     chunk()->zone());
734  if (from->IsUnallocated()) {
735    const ZoneList<LMoveOperands>* move_operands = move->move_operands();
736    for (int i = 0; i < move_operands->length(); ++i) {
737      LMoveOperands cur = move_operands->at(i);
738      LOperand* cur_to = cur.destination();
739      if (cur_to->IsUnallocated()) {
740        if (LUnallocated::cast(cur_to)->virtual_register() ==
741            LUnallocated::cast(from)->virtual_register()) {
742          move->AddMove(cur.source(), to, chunk()->zone());
743          return;
744        }
745      }
746    }
747  }
748  move->AddMove(from, to, chunk()->zone());
749}
750
751
752void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
753  int start = block->first_instruction_index();
754  int end = block->last_instruction_index();
755  if (start == -1) return;
756  for (int i = start; i <= end; ++i) {
757    if (IsGapAt(i)) {
758      LInstruction* instr = NULL;
759      LInstruction* prev_instr = NULL;
760      if (i < end) instr = InstructionAt(i + 1);
761      if (i > start) prev_instr = InstructionAt(i - 1);
762      MeetConstraintsBetween(prev_instr, instr, i);
763      if (!AllocationOk()) return;
764    }
765  }
766}
767
768
769void LAllocator::MeetConstraintsBetween(LInstruction* first,
770                                        LInstruction* second,
771                                        int gap_index) {
772  // Handle fixed temporaries.
773  if (first != NULL) {
774    for (TempIterator it(first); !it.Done(); it.Advance()) {
775      LUnallocated* temp = LUnallocated::cast(it.Current());
776      if (temp->HasFixedPolicy()) {
777        AllocateFixed(temp, gap_index - 1, false);
778      }
779    }
780  }
781
782  // Handle fixed output operand.
783  if (first != NULL && first->Output() != NULL) {
784    LUnallocated* first_output = LUnallocated::cast(first->Output());
785    LiveRange* range = LiveRangeFor(first_output->virtual_register());
786    bool assigned = false;
787    if (first_output->HasFixedPolicy()) {
788      LUnallocated* output_copy = first_output->CopyUnconstrained(
789          chunk()->zone());
790      bool is_tagged = HasTaggedValue(first_output->virtual_register());
791      AllocateFixed(first_output, gap_index, is_tagged);
792
793      // This value is produced on the stack, we never need to spill it.
794      if (first_output->IsStackSlot()) {
795        range->SetSpillOperand(first_output);
796        range->SetSpillStartIndex(gap_index - 1);
797        assigned = true;
798      }
799      chunk_->AddGapMove(gap_index, first_output, output_copy);
800    }
801
802    if (!assigned) {
803      range->SetSpillStartIndex(gap_index);
804
805      // This move to spill operand is not a real use. Liveness analysis
806      // and splitting of live ranges do not account for it.
807      // Thus it should be inserted to a lifetime position corresponding to
808      // the instruction end.
809      LGap* gap = GapAt(gap_index);
810      LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
811                                                         chunk()->zone());
812      move->AddMove(first_output, range->GetSpillOperand(),
813                    chunk()->zone());
814    }
815  }
816
817  // Handle fixed input operands of second instruction.
818  if (second != NULL) {
819    for (UseIterator it(second); !it.Done(); it.Advance()) {
820      LUnallocated* cur_input = LUnallocated::cast(it.Current());
821      if (cur_input->HasFixedPolicy()) {
822        LUnallocated* input_copy = cur_input->CopyUnconstrained(
823            chunk()->zone());
824        bool is_tagged = HasTaggedValue(cur_input->virtual_register());
825        AllocateFixed(cur_input, gap_index + 1, is_tagged);
826        AddConstraintsGapMove(gap_index, input_copy, cur_input);
827      } else if (cur_input->HasWritableRegisterPolicy()) {
828        // The live range of writable input registers always goes until the end
829        // of the instruction.
830        DCHECK(!cur_input->IsUsedAtStart());
831
832        LUnallocated* input_copy = cur_input->CopyUnconstrained(
833            chunk()->zone());
834        int vreg = GetVirtualRegister();
835        if (!AllocationOk()) return;
836        cur_input->set_virtual_register(vreg);
837
838        if (RequiredRegisterKind(input_copy->virtual_register()) ==
839            DOUBLE_REGISTERS) {
840          double_artificial_registers_.Add(
841              cur_input->virtual_register() - first_artificial_register_,
842              zone());
843        }
844
845        AddConstraintsGapMove(gap_index, input_copy, cur_input);
846      }
847    }
848  }
849
850  // Handle "output same as input" for second instruction.
851  if (second != NULL && second->Output() != NULL) {
852    LUnallocated* second_output = LUnallocated::cast(second->Output());
853    if (second_output->HasSameAsInputPolicy()) {
854      LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
855      int output_vreg = second_output->virtual_register();
856      int input_vreg = cur_input->virtual_register();
857
858      LUnallocated* input_copy = cur_input->CopyUnconstrained(
859          chunk()->zone());
860      cur_input->set_virtual_register(second_output->virtual_register());
861      AddConstraintsGapMove(gap_index, input_copy, cur_input);
862
863      if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
864        int index = gap_index + 1;
865        LInstruction* instr = InstructionAt(index);
866        if (instr->HasPointerMap()) {
867          instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
868        }
869      } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
870        // The input is assumed to immediately have a tagged representation,
871        // before the pointer map can be used. I.e. the pointer map at the
872        // instruction will include the output operand (whose value at the
873        // beginning of the instruction is equal to the input operand). If
874        // this is not desired, then the pointer map at this instruction needs
875        // to be adjusted manually.
876      }
877    }
878  }
879}
880
881
882void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
883  int block_start = block->first_instruction_index();
884  int index = block->last_instruction_index();
885
886  LifetimePosition block_start_position =
887      LifetimePosition::FromInstructionIndex(block_start);
888
889  while (index >= block_start) {
890    LifetimePosition curr_position =
891        LifetimePosition::FromInstructionIndex(index);
892
893    if (IsGapAt(index)) {
894      // We have a gap at this position.
895      LGap* gap = GapAt(index);
896      LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
897                                                         chunk()->zone());
898      const ZoneList<LMoveOperands>* move_operands = move->move_operands();
899      for (int i = 0; i < move_operands->length(); ++i) {
900        LMoveOperands* cur = &move_operands->at(i);
901        if (cur->IsIgnored()) continue;
902        LOperand* from = cur->source();
903        LOperand* to = cur->destination();
904        HPhi* phi = LookupPhi(to);
905        LOperand* hint = to;
906        if (phi != NULL) {
907          // This is a phi resolving move.
