1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40
41#include "src/assembler.h"
42#include "src/mips/constants-mips.h"
43#include "src/serialize.h"
44
45namespace v8 {
46namespace internal {
47
48// CPU Registers.
49//
50// 1) We would prefer to use an enum, but enum values are assignment-
51// compatible with int, which has caused code-generation bugs.
52//
53// 2) We would prefer to use a class instead of a struct but we don't like
54// the register initialization to depend on the particular initialization
55// order (which appears to be different on OS X, Linux, and Windows for the
56// installed versions of C++ we tried). Using a struct permits C-style
57// "initialization". Also, the Register objects cannot be const as this
58// forces initialization stubs in MSVC, making us dependent on initialization
59// order.
60//
61// 3) By not using an enum, we are possibly preventing the compiler from
62// doing certain constant folds, which may significantly reduce the
63// code generated for some assembly instructions (because they boil down
64// to a few constants). If this is a problem, we could change the code
65// such that we use an enum in optimized mode, and the struct in debug
66// mode. This way we get the compile-time error checking in debug mode
67// and best performance in optimized code.
68
69
70// -----------------------------------------------------------------------------
71// Implementation of Register and FPURegister.
72
73// Core register.
74struct Register {
75  static const int kNumRegisters = v8::internal::kNumRegisters;
76  static const int kMaxNumAllocatableRegisters = 14;  // v0 through t6 and cp.
77  static const int kSizeInBytes = 4;
78  static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
79
80#if defined(V8_TARGET_LITTLE_ENDIAN)
81  static const int kMantissaOffset = 0;
82  static const int kExponentOffset = 4;
83#elif defined(V8_TARGET_BIG_ENDIAN)
84  static const int kMantissaOffset = 4;
85  static const int kExponentOffset = 0;
86#else
87#error Unknown endianness
88#endif
89
90  inline static int NumAllocatableRegisters();
91
92  static int ToAllocationIndex(Register reg) {
93    DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
94           reg.is(from_code(kCpRegister)));
95    return reg.is(from_code(kCpRegister)) ?
96           kMaxNumAllocatableRegisters - 1 :  // Return last index for 'cp'.
97           reg.code() - 2;  // zero_reg and 'at' are skipped.
98  }
99
100  static Register FromAllocationIndex(int index) {
101    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
102    return index == kMaxNumAllocatableRegisters - 1 ?
103           from_code(kCpRegister) :  // Last index is always the 'cp' register.
104           from_code(index + 2);  // zero_reg and 'at' are skipped.
105  }
106
107  static const char* AllocationIndexToString(int index) {
108    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
109    const char* const names[] = {
110      "v0",
111      "v1",
112      "a0",
113      "a1",
114      "a2",
115      "a3",
116      "t0",
117      "t1",
118      "t2",
119      "t3",
120      "t4",
121      "t5",
122      "t6",
123      "s7",
124    };
125    return names[index];
126  }
127
128  static Register from_code(int code) {
129    Register r = { code };
130    return r;
131  }
132
133  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
134  bool is(Register reg) const { return code_ == reg.code_; }
135  int code() const {
136    DCHECK(is_valid());
137    return code_;
138  }
139  int bit() const {
140    DCHECK(is_valid());
141    return 1 << code_;
142  }
143
144  // Unfortunately we can't make this private in a struct.
145  int code_;
146};
147
148#define REGISTER(N, C) \
149  const int kRegister_ ## N ## _Code = C; \
150  const Register N = { C }
151
152REGISTER(no_reg, -1);
153// Always zero.
154REGISTER(zero_reg, 0);
155// at: Reserved for synthetic instructions.
156REGISTER(at, 1);
157// v0, v1: Used when returning multiple values from subroutines.
158REGISTER(v0, 2);
159REGISTER(v1, 3);
160// a0 - a4: Used to pass non-FP parameters.
161REGISTER(a0, 4);
162REGISTER(a1, 5);
163REGISTER(a2, 6);
164REGISTER(a3, 7);
165// t0 - t9: Can be used without reservation, act as temporary registers and are
166// allowed to be destroyed by subroutines.
167REGISTER(t0, 8);
168REGISTER(t1, 9);
169REGISTER(t2, 10);
170REGISTER(t3, 11);
171REGISTER(t4, 12);
172REGISTER(t5, 13);
173REGISTER(t6, 14);
174REGISTER(t7, 15);
175// s0 - s7: Subroutine register variables. Subroutines that write to these
176// registers must restore their values before exiting so that the caller can
177// expect the values to be preserved.
178REGISTER(s0, 16);
179REGISTER(s1, 17);
180REGISTER(s2, 18);
181REGISTER(s3, 19);
182REGISTER(s4, 20);
183REGISTER(s5, 21);
184REGISTER(s6, 22);
185REGISTER(s7, 23);
186REGISTER(t8, 24);
187REGISTER(t9, 25);
188// k0, k1: Reserved for system calls and interrupt handlers.
189REGISTER(k0, 26);
190REGISTER(k1, 27);
191// gp: Reserved.
192REGISTER(gp, 28);
193// sp: Stack pointer.
194REGISTER(sp, 29);
195// fp: Frame pointer.
196REGISTER(fp, 30);
197// ra: Return address pointer.
198REGISTER(ra, 31);
199
200#undef REGISTER
201
202
203int ToNumber(Register reg);
204
205Register ToRegister(int num);
206
207// Coprocessor register.
208struct FPURegister {
209  static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
210
211  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
212  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
213  // number of Double regs (64-bit regs, or FPU-reg-pairs).
214
215  // A few double registers are reserved: one as a scratch register and one to
216  // hold 0.0.
217  //  f28: 0.0
218  //  f30: scratch register.
219  static const int kNumReservedRegisters = 2;
220  static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
221      kNumReservedRegisters;
222
223  inline static int NumRegisters();
224  inline static int NumAllocatableRegisters();
225  inline static int ToAllocationIndex(FPURegister reg);
226  static const char* AllocationIndexToString(int index);
227
228  static FPURegister FromAllocationIndex(int index) {
229    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
230    return from_code(index * 2);
231  }
232
233  static FPURegister from_code(int code) {
234    FPURegister r = { code };
235    return r;
236  }
237
238  bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
239  bool is(FPURegister creg) const { return code_ == creg.code_; }
240  FPURegister low() const {
241    // Find low reg of a Double-reg pair, which is the reg itself.
