1
2// Copyright (c) 1994-2006 Sun Microsystems Inc.
3// All Rights Reserved.
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9// - Redistributions of source code must retain the above copyright notice,
10// this list of conditions and the following disclaimer.
11//
12// - Redistribution in binary form must reproduce the above copyright
13// notice, this list of conditions and the following disclaimer in the
14// documentation and/or other materials provided with the distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32// The original source code covered by the above license above has been
33// modified significantly by Google Inc.
34// Copyright 2012 the V8 project authors. All rights reserved.
35
36
37#ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38#define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39
40#include "src/mips64/assembler-mips64.h"
41
42#include "src/assembler.h"
43#include "src/debug.h"
44
45
46namespace v8 {
47namespace internal {
48
49
50bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51
52
53// -----------------------------------------------------------------------------
54// Operand and MemOperand.
55
56Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
57  rm_ = no_reg;
58  imm64_ = immediate;
59  rmode_ = rmode;
60}
61
62
63Operand::Operand(const ExternalReference& f)  {
64  rm_ = no_reg;
65  imm64_ = reinterpret_cast<int64_t>(f.address());
66  rmode_ = RelocInfo::EXTERNAL_REFERENCE;
67}
68
69
70Operand::Operand(Smi* value) {
71  rm_ = no_reg;
72  imm64_ =  reinterpret_cast<intptr_t>(value);
73  rmode_ = RelocInfo::NONE32;
74}
75
76
77Operand::Operand(Register rm) {
78  rm_ = rm;
79}
80
81
82bool Operand::is_reg() const {
83  return rm_.is_valid();
84}
85
86
87int Register::NumAllocatableRegisters() {
88    return kMaxNumAllocatableRegisters;
89}
90
91
92int DoubleRegister::NumRegisters() {
93    return FPURegister::kMaxNumRegisters;
94}
95
96
97int DoubleRegister::NumAllocatableRegisters() {
98    return FPURegister::kMaxNumAllocatableRegisters;
99}
100
101
102int FPURegister::ToAllocationIndex(FPURegister reg) {
103  DCHECK(reg.code() % 2 == 0);
104  DCHECK(reg.code() / 2 < kMaxNumAllocatableRegisters);
105  DCHECK(reg.is_valid());
106  DCHECK(!reg.is(kDoubleRegZero));
107  DCHECK(!reg.is(kLithiumScratchDouble));
108  return (reg.code() / 2);
109}
110
111
112// -----------------------------------------------------------------------------
113// RelocInfo.
114
115void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
116  if (IsInternalReference(rmode_)) {
117    // Absolute code pointer inside code object moves with the code object.
118    byte* p = reinterpret_cast<byte*>(pc_);
119    int count = Assembler::RelocateInternalReference(p, delta);
120    CpuFeatures::FlushICache(p, count * sizeof(uint32_t));
121  }
122}
123
124
125Address RelocInfo::target_address() {
126  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
127  return Assembler::target_address_at(pc_, host_);
128}
129
130
131Address RelocInfo::target_address_address() {
132  DCHECK(IsCodeTarget(rmode_) ||
133         IsRuntimeEntry(rmode_) ||
134         rmode_ == EMBEDDED_OBJECT ||
135         rmode_ == EXTERNAL_REFERENCE);
136  // Read the address of the word containing the target_address in an
137  // instruction stream.
138  // The only architecture-independent user of this function is the serializer.
139  // The serializer uses it to find out how many raw bytes of instruction to
140  // output before the next target.
141  // For an instruction like LUI/ORI where the target bits are mixed into the
142  // instruction bits, the size of the target will be zero, indicating that the
143  // serializer should not step forward in memory after a target is resolved
144  // and written. In this case the target_address_address function should
145  // return the end of the instructions to be patched, allowing the
146  // deserializer to deserialize the instructions as raw bytes and put them in
147  // place, ready to be patched with the target. After jump optimization,
148  // that is the address of the instruction that follows J/JAL/JR/JALR
149  // instruction.