908          if (!phi->block()->IsLoopHeader()) {
909            hint = LiveRangeFor(phi->id())->current_hint_operand();
910          }
911        } else {
912          if (to->IsUnallocated()) {
913            if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
914              Define(curr_position, to, from);
915              live->Remove(LUnallocated::cast(to)->virtual_register());
916            } else {
917              cur->Eliminate();
918              continue;
919            }
920          } else {
921            Define(curr_position, to, from);
922          }
923        }
924        Use(block_start_position, curr_position, from, hint);
925        if (from->IsUnallocated()) {
926          live->Add(LUnallocated::cast(from)->virtual_register());
927        }
928      }
929    } else {
930      DCHECK(!IsGapAt(index));
931      LInstruction* instr = InstructionAt(index);
932
933      if (instr != NULL) {
934        LOperand* output = instr->Output();
935        if (output != NULL) {
936          if (output->IsUnallocated()) {
937            live->Remove(LUnallocated::cast(output)->virtual_register());
938          }
939          Define(curr_position, output, NULL);
940        }
941
942        if (instr->ClobbersRegisters()) {
943          for (int i = 0; i < Register::kMaxNumAllocatableRegisters; ++i) {
944            if (output == NULL || !output->IsRegister() ||
945                output->index() != i) {
946              LiveRange* range = FixedLiveRangeFor(i);
947              range->AddUseInterval(curr_position,
948                                    curr_position.InstructionEnd(),
949                                    zone());
950            }
951          }
952        }
953
954        if (instr->ClobbersDoubleRegisters(isolate())) {
955          for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
956            if (output == NULL || !output->IsDoubleRegister() ||
957                output->index() != i) {
958              LiveRange* range = FixedDoubleLiveRangeFor(i);
959              range->AddUseInterval(curr_position,
960                                    curr_position.InstructionEnd(),
961                                    zone());
962            }
963          }
964        }
965
966        for (UseIterator it(instr); !it.Done(); it.Advance()) {
967          LOperand* input = it.Current();
968
969          LifetimePosition use_pos;
970          if (input->IsUnallocated() &&
971              LUnallocated::cast(input)->IsUsedAtStart()) {
972            use_pos = curr_position;
973          } else {
974            use_pos = curr_position.InstructionEnd();
975          }
976
977          Use(block_start_position, use_pos, input, NULL);
978          if (input->IsUnallocated()) {
979            live->Add(LUnallocated::cast(input)->virtual_register());
980          }
981        }
982
983        for (TempIterator it(instr); !it.Done(); it.Advance()) {
984          LOperand* temp = it.Current();
985          if (instr->ClobbersTemps()) {
986            if (temp->IsRegister()) continue;
987            if (temp->IsUnallocated()) {
988              LUnallocated* temp_unalloc = LUnallocated::cast(temp);
989              if (temp_unalloc->HasFixedPolicy()) {
990                continue;
991              }
992            }
993          }
994          Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
995          Define(curr_position, temp, NULL);
996
997          if (temp->IsUnallocated()) {
998            LUnallocated* temp_unalloc = LUnallocated::cast(temp);
999            if (temp_unalloc->HasDoubleRegisterPolicy()) {
1000              double_artificial_registers_.Add(
1001                  temp_unalloc->virtual_register() - first_artificial_register_,
1002                  zone());
1003            }
1004          }
1005        }
1006      }
1007    }
1008
1009    index = index - 1;
1010  }
1011}
1012
1013
1014void LAllocator::ResolvePhis(HBasicBlock* block) {
1015  const ZoneList<HPhi*>* phis = block->phis();
1016  for (int i = 0; i < phis->length(); ++i) {
1017    HPhi* phi = phis->at(i);
1018    LUnallocated* phi_operand =
1019        new (chunk()->zone()) LUnallocated(LUnallocated::NONE);
1020    phi_operand->set_virtual_register(phi->id());
1021    for (int j = 0; j < phi->OperandCount(); ++j) {
1022      HValue* op = phi->OperandAt(j);
1023      LOperand* operand = NULL;
1024      if (op->IsConstant() && op->EmitAtUses()) {
1025        HConstant* constant = HConstant::cast(op);
1026        operand = chunk_->DefineConstantOperand(constant);
1027      } else {
1028        DCHECK(!op->EmitAtUses());
1029        LUnallocated* unalloc =
1030            new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
1031        unalloc->set_virtual_register(op->id());
1032        operand = unalloc;
1033      }
1034      HBasicBlock* cur_block = block->predecessors()->at(j);
1035      // The gap move must be added without any special processing as in
1036      // the AddConstraintsGapMove.
1037      chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1038                         operand,
1039                         phi_operand);
1040
1041      // We are going to insert a move before the branch instruction.
1042      // Some branch instructions (e.g. loops' back edges)
1043      // can potentially cause a GC so they have a pointer map.
1044      // By inserting a move we essentially create a copy of a
1045      // value which is invisible to PopulatePointerMaps(), because we store
1046      // it into a location different from the operand of a live range
1047      // covering a branch instruction.
1048      // Thus we need to manually record a pointer.
1049      LInstruction* branch =
1050          InstructionAt(cur_block->last_instruction_index());
1051      if (branch->HasPointerMap()) {
1052        if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
1053          branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
1054        } else if (!phi->representation().IsDouble()) {
1055          branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
1056        }
1057      }
1058    }
1059
1060    LiveRange* live_range = LiveRangeFor(phi->id());
1061    LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1062    label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
1063        AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
1064    live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1065  }
1066}
1067
1068
1069bool LAllocator::Allocate(LChunk* chunk) {
1070  DCHECK(chunk_ == NULL);
1071  chunk_ = static_cast<LPlatformChunk*>(chunk);
1072  assigned_registers_ =
1073      new(chunk->zone()) BitVector(Register::NumAllocatableRegisters(),
1074                                   chunk->zone());
1075  assigned_double_registers_ =
1076      new(chunk->zone()) BitVector(DoubleRegister::NumAllocatableRegisters(),
1077                                   chunk->zone());
1078  MeetRegisterConstraints();
1079  if (!AllocationOk()) return false;
1080  ResolvePhis();
1081  BuildLiveRanges();
1082  AllocateGeneralRegisters();
1083  if (!AllocationOk()) return false;
1084  AllocateDoubleRegisters();
1085  if (!AllocationOk()) return false;
1086  PopulatePointerMaps();
1087  ConnectRanges();
1088  ResolveControlFlow();
1089  return true;
1090}
1091
1092
1093void LAllocator::MeetRegisterConstraints() {
1094  LAllocatorPhase phase("L_Register constraints", this);
1095  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1096  for (int i = 0; i < blocks->length(); ++i) {
1097    HBasicBlock* block = blocks->at(i);
1098    MeetRegisterConstraints(block);
1099    if (!AllocationOk()) return;
1100  }
1101}
1102
1103
1104void LAllocator::ResolvePhis() {
1105  LAllocatorPhase phase("L_Resolve phis", this);
1106
1107  // Process the blocks in reverse order.