242    DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
243    FPURegister reg;
244    reg.code_ = code_;
245    DCHECK(reg.is_valid());
246    return reg;
247  }
248  FPURegister high() const {
249    // Find high reg of a Doubel-reg pair, which is reg + 1.
250    DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
251    FPURegister reg;
252    reg.code_ = code_ + 1;
253    DCHECK(reg.is_valid());
254    return reg;
255  }
256
257  int code() const {
258    DCHECK(is_valid());
259    return code_;
260  }
261  int bit() const {
262    DCHECK(is_valid());
263    return 1 << code_;
264  }
265  void setcode(int f) {
266    code_ = f;
267    DCHECK(is_valid());
268  }
269  // Unfortunately we can't make this private in a struct.
270  int code_;
271};
272
273// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
274// 32-bit registers, f0 through f31. When used as 'double' they are used
275// in pairs, starting with the even numbered register. So a double operation
276// on f0 really uses f0 and f1.
277// (Modern mips hardware also supports 32 64-bit registers, via setting
278// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
279// but it is not in common use. Someday we will want to support this in v8.)
280
281// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
282typedef FPURegister DoubleRegister;
283typedef FPURegister FloatRegister;
284
285const FPURegister no_freg = { -1 };
286
287const FPURegister f0 = { 0 };  // Return value in hard float mode.
288const FPURegister f1 = { 1 };
289const FPURegister f2 = { 2 };
290const FPURegister f3 = { 3 };
291const FPURegister f4 = { 4 };
292const FPURegister f5 = { 5 };
293const FPURegister f6 = { 6 };
294const FPURegister f7 = { 7 };
295const FPURegister f8 = { 8 };
296const FPURegister f9 = { 9 };
297const FPURegister f10 = { 10 };
298const FPURegister f11 = { 11 };
299const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
300const FPURegister f13 = { 13 };
301const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
302const FPURegister f15 = { 15 };
303const FPURegister f16 = { 16 };
304const FPURegister f17 = { 17 };
305const FPURegister f18 = { 18 };
306const FPURegister f19 = { 19 };
307const FPURegister f20 = { 20 };
308const FPURegister f21 = { 21 };
309const FPURegister f22 = { 22 };
310const FPURegister f23 = { 23 };
311const FPURegister f24 = { 24 };
312const FPURegister f25 = { 25 };
313const FPURegister f26 = { 26 };
314const FPURegister f27 = { 27 };
315const FPURegister f28 = { 28 };
316const FPURegister f29 = { 29 };
317const FPURegister f30 = { 30 };
318const FPURegister f31 = { 31 };
319
320// Register aliases.
321// cp is assumed to be a callee saved register.
322// Defined using #define instead of "static const Register&" because Clang
323// complains otherwise when a compilation unit that includes this header
324// doesn't use the variables.
325#define kRootRegister s6
326#define cp s7
327#define kLithiumScratchReg s3
328#define kLithiumScratchReg2 s4
329#define kLithiumScratchDouble f30
330#define kDoubleRegZero f28
331// Used on mips32r6 for compare operations.
332#define kDoubleCompareReg f31
333
334// FPU (coprocessor 1) control registers.
335// Currently only FCSR (#31) is implemented.
336struct FPUControlRegister {
337  bool is_valid() const { return code_ == kFCSRRegister; }
338  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
339  int code() const {
340    DCHECK(is_valid());
341    return code_;
342  }
343  int bit() const {
344    DCHECK(is_valid());
345    return 1 << code_;
346  }
347  void setcode(int f) {
348    code_ = f;
349    DCHECK(is_valid());
350  }
351  // Unfortunately we can't make this private in a struct.
352  int code_;
353};
354
355const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
356const FPUControlRegister FCSR = { kFCSRRegister };
357
358
359// -----------------------------------------------------------------------------
360// Machine instruction Operands.
361
362// Class Operand represents a shifter operand in data processing instructions.
363class Operand BASE_EMBEDDED {
364 public:
365  // Immediate.
366  INLINE(explicit Operand(int32_t immediate,
367         RelocInfo::Mode rmode = RelocInfo::NONE32));
368  INLINE(explicit Operand(const ExternalReference& f));
369  INLINE(explicit Operand(const char* s));
370  INLINE(explicit Operand(Object** opp));
371  INLINE(explicit Operand(Context** cpp));
372  explicit Operand(Handle<Object> handle);
373  INLINE(explicit Operand(Smi* value));
374
375  // Register.
376  INLINE(explicit Operand(Register rm));
377
378  // Return true if this is a register operand.
379  INLINE(bool is_reg() const);
380
381  inline int32_t immediate() const {
382    DCHECK(!is_reg());
383    return imm32_;
384  }
385
386  Register rm() const { return rm_; }
387
388 private:
389  Register rm_;
390  int32_t imm32_;  // Valid if rm_ == no_reg.
391  RelocInfo::Mode rmode_;
392
393  friend class Assembler;
394  friend class MacroAssembler;
395};
396
397
398// On MIPS we have only one adressing mode with base_reg + offset.
399// Class MemOperand represents a memory operand in load and store instructions.
400class MemOperand : public Operand {
401 public:
402  // Immediate value attached to offset.
403  enum OffsetAddend {
404    offset_minus_one = -1,
405    offset_zero = 0
406  };
407
408  explicit MemOperand(Register rn, int32_t offset = 0);
409  explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
410                      OffsetAddend offset_addend = offset_zero);
411  int32_t offset() const { return offset_; }
412
413  bool OffsetIsInt16Encodable() const {
414    return is_int16(offset_);
415  }
416
417 private:
418  int32_t offset_;
419
420  friend class Assembler;
421};
422
423
424class Assembler : public AssemblerBase {
425 public:
426  // Create an assembler. Instructions and relocation information are emitted
427  // into a buffer, with the instructions starting from the beginning and the
428  // relocation information starting from the end of the buffer. See CodeDesc
429  // for a detailed comment on the layout (globals.h).
