1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_MIPS64
8
9#include "src/bootstrapper.h"
10#include "src/code-stubs.h"
11#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
14#include "src/isolate.h"
15#include "src/jsregexp.h"
16#include "src/regexp-macro-assembler.h"
17#include "src/runtime.h"
18
19namespace v8 {
20namespace internal {
21
22
23static void InitializeArrayConstructorDescriptor(
24    Isolate* isolate, CodeStubDescriptor* descriptor,
25    int constant_stack_parameter_count) {
26  Address deopt_handler = Runtime::FunctionForId(
27      Runtime::kArrayConstructor)->entry;
28
29  if (constant_stack_parameter_count == 0) {
30    descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
31                           JS_FUNCTION_STUB_MODE);
32  } else {
33    descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
34                           JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
35  }
36}
37
38
39static void InitializeInternalArrayConstructorDescriptor(
40    Isolate* isolate, CodeStubDescriptor* descriptor,
41    int constant_stack_parameter_count) {
42  Address deopt_handler = Runtime::FunctionForId(
43      Runtime::kInternalArrayConstructor)->entry;
44
45  if (constant_stack_parameter_count == 0) {
46    descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47                           JS_FUNCTION_STUB_MODE);
48  } else {
49    descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
50                           JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
51  }
52}
53
54
55void ArrayNoArgumentConstructorStub::InitializeDescriptor(
56    CodeStubDescriptor* descriptor) {
57  InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
58}
59
60
61void ArraySingleArgumentConstructorStub::InitializeDescriptor(
62    CodeStubDescriptor* descriptor) {
63  InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
64}
65
66
67void ArrayNArgumentsConstructorStub::InitializeDescriptor(
68    CodeStubDescriptor* descriptor) {
69  InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
70}
71
72
73void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
74    CodeStubDescriptor* descriptor) {
75  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
76}
77
78
79void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
80    CodeStubDescriptor* descriptor) {
81  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
82}
83
84
85void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
86    CodeStubDescriptor* descriptor) {
87  InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
88}
89
90
91#define __ ACCESS_MASM(masm)
92
93
94static void EmitIdenticalObjectComparison(MacroAssembler* masm,
95                                          Label* slow,
96                                          Condition cc);
97static void EmitSmiNonsmiComparison(MacroAssembler* masm,
98                                    Register lhs,
99                                    Register rhs,
100                                    Label* rhs_not_nan,
101                                    Label* slow,
102                                    bool strict);
103static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
104                                           Register lhs,
105                                           Register rhs);
106
107
108void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
109                                               ExternalReference miss) {
110  // Update the static counter each time a new code stub is generated.
111  isolate()->counters()->code_stubs()->Increment();
112
113  CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
114  int param_count = descriptor.GetEnvironmentParameterCount();
115  {
116    // Call the runtime system in a fresh internal frame.
117    FrameScope scope(masm, StackFrame::INTERNAL);
118    DCHECK((param_count == 0) ||
119           a0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
120    // Push arguments, adjust sp.
121    __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
122    for (int i = 0; i < param_count; ++i) {
123      // Store argument to stack.
124      __ sd(descriptor.GetEnvironmentParameterRegister(i),
125            MemOperand(sp, (param_count - 1 - i) * kPointerSize));
126    }
127    __ CallExternalReference(miss, param_count);
128  }
129
130  __ Ret();
131}
132
133
134void DoubleToIStub::Generate(MacroAssembler* masm) {
135  Label out_of_range, only_low, negate, done;
136  Register input_reg = source();
137  Register result_reg = destination();
138
139  int double_offset = offset();
140  // Account for saved regs if input is sp.
141  if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
142
143  Register scratch =
144      GetRegisterThatIsNotOneOf(input_reg, result_reg);
145  Register scratch2 =
146      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
147  Register scratch3 =
148      GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
149  DoubleRegister double_scratch = kLithiumScratchDouble;
150
151  __ Push(scratch, scratch2, scratch3);
152  if (!skip_fastpath()) {
153    // Load double input.
154    __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
155
156    // Clear cumulative exception flags and save the FCSR.
157    __ cfc1(scratch2, FCSR);
158    __ ctc1(zero_reg, FCSR);
159
160    // Try a conversion to a signed integer.
161    __ Trunc_w_d(double_scratch, double_scratch);
162    // Move the converted value into the result register.
163    __ mfc1(scratch3, double_scratch);
164
165    // Retrieve and restore the FCSR.
166    __ cfc1(scratch, FCSR);
167    __ ctc1(scratch2, FCSR);
168
169    // Check for overflow and NaNs.
170    __ And(
171        scratch, scratch,
172        kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
173           | kFCSRInvalidOpFlagMask);
174    // If we had no exceptions then set result_reg and we are done.
175    Label error;
176    __ Branch(&error, ne, scratch, Operand(zero_reg));
177    __ Move(result_reg, scratch3);
178    __ Branch(&done);
179    __ bind(&error);
180  }
181
182  // Load the double value and perform a manual truncation.
183  Register input_high = scratch2;
184  Register input_low = scratch3;
185
186  __ lw(input_low, MemOperand(input_reg, double_offset));
187  __ lw(input_high, MemOperand(input_reg, double_offset + kIntSize));
188
189  Label normal_exponent, restore_sign;
190  // Extract the biased exponent in result.