1108  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1109  for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1110    HBasicBlock* block = blocks->at(block_id);
1111    ResolvePhis(block);
1112  }
1113}
1114
1115
1116void LAllocator::ResolveControlFlow(LiveRange* range,
1117                                    HBasicBlock* block,
1118                                    HBasicBlock* pred) {
1119  LifetimePosition pred_end =
1120      LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1121  LifetimePosition cur_start =
1122      LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1123  LiveRange* pred_cover = NULL;
1124  LiveRange* cur_cover = NULL;
1125  LiveRange* cur_range = range;
1126  while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1127    if (cur_range->CanCover(cur_start)) {
1128      DCHECK(cur_cover == NULL);
1129      cur_cover = cur_range;
1130    }
1131    if (cur_range->CanCover(pred_end)) {
1132      DCHECK(pred_cover == NULL);
1133      pred_cover = cur_range;
1134    }
1135    cur_range = cur_range->next();
1136  }
1137
1138  if (cur_cover->IsSpilled()) return;
1139  DCHECK(pred_cover != NULL && cur_cover != NULL);
1140  if (pred_cover != cur_cover) {
1141    LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
1142    LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
1143    if (!pred_op->Equals(cur_op)) {
1144      LGap* gap = NULL;
1145      if (block->predecessors()->length() == 1) {
1146        gap = GapAt(block->first_instruction_index());
1147      } else {
1148        DCHECK(pred->end()->SecondSuccessor() == NULL);
1149        gap = GetLastGap(pred);
1150
1151        // We are going to insert a move before the branch instruction.
1152        // Some branch instructions (e.g. loops' back edges)
1153        // can potentially cause a GC so they have a pointer map.
1154        // By inserting a move we essentially create a copy of a
1155        // value which is invisible to PopulatePointerMaps(), because we store
1156        // it into a location different from the operand of a live range
1157        // covering a branch instruction.
1158        // Thus we need to manually record a pointer.
1159        LInstruction* branch = InstructionAt(pred->last_instruction_index());
1160        if (branch->HasPointerMap()) {
1161          if (HasTaggedValue(range->id())) {
1162            branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
1163          } else if (!cur_op->IsDoubleStackSlot() &&
1164                     !cur_op->IsDoubleRegister()) {
1165            branch->pointer_map()->RemovePointer(cur_op);
1166          }
1167        }
1168      }
1169      gap->GetOrCreateParallelMove(
1170          LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
1171                                                 chunk()->zone());
1172    }
1173  }
1174}
1175
1176
1177LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1178  int index = pos.InstructionIndex();
1179  if (IsGapAt(index)) {
1180    LGap* gap = GapAt(index);
1181    return gap->GetOrCreateParallelMove(
1182        pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
1183  }
1184  int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1185  return GapAt(gap_pos)->GetOrCreateParallelMove(
1186      (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
1187}
1188
1189
1190HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1191  LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1192  return gap->block();
1193}
1194
1195
1196void LAllocator::ConnectRanges() {
1197  LAllocatorPhase phase("L_Connect ranges", this);
1198  for (int i = 0; i < live_ranges()->length(); ++i) {
1199    LiveRange* first_range = live_ranges()->at(i);
1200    if (first_range == NULL || first_range->parent() != NULL) continue;
1201
1202    LiveRange* second_range = first_range->next();
1203    while (second_range != NULL) {
1204      LifetimePosition pos = second_range->Start();
1205
1206      if (!second_range->IsSpilled()) {
1207        // Add gap move if the two live ranges touch and there is no block
1208        // boundary.
1209        if (first_range->End().Value() == pos.Value()) {
1210          bool should_insert = true;
1211          if (IsBlockBoundary(pos)) {
1212            should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1213          }
1214          if (should_insert) {
1215            LParallelMove* move = GetConnectingParallelMove(pos);
1216            LOperand* prev_operand = first_range->CreateAssignedOperand(
1217                chunk()->zone());
1218            LOperand* cur_operand = second_range->CreateAssignedOperand(
1219                chunk()->zone());
1220            move->AddMove(prev_operand, cur_operand,
1221                          chunk()->zone());
1222          }
1223        }
1224      }
1225
1226      first_range = second_range;
1227      second_range = second_range->next();
1228    }
1229  }
1230}
1231
1232
1233bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1234  if (block->predecessors()->length() != 1) return false;
1235  return block->predecessors()->first()->block_id() == block->block_id() - 1;
1236}
1237
1238
1239void LAllocator::ResolveControlFlow() {
1240  LAllocatorPhase phase("L_Resolve control flow", this);
1241  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1242  for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1243    HBasicBlock* block = blocks->at(block_id);
1244    if (CanEagerlyResolveControlFlow(block)) continue;
1245    BitVector* live = live_in_sets_[block->block_id()];
1246    BitVector::Iterator iterator(live);
1247    while (!iterator.Done()) {
1248      int operand_index = iterator.Current();
1249      for (int i = 0; i < block->predecessors()->length(); ++i) {
1250        HBasicBlock* cur = block->predecessors()->at(i);
1251        LiveRange* cur_range = LiveRangeFor(operand_index);
1252        ResolveControlFlow(cur_range, block, cur);
1253      }
1254      iterator.Advance();
1255    }
1256  }
1257}
1258
1259
1260void LAllocator::BuildLiveRanges() {
1261  LAllocatorPhase phase("L_Build live ranges", this);
1262  InitializeLivenessAnalysis();
1263  // Process the blocks in reverse order.
1264  const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1265  for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1266    HBasicBlock* block = blocks->at(block_id);
1267    BitVector* live = ComputeLiveOut(block);
1268    // Initially consider all live_out values live for the entire block. We
1269    // will shorten these intervals if necessary.
