1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "src/assembler.h"
41#include "src/mips64/constants-mips64.h"
42#include "src/serialize.h"
43
44namespace v8 {
45namespace internal {
46
47// CPU Registers.
48//
49// 1) We would prefer to use an enum, but enum values are assignment-
50// compatible with int, which has caused code-generation bugs.
51//
52// 2) We would prefer to use a class instead of a struct but we don't like
53// the register initialization to depend on the particular initialization
54// order (which appears to be different on OS X, Linux, and Windows for the
55// installed versions of C++ we tried). Using a struct permits C-style
56// "initialization". Also, the Register objects cannot be const as this
57// forces initialization stubs in MSVC, making us dependent on initialization
58// order.
59//
60// 3) By not using an enum, we are possibly preventing the compiler from
61// doing certain constant folds, which may significantly reduce the
62// code generated for some assembly instructions (because they boil down
63// to a few constants). If this is a problem, we could change the code
64// such that we use an enum in optimized mode, and the struct in debug
65// mode. This way we get the compile-time error checking in debug mode
66// and best performance in optimized code.
67
68
69// -----------------------------------------------------------------------------
70// Implementation of Register and FPURegister.
71
72// Core register.
73struct Register {
74  static const int kNumRegisters = v8::internal::kNumRegisters;
75  static const int kMaxNumAllocatableRegisters = 14;  // v0 through t6 and cp.
76  static const int kSizeInBytes = 8;
77  static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
78
79  inline static int NumAllocatableRegisters();
80
81  static int ToAllocationIndex(Register reg) {
82    DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
83           reg.is(from_code(kCpRegister)));
84    return reg.is(from_code(kCpRegister)) ?
85           kMaxNumAllocatableRegisters - 1 :  // Return last index for 'cp'.
86           reg.code() - 2;  // zero_reg and 'at' are skipped.
87  }
88
89  static Register FromAllocationIndex(int index) {
90    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
91    return index == kMaxNumAllocatableRegisters - 1 ?
92           from_code(kCpRegister) :  // Last index is always the 'cp' register.
93           from_code(index + 2);  // zero_reg and 'at' are skipped.
94  }
95
96  static const char* AllocationIndexToString(int index) {
97    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
98    const char* const names[] = {
99      "v0",
100      "v1",
101      "a0",
102      "a1",
103      "a2",
104      "a3",
105      "a4",
106      "a5",
107      "a6",
108      "a7",
109      "t0",
110      "t1",
111      "t2",
112      "s7",
113    };
114    return names[index];
115  }
116
117  static Register from_code(int code) {
118    Register r = { code };
119    return r;
120  }
121
122  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
123  bool is(Register reg) const { return code_ == reg.code_; }
124  int code() const {
125    DCHECK(is_valid());
126    return code_;
127  }
128  int bit() const {
129    DCHECK(is_valid());
130    return 1 << code_;
131  }
132
133  // Unfortunately we can't make this private in a struct.
134  int code_;
135};
136
137#define REGISTER(N, C) \
138  const int kRegister_ ## N ## _Code = C; \
139  const Register N = { C }
140
141REGISTER(no_reg, -1);
142// Always zero.
143REGISTER(zero_reg, 0);
144// at: Reserved for synthetic instructions.
145REGISTER(at, 1);
146// v0, v1: Used when returning multiple values from subroutines.
147REGISTER(v0, 2);
148REGISTER(v1, 3);
149// a0 - a4: Used to pass non-FP parameters.
150REGISTER(a0, 4);
151REGISTER(a1, 5);
152REGISTER(a2, 6);
153REGISTER(a3, 7);
154// a4 - a7 t0 - t3: Can be used without reservation, act as temporary registers
155// and are allowed to be destroyed by subroutines.
156REGISTER(a4, 8);
157REGISTER(a5, 9);
158REGISTER(a6, 10);
159REGISTER(a7, 11);
160REGISTER(t0, 12);
161REGISTER(t1, 13);
162REGISTER(t2, 14);
163REGISTER(t3, 15);
164// s0 - s7: Subroutine register variables. Subroutines that write to these
165// registers must restore their values before exiting so that the caller can
166// expect the values to be preserved.
167REGISTER(s0, 16);
168REGISTER(s1, 17);
169REGISTER(s2, 18);
170REGISTER(s3, 19);
171REGISTER(s4, 20);
172REGISTER(s5, 21);
173REGISTER(s6, 22);
174REGISTER(s7, 23);
175REGISTER(t8, 24);
176REGISTER(t9, 25);
177// k0, k1: Reserved for system calls and interrupt handlers.
178REGISTER(k0, 26);
179REGISTER(k1, 27);
180// gp: Reserved.
181REGISTER(gp, 28);
182// sp: Stack pointer.
183REGISTER(sp, 29);
184// fp: Frame pointer.
185REGISTER(fp, 30);
186// ra: Return address pointer.
187REGISTER(ra, 31);
188
189#undef REGISTER
190
191
192int ToNumber(Register reg);
193
194Register ToRegister(int num);
195
196// Coprocessor register.
197struct FPURegister {
198  static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
199
200  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
201  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
202  // number of Double regs (64-bit regs, or FPU-reg-pairs).
203
204  // A few double registers are reserved: one as a scratch register and one to
205  // hold 0.0.
206  //  f28: 0.0
207  //  f30: scratch register.
208  static const int kNumReservedRegisters = 2;
209  static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
210      kNumReservedRegisters;
211
212  inline static int NumRegisters();
213  inline static int NumAllocatableRegisters();
214  inline static int ToAllocationIndex(FPURegister reg);
215  static const char* AllocationIndexToString(int index);
216
217  static FPURegister FromAllocationIndex(int index) {
218    DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
219    return from_code(index * 2);
220  }
221
222  static FPURegister from_code(int code) {
223    FPURegister r = { code };
224    return r;
225  }
226
227  bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
228  bool is(FPURegister creg) const { return code_ == creg.code_; }
229  FPURegister low() const {
230    // TODO(plind): Create DCHECK for FR=0 mode. This usage suspect for FR=1.
231    // Find low reg of a Double-reg pair, which is the reg itself.
232    DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
233    FPURegister reg;
234    reg.code_ = code_;
235    DCHECK(reg.is_valid());
236    return reg;
237  }
238  FPURegister high() const {
239    // TODO(plind): Create DCHECK for FR=0 mode. This usage illegal in FR=1.
240    // Find high reg of a Doubel-reg pair, which is reg + 1.