430  //
431  // If the provided buffer is NULL, the assembler allocates and grows its own
432  // buffer, and buffer_size determines the initial buffer size. The buffer is
433  // owned by the assembler and deallocated upon destruction of the assembler.
434  //
435  // If the provided buffer is not NULL, the assembler uses the provided buffer
436  // for code generation and assumes its size to be buffer_size. If the buffer
437  // is too small, a fatal error occurs. No deallocation of the buffer is done
438  // upon destruction of the assembler.
439  Assembler(Isolate* isolate, void* buffer, int buffer_size);
440  virtual ~Assembler() { }
441
442  // GetCode emits any pending (non-emitted) code and fills the descriptor
443  // desc. GetCode() is idempotent; it returns the same result if no other
444  // Assembler functions are invoked in between GetCode() calls.
445  void GetCode(CodeDesc* desc);
446
447  // Label operations & relative jumps (PPUM Appendix D).
448  //
449  // Takes a branch opcode (cc) and a label (L) and generates
450  // either a backward branch or a forward branch and links it
451  // to the label fixup chain. Usage:
452  //
453  // Label L;    // unbound label
454  // j(cc, &L);  // forward branch to unbound label
455  // bind(&L);   // bind label to the current pc
456  // j(cc, &L);  // backward branch to bound label
457  // bind(&L);   // illegal: a label may be bound only once
458  //
459  // Note: The same Label can be used for forward and backward branches
460  // but it may be bound only once.
461  void bind(Label* L);  // Binds an unbound label L to current code position.
462  // Determines if Label is bound and near enough so that branch instruction
463  // can be used to reach it, instead of jump instruction.
464  bool is_near(Label* L);
465
466  // Returns the branch offset to the given label from the current code
467  // position. Links the label to the current position if it is still unbound.
468  // Manages the jump elimination optimization if the second parameter is true.
469  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
470  int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
471  int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
472  int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
473  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
474    int32_t o = branch_offset(L, jump_elimination_allowed);
475    DCHECK((o & 3) == 0);   // Assert the offset is aligned.
476    return o >> 2;
477  }
478  int32_t shifted_branch_offset_compact(Label* L,
479      bool jump_elimination_allowed) {
480    int32_t o = branch_offset_compact(L, jump_elimination_allowed);
481    DCHECK((o & 3) == 0);   // Assert the offset is aligned.
482    return o >> 2;
483  }
484  uint32_t jump_address(Label* L);
485
486  // Puts a labels target address at the given position.
487  // The high 8 bits are set to zero.
488  void label_at_put(Label* L, int at_offset);
489
490  // Read/Modify the code target address in the branch/call instruction at pc.
491  static Address target_address_at(Address pc);
492  static void set_target_address_at(Address pc,
493                                    Address target,
494                                    ICacheFlushMode icache_flush_mode =
495                                        FLUSH_ICACHE_IF_NEEDED);
496  // On MIPS there is no Constant Pool so we skip that parameter.
497  INLINE(static Address target_address_at(Address pc,
498                                          ConstantPoolArray* constant_pool)) {
499    return target_address_at(pc);
500  }
501  INLINE(static void set_target_address_at(Address pc,
502                                           ConstantPoolArray* constant_pool,
503                                           Address target,
504                                           ICacheFlushMode icache_flush_mode =
505                                               FLUSH_ICACHE_IF_NEEDED)) {
506    set_target_address_at(pc, target, icache_flush_mode);
507  }
508  INLINE(static Address target_address_at(Address pc, Code* code)) {
509    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
510    return target_address_at(pc, constant_pool);
511  }
512  INLINE(static void set_target_address_at(Address pc,
513                                           Code* code,
514                                           Address target,
515                                           ICacheFlushMode icache_flush_mode =
516                                               FLUSH_ICACHE_IF_NEEDED)) {
517    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
518    set_target_address_at(pc, constant_pool, target, icache_flush_mode);
519  }
520
521  // Return the code target address at a call site from the return address
522  // of that call in the instruction stream.
523  inline static Address target_address_from_return_address(Address pc);
524
525  // Return the code target address of the patch debug break slot
526  inline static Address break_address_from_return_address(Address pc);
527
528  static void JumpLabelToJumpRegister(Address pc);
529
530  static void QuietNaN(HeapObject* nan);
531
532  // This sets the branch destination (which gets loaded at the call address).
533  // This is for calls and branches within generated code.  The serializer
534  // has already deserialized the lui/ori instructions etc.
535  inline static void deserialization_set_special_target_at(
536      Address instruction_payload, Code* code, Address target) {
537    set_target_address_at(
538        instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
539        code,
540        target);
541  }
542
543  // Size of an instruction.
544  static const int kInstrSize = sizeof(Instr);
545
546  // Difference between address of current opcode and target address offset.
547  static const int kBranchPCOffset = 4;
548
549  // Here we are patching the address in the LUI/ORI instruction pair.
550  // These values are used in the serialization process and must be zero for
551  // MIPS platform, as Code, Embedded Object or External-reference pointers
552  // are split across two consecutive instructions and don't exist separately
553  // in the code, so the serializer should not step forwards in memory after
554  // a target is resolved and written.
555  static const int kSpecialTargetSize = 0;
556
557  // Number of consecutive instructions used to store 32bit constant.
558  // Before jump-optimizations, this constant was used in
559  // RelocInfo::target_address_address() function to tell serializer address of
560  // the instruction that follows LUI/ORI instruction pair. Now, with new jump
561  // optimization, where jump-through-register instruction that usually
562  // follows LUI/ORI pair is substituted with J/JAL, this constant equals
563  // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
564  static const int kInstructionsFor32BitConstant = 3;
565
566  // Distance between the instruction referring to the address of the call
567  // target and the return address.
568  static const int kCallTargetAddressOffset = 4 * kInstrSize;
569
570  // Distance between start of patched return sequence and the emitted address
571  // to jump to.