150  // return reinterpret_cast<Address>(
151  //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
152  return reinterpret_cast<Address>(
153    pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
154}
155
156
157Address RelocInfo::constant_pool_entry_address() {
158  UNREACHABLE();
159  return NULL;
160}
161
162
163int RelocInfo::target_address_size() {
164  return Assembler::kSpecialTargetSize;
165}
166
167
168void RelocInfo::set_target_address(Address target,
169                                   WriteBarrierMode write_barrier_mode,
170                                   ICacheFlushMode icache_flush_mode) {
171  DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
172  Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
173  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
174      host() != NULL && IsCodeTarget(rmode_)) {
175    Object* target_code = Code::GetCodeFromTargetAddress(target);
176    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
177        host(), this, HeapObject::cast(target_code));
178  }
179}
180
181
182Address Assembler::target_address_from_return_address(Address pc) {
183  return pc - kCallTargetAddressOffset;
184}
185
186
187Address Assembler::break_address_from_return_address(Address pc) {
188  return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
189}
190
191
192Object* RelocInfo::target_object() {
193  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
194  return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
195}
196
197
198Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
199  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
200  return Handle<Object>(reinterpret_cast<Object**>(
201      Assembler::target_address_at(pc_, host_)));
202}
203
204
205void RelocInfo::set_target_object(Object* target,
206                                  WriteBarrierMode write_barrier_mode,
207                                  ICacheFlushMode icache_flush_mode) {
208  DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
209  Assembler::set_target_address_at(pc_, host_,
210                                   reinterpret_cast<Address>(target),
211                                   icache_flush_mode);
212  if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
213      host() != NULL &&
214      target->IsHeapObject()) {
215    host()->GetHeap()->incremental_marking()->RecordWrite(
216        host(), &Memory::Object_at(pc_), HeapObject::cast(target));
217  }
218}
219
220
221Address RelocInfo::target_reference() {
222  DCHECK(rmode_ == EXTERNAL_REFERENCE);
223  return Assembler::target_address_at(pc_, host_);
224}
225
226
227Address RelocInfo::target_runtime_entry(Assembler* origin) {
228  DCHECK(IsRuntimeEntry(rmode_));
229  return target_address();
230}
231
232
233void RelocInfo::set_target_runtime_entry(Address target,
234                                         WriteBarrierMode write_barrier_mode,
235                                         ICacheFlushMode icache_flush_mode) {
236  DCHECK(IsRuntimeEntry(rmode_));
237  if (target_address() != target)
238    set_target_address(target, write_barrier_mode, icache_flush_mode);
239}
240
241
242Handle<Cell> RelocInfo::target_cell_handle() {
243  DCHECK(rmode_ == RelocInfo::CELL);
244  Address address = Memory::Address_at(pc_);
245  return Handle<Cell>(reinterpret_cast<Cell**>(address));
246}
247
248
249Cell* RelocInfo::target_cell() {
250  DCHECK(rmode_ == RelocInfo::CELL);
251  return Cell::FromValueAddress(Memory::Address_at(pc_));
252}
253
254
255void RelocInfo::set_target_cell(Cell* cell,
256                                WriteBarrierMode write_barrier_mode,
257                                ICacheFlushMode icache_flush_mode) {
258  DCHECK(rmode_ == RelocInfo::CELL);
259  Address address = cell->address() + Cell::kValueOffset;
260  Memory::Address_at(pc_) = address;
261  if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
262    // TODO(1550) We are passing NULL as a slot because cell can never be on
263    // evacuation candidate.
264    host()->GetHeap()->incremental_marking()->RecordWrite(
265        host(), NULL, cell);
266  }
267}
268
269
270static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
271
272
273Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
274  UNREACHABLE();  // This should never be reached on Arm.
275  return Handle<Object>();
276}
277
278
279Code* RelocInfo::code_age_stub() {
280  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
281  return Code::GetCodeFromTargetAddress(
282      Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
283}
284
285
286void RelocInfo::set_code_age_stub(Code* stub,
287                                  ICacheFlushMode icache_flush_mode) {
288  DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
289  Assembler::set_target_address_at(pc_ + Assembler::kInstrSize,
290                                   host_,
291                                   stub->instruction_start());
292}
293
294
295Address RelocInfo::call_address() {
296  DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
297         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
298  // The pc_ offset of 0 assumes mips patched return sequence per
299  // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
300  // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
301  return Assembler::target_address_at(pc_, host_);
302}
303
304
305void RelocInfo::set_call_address(Address target) {
306  DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
307         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
308  // The pc_ offset of 0 assumes mips patched return sequence per
309  // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or
310  // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot().
311  Assembler::set_target_address_at(pc_, host_, target);
312  if (host() != NULL) {
313    Object* target_code = Code::GetCodeFromTargetAddress(target);
314    host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
315        host(), this, HeapObject::cast(target_code));
316  }
317}
318
319
320Object* RelocInfo::call_object() {
321  return *call_object_address();
322}
323
324
325Object** RelocInfo::call_object_address() {
326  DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
327         (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
328  return reinterpret_cast<Object**>(pc_ + 6 * Assembler::kInstrSize);
329}
330
331
332void RelocInfo::set_call_object(Object* target) {
333  *call_object_address() = target;
334}
335
336
337void RelocInfo::WipeOut() {
338  DCHECK(IsEmbeddedObject(rmode_) ||
339         IsCodeTarget(rmode_) ||
340         IsRuntimeEntry(rmode_) ||
341         IsExternalReference(rmode_));
342  Assembler::set_target_address_at(pc_, host_, NULL);
343}
344
345
346bool RelocInfo::IsPatchedReturnSequence() {
347  Instr instr0 = Assembler::instr_at(pc_);  // lui.
348  Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);  // ori.