191  __ Ext(result_reg,
192         input_high,
193         HeapNumber::kExponentShift,
194         HeapNumber::kExponentBits);
195
196  // Check for Infinity and NaNs, which should return 0.
197  __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
198  __ Movz(result_reg, zero_reg, scratch);
199  __ Branch(&done, eq, scratch, Operand(zero_reg));
200
201  // Express exponent as delta to (number of mantissa bits + 31).
202  __ Subu(result_reg,
203          result_reg,
204          Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
205
206  // If the delta is strictly positive, all bits would be shifted away,
207  // which means that we can return 0.
208  __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
209  __ mov(result_reg, zero_reg);
210  __ Branch(&done);
211
212  __ bind(&normal_exponent);
213  const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
214  // Calculate shift.
215  __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
216
217  // Save the sign.
218  Register sign = result_reg;
219  result_reg = no_reg;
220  __ And(sign, input_high, Operand(HeapNumber::kSignMask));
221
222  // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
223  // to check for this specific case.
224  Label high_shift_needed, high_shift_done;
225  __ Branch(&high_shift_needed, lt, scratch, Operand(32));
226  __ mov(input_high, zero_reg);
227  __ Branch(&high_shift_done);
228  __ bind(&high_shift_needed);
229
230  // Set the implicit 1 before the mantissa part in input_high.
231  __ Or(input_high,
232        input_high,
233        Operand(1 << HeapNumber::kMantissaBitsInTopWord));
234  // Shift the mantissa bits to the correct position.
235  // We don't need to clear non-mantissa bits as they will be shifted away.
236  // If they weren't, it would mean that the answer is in the 32bit range.
237  __ sllv(input_high, input_high, scratch);
238
239  __ bind(&high_shift_done);
240
241  // Replace the shifted bits with bits from the lower mantissa word.
242  Label pos_shift, shift_done;
243  __ li(at, 32);
244  __ subu(scratch, at, scratch);
245  __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
246
247  // Negate scratch.
248  __ Subu(scratch, zero_reg, scratch);
249  __ sllv(input_low, input_low, scratch);
250  __ Branch(&shift_done);
251
252  __ bind(&pos_shift);
253  __ srlv(input_low, input_low, scratch);
254
255  __ bind(&shift_done);
256  __ Or(input_high, input_high, Operand(input_low));
257  // Restore sign if necessary.
258  __ mov(scratch, sign);
259  result_reg = sign;
260  sign = no_reg;
261  __ Subu(result_reg, zero_reg, input_high);
262  __ Movz(result_reg, input_high, scratch);
263
264  __ bind(&done);
265
266  __ Pop(scratch, scratch2, scratch3);
267  __ Ret();
268}
269
270
271void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
272    Isolate* isolate) {
273  WriteInt32ToHeapNumberStub stub1(isolate, a1, v0, a2, a3);
274  WriteInt32ToHeapNumberStub stub2(isolate, a2, v0, a3, a0);
275  stub1.GetCode();
276  stub2.GetCode();
277}
278
279
280// See comment for class, this does NOT work for int32's that are in Smi range.
281void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
282  Label max_negative_int;
283  // the_int_ has the answer which is a signed int32 but not a Smi.
284  // We test for the special value that has a different exponent.
285  STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
286  // Test sign, and save for later conditionals.
287  __ And(sign(), the_int(), Operand(0x80000000u));
288  __ Branch(&max_negative_int, eq, the_int(), Operand(0x80000000u));
289
290  // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
291  // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
292  uint32_t non_smi_exponent =
293      (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
294  __ li(scratch(), Operand(non_smi_exponent));
295  // Set the sign bit in scratch_ if the value was negative.
296  __ or_(scratch(), scratch(), sign());
297  // Subtract from 0 if the value was negative.
298  __ subu(at, zero_reg, the_int());
299  __ Movn(the_int(), at, sign());
300  // We should be masking the implict first digit of the mantissa away here,
301  // but it just ends up combining harmlessly with the last digit of the
302  // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
303  // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
304  DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
305  const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
306  __ srl(at, the_int(), shift_distance);
307  __ or_(scratch(), scratch(), at);
308  __ sw(scratch(), FieldMemOperand(the_heap_number(),
309                                   HeapNumber::kExponentOffset));
310  __ sll(scratch(), the_int(), 32 - shift_distance);
311  __ Ret(USE_DELAY_SLOT);
312  __ sw(scratch(), FieldMemOperand(the_heap_number(),
313                                   HeapNumber::kMantissaOffset));
314
315  __ bind(&max_negative_int);
316  // The max negative int32 is stored as a positive number in the mantissa of
317  // a double because it uses a sign bit instead of using two's complement.
318  // The actual mantissa bits stored are all 0 because the implicit most
319  // significant 1 bit is not stored.
320  non_smi_exponent += 1 << HeapNumber::kExponentShift;
321  __ li(scratch(), Operand(HeapNumber::kSignMask | non_smi_exponent));
322  __ sw(scratch(),
323        FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
324  __ mov(scratch(), zero_reg);
325  __ Ret(USE_DELAY_SLOT);
326  __ sw(scratch(),
327        FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
328}
329
330
331// Handle the case where the lhs and rhs are the same object.
332// Equality is almost reflexive (everything but NaN), so this is a test
333// for "identity and not NaN".