572  static const int kPatchReturnSequenceAddressOffset = 0;
573
574  // Distance between start of patched debug break slot and the emitted address
575  // to jump to.
576  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
577
578  // Difference between address of current opcode and value read from pc
579  // register.
580  static const int kPcLoadDelta = 4;
581
582  static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;
583
584  // Number of instructions used for the JS return sequence. The constant is
585  // used by the debugger to patch the JS return sequence.
586  static const int kJSReturnSequenceInstructions = 7;
587  static const int kDebugBreakSlotInstructions = 4;
588  static const int kDebugBreakSlotLength =
589      kDebugBreakSlotInstructions * kInstrSize;
590
591
592  // ---------------------------------------------------------------------------
593  // Code generation.
594
595  // Insert the smallest number of nop instructions
596  // possible to align the pc offset to a multiple
597  // of m. m must be a power of 2 (>= 4).
598  void Align(int m);
599  // Aligns code to something that's optimal for a jump target for the platform.
600  void CodeTargetAlign();
601
602  // Different nop operations are used by the code generator to detect certain
603  // states of the generated code.
604  enum NopMarkerTypes {
605    NON_MARKING_NOP = 0,
606    DEBUG_BREAK_NOP,
607    // IC markers.
608    PROPERTY_ACCESS_INLINED,
609    PROPERTY_ACCESS_INLINED_CONTEXT,
610    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
611    // Helper values.
612    LAST_CODE_MARKER,
613    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
614    // Code aging
615    CODE_AGE_MARKER_NOP = 6,
616    CODE_AGE_SEQUENCE_NOP
617  };
618
619  // Type == 0 is the default non-marking nop. For mips this is a
620  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
621  // marking, to avoid conflict with ssnop and ehb instructions.
622  void nop(unsigned int type = 0) {
623    DCHECK(type < 32);
624    Register nop_rt_reg = (type == 0) ? zero_reg : at;
625    sll(zero_reg, nop_rt_reg, type, true);
626  }
627
628
629  // --------Branch-and-jump-instructions----------
630  // We don't use likely variant of instructions.
631  void b(int16_t offset);
632  void b(Label* L) { b(branch_offset(L, false)>>2); }
633  void bal(int16_t offset);
634  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
635
636  void beq(Register rs, Register rt, int16_t offset);
637  void beq(Register rs, Register rt, Label* L) {
638    beq(rs, rt, branch_offset(L, false) >> 2);
639  }
640  void bgez(Register rs, int16_t offset);
641  void bgezc(Register rt, int16_t offset);
642  void bgezc(Register rt, Label* L) {
643    bgezc(rt, branch_offset_compact(L, false)>>2);
644  }
645  void bgeuc(Register rs, Register rt, int16_t offset);
646  void bgeuc(Register rs, Register rt, Label* L) {
647    bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
648  }
649  void bgec(Register rs, Register rt, int16_t offset);
650  void bgec(Register rs, Register rt, Label* L) {
651    bgec(rs, rt, branch_offset_compact(L, false)>>2);
652  }
653  void bgezal(Register rs, int16_t offset);
654  void bgezalc(Register rt, int16_t offset);
655  void bgezalc(Register rt, Label* L) {
656    bgezalc(rt, branch_offset_compact(L, false)>>2);
657  }
658  void bgezall(Register rs, int16_t offset);
659  void bgezall(Register rs, Label* L) {
660    bgezall(rs, branch_offset(L, false)>>2);
661  }
662  void bgtz(Register rs, int16_t offset);
663  void bgtzc(Register rt, int16_t offset);
664  void bgtzc(Register rt, Label* L) {
665    bgtzc(rt, branch_offset_compact(L, false)>>2);
666  }
667  void blez(Register rs, int16_t offset);
668  void blezc(Register rt, int16_t offset);
669  void blezc(Register rt, Label* L) {
670    blezc(rt, branch_offset_compact(L, false)>>2);
671  }
672  void bltz(Register rs, int16_t offset);
673  void bltzc(Register rt, int16_t offset);
674  void bltzc(Register rt, Label* L) {
675    bltzc(rt, branch_offset_compact(L, false)>>2);
676  }
677  void bltuc(Register rs, Register rt, int16_t offset);
678  void bltuc(Register rs, Register rt, Label* L) {
679    bltuc(rs, rt, branch_offset_compact(L, false)>>2);
680  }
681  void bltc(Register rs, Register rt, int16_t offset);
682  void bltc(Register rs, Register rt, Label* L) {
683    bltc(rs, rt, branch_offset_compact(L, false)>>2);
684  }
685  void bltzal(Register rs, int16_t offset);
686  void blezalc(Register rt, int16_t offset);
687  void blezalc(Register rt, Label* L) {
688    blezalc(rt, branch_offset_compact(L, false)>>2);
689  }
690  void bltzalc(Register rt, int16_t offset);
691  void bltzalc(Register rt, Label* L) {
692    bltzalc(rt, branch_offset_compact(L, false)>>2);
693  }
694  void bgtzalc(Register rt, int16_t offset);
695  void bgtzalc(Register rt, Label* L) {
696    bgtzalc(rt, branch_offset_compact(L, false)>>2);
697  }
698  void beqzalc(Register rt, int16_t offset);
699  void beqzalc(Register rt, Label* L) {
700    beqzalc(rt, branch_offset_compact(L, false)>>2);
701  }
702  void beqc(Register rs, Register rt, int16_t offset);
703  void beqc(Register rs, Register rt, Label* L) {
704    beqc(rs, rt, branch_offset_compact(L, false)>>2);
705  }
706  void beqzc(Register rs, int32_t offset);
707  void beqzc(Register rs, Label* L) {
708    beqzc(rs, branch_offset21_compact(L, false)>>2);
709  }
710  void bnezalc(Register rt, int16_t offset);
711  void bnezalc(Register rt, Label* L) {
712    bnezalc(rt, branch_offset_compact(L, false)>>2);
713  }
714  void bnec(Register rs, Register rt, int16_t offset);
715  void bnec(Register rs, Register rt, Label* L) {
716    bnec(rs, rt, branch_offset_compact(L, false)>>2);
717  }
718  void bnezc(Register rt, int32_t offset);
719  void bnezc(Register rt, Label* L) {
720    bnezc(rt, branch_offset21_compact(L, false)>>2);
721  }
722  void bne(Register rs, Register rt, int16_t offset);
723  void bne(Register rs, Register rt, Label* L) {
724    bne(rs, rt, branch_offset(L, false)>>2);
725  }
726  void bovc(Register rs, Register rt, int16_t offset);
727  void bovc(Register rs, Register rt, Label* L) {
728    bovc(rs, rt, branch_offset_compact(L, false)>>2);
729  }
730  void bnvc(Register rs, Register rt, int16_t offset);
731  void bnvc(Register rs, Register rt, Label* L) {
732    bnvc(rs, rt, branch_offset_compact(L, false)>>2);
733  }
734
735  // Never use the int16_t b(l)cond version with a branch offset
736  // instead of using the Label* version.