241    DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
242    FPURegister reg;
243    reg.code_ = code_ + 1;
244    DCHECK(reg.is_valid());
245    return reg;
246  }
247
248  int code() const {
249    DCHECK(is_valid());
250    return code_;
251  }
252  int bit() const {
253    DCHECK(is_valid());
254    return 1 << code_;
255  }
256  void setcode(int f) {
257    code_ = f;
258    DCHECK(is_valid());
259  }
260  // Unfortunately we can't make this private in a struct.
261  int code_;
262};
263
264// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
265// 32-bit registers, f0 through f31. When used as 'double' they are used
266// in pairs, starting with the even numbered register. So a double operation
267// on f0 really uses f0 and f1.
268// (Modern mips hardware also supports 32 64-bit registers, via setting
269// (privileged) Status Register FR bit to 1. This is used by the N32 ABI,
270// but it is not in common use. Someday we will want to support this in v8.)
271
272// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
273typedef FPURegister DoubleRegister;
274typedef FPURegister FloatRegister;
275
276const FPURegister no_freg = { -1 };
277
278const FPURegister f0 = { 0 };  // Return value in hard float mode.
279const FPURegister f1 = { 1 };
280const FPURegister f2 = { 2 };
281const FPURegister f3 = { 3 };
282const FPURegister f4 = { 4 };
283const FPURegister f5 = { 5 };
284const FPURegister f6 = { 6 };
285const FPURegister f7 = { 7 };
286const FPURegister f8 = { 8 };
287const FPURegister f9 = { 9 };
288const FPURegister f10 = { 10 };
289const FPURegister f11 = { 11 };
290const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
291const FPURegister f13 = { 13 };
292const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
293const FPURegister f15 = { 15 };
294const FPURegister f16 = { 16 };
295const FPURegister f17 = { 17 };
296const FPURegister f18 = { 18 };
297const FPURegister f19 = { 19 };
298const FPURegister f20 = { 20 };
299const FPURegister f21 = { 21 };
300const FPURegister f22 = { 22 };
301const FPURegister f23 = { 23 };
302const FPURegister f24 = { 24 };
303const FPURegister f25 = { 25 };
304const FPURegister f26 = { 26 };
305const FPURegister f27 = { 27 };
306const FPURegister f28 = { 28 };
307const FPURegister f29 = { 29 };
308const FPURegister f30 = { 30 };
309const FPURegister f31 = { 31 };
310
311// Register aliases.
312// cp is assumed to be a callee saved register.
313// Defined using #define instead of "static const Register&" because Clang
314// complains otherwise when a compilation unit that includes this header
315// doesn't use the variables.
316#define kRootRegister s6
317#define cp s7
318#define kLithiumScratchReg s3
319#define kLithiumScratchReg2 s4
320#define kLithiumScratchDouble f30
321#define kDoubleRegZero f28
322
323// FPU (coprocessor 1) control registers.
324// Currently only FCSR (#31) is implemented.
325struct FPUControlRegister {
326  bool is_valid() const { return code_ == kFCSRRegister; }
327  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
328  int code() const {
329    DCHECK(is_valid());
330    return code_;
331  }
332  int bit() const {
333    DCHECK(is_valid());
334    return 1 << code_;
335  }
336  void setcode(int f) {
337    code_ = f;
338    DCHECK(is_valid());
339  }
340  // Unfortunately we can't make this private in a struct.
341  int code_;
342};
343
344const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
345const FPUControlRegister FCSR = { kFCSRRegister };
346
347
348// -----------------------------------------------------------------------------
349// Machine instruction Operands.
350const int kSmiShift = kSmiTagSize + kSmiShiftSize;
351const uint64_t kSmiShiftMask = (1UL << kSmiShift) - 1;
352// Class Operand represents a shifter operand in data processing instructions.
353class Operand BASE_EMBEDDED {
354 public:
355  // Immediate.
356  INLINE(explicit Operand(int64_t immediate,
357         RelocInfo::Mode rmode = RelocInfo::NONE64));
358  INLINE(explicit Operand(const ExternalReference& f));
359  INLINE(explicit Operand(const char* s));
360  INLINE(explicit Operand(Object** opp));
361  INLINE(explicit Operand(Context** cpp));
362  explicit Operand(Handle<Object> handle);
363  INLINE(explicit Operand(Smi* value));
364
365  // Register.
366  INLINE(explicit Operand(Register rm));
367
368  // Return true if this is a register operand.
369  INLINE(bool is_reg() const);
370
371  inline int64_t immediate() const {
372    DCHECK(!is_reg());
373    return imm64_;
374  }
375
376  Register rm() const { return rm_; }
377
378 private:
379  Register rm_;
380  int64_t imm64_;  // Valid if rm_ == no_reg.
381  RelocInfo::Mode rmode_;
382
383  friend class Assembler;
384  friend class MacroAssembler;
385};
386
387
388// On MIPS we have only one adressing mode with base_reg + offset.
389// Class MemOperand represents a memory operand in load and store instructions.
390class MemOperand : public Operand {
391 public:
392  // Immediate value attached to offset.
393  enum OffsetAddend {
394    offset_minus_one = -1,
395    offset_zero = 0
396  };
397
398  explicit MemOperand(Register rn, int64_t offset = 0);
399  explicit MemOperand(Register rn, int64_t unit, int64_t multiplier,
400                      OffsetAddend offset_addend = offset_zero);
401  int32_t offset() const { return offset_; }
402
403  bool OffsetIsInt16Encodable() const {
404    return is_int16(offset_);
405  }
406
407 private:
408  int32_t offset_;
409
410  friend class Assembler;
411};
412
413
414class Assembler : public AssemblerBase {
415 public:
416  // Create an assembler. Instructions and relocation information are emitted
417  // into a buffer, with the instructions starting from the beginning and the
418  // relocation information starting from the end of the buffer. See CodeDesc
419  // for a detailed comment on the layout (globals.h).
420  //
421  // If the provided buffer is NULL, the assembler allocates and grows its own
422  // buffer, and buffer_size determines the initial buffer size. The buffer is
423  // owned by the assembler and deallocated upon destruction of the assembler.
424  //
425  // If the provided buffer is not NULL, the assembler uses the provided buffer
426  // for code generation and assumes its size to be buffer_size. If the buffer
427  // is too small, a fatal error occurs. No deallocation of the buffer is done
428  // upon destruction of the assembler.