334static void EmitIdenticalObjectComparison(MacroAssembler* masm,
335                                          Label* slow,
336                                          Condition cc) {
337  Label not_identical;
338  Label heap_number, return_equal;
339  Register exp_mask_reg = t1;
340
341  __ Branch(&not_identical, ne, a0, Operand(a1));
342
343  __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
344
345  // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
346  // so we do the second best thing - test it ourselves.
347  // They are both equal and they are not both Smis so both of them are not
348  // Smis. If it's not a heap number, then return equal.
349  if (cc == less || cc == greater) {
350    __ GetObjectType(a0, t0, t0);
351    __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
352  } else {
353    __ GetObjectType(a0, t0, t0);
354    __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
355    // Comparing JS objects with <=, >= is complicated.
356    if (cc != eq) {
357    __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
358      // Normally here we fall through to return_equal, but undefined is
359      // special: (undefined == undefined) == true, but
360      // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
361      if (cc == less_equal || cc == greater_equal) {
362        __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
363        __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
364        __ Branch(&return_equal, ne, a0, Operand(a6));
365        DCHECK(is_int16(GREATER) && is_int16(LESS));
366        __ Ret(USE_DELAY_SLOT);
367        if (cc == le) {
368          // undefined <= undefined should fail.
369          __ li(v0, Operand(GREATER));
370        } else  {
371          // undefined >= undefined should fail.
372          __ li(v0, Operand(LESS));
373        }
374      }
375    }
376  }
377
378  __ bind(&return_equal);
379  DCHECK(is_int16(GREATER) && is_int16(LESS));
380  __ Ret(USE_DELAY_SLOT);
381  if (cc == less) {
382    __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
383  } else if (cc == greater) {
384    __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
385  } else {
386    __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
387  }
388  // For less and greater we don't have to check for NaN since the result of
389  // x < x is false regardless.  For the others here is some code to check
390  // for NaN.
391  if (cc != lt && cc != gt) {
392    __ bind(&heap_number);
393    // It is a heap number, so return non-equal if it's NaN and equal if it's
394    // not NaN.
395
396    // The representation of NaN values has all exponent bits (52..62) set,
397    // and not all mantissa bits (0..51) clear.
398    // Read top bits of double representation (second word of value).
399    __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
400    // Test that exponent bits are all set.
401    __ And(a7, a6, Operand(exp_mask_reg));
402    // If all bits not set (ne cond), then not a NaN, objects are equal.
403    __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
404
405    // Shift out flag and all exponent bits, retaining only mantissa.
406    __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
407    // Or with all low-bits of mantissa.
408    __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
409    __ Or(v0, a7, Operand(a6));
410    // For equal we already have the right value in v0:  Return zero (equal)
411    // if all bits in mantissa are zero (it's an Infinity) and non-zero if
412    // not (it's a NaN).  For <= and >= we need to load v0 with the failing
413    // value if it's a NaN.
414    if (cc != eq) {
415      // All-zero means Infinity means equal.
416      __ Ret(eq, v0, Operand(zero_reg));
417      DCHECK(is_int16(GREATER) && is_int16(LESS));
418      __ Ret(USE_DELAY_SLOT);
419      if (cc == le) {
420        __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
421      } else {
422        __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
423      }
424    }
425  }
426  // No fall through here.
427
428  __ bind(&not_identical);
429}
430
431
432static void EmitSmiNonsmiComparison(MacroAssembler* masm,
433                                    Register lhs,
434                                    Register rhs,
435                                    Label* both_loaded_as_doubles,
436                                    Label* slow,
437                                    bool strict) {
438  DCHECK((lhs.is(a0) && rhs.is(a1)) ||
439         (lhs.is(a1) && rhs.is(a0)));
440
441  Label lhs_is_smi;
442  __ JumpIfSmi(lhs, &lhs_is_smi);
443  // Rhs is a Smi.
444  // Check whether the non-smi is a heap number.
445  __ GetObjectType(lhs, t0, t0);
446  if (strict) {
447    // If lhs was not a number and rhs was a Smi then strict equality cannot
448    // succeed. Return non-equal (lhs is already not zero).
449    __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
450    __ mov(v0, lhs);
451  } else {
452    // Smi compared non-strictly with a non-Smi non-heap-number. Call
453    // the runtime.
454    __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
455  }
456  // Rhs is a smi, lhs is a number.
457  // Convert smi rhs to double.
458  __ SmiUntag(at, rhs);
459  __ mtc1(at, f14);
460  __ cvt_d_w(f14, f14);
461  __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
462
463  // We now have both loaded as doubles.
464  __ jmp(both_loaded_as_doubles);
465
466  __ bind(&lhs_is_smi);
467  // Lhs is a Smi.  Check whether the non-smi is a heap number.
468  __ GetObjectType(rhs, t0, t0);
469  if (strict) {
470    // If lhs was not a number and rhs was a Smi then strict equality cannot
471    // succeed. Return non-equal.
472    __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
473    __ li(v0, Operand(1));
474  } else {
475    // Smi compared non-strictly with a non-Smi non-heap-number. Call
476    // the runtime.
477    __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
478  }
479
480  // Lhs is a smi, rhs is a number.
481  // Convert smi lhs to double.
482  __ SmiUntag(at, lhs);
483  __ mtc1(at, f12);
484  __ cvt_d_w(f12, f12);
485  __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
486  // Fall through to both_loaded_as_doubles.
487}
488
489
490static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
491                                           Register lhs,
492                                           Register rhs) {
493    // If either operand is a JS object or an oddball value, then they are
494    // not equal since their pointers are different.