737
738  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
739  void j(int32_t target);
740  void jal(int32_t target);
741  void jalr(Register rs, Register rd = ra);
742  void jr(Register target);
743  void j_or_jr(int32_t target, Register rs);
744  void jal_or_jalr(int32_t target, Register rs);
745
746
747  // -------Data-processing-instructions---------
748
749  // Arithmetic.
750  void addu(Register rd, Register rs, Register rt);
751  void subu(Register rd, Register rs, Register rt);
752  void mult(Register rs, Register rt);
753  void multu(Register rs, Register rt);
754  void div(Register rs, Register rt);
755  void divu(Register rs, Register rt);
756  void div(Register rd, Register rs, Register rt);
757  void divu(Register rd, Register rs, Register rt);
758  void mod(Register rd, Register rs, Register rt);
759  void modu(Register rd, Register rs, Register rt);
760  void mul(Register rd, Register rs, Register rt);
761  void muh(Register rd, Register rs, Register rt);
762  void mulu(Register rd, Register rs, Register rt);
763  void muhu(Register rd, Register rs, Register rt);
764
765  void addiu(Register rd, Register rs, int32_t j);
766
767  // Logical.
768  void and_(Register rd, Register rs, Register rt);
769  void or_(Register rd, Register rs, Register rt);
770  void xor_(Register rd, Register rs, Register rt);
771  void nor(Register rd, Register rs, Register rt);
772
773  void andi(Register rd, Register rs, int32_t j);
774  void ori(Register rd, Register rs, int32_t j);
775  void xori(Register rd, Register rs, int32_t j);
776  void lui(Register rd, int32_t j);
777  void aui(Register rs, Register rt, int32_t j);
778
779  // Shifts.
780  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
781  // and may cause problems in normal code. coming_from_nop makes sure this
782  // doesn't happen.
783  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
784  void sllv(Register rd, Register rt, Register rs);
785  void srl(Register rd, Register rt, uint16_t sa);
786  void srlv(Register rd, Register rt, Register rs);
787  void sra(Register rt, Register rd, uint16_t sa);
788  void srav(Register rt, Register rd, Register rs);
789  void rotr(Register rd, Register rt, uint16_t sa);
790  void rotrv(Register rd, Register rt, Register rs);
791
792
793  // ------------Memory-instructions-------------
794
795  void lb(Register rd, const MemOperand& rs);
796  void lbu(Register rd, const MemOperand& rs);
797  void lh(Register rd, const MemOperand& rs);
798  void lhu(Register rd, const MemOperand& rs);
799  void lw(Register rd, const MemOperand& rs);
800  void lwl(Register rd, const MemOperand& rs);
801  void lwr(Register rd, const MemOperand& rs);
802  void sb(Register rd, const MemOperand& rs);
803  void sh(Register rd, const MemOperand& rs);
804  void sw(Register rd, const MemOperand& rs);
805  void swl(Register rd, const MemOperand& rs);
806  void swr(Register rd, const MemOperand& rs);
807
808
809  // ----------------Prefetch--------------------
810
811  void pref(int32_t hint, const MemOperand& rs);
812
813
814  // -------------Misc-instructions--------------
815
816  // Break / Trap instructions.
817  void break_(uint32_t code, bool break_as_stop = false);
818  void stop(const char* msg, uint32_t code = kMaxStopCode);
819  void tge(Register rs, Register rt, uint16_t code);
820  void tgeu(Register rs, Register rt, uint16_t code);
821  void tlt(Register rs, Register rt, uint16_t code);
822  void tltu(Register rs, Register rt, uint16_t code);
823  void teq(Register rs, Register rt, uint16_t code);
824  void tne(Register rs, Register rt, uint16_t code);
825
826  // Move from HI/LO register.
827  void mfhi(Register rd);
828  void mflo(Register rd);
829
830  // Set on less than.
831  void slt(Register rd, Register rs, Register rt);
832  void sltu(Register rd, Register rs, Register rt);
833  void slti(Register rd, Register rs, int32_t j);
834  void sltiu(Register rd, Register rs, int32_t j);
835
836  // Conditional move.
837  void movz(Register rd, Register rs, Register rt);
838  void movn(Register rd, Register rs, Register rt);
839  void movt(Register rd, Register rs, uint16_t cc = 0);
840  void movf(Register rd, Register rs, uint16_t cc = 0);
841
842  void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
843      FPURegister fs, uint8_t sel);
844  void seleqz(Register rs, Register rt, Register rd);
845  void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
846      FPURegister fs);
847  void selnez(Register rs, Register rt, Register rd);
848  void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
849      FPURegister fs);
850
851  // Bit twiddling.
852  void clz(Register rd, Register rs);
853  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
854  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
855
856  // --------Coprocessor-instructions----------------
857
858  // Load, store, and move.
859  void lwc1(FPURegister fd, const MemOperand& src);
860  void ldc1(FPURegister fd, const MemOperand& src);
861
862  void swc1(FPURegister fs, const MemOperand& dst);
863  void sdc1(FPURegister fs, const MemOperand& dst);
864
865  void mtc1(Register rt, FPURegister fs);
866  void mthc1(Register rt, FPURegister fs);
867
868  void mfc1(Register rt, FPURegister fs);
869  void mfhc1(Register rt, FPURegister fs);
870
871  void ctc1(Register rt, FPUControlRegister fs);
872  void cfc1(Register rt, FPUControlRegister fs);
873
874  // Arithmetic.