1270    AddInitialIntervals(block, live);
1271
1272    // Process the instructions in reverse order, generating and killing
1273    // live values.
1274    ProcessInstructions(block, live);
1275    // All phi output operands are killed by this block.
1276    const ZoneList<HPhi*>* phis = block->phis();
1277    for (int i = 0; i < phis->length(); ++i) {
1278      // The live range interval already ends at the first instruction of the
1279      // block.
1280      HPhi* phi = phis->at(i);
1281      live->Remove(phi->id());
1282
1283      LOperand* hint = NULL;
1284      LOperand* phi_operand = NULL;
1285      LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1286      LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
1287                                                         chunk()->zone());
1288      for (int j = 0; j < move->move_operands()->length(); ++j) {
1289        LOperand* to = move->move_operands()->at(j).destination();
1290        if (to->IsUnallocated() &&
1291            LUnallocated::cast(to)->virtual_register() == phi->id()) {
1292          hint = move->move_operands()->at(j).source();
1293          phi_operand = to;
1294          break;
1295        }
1296      }
1297      DCHECK(hint != NULL);
1298
1299      LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1300              block->first_instruction_index());
1301      Define(block_start, phi_operand, hint);
1302    }
1303
1304    // Now live is live_in for this block except not including values live
1305    // out on backward successor edges.
1306    live_in_sets_[block_id] = live;
1307
1308    // If this block is a loop header go back and patch up the necessary
1309    // predecessor blocks.
1310    if (block->IsLoopHeader()) {
1311      // TODO(kmillikin): Need to be able to get the last block of the loop
1312      // in the loop information. Add a live range stretching from the first
1313      // loop instruction to the last for each value live on entry to the
1314      // header.
1315      HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1316      BitVector::Iterator iterator(live);
1317      LifetimePosition start = LifetimePosition::FromInstructionIndex(
1318          block->first_instruction_index());
1319      LifetimePosition end = LifetimePosition::FromInstructionIndex(
1320          back_edge->last_instruction_index()).NextInstruction();
1321      while (!iterator.Done()) {
1322        int operand_index = iterator.Current();
1323        LiveRange* range = LiveRangeFor(operand_index);
1324        range->EnsureInterval(start, end, zone());
1325        iterator.Advance();
1326      }
1327
1328      for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1329        live_in_sets_[i]->Union(*live);
1330      }
1331    }
1332
1333#ifdef DEBUG
1334    if (block_id == 0) {
1335      BitVector::Iterator iterator(live);
1336      bool found = false;
1337      while (!iterator.Done()) {
1338        found = true;
1339        int operand_index = iterator.Current();
1340        if (chunk_->info()->IsStub()) {
1341          CodeStub::Major major_key = chunk_->info()->code_stub()->MajorKey();
1342          PrintF("Function: %s\n", CodeStub::MajorName(major_key, false));
1343        } else {
1344          DCHECK(chunk_->info()->IsOptimizing());
1345          AllowHandleDereference allow_deref;
1346          PrintF("Function: %s\n",
1347                 chunk_->info()->function()->debug_name()->ToCString().get());
1348        }
1349        PrintF("Value %d used before first definition!\n", operand_index);
1350        LiveRange* range = LiveRangeFor(operand_index);
1351        PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1352        iterator.Advance();
1353      }
1354      DCHECK(!found);
1355    }
1356#endif
1357  }
1358
1359  for (int i = 0; i < live_ranges_.length(); ++i) {
1360    if (live_ranges_[i] != NULL) {
1361      live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
1362    }
1363  }
1364}
1365
1366
1367bool LAllocator::SafePointsAreInOrder() const {
1368  const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1369  int safe_point = 0;
1370  for (int i = 0; i < pointer_maps->length(); ++i) {
1371    LPointerMap* map = pointer_maps->at(i);
1372    if (safe_point > map->lithium_position()) return false;
1373    safe_point = map->lithium_position();
1374  }
1375  return true;
1376}
1377
1378
1379void LAllocator::PopulatePointerMaps() {
1380  LAllocatorPhase phase("L_Populate pointer maps", this);
1381  const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1382
1383  DCHECK(SafePointsAreInOrder());
1384
1385  // Iterate over all safe point positions and record a pointer
1386  // for all spilled live ranges at this point.
1387  int first_safe_point_index = 0;
1388  int last_range_start = 0;
1389  for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1390    LiveRange* range = live_ranges()->at(range_idx);
1391    if (range == NULL) continue;
1392    // Iterate over the first parts of multi-part live ranges.
1393    if (range->parent() != NULL) continue;
1394    // Skip non-pointer values.
1395    if (!HasTaggedValue(range->id())) continue;
1396    // Skip empty live ranges.
1397    if (range->IsEmpty()) continue;
1398
1399    // Find the extent of the range and its children.
1400    int start = range->Start().InstructionIndex();
1401    int end = 0;
1402    for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1403      LifetimePosition this_end = cur->End();
1404      if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1405      DCHECK(cur->Start().InstructionIndex() >= start);
1406    }
1407
1408    // Most of the ranges are in order, but not all.  Keep an eye on when
1409    // they step backwards and reset the first_safe_point_index so we don't
1410    // miss any safe points.
1411    if (start < last_range_start) {
1412      first_safe_point_index = 0;
1413    }
1414    last_range_start = start;
1415
1416    // Step across all the safe points that are before the start of this range,
1417    // recording how far we step in order to save doing this for the next range.
1418    while (first_safe_point_index < pointer_maps->length()) {
1419      LPointerMap* map = pointer_maps->at(first_safe_point_index);
1420      int safe_point = map->lithium_position();
1421      if (safe_point >= start) break;
1422      first_safe_point_index++;
1423    }
1424
1425    // Step through the safe points to see whether they are in the range.
1426    for (int safe_point_index = first_safe_point_index;
1427         safe_point_index < pointer_maps->length();
1428         ++safe_point_index) {
1429      LPointerMap* map = pointer_maps->at(safe_point_index);
1430      int safe_point = map->lithium_position();
1431
1432      // The safe points are sorted so we can stop searching here.
1433      if (safe_point - 1 > end) break;
1434
1435      // Advance to the next active range that covers the current
1436      // safe point position.
1437      LifetimePosition safe_point_pos =
1438          LifetimePosition::FromInstructionIndex(safe_point);
1439      LiveRange* cur = range;
1440      while (cur != NULL && !cur->Covers(safe_point_pos)) {
1441        cur = cur->next();
1442      }
1443      if (cur == NULL) continue;
1444
1445      // Check if the live range is spilled and the safe point is after
1446      // the spill position.