349  Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize);  // dsll.
350  Instr instr3 = Assembler::instr_at(pc_ + 3 * Assembler::kInstrSize);  // ori.
351  Instr instr4 = Assembler::instr_at(pc_ + 4 * Assembler::kInstrSize);  // jalr.
352
353  bool patched_return = ((instr0 & kOpcodeMask) == LUI &&
354                         (instr1 & kOpcodeMask) == ORI &&
355                         (instr2 & kFunctionFieldMask) == DSLL &&
356                         (instr3 & kOpcodeMask) == ORI &&
357                         (instr4 & kFunctionFieldMask) == JALR);
358  return patched_return;
359}
360
361
362bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
363  Instr current_instr = Assembler::instr_at(pc_);
364  return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
365}
366
367
368void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
369  RelocInfo::Mode mode = rmode();
370  if (mode == RelocInfo::EMBEDDED_OBJECT) {
371    visitor->VisitEmbeddedPointer(this);
372  } else if (RelocInfo::IsCodeTarget(mode)) {
373    visitor->VisitCodeTarget(this);
374  } else if (mode == RelocInfo::CELL) {
375    visitor->VisitCell(this);
376  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
377    visitor->VisitExternalReference(this);
378  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
379    visitor->VisitCodeAgeSequence(this);
380  } else if (((RelocInfo::IsJSReturn(mode) &&
381              IsPatchedReturnSequence()) ||
382             (RelocInfo::IsDebugBreakSlot(mode) &&
383             IsPatchedDebugBreakSlotSequence())) &&
384             isolate->debug()->has_break_points()) {
385    visitor->VisitDebugTarget(this);
386  } else if (RelocInfo::IsRuntimeEntry(mode)) {
387    visitor->VisitRuntimeEntry(this);
388  }
389}
390
391
392template<typename StaticVisitor>
393void RelocInfo::Visit(Heap* heap) {
394  RelocInfo::Mode mode = rmode();
395  if (mode == RelocInfo::EMBEDDED_OBJECT) {
396    StaticVisitor::VisitEmbeddedPointer(heap, this);
397  } else if (RelocInfo::IsCodeTarget(mode)) {
398    StaticVisitor::VisitCodeTarget(heap, this);
399  } else if (mode == RelocInfo::CELL) {
400    StaticVisitor::VisitCell(heap, this);
401  } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
402    StaticVisitor::VisitExternalReference(this);
403  } else if (RelocInfo::IsCodeAgeSequence(mode)) {
404    StaticVisitor::VisitCodeAgeSequence(heap, this);
405  } else if (heap->isolate()->debug()->has_break_points() &&
406             ((RelocInfo::IsJSReturn(mode) &&
407              IsPatchedReturnSequence()) ||
408             (RelocInfo::IsDebugBreakSlot(mode) &&
409              IsPatchedDebugBreakSlotSequence()))) {
410    StaticVisitor::VisitDebugTarget(heap, this);
411  } else if (RelocInfo::IsRuntimeEntry(mode)) {
412    StaticVisitor::VisitRuntimeEntry(this);
413  }
414}
415
416
417// -----------------------------------------------------------------------------
418// Assembler.
419
420
421void Assembler::CheckBuffer() {
422  if (buffer_space() <= kGap) {
423    GrowBuffer();
424  }
425}
426
427
428void Assembler::CheckTrampolinePoolQuick() {
429  if (pc_offset() >= next_buffer_check_) {
430    CheckTrampolinePool();
431  }
432}
433
434
435void Assembler::emit(Instr x) {
436  if (!is_buffer_growth_blocked()) {
437    CheckBuffer();
438  }
439  *reinterpret_cast<Instr*>(pc_) = x;
440  pc_ += kInstrSize;
441  CheckTrampolinePoolQuick();
442}
443
444
445void Assembler::emit(uint64_t x) {
446  if (!is_buffer_growth_blocked()) {
447    CheckBuffer();
448  }
449  *reinterpret_cast<uint64_t*>(pc_) = x;
450  pc_ += kInstrSize * 2;
451  CheckTrampolinePoolQuick();
452}
453
454
455} }  // namespace v8::internal
456
457#endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
458