875  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
876  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
877  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
878  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
879  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
880  void abs_d(FPURegister fd, FPURegister fs);
881  void mov_d(FPURegister fd, FPURegister fs);
882  void neg_d(FPURegister fd, FPURegister fs);
883  void sqrt_d(FPURegister fd, FPURegister fs);
884
885  // Conversion.
886  void cvt_w_s(FPURegister fd, FPURegister fs);
887  void cvt_w_d(FPURegister fd, FPURegister fs);
888  void trunc_w_s(FPURegister fd, FPURegister fs);
889  void trunc_w_d(FPURegister fd, FPURegister fs);
890  void round_w_s(FPURegister fd, FPURegister fs);
891  void round_w_d(FPURegister fd, FPURegister fs);
892  void floor_w_s(FPURegister fd, FPURegister fs);
893  void floor_w_d(FPURegister fd, FPURegister fs);
894  void ceil_w_s(FPURegister fd, FPURegister fs);
895  void ceil_w_d(FPURegister fd, FPURegister fs);
896
897  void cvt_l_s(FPURegister fd, FPURegister fs);
898  void cvt_l_d(FPURegister fd, FPURegister fs);
899  void trunc_l_s(FPURegister fd, FPURegister fs);
900  void trunc_l_d(FPURegister fd, FPURegister fs);
901  void round_l_s(FPURegister fd, FPURegister fs);
902  void round_l_d(FPURegister fd, FPURegister fs);
903  void floor_l_s(FPURegister fd, FPURegister fs);
904  void floor_l_d(FPURegister fd, FPURegister fs);
905  void ceil_l_s(FPURegister fd, FPURegister fs);
906  void ceil_l_d(FPURegister fd, FPURegister fs);
907
908  void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
909  void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
910  void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
911  void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
912
913  void cvt_s_w(FPURegister fd, FPURegister fs);
914  void cvt_s_l(FPURegister fd, FPURegister fs);
915  void cvt_s_d(FPURegister fd, FPURegister fs);
916
917  void cvt_d_w(FPURegister fd, FPURegister fs);
918  void cvt_d_l(FPURegister fd, FPURegister fs);
919  void cvt_d_s(FPURegister fd, FPURegister fs);
920
921  // Conditions and branches for MIPSr6.
922  void cmp(FPUCondition cond, SecondaryField fmt,
923         FPURegister fd, FPURegister ft, FPURegister fs);
924
925  void bc1eqz(int16_t offset, FPURegister ft);
926  void bc1eqz(Label* L, FPURegister ft) {
927    bc1eqz(branch_offset(L, false)>>2, ft);
928  }
929  void bc1nez(int16_t offset, FPURegister ft);
930  void bc1nez(Label* L, FPURegister ft) {
931    bc1nez(branch_offset(L, false)>>2, ft);
932  }
933
934  // Conditions and branches for non MIPSr6.
935  void c(FPUCondition cond, SecondaryField fmt,
936         FPURegister ft, FPURegister fs, uint16_t cc = 0);
937
938  void bc1f(int16_t offset, uint16_t cc = 0);
939  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
940  void bc1t(int16_t offset, uint16_t cc = 0);
941  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
942  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
943
944  // Check the code size generated from label to here.
945  int SizeOfCodeGeneratedSince(Label* label) {
946    return pc_offset() - label->pos();
947  }
948
949  // Check the number of instructions generated from label to here.
950  int InstructionsGeneratedSince(Label* label) {
951    return SizeOfCodeGeneratedSince(label) / kInstrSize;
952  }
953
954  // Class for scoping postponing the trampoline pool generation.
955  class BlockTrampolinePoolScope {
956   public:
957    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
958      assem_->StartBlockTrampolinePool();
959    }
960    ~BlockTrampolinePoolScope() {
961      assem_->EndBlockTrampolinePool();
962    }
963
964   private:
965    Assembler* assem_;
966
967    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
968  };
969
970  // Class for postponing the assembly buffer growth. Typically used for
971  // sequences of instructions that must be emitted as a unit, before
972  // buffer growth (and relocation) can occur.
973  // This blocking scope is not nestable.
974  class BlockGrowBufferScope {
975   public:
976    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
977      assem_->StartBlockGrowBuffer();
978    }
979    ~BlockGrowBufferScope() {
980      assem_->EndBlockGrowBuffer();
981    }
982
983   private:
984    Assembler* assem_;
985
986    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
987  };
988
989  // Debugging.
990
991  // Mark address of the ExitJSFrame code.
992  void RecordJSReturn();
993
994  // Mark address of a debug break slot.
995  void RecordDebugBreakSlot();
996
997  // Record the AST id of the CallIC being compiled, so that it can be placed
998  // in the relocation information.
999  void SetRecordedAstId(TypeFeedbackId ast_id) {
1000    DCHECK(recorded_ast_id_.IsNone());
1001    recorded_ast_id_ = ast_id;
1002  }
1003
1004  TypeFeedbackId RecordedAstId() {
1005    DCHECK(!recorded_ast_id_.IsNone());
1006    return recorded_ast_id_;
1007  }
1008
1009  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1010
1011  // Record a comment relocation entry that can be used by a disassembler.
1012  // Use --code-comments to enable.
1013  void RecordComment(const char* msg);
1014
1015  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
1016
1017  // Writes a single byte or word of data in the code stream.  Used for
1018  // inline tables, e.g., jump-tables.
1019  void db(uint8_t data);
1020  void dd(uint32_t data);
1021
1022  // Emits the address of the code stub's first instruction.
1023  void emit_code_stub_address(Code* stub);
1024
1025  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1026
1027  // Postpone the generation of the trampoline pool for the specified number of
1028  // instructions.
1029  void BlockTrampolinePoolFor(int instructions);
1030
1031  // Check if there is less than kGap bytes available in the buffer.