1447      if (range->HasAllocatedSpillOperand() &&
1448          safe_point >= range->spill_start_index()) {
1449        TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1450                   range->id(), range->spill_start_index(), safe_point);
1451        map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
1452      }
1453
1454      if (!cur->IsSpilled()) {
1455        TraceAlloc("Pointer in register for range %d (start at %d) "
1456                   "at safe point %d\n",
1457                   cur->id(), cur->Start().Value(), safe_point);
1458        LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
1459        DCHECK(!operand->IsStackSlot());
1460        map->RecordPointer(operand, chunk()->zone());
1461      }
1462    }
1463  }
1464}
1465
1466
1467void LAllocator::AllocateGeneralRegisters() {
1468  LAllocatorPhase phase("L_Allocate general registers", this);
1469  num_registers_ = Register::NumAllocatableRegisters();
1470  mode_ = GENERAL_REGISTERS;
1471  AllocateRegisters();
1472}
1473
1474
1475void LAllocator::AllocateDoubleRegisters() {
1476  LAllocatorPhase phase("L_Allocate double registers", this);
1477  num_registers_ = DoubleRegister::NumAllocatableRegisters();
1478  mode_ = DOUBLE_REGISTERS;
1479  AllocateRegisters();
1480}
1481
1482
1483void LAllocator::AllocateRegisters() {
1484  DCHECK(unhandled_live_ranges_.is_empty());
1485
1486  for (int i = 0; i < live_ranges_.length(); ++i) {
1487    if (live_ranges_[i] != NULL) {
1488      if (live_ranges_[i]->Kind() == mode_) {
1489        AddToUnhandledUnsorted(live_ranges_[i]);
1490      }
1491    }
1492  }
1493  SortUnhandled();
1494  DCHECK(UnhandledIsSorted());
1495
1496  DCHECK(reusable_slots_.is_empty());
1497  DCHECK(active_live_ranges_.is_empty());
1498  DCHECK(inactive_live_ranges_.is_empty());
1499
1500  if (mode_ == DOUBLE_REGISTERS) {
1501    for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
1502      LiveRange* current = fixed_double_live_ranges_.at(i);
1503      if (current != NULL) {
1504        AddToInactive(current);
1505      }
1506    }
1507  } else {
1508    DCHECK(mode_ == GENERAL_REGISTERS);
1509    for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1510      LiveRange* current = fixed_live_ranges_.at(i);
1511      if (current != NULL) {
1512        AddToInactive(current);
1513      }
1514    }
1515  }
1516
1517  while (!unhandled_live_ranges_.is_empty()) {
1518    DCHECK(UnhandledIsSorted());
1519    LiveRange* current = unhandled_live_ranges_.RemoveLast();
1520    DCHECK(UnhandledIsSorted());
1521    LifetimePosition position = current->Start();
1522#ifdef DEBUG
1523    allocation_finger_ = position;
1524#endif
1525    TraceAlloc("Processing interval %d start=%d\n",
1526               current->id(),
1527               position.Value());
1528
1529    if (current->HasAllocatedSpillOperand()) {
1530      TraceAlloc("Live range %d already has a spill operand\n", current->id());
1531      LifetimePosition next_pos = position;
1532      if (IsGapAt(next_pos.InstructionIndex())) {
1533        next_pos = next_pos.NextInstruction();
1534      }
1535      UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1536      // If the range already has a spill operand and it doesn't need a
1537      // register immediately, split it and spill the first part of the range.
1538      if (pos == NULL) {
1539        Spill(current);
1540        continue;
1541      } else if (pos->pos().Value() >
1542                 current->Start().NextInstruction().Value()) {
1543        // Do not spill live range eagerly if use position that can benefit from
1544        // the register is too close to the start of live range.
1545        SpillBetween(current, current->Start(), pos->pos());
1546        if (!AllocationOk()) return;
1547        DCHECK(UnhandledIsSorted());
1548        continue;
1549      }
1550    }
1551
1552    for (int i = 0; i < active_live_ranges_.length(); ++i) {
1553      LiveRange* cur_active = active_live_ranges_.at(i);
1554      if (cur_active->End().Value() <= position.Value()) {
1555        ActiveToHandled(cur_active);
1556        --i;  // The live range was removed from the list of active live ranges.
1557      } else if (!cur_active->Covers(position)) {
1558        ActiveToInactive(cur_active);
1559        --i;  // The live range was removed from the list of active live ranges.
1560      }
1561    }
1562
1563    for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1564      LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1565      if (cur_inactive->End().Value() <= position.Value()) {
1566        InactiveToHandled(cur_inactive);
1567        --i;  // Live range was removed from the list of inactive live ranges.
1568      } else if (cur_inactive->Covers(position)) {
1569        InactiveToActive(cur_inactive);
1570        --i;  // Live range was removed from the list of inactive live ranges.