429  Assembler(Isolate* isolate, void* buffer, int buffer_size);
430  virtual ~Assembler() { }
431
432  // GetCode emits any pending (non-emitted) code and fills the descriptor
433  // desc. GetCode() is idempotent; it returns the same result if no other
434  // Assembler functions are invoked in between GetCode() calls.
435  void GetCode(CodeDesc* desc);
436
437  // Label operations & relative jumps (PPUM Appendix D).
438  //
439  // Takes a branch opcode (cc) and a label (L) and generates
440  // either a backward branch or a forward branch and links it
441  // to the label fixup chain. Usage:
442  //
443  // Label L;    // unbound label
444  // j(cc, &L);  // forward branch to unbound label
445  // bind(&L);   // bind label to the current pc
446  // j(cc, &L);  // backward branch to bound label
447  // bind(&L);   // illegal: a label may be bound only once
448  //
449  // Note: The same Label can be used for forward and backward branches
450  // but it may be bound only once.
451  void bind(Label* L);  // Binds an unbound label L to current code position.
452  // Determines if Label is bound and near enough so that branch instruction
453  // can be used to reach it, instead of jump instruction.
454  bool is_near(Label* L);
455
456  // Returns the branch offset to the given label from the current code
457  // position. Links the label to the current position if it is still unbound.
458  // Manages the jump elimination optimization if the second parameter is true.
459  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
460  int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
461  int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
462  int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
463  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
464    int32_t o = branch_offset(L, jump_elimination_allowed);
465    DCHECK((o & 3) == 0);   // Assert the offset is aligned.
466    return o >> 2;
467  }
468  int32_t shifted_branch_offset_compact(Label* L,
469      bool jump_elimination_allowed) {
470    int32_t o = branch_offset_compact(L, jump_elimination_allowed);
471    DCHECK((o & 3) == 0);   // Assert the offset is aligned.
472    return o >> 2;
473  }
474  uint64_t jump_address(Label* L);
475
476  // Puts a labels target address at the given position.
477  // The high 8 bits are set to zero.
478  void label_at_put(Label* L, int at_offset);
479
480  // Read/Modify the code target address in the branch/call instruction at pc.
481  static Address target_address_at(Address pc);
482  static void set_target_address_at(Address pc,
483                                    Address target,
484                                    ICacheFlushMode icache_flush_mode =
485                                        FLUSH_ICACHE_IF_NEEDED);
486  // On MIPS there is no Constant Pool so we skip that parameter.
487  INLINE(static Address target_address_at(Address pc,
488                                          ConstantPoolArray* constant_pool)) {
489    return target_address_at(pc);
490  }
491  INLINE(static void set_target_address_at(Address pc,
492                                           ConstantPoolArray* constant_pool,
493                                           Address target,
494                                           ICacheFlushMode icache_flush_mode =
495                                               FLUSH_ICACHE_IF_NEEDED)) {
496    set_target_address_at(pc, target, icache_flush_mode);
497  }
498  INLINE(static Address target_address_at(Address pc, Code* code)) {
499    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
500    return target_address_at(pc, constant_pool);
501  }
502  INLINE(static void set_target_address_at(Address pc,
503                                           Code* code,
504                                           Address target,
505                                           ICacheFlushMode icache_flush_mode =
506                                               FLUSH_ICACHE_IF_NEEDED)) {
507    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
508    set_target_address_at(pc, constant_pool, target, icache_flush_mode);
509  }
510
511  // Return the code target address at a call site from the return address
512  // of that call in the instruction stream.
513  inline static Address target_address_from_return_address(Address pc);
514
515  // Return the code target address of the patch debug break slot
516  inline static Address break_address_from_return_address(Address pc);
517
518  static void JumpLabelToJumpRegister(Address pc);
519
520  static void QuietNaN(HeapObject* nan);
521
522  // This sets the branch destination (which gets loaded at the call address).
523  // This is for calls and branches within generated code.  The serializer
524  // has already deserialized the lui/ori instructions etc.
525  inline static void deserialization_set_special_target_at(
526      Address instruction_payload, Code* code, Address target) {
527    set_target_address_at(
528        instruction_payload - kInstructionsFor64BitConstant * kInstrSize,
529        code,
530        target);
531  }
532
533  // Size of an instruction.
534  static const int kInstrSize = sizeof(Instr);
535
536  // Difference between address of current opcode and target address offset.
537  static const int kBranchPCOffset = 4;
538
539  // Here we are patching the address in the LUI/ORI instruction pair.
540  // These values are used in the serialization process and must be zero for
541  // MIPS platform, as Code, Embedded Object or External-reference pointers
542  // are split across two consecutive instructions and don't exist separately
543  // in the code, so the serializer should not step forwards in memory after
544  // a target is resolved and written.
545  static const int kSpecialTargetSize = 0;
546
547  // Number of consecutive instructions used to store 32bit/64bit constant.
548  // Before jump-optimizations, this constant was used in
549  // RelocInfo::target_address_address() function to tell serializer address of
550  // the instruction that follows LUI/ORI instruction pair. Now, with new jump
551  // optimization, where jump-through-register instruction that usually
552  // follows LUI/ORI pair is substituted with J/JAL, this constant equals
553  // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
554  static const int kInstructionsFor32BitConstant = 3;
555  static const int kInstructionsFor64BitConstant = 5;
556
557  // Distance between the instruction referring to the address of the call
558  // target and the return address.
559  static const int kCallTargetAddressOffset = 6 * kInstrSize;
560
561  // Distance between start of patched return sequence and the emitted address
562  // to jump to.
563  static const int kPatchReturnSequenceAddressOffset = 0;
564
565  // Distance between start of patched debug break slot and the emitted address
566  // to jump to.
567  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
568
569  // Difference between address of current opcode and value read from pc
570  // register.
571  static const int kPcLoadDelta = 4;
572
573  static const int kPatchDebugBreakSlotReturnOffset = 6 * kInstrSize;
574
575  // Number of instructions used for the JS return sequence. The constant is
576  // used by the debugger to patch the JS return sequence.
577  static const int kJSReturnSequenceInstructions = 7;
578  static const int kDebugBreakSlotInstructions = 6;
579  static const int kDebugBreakSlotLength =
580      kDebugBreakSlotInstructions * kInstrSize;
581
582
583  // ---------------------------------------------------------------------------
584  // Code generation.
585
586  // Insert the smallest number of nop instructions
587  // possible to align the pc offset to a multiple
588  // of m. m must be a power of 2 (>= 4).