1032  // If this is the case, we need to grow the buffer before emitting
1033  // an instruction or relocation information.
1034  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1035
1036  // Get the number of bytes available in the buffer.
1037  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1038
1039  // Read/patch instructions.
1040  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1041  static void instr_at_put(byte* pc, Instr instr) {
1042    *reinterpret_cast<Instr*>(pc) = instr;
1043  }
1044  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1045  void instr_at_put(int pos, Instr instr) {
1046    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1047  }
1048
1049  // Check if an instruction is a branch of some kind.
1050  static bool IsBranch(Instr instr);
1051  static bool IsBeq(Instr instr);
1052  static bool IsBne(Instr instr);
1053
1054  static bool IsJump(Instr instr);
1055  static bool IsJ(Instr instr);
1056  static bool IsLui(Instr instr);
1057  static bool IsOri(Instr instr);
1058
1059  static bool IsJal(Instr instr);
1060  static bool IsJr(Instr instr);
1061  static bool IsJalr(Instr instr);
1062
1063  static bool IsNop(Instr instr, unsigned int type);
1064  static bool IsPop(Instr instr);
1065  static bool IsPush(Instr instr);
1066  static bool IsLwRegFpOffset(Instr instr);
1067  static bool IsSwRegFpOffset(Instr instr);
1068  static bool IsLwRegFpNegOffset(Instr instr);
1069  static bool IsSwRegFpNegOffset(Instr instr);
1070
1071  static Register GetRtReg(Instr instr);
1072  static Register GetRsReg(Instr instr);
1073  static Register GetRdReg(Instr instr);
1074
1075  static uint32_t GetRt(Instr instr);
1076  static uint32_t GetRtField(Instr instr);
1077  static uint32_t GetRs(Instr instr);
1078  static uint32_t GetRsField(Instr instr);
1079  static uint32_t GetRd(Instr instr);
1080  static uint32_t GetRdField(Instr instr);
1081  static uint32_t GetSa(Instr instr);
1082  static uint32_t GetSaField(Instr instr);
1083  static uint32_t GetOpcodeField(Instr instr);
1084  static uint32_t GetFunction(Instr instr);
1085  static uint32_t GetFunctionField(Instr instr);
1086  static uint32_t GetImmediate16(Instr instr);
1087  static uint32_t GetLabelConst(Instr instr);
1088
1089  static int32_t GetBranchOffset(Instr instr);
1090  static bool IsLw(Instr instr);
1091  static int16_t GetLwOffset(Instr instr);
1092  static Instr SetLwOffset(Instr instr, int16_t offset);
1093
1094  static bool IsSw(Instr instr);
1095  static Instr SetSwOffset(Instr instr, int16_t offset);
1096  static bool IsAddImmediate(Instr instr);
1097  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1098
1099  static bool IsAndImmediate(Instr instr);
1100  static bool IsEmittedConstant(Instr instr);
1101
1102  void CheckTrampolinePool();
1103
1104  // Allocate a constant pool of the correct size for the generated code.
1105  Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1106
1107  // Generate the constant pool for the generated code.
1108  void PopulateConstantPool(ConstantPoolArray* constant_pool);
1109
1110 protected:
1111  // Relocation for a type-recording IC has the AST id added to it.  This
1112  // member variable is a way to pass the information from the call site to
1113  // the relocation info.
1114  TypeFeedbackId recorded_ast_id_;
1115
1116  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1117
1118  // Decode branch instruction at pos and return branch target pos.
1119  int target_at(int32_t pos);
1120
1121  // Patch branch instruction at pos to branch to given branch target pos.
1122  void target_at_put(int32_t pos, int32_t target_pos);
1123
1124  // Say if we need to relocate with this mode.
1125  bool MustUseReg(RelocInfo::Mode rmode);
1126
1127  // Record reloc info for current pc_.
1128  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1129
1130  // Block the emission of the trampoline pool before pc_offset.
1131  void BlockTrampolinePoolBefore(int pc_offset) {
1132    if (no_trampoline_pool_before_ < pc_offset)
1133      no_trampoline_pool_before_ = pc_offset;
1134  }
1135
1136  void StartBlockTrampolinePool() {
1137    trampoline_pool_blocked_nesting_++;
1138  }
1139
1140  void EndBlockTrampolinePool() {
1141    trampoline_pool_blocked_nesting_--;
1142  }
1143
1144  bool is_trampoline_pool_blocked() const {
1145    return trampoline_pool_blocked_nesting_ > 0;
1146  }
1147
1148  bool has_exception() const {
1149    return internal_trampoline_exception_;
1150  }
1151
1152  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1153
1154  bool is_trampoline_emitted() const {
1155    return trampoline_emitted_;
1156  }
1157
1158  // Temporarily block automatic assembly buffer growth.
1159  void StartBlockGrowBuffer() {
1160    DCHECK(!block_buffer_growth_);
1161    block_buffer_growth_ = true;
1162  }
1163
1164  void EndBlockGrowBuffer() {
1165    DCHECK(block_buffer_growth_);
1166    block_buffer_growth_ = false;
1167  }
1168
1169  bool is_buffer_growth_blocked() const {
1170    return block_buffer_growth_;
1171  }
1172
1173 private:
1174  // Buffer size and constant pool distance are checked together at regular
1175  // intervals of kBufferCheckInterval emitted bytes.
1176  static const int kBufferCheckInterval = 1*KB/2;
1177
1178  // Code generation.
1179  // The relocation writer's position is at least kGap bytes below the end of
1180  // the generated instructions. This is so that multi-instruction sequences do
1181  // not have to check for overflow. The same is true for writes of large
1182  // relocation info entries.
1183  static const int kGap = 32;
1184
1185
1186  // Repeated checking whether the trampoline pool should be emitted is rather
1187  // expensive. By default we only check again once a number of instructions
1188  // has been generated.
1189  static const int kCheckConstIntervalInst = 32;
1190  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1191
1192  int next_buffer_check_;  // pc offset of next buffer check.
1193
1194  // Emission of the trampoline pool may be blocked in some code sequences.