1571      }
1572    }
1573
1574    DCHECK(!current->HasRegisterAssigned() && !current->IsSpilled());
1575
1576    bool result = TryAllocateFreeReg(current);
1577    if (!AllocationOk()) return;
1578
1579    if (!result) AllocateBlockedReg(current);
1580    if (!AllocationOk()) return;
1581
1582    if (current->HasRegisterAssigned()) {
1583      AddToActive(current);
1584    }
1585  }
1586
1587  reusable_slots_.Rewind(0);
1588  active_live_ranges_.Rewind(0);
1589  inactive_live_ranges_.Rewind(0);
1590}
1591
1592
1593const char* LAllocator::RegisterName(int allocation_index) {
1594  if (mode_ == GENERAL_REGISTERS) {
1595    return Register::AllocationIndexToString(allocation_index);
1596  } else {
1597    return DoubleRegister::AllocationIndexToString(allocation_index);
1598  }
1599}
1600
1601
1602void LAllocator::TraceAlloc(const char* msg, ...) {
1603  if (FLAG_trace_alloc) {
1604    va_list arguments;
1605    va_start(arguments, msg);
1606    base::OS::VPrint(msg, arguments);
1607    va_end(arguments);
1608  }
1609}
1610
1611
1612bool LAllocator::HasTaggedValue(int virtual_register) const {
1613  HValue* value = graph_->LookupValue(virtual_register);
1614  if (value == NULL) return false;
1615  return value->representation().IsTagged() && !value->type().IsSmi();
1616}
1617
1618
1619RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1620  if (virtual_register < first_artificial_register_) {
1621    HValue* value = graph_->LookupValue(virtual_register);
1622    if (value != NULL && value->representation().IsDouble()) {
1623      return DOUBLE_REGISTERS;
1624    }
1625  } else if (double_artificial_registers_.Contains(
1626      virtual_register - first_artificial_register_)) {
1627    return DOUBLE_REGISTERS;
1628  }
1629
1630  return GENERAL_REGISTERS;
1631}
1632
1633
1634void LAllocator::AddToActive(LiveRange* range) {
1635  TraceAlloc("Add live range %d to active\n", range->id());
1636  active_live_ranges_.Add(range, zone());
1637}
1638
1639
1640void LAllocator::AddToInactive(LiveRange* range) {
1641  TraceAlloc("Add live range %d to inactive\n", range->id());
1642  inactive_live_ranges_.Add(range, zone());
1643}
1644
1645
1646void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1647  if (range == NULL || range->IsEmpty()) return;
1648  DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1649  DCHECK(allocation_finger_.Value() <= range->Start().Value());
1650  for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1651    LiveRange* cur_range = unhandled_live_ranges_.at(i);
1652    if (range->ShouldBeAllocatedBefore(cur_range)) {
1653      TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1654      unhandled_live_ranges_.InsertAt(i + 1, range, zone());
1655      DCHECK(UnhandledIsSorted());
1656      return;
1657    }
1658  }
1659  TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1660  unhandled_live_ranges_.InsertAt(0, range, zone());
1661  DCHECK(UnhandledIsSorted());
1662}
1663
1664
1665void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1666  if (range == NULL || range->IsEmpty()) return;
1667  DCHECK(!range->HasRegisterAssigned() && !range->IsSpilled());
1668  TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1669  unhandled_live_ranges_.Add(range, zone());
1670}
1671
1672
1673static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1674  DCHECK(!(*a)->ShouldBeAllocatedBefore(*b) ||
1675         !(*b)->ShouldBeAllocatedBefore(*a));
1676  if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1677  if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1678  return (*a)->id() - (*b)->id();
1679}
1680
1681
1682// Sort the unhandled live ranges so that the ranges to be processed first are
1683// at the end of the array list.  This is convenient for the register allocation
1684// algorithm because it is efficient to remove elements from the end.
1685void LAllocator::SortUnhandled() {
1686  TraceAlloc("Sort unhandled\n");
1687  unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1688}
1689
1690
1691bool LAllocator::UnhandledIsSorted() {
1692  int len = unhandled_live_ranges_.length();
1693  for (int i = 1; i < len; i++) {
1694    LiveRange* a = unhandled_live_ranges_.at(i - 1);
1695    LiveRange* b = unhandled_live_ranges_.at(i);
1696    if (a->Start().Value() < b->Start().Value()) return false;
1697  }
1698  return true;
1699}
1700
1701
1702void LAllocator::FreeSpillSlot(LiveRange* range) {
1703  // Check that we are the last range.
1704  if (range->next() != NULL) return;
1705
1706  if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1707
1708  int index = range->TopLevel()->GetSpillOperand()->index();
1709  if (index >= 0) {
1710    reusable_slots_.Add(range, zone());
1711  }
1712}
1713
1714
1715LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1716  if (reusable_slots_.is_empty()) return NULL;
1717  if (reusable_slots_.first()->End().Value() >
1718      range->TopLevel()->Start().Value()) {
1719    return NULL;
1720  }
1721  LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1722  reusable_slots_.Remove(0);
1723  return result;
1724}
1725
1726
1727void LAllocator::ActiveToHandled(LiveRange* range) {
1728  DCHECK(active_live_ranges_.Contains(range));
1729  active_live_ranges_.RemoveElement(range);
1730  TraceAlloc("Moving live range %d from active to handled\n", range->id());
1731  FreeSpillSlot(range);
1732}
1733
1734
1735void LAllocator::ActiveToInactive(LiveRange* range) {
1736  DCHECK(active_live_ranges_.Contains(range));
1737  active_live_ranges_.RemoveElement(range);
1738  inactive_live_ranges_.Add(range, zone());
1739  TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1740}
1741
1742
1743void LAllocator::InactiveToHandled(LiveRange* range) {
1744  DCHECK(inactive_live_ranges_.Contains(range));
1745  inactive_live_ranges_.RemoveElement(range);
1746  TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1747  FreeSpillSlot(range);
1748}
1749
1750
1751void LAllocator::InactiveToActive(LiveRange* range) {
1752  DCHECK(inactive_live_ranges_.Contains(range));
1753  inactive_live_ranges_.RemoveElement(range);
1754  active_live_ranges_.Add(range, zone());
1755  TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1756}
1757
1758
1759// TryAllocateFreeReg and AllocateBlockedReg assume this
1760// when allocating local arrays.
1761STATIC_ASSERT(DoubleRegister::kMaxNumAllocatableRegisters >=
1762              Register::kMaxNumAllocatableRegisters);
1763
1764
1765bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1766  LifetimePosition free_until_pos[DoubleRegister::kMaxNumAllocatableRegisters];
1767
1768  for (int i = 0; i < num_registers_; i++) {
1769    free_until_pos[i] = LifetimePosition::MaxPosition();
1770  }
1771
1772  for (int i = 0; i < active_live_ranges_.length(); ++i) {
1773    LiveRange* cur_active = active_live_ranges_.at(i);
1774    free_until_pos[cur_active->assigned_register()] =
1775        LifetimePosition::FromInstructionIndex(0);
1776  }
1777
1778  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1779    LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1780    DCHECK(cur_inactive->End().Value() > current->Start().Value());
1781    LifetimePosition next_intersection =
1782        cur_inactive->FirstIntersection(current);
1783    if (!next_intersection.IsValid()) continue;
1784    int cur_reg = cur_inactive->assigned_register();
1785    free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1786  }
1787
1788  LOperand* hint = current->FirstHint();
1789  if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
1790    int register_index = hint->index();
1791    TraceAlloc(
1792        "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1793        RegisterName(register_index),
1794        free_until_pos[register_index].Value(),
1795        current->id(),
1796        current->End().Value());
1797
1798    // The desired register is free until the end of the current live range.
1799    if (free_until_pos[register_index].Value() >= current->End().Value()) {
1800      TraceAlloc("Assigning preferred reg %s to live range %d\n",
1801                 RegisterName(register_index),
1802                 current->id());
1803      SetLiveRangeAssignedRegister(current, register_index);
1804      return true;
1805    }
1806  }
1807
1808  // Find the register which stays free for the longest time.