495    // There is no test for undetectability in strict equality.
496    STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
497    Label first_non_object;
498    // Get the type of the first operand into a2 and compare it with
499    // FIRST_SPEC_OBJECT_TYPE.
500    __ GetObjectType(lhs, a2, a2);
501    __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
502
503    // Return non-zero.
504    Label return_not_equal;
505    __ bind(&return_not_equal);
506    __ Ret(USE_DELAY_SLOT);
507    __ li(v0, Operand(1));
508
509    __ bind(&first_non_object);
510    // Check for oddballs: true, false, null, undefined.
511    __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
512
513    __ GetObjectType(rhs, a3, a3);
514    __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
515
516    // Check for oddballs: true, false, null, undefined.
517    __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
518
519    // Now that we have the types we might as well check for
520    // internalized-internalized.
521    STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
522    __ Or(a2, a2, Operand(a3));
523    __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
524    __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
525}
526
527
528static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
529                                       Register lhs,
530                                       Register rhs,
531                                       Label* both_loaded_as_doubles,
532                                       Label* not_heap_numbers,
533                                       Label* slow) {
534  __ GetObjectType(lhs, a3, a2);
535  __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
536  __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
537  // If first was a heap number & second wasn't, go to slow case.
538  __ Branch(slow, ne, a3, Operand(a2));
539
540  // Both are heap numbers. Load them up then jump to the code we have
541  // for that.
542  __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
543  __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
544
545  __ jmp(both_loaded_as_doubles);
546}
547
548
549// Fast negative check for internalized-to-internalized equality.
550static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
551                                                     Register lhs,
552                                                     Register rhs,
553                                                     Label* possible_strings,
554                                                     Label* not_both_strings) {
555  DCHECK((lhs.is(a0) && rhs.is(a1)) ||
556         (lhs.is(a1) && rhs.is(a0)));
557
558  // a2 is object type of rhs.
559  Label object_test;
560  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
561  __ And(at, a2, Operand(kIsNotStringMask));
562  __ Branch(&object_test, ne, at, Operand(zero_reg));
563  __ And(at, a2, Operand(kIsNotInternalizedMask));
564  __ Branch(possible_strings, ne, at, Operand(zero_reg));
565  __ GetObjectType(rhs, a3, a3);
566  __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
567  __ And(at, a3, Operand(kIsNotInternalizedMask));
568  __ Branch(possible_strings, ne, at, Operand(zero_reg));
569
570  // Both are internalized strings. We already checked they weren't the same
571  // pointer so they are not equal.
572  __ Ret(USE_DELAY_SLOT);
573  __ li(v0, Operand(1));   // Non-zero indicates not equal.
574
575  __ bind(&object_test);
576  __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
577  __ GetObjectType(rhs, a2, a3);
578  __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
579
580  // If both objects are undetectable, they are equal.  Otherwise, they
581  // are not equal, since they are different objects and an object is not
582  // equal to undefined.
583  __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
584  __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
585  __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
586  __ and_(a0, a2, a3);
587  __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
588  __ Ret(USE_DELAY_SLOT);
589  __ xori(v0, a0, 1 << Map::kIsUndetectable);
590}
591
592
593static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
594                                         Register scratch,
595                                         CompareICState::State expected,
596                                         Label* fail) {
597  Label ok;
598  if (expected == CompareICState::SMI) {
599    __ JumpIfNotSmi(input, fail);
600  } else if (expected == CompareICState::NUMBER) {
601    __ JumpIfSmi(input, &ok);
602    __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
603                DONT_DO_SMI_CHECK);
604  }
605  // We could be strict about internalized/string here, but as long as
606  // hydrogen doesn't care, the stub doesn't have to care either.
607  __ bind(&ok);
608}
609
610
611// On entry a1 and a2 are the values to be compared.
612// On exit a0 is 0, positive or negative to indicate the result of
613// the comparison.
614void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
615  Register lhs = a1;
616  Register rhs = a0;
617  Condition cc = GetCondition();
618
619  Label miss;
620  CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
621  CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
622
623  Label slow;  // Call builtin.
624  Label not_smis, both_loaded_as_doubles;
625
626  Label not_two_smis, smi_done;
627  __ Or(a2, a1, a0);
628  __ JumpIfNotSmi(a2, &not_two_smis);
629  __ SmiUntag(a1);
630  __ SmiUntag(a0);
631
632  __ Ret(USE_DELAY_SLOT);
633  __ dsubu(v0, a1, a0);
634  __ bind(&not_two_smis);
635
636  // NOTICE! This code is only reached after a smi-fast-case check, so
637  // it is certain that at least one operand isn't a smi.
638
639  // Handle the case where the objects are identical.  Either returns the answer
640  // or goes to slow.  Only falls through if the objects were not identical.
641  EmitIdenticalObjectComparison(masm, &slow, cc);
642
643  // If either is a Smi (we know that not both are), then they can only
644  // be strictly equal if the other is a HeapNumber.
645  STATIC_ASSERT(kSmiTag == 0);
646  DCHECK_EQ(0, Smi::FromInt(0));
647  __ And(a6, lhs, Operand(rhs));
648  __ JumpIfNotSmi(a6, &not_smis, a4);
649  // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
650  // 1) Return the answer.
651  // 2) Go to slow.
652  // 3) Fall through to both_loaded_as_doubles.
653  // 4) Jump to rhs_not_nan.