589  void Align(int m);
590  // Aligns code to something that's optimal for a jump target for the platform.
591  void CodeTargetAlign();
592
593  // Different nop operations are used by the code generator to detect certain
594  // states of the generated code.
595  enum NopMarkerTypes {
596    NON_MARKING_NOP = 0,
597    DEBUG_BREAK_NOP,
598    // IC markers.
599    PROPERTY_ACCESS_INLINED,
600    PROPERTY_ACCESS_INLINED_CONTEXT,
601    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
602    // Helper values.
603    LAST_CODE_MARKER,
604    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
605    // Code aging
606    CODE_AGE_MARKER_NOP = 6,
607    CODE_AGE_SEQUENCE_NOP
608  };
609
610  // Type == 0 is the default non-marking nop. For mips this is a
611  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
612  // marking, to avoid conflict with ssnop and ehb instructions.
613  void nop(unsigned int type = 0) {
614    DCHECK(type < 32);
615    Register nop_rt_reg = (type == 0) ? zero_reg : at;
616    sll(zero_reg, nop_rt_reg, type, true);
617  }
618
619
620  // --------Branch-and-jump-instructions----------
621  // We don't use likely variant of instructions.
622  void b(int16_t offset);
623  void b(Label* L) { b(branch_offset(L, false)>>2); }
624  void bal(int16_t offset);
625  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
626
627  void beq(Register rs, Register rt, int16_t offset);
628  void beq(Register rs, Register rt, Label* L) {
629    beq(rs, rt, branch_offset(L, false) >> 2);
630  }
631  void bgez(Register rs, int16_t offset);
632  void bgezc(Register rt, int16_t offset);
633  void bgezc(Register rt, Label* L) {
634    bgezc(rt, branch_offset_compact(L, false)>>2);
635  }
636  void bgeuc(Register rs, Register rt, int16_t offset);
637  void bgeuc(Register rs, Register rt, Label* L) {
638    bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
639  }
640  void bgec(Register rs, Register rt, int16_t offset);
641  void bgec(Register rs, Register rt, Label* L) {
642    bgec(rs, rt, branch_offset_compact(L, false)>>2);
643  }
644  void bgezal(Register rs, int16_t offset);
645  void bgezalc(Register rt, int16_t offset);
646  void bgezalc(Register rt, Label* L) {
647    bgezalc(rt, branch_offset_compact(L, false)>>2);
648  }
649  void bgezall(Register rs, int16_t offset);
650  void bgezall(Register rs, Label* L) {
651    bgezall(rs, branch_offset(L, false)>>2);
652  }
653  void bgtz(Register rs, int16_t offset);
654  void bgtzc(Register rt, int16_t offset);
655  void bgtzc(Register rt, Label* L) {
656    bgtzc(rt, branch_offset_compact(L, false)>>2);
657  }
658  void blez(Register rs, int16_t offset);
659  void blezc(Register rt, int16_t offset);
660  void blezc(Register rt, Label* L) {
661    blezc(rt, branch_offset_compact(L, false)>>2);
662  }
663  void bltz(Register rs, int16_t offset);
664  void bltzc(Register rt, int16_t offset);
665  void bltzc(Register rt, Label* L) {
666    bltzc(rt, branch_offset_compact(L, false)>>2);
667  }
668  void bltuc(Register rs, Register rt, int16_t offset);
669  void bltuc(Register rs, Register rt, Label* L) {
670    bltuc(rs, rt, branch_offset_compact(L, false)>>2);
671  }
672  void bltc(Register rs, Register rt, int16_t offset);
673  void bltc(Register rs, Register rt, Label* L) {
674    bltc(rs, rt, branch_offset_compact(L, false)>>2);
675  }
676
677  void bltzal(Register rs, int16_t offset);
678  void blezalc(Register rt, int16_t offset);
679  void blezalc(Register rt, Label* L) {
680    blezalc(rt, branch_offset_compact(L, false)>>2);
681  }
682  void bltzalc(Register rt, int16_t offset);
683  void bltzalc(Register rt, Label* L) {
684    bltzalc(rt, branch_offset_compact(L, false)>>2);
685  }
686  void bgtzalc(Register rt, int16_t offset);
687  void bgtzalc(Register rt, Label* L) {
688    bgtzalc(rt, branch_offset_compact(L, false)>>2);
689  }
690  void beqzalc(Register rt, int16_t offset);
691  void beqzalc(Register rt, Label* L) {
692    beqzalc(rt, branch_offset_compact(L, false)>>2);
693  }
694  void beqc(Register rs, Register rt, int16_t offset);
695  void beqc(Register rs, Register rt, Label* L) {
696    beqc(rs, rt, branch_offset_compact(L, false)>>2);
697  }
698  void beqzc(Register rs, int32_t offset);
699  void beqzc(Register rs, Label* L) {
700    beqzc(rs, branch_offset21_compact(L, false)>>2);
701  }
702  void bnezalc(Register rt, int16_t offset);
703  void bnezalc(Register rt, Label* L) {
704    bnezalc(rt, branch_offset_compact(L, false)>>2);
705  }
706  void bnec(Register rs, Register rt, int16_t offset);
707  void bnec(Register rs, Register rt, Label* L) {
708    bnec(rs, rt, branch_offset_compact(L, false)>>2);
709  }
710  void bnezc(Register rt, int32_t offset);
711  void bnezc(Register rt, Label* L) {
712    bnezc(rt, branch_offset21_compact(L, false)>>2);
713  }
714  void bne(Register rs, Register rt, int16_t offset);
715  void bne(Register rs, Register rt, Label* L) {
716    bne(rs, rt, branch_offset(L, false)>>2);
717  }
718  void bovc(Register rs, Register rt, int16_t offset);
719  void bovc(Register rs, Register rt, Label* L) {
720    bovc(rs, rt, branch_offset_compact(L, false)>>2);
721  }
722  void bnvc(Register rs, Register rt, int16_t offset);
723  void bnvc(Register rs, Register rt, Label* L) {
724    bnvc(rs, rt, branch_offset_compact(L, false)>>2);
725  }
726
727  // Never use the int16_t b(l)cond version with a branch offset
728  // instead of using the Label* version.
729
730  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
731  void j(int64_t target);
732  void jal(int64_t target);
733  void jalr(Register rs, Register rd = ra);
734  void jr(Register target);
735  void j_or_jr(int64_t target, Register rs);
736  void jal_or_jalr(int64_t target, Register rs);
737
738
739  // -------Data-processing-instructions---------
740
741  // Arithmetic.