1809  int reg = 0;
1810  for (int i = 1; i < RegisterCount(); ++i) {
1811    if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
1812      reg = i;
1813    }
1814  }
1815
1816  LifetimePosition pos = free_until_pos[reg];
1817
1818  if (pos.Value() <= current->Start().Value()) {
1819    // All registers are blocked.
1820    return false;
1821  }
1822
1823  if (pos.Value() < current->End().Value()) {
1824    // Register reg is available at the range start but becomes blocked before
1825    // the range end. Split current at position where it becomes blocked.
1826    LiveRange* tail = SplitRangeAt(current, pos);
1827    if (!AllocationOk()) return false;
1828    AddToUnhandledSorted(tail);
1829  }
1830
1831
1832  // Register reg is available at the range start and is free until
1833  // the range end.
1834  DCHECK(pos.Value() >= current->End().Value());
1835  TraceAlloc("Assigning free reg %s to live range %d\n",
1836             RegisterName(reg),
1837             current->id());
1838  SetLiveRangeAssignedRegister(current, reg);
1839
1840  return true;
1841}
1842
1843
1844void LAllocator::AllocateBlockedReg(LiveRange* current) {
1845  UsePosition* register_use = current->NextRegisterPosition(current->Start());
1846  if (register_use == NULL) {
1847    // There is no use in the current live range that requires a register.
1848    // We can just spill it.
1849    Spill(current);
1850    return;
1851  }
1852
1853
1854  LifetimePosition use_pos[DoubleRegister::kMaxNumAllocatableRegisters];
1855  LifetimePosition block_pos[DoubleRegister::kMaxNumAllocatableRegisters];
1856
1857  for (int i = 0; i < num_registers_; i++) {
1858    use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1859  }
1860
1861  for (int i = 0; i < active_live_ranges_.length(); ++i) {
1862    LiveRange* range = active_live_ranges_[i];
1863    int cur_reg = range->assigned_register();
1864    if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1865      block_pos[cur_reg] = use_pos[cur_reg] =
1866          LifetimePosition::FromInstructionIndex(0);
1867    } else {
1868      UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1869          current->Start());
1870      if (next_use == NULL) {
1871        use_pos[cur_reg] = range->End();
1872      } else {
1873        use_pos[cur_reg] = next_use->pos();
1874      }
1875    }
1876  }
1877
1878  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1879    LiveRange* range = inactive_live_ranges_.at(i);
1880    DCHECK(range->End().Value() > current->Start().Value());
1881    LifetimePosition next_intersection = range->FirstIntersection(current);
1882    if (!next_intersection.IsValid()) continue;
1883    int cur_reg = range->assigned_register();
1884    if (range->IsFixed()) {
1885      block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1886      use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1887    } else {
1888      use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1889    }
1890  }
1891
1892  int reg = 0;
1893  for (int i = 1; i < RegisterCount(); ++i) {
1894    if (use_pos[i].Value() > use_pos[reg].Value()) {
1895      reg = i;
1896    }
1897  }
1898
1899  LifetimePosition pos = use_pos[reg];
1900
1901  if (pos.Value() < register_use->pos().Value()) {
1902    // All registers are blocked before the first use that requires a register.
1903    // Spill starting part of live range up to that use.
1904    SpillBetween(current, current->Start(), register_use->pos());
1905    return;
1906  }
1907
1908  if (block_pos[reg].Value() < current->End().Value()) {
1909    // Register becomes blocked before the current range end. Split before that
1910    // position.
1911    LiveRange* tail = SplitBetween(current,
1912                                   current->Start(),
1913                                   block_pos[reg].InstructionStart());
1914    if (!AllocationOk()) return;
1915    AddToUnhandledSorted(tail);
1916  }
1917
1918  // Register reg is not blocked for the whole range.
1919  DCHECK(block_pos[reg].Value() >= current->End().Value());
1920  TraceAlloc("Assigning blocked reg %s to live range %d\n",
1921             RegisterName(reg),
1922             current->id());
1923  SetLiveRangeAssignedRegister(current, reg);
1924
1925  // This register was not free. Thus we need to find and spill
1926  // parts of active and inactive live regions that use the same register
1927  // at the same lifetime positions as current.
1928  SplitAndSpillIntersecting(current);
1929}
1930
1931
1932LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
1933                                                    LifetimePosition pos) {
1934  HBasicBlock* block = GetBlock(pos.InstructionStart());
1935  HBasicBlock* loop_header =
1936      block->IsLoopHeader() ? block : block->parent_loop_header();
1937
1938  if (loop_header == NULL) return pos;
1939
1940  UsePosition* prev_use =
1941    range->PreviousUsePositionRegisterIsBeneficial(pos);
1942
1943  while (loop_header != NULL) {
1944    // We are going to spill live range inside the loop.
1945    // If possible try to move spilling position backwards to loop header.
1946    // This will reduce number of memory moves on the back edge.
1947    LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
1948        loop_header->first_instruction_index());
1949
1950    if (range->Covers(loop_start)) {
1951      if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
1952        // No register beneficial use inside the loop before the pos.
1953        pos = loop_start;
1954      }
1955    }
1956
1957    // Try hoisting out to an outer loop.
1958    loop_header = loop_header->parent_loop_header();
1959  }
1960
1961  return pos;
1962}
1963
1964
1965void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1966  DCHECK(current->HasRegisterAssigned());
1967  int reg = current->assigned_register();
1968  LifetimePosition split_pos = current->Start();
1969  for (int i = 0; i < active_live_ranges_.length(); ++i) {
1970    LiveRange* range = active_live_ranges_[i];
1971    if (range->assigned_register() == reg) {
1972      UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1973      LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
1974      if (next_pos == NULL) {
1975        SpillAfter(range, spill_pos);
1976      } else {
1977        // When spilling between spill_pos and next_pos ensure that the range
1978        // remains spilled at least until the start of the current live range.
1979        // This guarantees that we will not introduce new unhandled ranges that
1980        // start before the current range as this violates allocation invariant
1981        // and will lead to an inconsistent state of active and inactive
1982        // live-ranges: ranges are allocated in order of their start positions,
1983        // ranges are retired from active/inactive when the start of the
1984        // current live-range is larger than their end.