654  // In cases 3 and 4 we have found out we were dealing with a number-number
655  // comparison and the numbers have been loaded into f12 and f14 as doubles,
656  // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
657  EmitSmiNonsmiComparison(masm, lhs, rhs,
658                          &both_loaded_as_doubles, &slow, strict());
659
660  __ bind(&both_loaded_as_doubles);
661  // f12, f14 are the double representations of the left hand side
662  // and the right hand side if we have FPU. Otherwise a2, a3 represent
663  // left hand side and a0, a1 represent right hand side.
664
665  Label nan;
666  __ li(a4, Operand(LESS));
667  __ li(a5, Operand(GREATER));
668  __ li(a6, Operand(EQUAL));
669
670  // Check if either rhs or lhs is NaN.
671  __ BranchF(NULL, &nan, eq, f12, f14);
672
673  // Check if LESS condition is satisfied. If true, move conditionally
674  // result to v0.
675  if (kArchVariant != kMips64r6) {
676    __ c(OLT, D, f12, f14);
677    __ Movt(v0, a4);
678    // Use previous check to store conditionally to v0 oposite condition
679    // (GREATER). If rhs is equal to lhs, this will be corrected in next
680    // check.
681    __ Movf(v0, a5);
682    // Check if EQUAL condition is satisfied. If true, move conditionally
683    // result to v0.
684    __ c(EQ, D, f12, f14);
685    __ Movt(v0, a6);
686  } else {
687    Label skip;
688    __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
689    __ mov(v0, a4);  // Return LESS as result.
690
691    __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
692    __ mov(v0, a6);  // Return EQUAL as result.
693
694    __ mov(v0, a5);  // Return GREATER as result.
695    __ bind(&skip);
696  }
697  __ Ret();
698
699  __ bind(&nan);
700  // NaN comparisons always fail.
701  // Load whatever we need in v0 to make the comparison fail.
702  DCHECK(is_int16(GREATER) && is_int16(LESS));
703  __ Ret(USE_DELAY_SLOT);
704  if (cc == lt || cc == le) {
705    __ li(v0, Operand(GREATER));
706  } else {
707    __ li(v0, Operand(LESS));
708  }
709
710
711  __ bind(&not_smis);
712  // At this point we know we are dealing with two different objects,
713  // and neither of them is a Smi. The objects are in lhs_ and rhs_.
714  if (strict()) {
715    // This returns non-equal for some object types, or falls through if it
716    // was not lucky.
717    EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
718  }
719
720  Label check_for_internalized_strings;
721  Label flat_string_check;
722  // Check for heap-number-heap-number comparison. Can jump to slow case,
723  // or load both doubles and jump to the code that handles
724  // that case. If the inputs are not doubles then jumps to
725  // check_for_internalized_strings.
726  // In this case a2 will contain the type of lhs_.
727  EmitCheckForTwoHeapNumbers(masm,
728                             lhs,
729                             rhs,
730                             &both_loaded_as_doubles,
731                             &check_for_internalized_strings,
732                             &flat_string_check);
733
734  __ bind(&check_for_internalized_strings);
735  if (cc == eq && !strict()) {
736    // Returns an answer for two internalized strings or two
737    // detectable objects.
738    // Otherwise jumps to string case or not both strings case.
739    // Assumes that a2 is the type of lhs_ on entry.
740    EmitCheckForInternalizedStringsOrObjects(
741        masm, lhs, rhs, &flat_string_check, &slow);
742  }
743
744  // Check for both being sequential one-byte strings,
745  // and inline if that is the case.
746  __ bind(&flat_string_check);
747
748  __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
749
750  __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
751                      a3);
752  if (cc == eq) {
753    StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
754  } else {
755    StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
756                                                    a5);
757  }
758  // Never falls through to here.
759
760  __ bind(&slow);
761  // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
762  // a1 (rhs) second.
763  __ Push(lhs, rhs);
764  // Figure out which native to call and setup the arguments.
765  Builtins::JavaScript native;
766  if (cc == eq) {
767    native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
768  } else {
769    native = Builtins::COMPARE;
770    int ncr;  // NaN compare result.
771    if (cc == lt || cc == le) {
772      ncr = GREATER;
773    } else {
774      DCHECK(cc == gt || cc == ge);  // Remaining cases.
775      ncr = LESS;
776    }
777    __ li(a0, Operand(Smi::FromInt(ncr)));
778    __ push(a0);
779  }
780
781  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
782  // tagged as a small integer.
783  __ InvokeBuiltin(native, JUMP_FUNCTION);
784
785  __ bind(&miss);
786  GenerateMiss(masm);
787}
788
789
790void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
791  __ mov(t9, ra);
792  __ pop(ra);
793  __ PushSafepointRegisters();
794  __ Jump(t9);
795}
796
797
798void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
799  __ mov(t9, ra);
800  __ pop(ra);
801  __ PopSafepointRegisters();
802  __ Jump(t9);
803}
804
805
806void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
807  // We don't allow a GC during a store buffer overflow so there is no need to
808  // store the registers in any particular way, but we do have to store and
809  // restore them.