742  void addu(Register rd, Register rs, Register rt);
743  void subu(Register rd, Register rs, Register rt);
744
745  void div(Register rs, Register rt);
746  void divu(Register rs, Register rt);
747  void ddiv(Register rs, Register rt);
748  void ddivu(Register rs, Register rt);
749  void div(Register rd, Register rs, Register rt);
750  void divu(Register rd, Register rs, Register rt);
751  void ddiv(Register rd, Register rs, Register rt);
752  void ddivu(Register rd, Register rs, Register rt);
753  void mod(Register rd, Register rs, Register rt);
754  void modu(Register rd, Register rs, Register rt);
755  void dmod(Register rd, Register rs, Register rt);
756  void dmodu(Register rd, Register rs, Register rt);
757
758  void mul(Register rd, Register rs, Register rt);
759  void muh(Register rd, Register rs, Register rt);
760  void mulu(Register rd, Register rs, Register rt);
761  void muhu(Register rd, Register rs, Register rt);
762  void mult(Register rs, Register rt);
763  void multu(Register rs, Register rt);
764  void dmul(Register rd, Register rs, Register rt);
765  void dmuh(Register rd, Register rs, Register rt);
766  void dmulu(Register rd, Register rs, Register rt);
767  void dmuhu(Register rd, Register rs, Register rt);
768  void daddu(Register rd, Register rs, Register rt);
769  void dsubu(Register rd, Register rs, Register rt);
770  void dmult(Register rs, Register rt);
771  void dmultu(Register rs, Register rt);
772
773  void addiu(Register rd, Register rs, int32_t j);
774  void daddiu(Register rd, Register rs, int32_t j);
775
776  // Logical.
777  void and_(Register rd, Register rs, Register rt);
778  void or_(Register rd, Register rs, Register rt);
779  void xor_(Register rd, Register rs, Register rt);
780  void nor(Register rd, Register rs, Register rt);
781
782  void andi(Register rd, Register rs, int32_t j);
783  void ori(Register rd, Register rs, int32_t j);
784  void xori(Register rd, Register rs, int32_t j);
785  void lui(Register rd, int32_t j);
786  void aui(Register rs, Register rt, int32_t j);
787  void daui(Register rs, Register rt, int32_t j);
788  void dahi(Register rs, int32_t j);
789  void dati(Register rs, int32_t j);
790
791  // Shifts.
792  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
793  // and may cause problems in normal code. coming_from_nop makes sure this
794  // doesn't happen.
795  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
796  void sllv(Register rd, Register rt, Register rs);
797  void srl(Register rd, Register rt, uint16_t sa);
798  void srlv(Register rd, Register rt, Register rs);
799  void sra(Register rt, Register rd, uint16_t sa);
800  void srav(Register rt, Register rd, Register rs);
801  void rotr(Register rd, Register rt, uint16_t sa);
802  void rotrv(Register rd, Register rt, Register rs);
803  void dsll(Register rd, Register rt, uint16_t sa);
804  void dsllv(Register rd, Register rt, Register rs);
805  void dsrl(Register rd, Register rt, uint16_t sa);
806  void dsrlv(Register rd, Register rt, Register rs);
807  void drotr(Register rd, Register rt, uint16_t sa);
808  void drotrv(Register rd, Register rt, Register rs);
809  void dsra(Register rt, Register rd, uint16_t sa);
810  void dsrav(Register rd, Register rt, Register rs);
811  void dsll32(Register rt, Register rd, uint16_t sa);
812  void dsrl32(Register rt, Register rd, uint16_t sa);
813  void dsra32(Register rt, Register rd, uint16_t sa);
814
815
816  // ------------Memory-instructions-------------
817
818  void lb(Register rd, const MemOperand& rs);
819  void lbu(Register rd, const MemOperand& rs);
820  void lh(Register rd, const MemOperand& rs);
821  void lhu(Register rd, const MemOperand& rs);
822  void lw(Register rd, const MemOperand& rs);
823  void lwu(Register rd, const MemOperand& rs);
824  void lwl(Register rd, const MemOperand& rs);
825  void lwr(Register rd, const MemOperand& rs);
826  void sb(Register rd, const MemOperand& rs);
827  void sh(Register rd, const MemOperand& rs);
828  void sw(Register rd, const MemOperand& rs);
829  void swl(Register rd, const MemOperand& rs);
830  void swr(Register rd, const MemOperand& rs);
831  void ldl(Register rd, const MemOperand& rs);
832  void ldr(Register rd, const MemOperand& rs);
833  void sdl(Register rd, const MemOperand& rs);
834  void sdr(Register rd, const MemOperand& rs);
835  void ld(Register rd, const MemOperand& rs);
836  void sd(Register rd, const MemOperand& rs);
837
838
839  // ----------------Prefetch--------------------
840
841  void pref(int32_t hint, const MemOperand& rs);
842
843
844  // -------------Misc-instructions--------------
845
846  // Break / Trap instructions.
847  void break_(uint32_t code, bool break_as_stop = false);
848  void stop(const char* msg, uint32_t code = kMaxStopCode);
849  void tge(Register rs, Register rt, uint16_t code);
850  void tgeu(Register rs, Register rt, uint16_t code);
851  void tlt(Register rs, Register rt, uint16_t code);
852  void tltu(Register rs, Register rt, uint16_t code);
853  void teq(Register rs, Register rt, uint16_t code);
854  void tne(Register rs, Register rt, uint16_t code);
855
856  // Move from HI/LO register.
857  void mfhi(Register rd);
858  void mflo(Register rd);
859
860  // Set on less than.
861  void slt(Register rd, Register rs, Register rt);
862  void sltu(Register rd, Register rs, Register rt);
863  void slti(Register rd, Register rs, int32_t j);
864  void sltiu(Register rd, Register rs, int32_t j);
865
866  // Conditional move.
867  void movz(Register rd, Register rs, Register rt);
868  void movn(Register rd, Register rs, Register rt);
869  void movt(Register rd, Register rs, uint16_t cc = 0);
870  void movf(Register rd, Register rs, uint16_t cc = 0);
871
872  void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
873      FPURegister fs, uint8_t sel);
874  void seleqz(Register rs, Register rt, Register rd);
875  void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
876      FPURegister fs);
877  void selnez(Register rs, Register rt, Register rd);
878  void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
879      FPURegister fs);
880
881  // Bit twiddling.