1195  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1196  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1197
1198  // Keep track of the last emitted pool to guarantee a maximal distance.
1199  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1200
1201  // Automatic growth of the assembly buffer may be blocked for some sequences.
1202  bool block_buffer_growth_;  // Block growth when true.
1203
1204  // Relocation information generation.
1205  // Each relocation is encoded as a variable size value.
1206  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1207  RelocInfoWriter reloc_info_writer;
1208
1209  // The bound position, before this we cannot do instruction elimination.
1210  int last_bound_pos_;
1211
1212  // Code emission.
1213  inline void CheckBuffer();
1214  void GrowBuffer();
1215  inline void emit(Instr x);
1216  inline void CheckTrampolinePoolQuick();
1217
1218  // Instruction generation.
1219  // We have 3 different kind of encoding layout on MIPS.
1220  // However due to many different types of objects encoded in the same fields
1221  // we have quite a few aliases for each mode.
1222  // Using the same structure to refer to Register and FPURegister would spare a
1223  // few aliases, but mixing both does not look clean to me.
1224  // Anyway we could surely implement this differently.
1225
1226  void GenInstrRegister(Opcode opcode,
1227                        Register rs,
1228                        Register rt,
1229                        Register rd,
1230                        uint16_t sa = 0,
1231                        SecondaryField func = NULLSF);
1232
1233  void GenInstrRegister(Opcode opcode,
1234                        Register rs,
1235                        Register rt,
1236                        uint16_t msb,
1237                        uint16_t lsb,
1238                        SecondaryField func);
1239
1240  void GenInstrRegister(Opcode opcode,
1241                        SecondaryField fmt,
1242                        FPURegister ft,
1243                        FPURegister fs,
1244                        FPURegister fd,
1245                        SecondaryField func = NULLSF);
1246
1247  void GenInstrRegister(Opcode opcode,
1248                        FPURegister fr,
1249                        FPURegister ft,
1250                        FPURegister fs,
1251                        FPURegister fd,
1252                        SecondaryField func = NULLSF);
1253
1254  void GenInstrRegister(Opcode opcode,
1255                        SecondaryField fmt,
1256                        Register rt,
1257                        FPURegister fs,
1258                        FPURegister fd,
1259                        SecondaryField func = NULLSF);
1260
1261  void GenInstrRegister(Opcode opcode,
1262                        SecondaryField fmt,
1263                        Register rt,
1264                        FPUControlRegister fs,
1265                        SecondaryField func = NULLSF);
1266
1267
1268  void GenInstrImmediate(Opcode opcode,
1269                         Register rs,
1270                         Register rt,
1271                         int32_t  j);
1272  void GenInstrImmediate(Opcode opcode,
1273                         Register rs,
1274                         SecondaryField SF,
1275                         int32_t  j);
1276  void GenInstrImmediate(Opcode opcode,
1277                         Register r1,
1278                         FPURegister r2,
1279                         int32_t  j);
1280
1281
1282  void GenInstrJump(Opcode opcode,
1283                     uint32_t address);
1284
1285  // Helpers.
1286  void LoadRegPlusOffsetToAt(const MemOperand& src);
1287
1288  // Labels.
1289  void print(Label* L);
1290  void bind_to(Label* L, int pos);
1291  void next(Label* L);
1292
1293  // One trampoline consists of:
1294  // - space for trampoline slots,
1295  // - space for labels.
1296  //
1297  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1298  // Space for trampoline slots preceeds space for labels. Each label is of one
1299  // instruction size, so total amount for labels is equal to
1300  // label_count *  kInstrSize.
1301  class Trampoline {
1302   public:
1303    Trampoline() {
1304      start_ = 0;
1305      next_slot_ = 0;
1306      free_slot_count_ = 0;
1307      end_ = 0;
1308    }
1309    Trampoline(int start, int slot_count) {
1310      start_ = start;
1311      next_slot_ = start;
1312      free_slot_count_ = slot_count;
1313      end_ = start + slot_count * kTrampolineSlotsSize;
1314    }
1315    int start() {
1316      return start_;
1317    }
1318    int end() {
1319      return end_;
1320    }
1321    int take_slot() {
1322      int trampoline_slot = kInvalidSlotPos;
1323      if (free_slot_count_ <= 0) {
1324        // We have run out of space on trampolines.
1325        // Make sure we fail in debug mode, so we become aware of each case
1326        // when this happens.
1327        DCHECK(0);
1328        // Internal exception will be caught.
1329      } else {
1330        trampoline_slot = next_slot_;
1331        free_slot_count_--;
1332        next_slot_ += kTrampolineSlotsSize;
1333      }
1334      return trampoline_slot;
1335    }
1336
1337   private:
1338    int start_;
1339    int end_;
1340    int next_slot_;
1341    int free_slot_count_;
1342  };
1343
1344  int32_t get_trampoline_entry(int32_t pos);
1345  int unbound_labels_count_;
1346  // If trampoline is emitted, generated code is becoming large. As this is
1347  // already a slow case which can possibly break our code generation for the
1348  // extreme case, we use this information to trigger different mode of
1349  // branch instruction generation, where we use jump instructions rather
1350  // than regular branch instructions.
1351  bool trampoline_emitted_;
1352  static const int kTrampolineSlotsSize = 4 * kInstrSize;
1353  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1354  static const int kInvalidSlotPos = -1;
1355
1356  Trampoline trampoline_;
1357  bool internal_trampoline_exception_;
1358
1359  friend class RegExpMacroAssemblerMIPS;
1360  friend class RelocInfo;
1361  friend class CodePatcher;
1362  friend class BlockTrampolinePoolScope;
1363
1364  PositionsRecorder positions_recorder_;
1365  friend class PositionsRecorder;
1366  friend class EnsureSpace;
1367};
1368
1369
1370class EnsureSpace BASE_EMBEDDED {
1371 public:
1372  explicit EnsureSpace(Assembler* assembler) {
1373    assembler->CheckBuffer();
1374  }
1375};
1376
1377} }  // namespace v8::internal
1378
1379#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1380