810  __ MultiPush(kJSCallerSaved | ra.bit());
811  if (save_doubles()) {
812    __ MultiPushFPU(kCallerSavedFPU);
813  }
814  const int argument_count = 1;
815  const int fp_argument_count = 0;
816  const Register scratch = a1;
817
818  AllowExternalCallThatCantCauseGC scope(masm);
819  __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
820  __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
821  __ CallCFunction(
822      ExternalReference::store_buffer_overflow_function(isolate()),
823      argument_count);
824  if (save_doubles()) {
825    __ MultiPopFPU(kCallerSavedFPU);
826  }
827
828  __ MultiPop(kJSCallerSaved | ra.bit());
829  __ Ret();
830}
831
832
833void MathPowStub::Generate(MacroAssembler* masm) {
834  const Register base = a1;
835  const Register exponent = MathPowTaggedDescriptor::exponent();
836  DCHECK(exponent.is(a2));
837  const Register heapnumbermap = a5;
838  const Register heapnumber = v0;
839  const DoubleRegister double_base = f2;
840  const DoubleRegister double_exponent = f4;
841  const DoubleRegister double_result = f0;
842  const DoubleRegister double_scratch = f6;
843  const FPURegister single_scratch = f8;
844  const Register scratch = t1;
845  const Register scratch2 = a7;
846
847  Label call_runtime, done, int_exponent;
848  if (exponent_type() == ON_STACK) {
849    Label base_is_smi, unpack_exponent;
850    // The exponent and base are supplied as arguments on the stack.
851    // This can only happen if the stub is called from non-optimized code.
852    // Load input parameters from stack to double registers.
853    __ ld(base, MemOperand(sp, 1 * kPointerSize));
854    __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
855
856    __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
857
858    __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
859    __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
860    __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
861
862    __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
863    __ jmp(&unpack_exponent);
864
865    __ bind(&base_is_smi);
866    __ mtc1(scratch, single_scratch);
867    __ cvt_d_w(double_base, single_scratch);
868    __ bind(&unpack_exponent);
869
870    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
871
872    __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
873    __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
874    __ ldc1(double_exponent,
875            FieldMemOperand(exponent, HeapNumber::kValueOffset));
876  } else if (exponent_type() == TAGGED) {
877    // Base is already in double_base.
878    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
879
880    __ ldc1(double_exponent,
881            FieldMemOperand(exponent, HeapNumber::kValueOffset));
882  }
883
884  if (exponent_type() != INTEGER) {
885    Label int_exponent_convert;
886    // Detect integer exponents stored as double.
887    __ EmitFPUTruncate(kRoundToMinusInf,
888                       scratch,
889                       double_exponent,
890                       at,
891                       double_scratch,
892                       scratch2,
893                       kCheckForInexactConversion);
894    // scratch2 == 0 means there was no conversion error.
895    __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
896
897    if (exponent_type() == ON_STACK) {
898      // Detect square root case.  Crankshaft detects constant +/-0.5 at
899      // compile time and uses DoMathPowHalf instead.  We then skip this check
900      // for non-constant cases of +/-0.5 as these hardly occur.
901      Label not_plus_half;
902
903      // Test for 0.5.
904      __ Move(double_scratch, 0.5);
905      __ BranchF(USE_DELAY_SLOT,
906                 &not_plus_half,
907                 NULL,
908                 ne,
909                 double_exponent,
910                 double_scratch);
911      // double_scratch can be overwritten in the delay slot.
912      // Calculates square root of base.  Check for the special case of
913      // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
914      __ Move(double_scratch, -V8_INFINITY);
915      __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
916      __ neg_d(double_result, double_scratch);
917
918      // Add +0 to convert -0 to +0.
919      __ add_d(double_scratch, double_base, kDoubleRegZero);
920      __ sqrt_d(double_result, double_scratch);
921      __ jmp(&done);
922
923      __ bind(&not_plus_half);
924      __ Move(double_scratch, -0.5);
925      __ BranchF(USE_DELAY_SLOT,
926                 &call_runtime,
927                 NULL,
928                 ne,
929                 double_exponent,
930                 double_scratch);
931      // double_scratch can be overwritten in the delay slot.
932      // Calculates square root of base.  Check for the special case of
933      // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
934      __ Move(double_scratch, -V8_INFINITY);
935      __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
936      __ Move(double_result, kDoubleRegZero);
937
938      // Add +0 to convert -0 to +0.
939      __ add_d(double_scratch, double_base, kDoubleRegZero);
940      __ Move(double_result, 1);
941      __ sqrt_d(double_scratch, double_scratch);
942      __ div_d(double_result, double_result, double_scratch);
943      __ jmp(&done);
944    }
945
946    __ push(ra);
947    {
948      AllowExternalCallThatCantCauseGC scope(masm);
949      __ PrepareCallCFunction(0, 2, scratch2);
950      __ MovToFloatParameters(double_base, double_exponent);
951      __ CallCFunction(
952          ExternalReference::power_double_double_function(isolate()),
953          0, 2);
954    }
955    __ pop(ra);
956    __ MovFromFloatResult(double_result);
957    __ jmp(&done);
958
959    __ bind(&int_exponent_convert);
960  }
961
962  // Calculate power with integer exponent.
963  __ bind(&int_exponent);
964
965  // Get two copies of exponent in the registers scratch and exponent.
966  if (exponent_type() == INTEGER) {
967    __ mov(scratch, exponent);
968  } else {
969    // Exponent has previously been stored into scratch as untagged integer.
970    __ mov(exponent, scratch);
971  }
972
973  __ mov_d(double_scratch, double_base);  // Back up base.
974  __ Move(double_result, 1.0);
975
976  // Get absolute value of exponent.