882  void clz(Register rd, Register rs);
883  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
884  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
885
886  // --------Coprocessor-instructions----------------
887
888  // Load, store, and move.
889  void lwc1(FPURegister fd, const MemOperand& src);
890  void ldc1(FPURegister fd, const MemOperand& src);
891
892  void swc1(FPURegister fs, const MemOperand& dst);
893  void sdc1(FPURegister fs, const MemOperand& dst);
894
895  void mtc1(Register rt, FPURegister fs);
896  void mthc1(Register rt, FPURegister fs);
897  void dmtc1(Register rt, FPURegister fs);
898
899  void mfc1(Register rt, FPURegister fs);
900  void mfhc1(Register rt, FPURegister fs);
901  void dmfc1(Register rt, FPURegister fs);
902
903  void ctc1(Register rt, FPUControlRegister fs);
904  void cfc1(Register rt, FPUControlRegister fs);
905
906  // Arithmetic.
907  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
908  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
909  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
910  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
911  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
912  void abs_d(FPURegister fd, FPURegister fs);
913  void mov_d(FPURegister fd, FPURegister fs);
914  void neg_d(FPURegister fd, FPURegister fs);
915  void sqrt_d(FPURegister fd, FPURegister fs);
916
917  // Conversion.
918  void cvt_w_s(FPURegister fd, FPURegister fs);
919  void cvt_w_d(FPURegister fd, FPURegister fs);
920  void trunc_w_s(FPURegister fd, FPURegister fs);
921  void trunc_w_d(FPURegister fd, FPURegister fs);
922  void round_w_s(FPURegister fd, FPURegister fs);
923  void round_w_d(FPURegister fd, FPURegister fs);
924  void floor_w_s(FPURegister fd, FPURegister fs);
925  void floor_w_d(FPURegister fd, FPURegister fs);
926  void ceil_w_s(FPURegister fd, FPURegister fs);
927  void ceil_w_d(FPURegister fd, FPURegister fs);
928
929  void cvt_l_s(FPURegister fd, FPURegister fs);
930  void cvt_l_d(FPURegister fd, FPURegister fs);
931  void trunc_l_s(FPURegister fd, FPURegister fs);
932  void trunc_l_d(FPURegister fd, FPURegister fs);
933  void round_l_s(FPURegister fd, FPURegister fs);
934  void round_l_d(FPURegister fd, FPURegister fs);
935  void floor_l_s(FPURegister fd, FPURegister fs);
936  void floor_l_d(FPURegister fd, FPURegister fs);
937  void ceil_l_s(FPURegister fd, FPURegister fs);
938  void ceil_l_d(FPURegister fd, FPURegister fs);
939
940  void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
941  void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
942  void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
943  void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
944
945  void cvt_s_w(FPURegister fd, FPURegister fs);
946  void cvt_s_l(FPURegister fd, FPURegister fs);
947  void cvt_s_d(FPURegister fd, FPURegister fs);
948
949  void cvt_d_w(FPURegister fd, FPURegister fs);
950  void cvt_d_l(FPURegister fd, FPURegister fs);
951  void cvt_d_s(FPURegister fd, FPURegister fs);
952
953  // Conditions and branches for MIPSr6.
954  void cmp(FPUCondition cond, SecondaryField fmt,
955         FPURegister fd, FPURegister ft, FPURegister fs);
956
957  void bc1eqz(int16_t offset, FPURegister ft);
958  void bc1eqz(Label* L, FPURegister ft) {
959    bc1eqz(branch_offset(L, false)>>2, ft);
960  }
961  void bc1nez(int16_t offset, FPURegister ft);
962  void bc1nez(Label* L, FPURegister ft) {
963    bc1nez(branch_offset(L, false)>>2, ft);
964  }
965
966  // Conditions and branches for non MIPSr6.
967  void c(FPUCondition cond, SecondaryField fmt,
968         FPURegister ft, FPURegister fs, uint16_t cc = 0);
969
970  void bc1f(int16_t offset, uint16_t cc = 0);
971  void bc1f(Label* L, uint16_t cc = 0) {
972    bc1f(branch_offset(L, false)>>2, cc);
973  }
974  void bc1t(int16_t offset, uint16_t cc = 0);
975  void bc1t(Label* L, uint16_t cc = 0) {
976    bc1t(branch_offset(L, false)>>2, cc);
977  }
978  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
979
980  // Check the code size generated from label to here.
981  int SizeOfCodeGeneratedSince(Label* label) {
982    return pc_offset() - label->pos();
983  }
984
985  // Check the number of instructions generated from label to here.
986  int InstructionsGeneratedSince(Label* label) {
987    return SizeOfCodeGeneratedSince(label) / kInstrSize;
988  }
989
990  // Class for scoping postponing the trampoline pool generation.
991  class BlockTrampolinePoolScope {
992   public:
993    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
994      assem_->StartBlockTrampolinePool();
995    }
996    ~BlockTrampolinePoolScope() {
997      assem_->EndBlockTrampolinePool();
998    }
999
1000   private:
1001    Assembler* assem_;
1002
1003    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
1004  };
1005
1006  // Class for postponing the assembly buffer growth. Typically used for
1007  // sequences of instructions that must be emitted as a unit, before
1008  // buffer growth (and relocation) can occur.
1009  // This blocking scope is not nestable.
1010  class BlockGrowBufferScope {
1011   public:
1012    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
1013      assem_->StartBlockGrowBuffer();
1014    }
1015    ~BlockGrowBufferScope() {
1016      assem_->EndBlockGrowBuffer();
1017    }
1018
1019   private:
1020    Assembler* assem_;
1021
1022    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
1023  };
1024
1025  // Debugging.
1026
1027  // Mark address of the ExitJSFrame code.
1028  void RecordJSReturn();
1029
1030  // Mark address of a debug break slot.
1031  void RecordDebugBreakSlot();
1032
1033  // Record the AST id of the CallIC being compiled, so that it can be placed
1034  // in the relocation information.
1035  void SetRecordedAstId(TypeFeedbackId ast_id) {
1036    DCHECK(recorded_ast_id_.IsNone());
1037    recorded_ast_id_ = ast_id;
1038  }
1039
1040  TypeFeedbackId RecordedAstId() {
1041    DCHECK(!recorded_ast_id_.IsNone());
1042    return recorded_ast_id_;
1043  }
1044
1045  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1046
1047  // Record a comment relocation entry that can be used by a disassembler.