1985        SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
1986      }
1987      if (!AllocationOk()) return;
1988      ActiveToHandled(range);
1989      --i;
1990    }
1991  }
1992
1993  for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1994    LiveRange* range = inactive_live_ranges_[i];
1995    DCHECK(range->End().Value() > current->Start().Value());
1996    if (range->assigned_register() == reg && !range->IsFixed()) {
1997      LifetimePosition next_intersection = range->FirstIntersection(current);
1998      if (next_intersection.IsValid()) {
1999        UsePosition* next_pos = range->NextRegisterPosition(current->Start());
2000        if (next_pos == NULL) {
2001          SpillAfter(range, split_pos);
2002        } else {
2003          next_intersection = Min(next_intersection, next_pos->pos());
2004          SpillBetween(range, split_pos, next_intersection);
2005        }
2006        if (!AllocationOk()) return;
2007        InactiveToHandled(range);
2008        --i;
2009      }
2010    }
2011  }
2012}
2013
2014
2015bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
2016  return pos.IsInstructionStart() &&
2017      InstructionAt(pos.InstructionIndex())->IsLabel();
2018}
2019
2020
2021LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
2022  DCHECK(!range->IsFixed());
2023  TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
2024
2025  if (pos.Value() <= range->Start().Value()) return range;
2026
2027  // We can't properly connect liveranges if split occured at the end
2028  // of control instruction.
2029  DCHECK(pos.IsInstructionStart() ||
2030         !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
2031
2032  int vreg = GetVirtualRegister();
2033  if (!AllocationOk()) return NULL;
2034  LiveRange* result = LiveRangeFor(vreg);
2035  range->SplitAt(pos, result, zone());
2036  return result;
2037}
2038
2039
2040LiveRange* LAllocator::SplitBetween(LiveRange* range,
2041                                    LifetimePosition start,
2042                                    LifetimePosition end) {
2043  DCHECK(!range->IsFixed());
2044  TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2045             range->id(),
2046             start.Value(),
2047             end.Value());
2048
2049  LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2050  DCHECK(split_pos.Value() >= start.Value());
2051  return SplitRangeAt(range, split_pos);
2052}
2053
2054
2055LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2056                                                 LifetimePosition end) {
2057  int start_instr = start.InstructionIndex();
2058  int end_instr = end.InstructionIndex();
2059  DCHECK(start_instr <= end_instr);
2060
2061  // We have no choice
2062  if (start_instr == end_instr) return end;
2063
2064  HBasicBlock* start_block = GetBlock(start);
2065  HBasicBlock* end_block = GetBlock(end);
2066
2067  if (end_block == start_block) {
2068    // The interval is split in the same basic block. Split at the latest
2069    // possible position.
2070    return end;
2071  }
2072
2073  HBasicBlock* block = end_block;
2074  // Find header of outermost loop.
2075  while (block->parent_loop_header() != NULL &&
2076      block->parent_loop_header()->block_id() > start_block->block_id()) {
2077    block = block->parent_loop_header();
2078  }
2079
2080  // We did not find any suitable outer loop. Split at the latest possible
2081  // position unless end_block is a loop header itself.
2082  if (block == end_block && !end_block->IsLoopHeader()) return end;
2083
2084  return LifetimePosition::FromInstructionIndex(
2085      block->first_instruction_index());
2086}
2087
2088
2089void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2090  LiveRange* second_part = SplitRangeAt(range, pos);
2091  if (!AllocationOk()) return;
2092  Spill(second_part);
2093}
2094
2095
2096void LAllocator::SpillBetween(LiveRange* range,
2097                              LifetimePosition start,
2098                              LifetimePosition end) {
2099  SpillBetweenUntil(range, start, start, end);
2100}
2101
2102
2103void LAllocator::SpillBetweenUntil(LiveRange* range,
2104                                   LifetimePosition start,
2105                                   LifetimePosition until,
2106                                   LifetimePosition end) {
2107  CHECK(start.Value() < end.Value());
2108  LiveRange* second_part = SplitRangeAt(range, start);
2109  if (!AllocationOk()) return;
2110
2111  if (second_part->Start().Value() < end.Value()) {
2112    // The split result intersects with [start, end[.
2113    // Split it at position between ]start+1, end[, spill the middle part
2114    // and put the rest to unhandled.
2115    LiveRange* third_part = SplitBetween(
2116        second_part,
2117        Max(second_part->Start().InstructionEnd(), until),
2118        end.PrevInstruction().InstructionEnd());
2119    if (!AllocationOk()) return;
2120
2121    DCHECK(third_part != second_part);
2122
2123    Spill(second_part);
2124    AddToUnhandledSorted(third_part);
2125  } else {
2126    // The split result does not intersect with [start, end[.
2127    // Nothing to spill. Just put it to unhandled as whole.
2128    AddToUnhandledSorted(second_part);
2129  }
2130}
2131
2132
2133void LAllocator::Spill(LiveRange* range) {
2134  DCHECK(!range->IsSpilled());
2135  TraceAlloc("Spilling live range %d\n", range->id());
2136  LiveRange* first = range->TopLevel();
2137
2138  if (!first->HasAllocatedSpillOperand()) {
2139    LOperand* op = TryReuseSpillSlot(range);
2140    if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
2141    first->SetSpillOperand(op);
2142  }
2143  range->MakeSpilled(chunk()->zone());
2144}
2145
2146
2147int LAllocator::RegisterCount() const {
2148  return num_registers_;
2149}
2150
2151
2152#ifdef DEBUG
2153
2154
2155void LAllocator::Verify() const {
2156  for (int i = 0; i < live_ranges()->length(); ++i) {
2157    LiveRange* current = live_ranges()->at(i);
2158    if (current != NULL) current->Verify();
2159  }
2160}
2161
2162
2163#endif
2164
2165
2166LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
2167    : CompilationPhase(name, allocator->graph()->info()),
2168      allocator_(allocator) {
2169  if (FLAG_hydrogen_stats) {
2170    allocator_zone_start_allocation_size_ =
2171        allocator->zone()->allocation_size();
2172  }
2173}
2174
2175
2176LAllocatorPhase::~LAllocatorPhase() {
2177  if (FLAG_hydrogen_stats) {
2178    unsigned size = allocator_->zone()->allocation_size() -
2179                    allocator_zone_start_allocation_size_;
2180    isolate()->GetHStatistics()->SaveTiming(name(), base::TimeDelta(), size);
2181  }
2182
2183  if (ShouldProduceTraceOutput()) {
2184    isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
2185    isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
2186  }
2187
2188#ifdef DEBUG
2189  if (allocator_ != NULL) allocator_->Verify();
2190#endif
2191}
2192
2193
2194} }  // namespace v8::internal
2195