977  Label positive_exponent;
978  __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
979  __ Dsubu(scratch, zero_reg, scratch);
980  __ bind(&positive_exponent);
981
982  Label while_true, no_carry, loop_end;
983  __ bind(&while_true);
984
985  __ And(scratch2, scratch, 1);
986
987  __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
988  __ mul_d(double_result, double_result, double_scratch);
989  __ bind(&no_carry);
990
991  __ dsra(scratch, scratch, 1);
992
993  __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
994  __ mul_d(double_scratch, double_scratch, double_scratch);
995
996  __ Branch(&while_true);
997
998  __ bind(&loop_end);
999
1000  __ Branch(&done, ge, exponent, Operand(zero_reg));
1001  __ Move(double_scratch, 1.0);
1002  __ div_d(double_result, double_scratch, double_result);
1003  // Test whether result is zero.  Bail out to check for subnormal result.
1004  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
1005  __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
1006
1007  // double_exponent may not contain the exponent value if the input was a
1008  // smi.  We set it with exponent value before bailing out.
1009  __ mtc1(exponent, single_scratch);
1010  __ cvt_d_w(double_exponent, single_scratch);
1011
1012  // Returning or bailing out.
1013  Counters* counters = isolate()->counters();
1014  if (exponent_type() == ON_STACK) {
1015    // The arguments are still on the stack.
1016    __ bind(&call_runtime);
1017    __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
1018
1019    // The stub is called from non-optimized code, which expects the result
1020    // as heap number in exponent.
1021    __ bind(&done);
1022    __ AllocateHeapNumber(
1023        heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
1024    __ sdc1(double_result,
1025            FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
1026    DCHECK(heapnumber.is(v0));
1027    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1028    __ DropAndRet(2);
1029  } else {
1030    __ push(ra);
1031    {
1032      AllowExternalCallThatCantCauseGC scope(masm);
1033      __ PrepareCallCFunction(0, 2, scratch);
1034      __ MovToFloatParameters(double_base, double_exponent);
1035      __ CallCFunction(
1036          ExternalReference::power_double_double_function(isolate()),
1037          0, 2);
1038    }
1039    __ pop(ra);
1040    __ MovFromFloatResult(double_result);
1041
1042    __ bind(&done);
1043    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1044    __ Ret();
1045  }
1046}
1047
1048
1049bool CEntryStub::NeedsImmovableCode() {
1050  return true;
1051}
1052
1053
1054void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1055  CEntryStub::GenerateAheadOfTime(isolate);
1056  WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
1057  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1058  StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1059  ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1060  CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1061  BinaryOpICStub::GenerateAheadOfTime(isolate);
1062  StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1063  RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1064  BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1065}
1066
1067
1068void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1069  StoreRegistersStateStub stub(isolate);
1070  stub.GetCode();
1071}
1072
1073
1074void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1075  RestoreRegistersStateStub stub(isolate);
1076  stub.GetCode();
1077}
1078
1079
1080void CodeStub::GenerateFPStubs(Isolate* isolate) {
1081  // Generate if not already in cache.
1082  SaveFPRegsMode mode = kSaveFPRegs;
1083  CEntryStub(isolate, 1, mode).GetCode();
1084  StoreBufferOverflowStub(isolate, mode).GetCode();
1085  isolate->set_fp_stubs_generated(true);
1086}
1087
1088
1089void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1090  CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1091  stub.GetCode();
1092}
1093
1094
1095void CEntryStub::Generate(MacroAssembler* masm) {
1096  // Called from JavaScript; parameters are on stack as if calling JS function
1097  // s0: number of arguments including receiver
1098  // s1: size of arguments excluding receiver
1099  // s2: pointer to builtin function
1100  // fp: frame pointer    (restored after C call)
1101  // sp: stack pointer    (restored as callee's sp after C call)
1102  // cp: current context  (C callee-saved)
1103
1104  ProfileEntryHookStub::MaybeCallEntryHook(masm);
1105
1106  // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
1107  // The reason for this is that these arguments would need to be saved anyway
1108  // so it's faster to set them up directly.
1109  // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
1110
1111  // Compute the argv pointer in a callee-saved register.
1112  __ Daddu(s1, sp, s1);
1113
1114  // Enter the exit frame that transitions from JavaScript to C++.
1115  FrameScope scope(masm, StackFrame::MANUAL);
1116  __ EnterExitFrame(save_doubles());
1117
1118  // s0: number of arguments  including receiver (C callee-saved)
1119  // s1: pointer to first argument (C callee-saved)
1120  // s2: pointer to builtin function (C callee-saved)
1121
1122  // Prepare arguments for C routine.
1123  // a0 = argc
1124  __ mov(a0, s0);
1125  // a1 = argv (set in the delay slot after find_ra below).
1126
1127  // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
1128  // also need to reserve the 4 argument slots on the stack.
1129
1130  __ AssertStackIsAligned();
1131
1132  __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1133
1134  // To let the GC traverse the return address of the exit frames, we need to
1135  // know where the return address is. The CEntryStub is unmovable, so
1136  // we can store the address on the stack to be able to find it again and
1137  // we never have to restore it, because it will not change.
1138  { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1139    // This branch-and-link sequence is needed to find the current PC on mips,
1140    // saved to the ra register.
1141    // Use masm-> here instead of the double-underscore macro since extra
1142    // coverage code can interfere with the proper calculation of ra.