1048  // Use --code-comments to enable.
1049  void RecordComment(const char* msg);
1050
1051  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
1052
1053  // Writes a single byte or word of data in the code stream.  Used for
1054  // inline tables, e.g., jump-tables.
1055  void db(uint8_t data);
1056  void dd(uint32_t data);
1057
1058  // Emits the address of the code stub's first instruction.
1059  void emit_code_stub_address(Code* stub);
1060
1061  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1062
1063  // Postpone the generation of the trampoline pool for the specified number of
1064  // instructions.
1065  void BlockTrampolinePoolFor(int instructions);
1066
1067  // Check if there is less than kGap bytes available in the buffer.
1068  // If this is the case, we need to grow the buffer before emitting
1069  // an instruction or relocation information.
1070  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
1071
1072  // Get the number of bytes available in the buffer.
1073  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1074
1075  // Read/patch instructions.
1076  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
1077  static void instr_at_put(byte* pc, Instr instr) {
1078    *reinterpret_cast<Instr*>(pc) = instr;
1079  }
1080  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
1081  void instr_at_put(int pos, Instr instr) {
1082    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1083  }
1084
1085  // Check if an instruction is a branch of some kind.
1086  static bool IsBranch(Instr instr);
1087  static bool IsBeq(Instr instr);
1088  static bool IsBne(Instr instr);
1089
1090  static bool IsJump(Instr instr);
1091  static bool IsJ(Instr instr);
1092  static bool IsLui(Instr instr);
1093  static bool IsOri(Instr instr);
1094
1095  static bool IsJal(Instr instr);
1096  static bool IsJr(Instr instr);
1097  static bool IsJalr(Instr instr);
1098
1099  static bool IsNop(Instr instr, unsigned int type);
1100  static bool IsPop(Instr instr);
1101  static bool IsPush(Instr instr);
1102  static bool IsLwRegFpOffset(Instr instr);
1103  static bool IsSwRegFpOffset(Instr instr);
1104  static bool IsLwRegFpNegOffset(Instr instr);
1105  static bool IsSwRegFpNegOffset(Instr instr);
1106
1107  static Register GetRtReg(Instr instr);
1108  static Register GetRsReg(Instr instr);
1109  static Register GetRdReg(Instr instr);
1110
1111  static uint32_t GetRt(Instr instr);
1112  static uint32_t GetRtField(Instr instr);
1113  static uint32_t GetRs(Instr instr);
1114  static uint32_t GetRsField(Instr instr);
1115  static uint32_t GetRd(Instr instr);
1116  static uint32_t GetRdField(Instr instr);
1117  static uint32_t GetSa(Instr instr);
1118  static uint32_t GetSaField(Instr instr);
1119  static uint32_t GetOpcodeField(Instr instr);
1120  static uint32_t GetFunction(Instr instr);
1121  static uint32_t GetFunctionField(Instr instr);
1122  static uint32_t GetImmediate16(Instr instr);
1123  static uint32_t GetLabelConst(Instr instr);
1124
1125  static int32_t GetBranchOffset(Instr instr);
1126  static bool IsLw(Instr instr);
1127  static int16_t GetLwOffset(Instr instr);
1128  static Instr SetLwOffset(Instr instr, int16_t offset);
1129
1130  static bool IsSw(Instr instr);
1131  static Instr SetSwOffset(Instr instr, int16_t offset);
1132  static bool IsAddImmediate(Instr instr);
1133  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
1134
1135  static bool IsAndImmediate(Instr instr);
1136  static bool IsEmittedConstant(Instr instr);
1137
1138  void CheckTrampolinePool();
1139
1140  // Allocate a constant pool of the correct size for the generated code.
1141  Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1142
1143  // Generate the constant pool for the generated code.
1144  void PopulateConstantPool(ConstantPoolArray* constant_pool);
1145
1146 protected:
1147  // Relocation for a type-recording IC has the AST id added to it.  This
1148  // member variable is a way to pass the information from the call site to
1149  // the relocation info.
1150  TypeFeedbackId recorded_ast_id_;
1151
1152  int64_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
1153
1154  // Decode branch instruction at pos and return branch target pos.
1155  int64_t target_at(int64_t pos);
1156
1157  // Patch branch instruction at pos to branch to given branch target pos.
1158  void target_at_put(int64_t pos, int64_t target_pos);
1159
1160  // Say if we need to relocate with this mode.
1161  bool MustUseReg(RelocInfo::Mode rmode);
1162
1163  // Record reloc info for current pc_.
1164  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1165
1166  // Block the emission of the trampoline pool before pc_offset.
1167  void BlockTrampolinePoolBefore(int pc_offset) {
1168    if (no_trampoline_pool_before_ < pc_offset)
1169      no_trampoline_pool_before_ = pc_offset;
1170  }
1171
1172  void StartBlockTrampolinePool() {
1173    trampoline_pool_blocked_nesting_++;
1174  }
1175
1176  void EndBlockTrampolinePool() {
1177    trampoline_pool_blocked_nesting_--;
1178  }
1179
1180  bool is_trampoline_pool_blocked() const {
1181    return trampoline_pool_blocked_nesting_ > 0;
1182  }
1183
1184  bool has_exception() const {
1185    return internal_trampoline_exception_;
1186  }
1187
1188  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1189
1190  bool is_trampoline_emitted() const {
1191    return trampoline_emitted_;
1192  }
1193
1194  // Temporarily block automatic assembly buffer growth.
1195  void StartBlockGrowBuffer() {
1196    DCHECK(!block_buffer_growth_);
1197    block_buffer_growth_ = true;
1198  }
1199
1200  void EndBlockGrowBuffer() {
1201    DCHECK(block_buffer_growth_);
1202    block_buffer_growth_ = false;
1203  }
1204
1205  bool is_buffer_growth_blocked() const {
1206    return block_buffer_growth_;
1207  }
1208
1209 private:
1210  // Buffer size and constant pool distance are checked together at regular
1211  // intervals of kBufferCheckInterval emitted bytes.
1212  static const int kBufferCheckInterval = 1*KB/2;
1213
1214  // Code generation.
1215  // The relocation writer's position is at least kGap bytes below the end of
1216  // the generated instructions. This is so that multi-instruction sequences do
1217  // not have to check for overflow. The same is true for writes of large
1218  // relocation info entries.
1219  static const int kGap = 32;
1220
1221
1222  // Repeated checking whether the trampoline pool should be emitted is rather
1223  // expensive. By default we only check again once a number of instructions
1224  // has been generated.
1225  static const int kCheckConstIntervalInst = 32;
1226  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1227
1228  int next_buffer_check_;  // pc offset of next buffer check.
1229
1230  // Emission of the trampoline pool may be blocked in some code sequences.
1231  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1232  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1233
1234  // Keep track of the last emitted pool to guarantee a maximal distance.
1235  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1236
1237  // Automatic growth of the assembly buffer may be blocked for some sequences.
1238  bool block_buffer_growth_;  // Block growth when true.
1239
1240  // Relocation information generation.
1241  // Each relocation is encoded as a variable size value.
1242  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1243  RelocInfoWriter reloc_info_writer;
1244
1245  // The bound position, before this we cannot do instruction elimination.
1246  int last_bound_pos_;
1247
1248  // Code emission.
1249  inline void CheckBuffer();
1250  void GrowBuffer();
1251  inline void emit(Instr x);
1252  inline void emit(uint64_t x);
1253  inline void CheckTrampolinePoolQuick();
1254
1255  // Instruction generation.
1256  // We have 3 different kind of encoding layout on MIPS.
1257  // However due to many different types of objects encoded in the same fields
1258  // we have quite a few aliases for each mode.
1259  // Using the same structure to refer to Register and FPURegister would spare a
1260  // few aliases, but mixing both does not look clean to me.
1261  // Anyway we could surely implement this differently.
1262
1263  void GenInstrRegister(Opcode opcode,
1264                        Register rs,
1265                        Register rt,
1266                        Register rd,
1267                        uint16_t sa = 0,
1268                        SecondaryField func = NULLSF);
1269
1270  void GenInstrRegister(Opcode opcode,
1271                        Register rs,
1272                        Register rt,
1273                        uint16_t msb,
1274                        uint16_t lsb,
1275                        SecondaryField func);
1276
1277  void GenInstrRegister(Opcode opcode,
1278                        SecondaryField fmt,
1279                        FPURegister ft,
1280                        FPURegister fs,
1281                        FPURegister fd,
1282                        SecondaryField func = NULLSF);
1283
1284  void GenInstrRegister(Opcode opcode,
1285                        FPURegister fr,
1286                        FPURegister ft,
1287                        FPURegister fs,
1288                        FPURegister fd,
1289                        SecondaryField func = NULLSF);
1290
1291  void GenInstrRegister(Opcode opcode,
1292                        SecondaryField fmt,
1293                        Register rt,
1294                        FPURegister fs,
1295                        FPURegister fd,
1296                        SecondaryField func = NULLSF);
1297
1298  void GenInstrRegister(Opcode opcode,
1299                        SecondaryField fmt,
1300                        Register rt,
1301                        FPUControlRegister fs,
1302                        SecondaryField func = NULLSF);
1303
1304
1305  void GenInstrImmediate(Opcode opcode,
1306                         Register rs,
1307                         Register rt,
1308                         int32_t  j);
1309  void GenInstrImmediate(Opcode opcode,
1310                         Register rs,
1311                         SecondaryField SF,
1312                         int32_t  j);
1313  void GenInstrImmediate(Opcode opcode,
1314                         Register r1,
1315                         FPURegister r2,
1316                         int32_t  j);
1317
1318
1319  void GenInstrJump(Opcode opcode,
1320                     uint32_t address);
1321
1322  // Helpers.
1323  void LoadRegPlusOffsetToAt(const MemOperand& src);
1324
1325  // Labels.
1326  void print(Label* L);
1327  void bind_to(Label* L, int pos);
1328  void next(Label* L);
1329
1330  // One trampoline consists of:
1331  // - space for trampoline slots,
1332  // - space for labels.
1333  //
1334  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1335  // Space for trampoline slots preceeds space for labels. Each label is of one
1336  // instruction size, so total amount for labels is equal to
1337  // label_count *  kInstrSize.
1338  class Trampoline {
1339   public:
1340    Trampoline() {
1341      start_ = 0;
1342      next_slot_ = 0;
1343      free_slot_count_ = 0;
1344      end_ = 0;
1345    }
1346    Trampoline(int start, int slot_count) {
1347      start_ = start;
1348      next_slot_ = start;
1349      free_slot_count_ = slot_count;
1350      end_ = start + slot_count * kTrampolineSlotsSize;
1351    }
1352    int start() {
1353      return start_;
1354    }
1355    int end() {
1356      return end_;
1357    }
1358    int take_slot() {
1359      int trampoline_slot = kInvalidSlotPos;
1360      if (free_slot_count_ <= 0) {
1361        // We have run out of space on trampolines.
1362        // Make sure we fail in debug mode, so we become aware of each case
1363        // when this happens.
1364        DCHECK(0);
1365        // Internal exception will be caught.
1366      } else {
1367        trampoline_slot = next_slot_;
1368        free_slot_count_--;
1369        next_slot_ += kTrampolineSlotsSize;
1370      }
1371      return trampoline_slot;
1372    }
1373
1374   private:
1375    int start_;
1376    int end_;
1377    int next_slot_;
1378    int free_slot_count_;
1379  };
1380
1381  int32_t get_trampoline_entry(int32_t pos);
1382  int unbound_labels_count_;
1383  // If trampoline is emitted, generated code is becoming large. As this is
1384  // already a slow case which can possibly break our code generation for the
1385  // extreme case, we use this information to trigger different mode of
1386  // branch instruction generation, where we use jump instructions rather
1387  // than regular branch instructions.
1388  bool trampoline_emitted_;
1389  static const int kTrampolineSlotsSize = 6 * kInstrSize;
1390  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1391  static const int kInvalidSlotPos = -1;
1392
1393  Trampoline trampoline_;
1394  bool internal_trampoline_exception_;
1395
1396  friend class RegExpMacroAssemblerMIPS;
1397  friend class RelocInfo;
1398  friend class CodePatcher;
1399  friend class BlockTrampolinePoolScope;
1400
1401  PositionsRecorder positions_recorder_;
1402  friend class PositionsRecorder;
1403  friend class EnsureSpace;
1404};
1405
1406
1407class EnsureSpace BASE_EMBEDDED {
1408 public:
1409  explicit EnsureSpace(Assembler* assembler) {
1410    assembler->CheckBuffer();
1411  }
1412};
1413
1414} }  // namespace v8::internal
1415
1416#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1417