1143    Label find_ra;
1144    masm->bal(&find_ra);  // bal exposes branch delay slot.
1145    masm->mov(a1, s1);
1146    masm->bind(&find_ra);
1147
1148    // Adjust the value in ra to point to the correct return location, 2nd
1149    // instruction past the real call into C code (the jalr(t9)), and push it.
1150    // This is the return address of the exit frame.
1151    const int kNumInstructionsToJump = 5;
1152    masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size);
1153    masm->sd(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
1154    // Stack space reservation moved to the branch delay slot below.
1155    // Stack is still aligned.
1156
1157    // Call the C routine.
1158    masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
1159    masm->jalr(t9);
1160    // Set up sp in the delay slot.
1161    masm->daddiu(sp, sp, -kCArgsSlotsSize);
1162    // Make sure the stored 'ra' points to this position.
1163    DCHECK_EQ(kNumInstructionsToJump,
1164              masm->InstructionsGeneratedSince(&find_ra));
1165  }
1166
1167  // Runtime functions should not return 'the hole'.  Allowing it to escape may
1168  // lead to crashes in the IC code later.
1169  if (FLAG_debug_code) {
1170    Label okay;
1171    __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1172    __ Branch(&okay, ne, v0, Operand(a4));
1173    __ stop("The hole escaped");
1174    __ bind(&okay);
1175  }
1176
1177  // Check result for exception sentinel.
1178  Label exception_returned;
1179  __ LoadRoot(a4, Heap::kExceptionRootIndex);
1180  __ Branch(&exception_returned, eq, a4, Operand(v0));
1181
1182  ExternalReference pending_exception_address(
1183      Isolate::kPendingExceptionAddress, isolate());
1184
1185  // Check that there is no pending exception, otherwise we
1186  // should have returned the exception sentinel.
1187  if (FLAG_debug_code) {
1188    Label okay;
1189    __ li(a2, Operand(pending_exception_address));
1190    __ ld(a2, MemOperand(a2));
1191    __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1192    // Cannot use check here as it attempts to generate call into runtime.
1193    __ Branch(&okay, eq, a4, Operand(a2));
1194    __ stop("Unexpected pending exception");
1195    __ bind(&okay);
1196  }
1197
1198  // Exit C frame and return.
1199  // v0:v1: result
1200  // sp: stack pointer
1201  // fp: frame pointer
1202  // s0: still holds argc (callee-saved).
1203  __ LeaveExitFrame(save_doubles(), s0, true, EMIT_RETURN);
1204
1205  // Handling of exception.
1206  __ bind(&exception_returned);
1207
1208  // Retrieve the pending exception.
1209  __ li(a2, Operand(pending_exception_address));
1210  __ ld(v0, MemOperand(a2));
1211
1212  // Clear the pending exception.
1213  __ li(a3, Operand(isolate()->factory()->the_hole_value()));
1214  __ sd(a3, MemOperand(a2));
1215
1216  // Special handling of termination exceptions which are uncatchable
1217  // by javascript code.
1218  Label throw_termination_exception;
1219  __ LoadRoot(a4, Heap::kTerminationExceptionRootIndex);
1220  __ Branch(&throw_termination_exception, eq, v0, Operand(a4));
1221
1222  // Handle normal exception.
1223  __ Throw(v0);
1224
1225  __ bind(&throw_termination_exception);
1226  __ ThrowUncatchable(v0);
1227}
1228
1229
1230void JSEntryStub::Generate(MacroAssembler* masm) {
1231  Label invoke, handler_entry, exit;
1232  Isolate* isolate = masm->isolate();
1233
1234  // TODO(plind): unify the ABI description here.
1235  // Registers:
1236  // a0: entry address
1237  // a1: function
1238  // a2: receiver
1239  // a3: argc
1240  // a4 (a4): on mips64
1241
1242  // Stack:
1243  // 0 arg slots on mips64 (4 args slots on mips)
1244  // args -- in a4/a4 on mips64, on stack on mips
1245
1246  ProfileEntryHookStub::MaybeCallEntryHook(masm);
1247
1248  // Save callee saved registers on the stack.
1249  __ MultiPush(kCalleeSaved | ra.bit());
1250
1251  // Save callee-saved FPU registers.
1252  __ MultiPushFPU(kCalleeSavedFPU);
1253  // Set up the reserved register for 0.0.
1254  __ Move(kDoubleRegZero, 0.0);
1255
1256  // Load argv in s0 register.
1257  if (kMipsAbi == kN64) {
1258    __ mov(s0, a4);  // 5th parameter in mips64 a4 (a4) register.
1259  } else {  // Abi O32.
1260    // 5th parameter on stack for O32 abi.
1261    int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1262    offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
1263    __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
1264  }
1265
1266  __ InitializeRootRegister();
1267
1268  // We build an EntryFrame.
1269  __ li(a7, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1270  int marker = type();
1271  __ li(a6, Operand(Smi::FromInt(marker)));
1272  __ li(a5, Operand(Smi::FromInt(marker)));
1273  ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
1274  __ li(a4, Operand(c_entry_fp));
1275  __ ld(a4, MemOperand(a4));
1276  __ Push(a7, a6, a5, a4);
1277  // Set up frame pointer for the frame to be pushed.
1278  __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1279
1280  // Registers:
1281  // a0: entry_address
1282  // a1: function
1283  // a2: receiver_pointer
1284  // a3: argc
1285  // s0: argv
1286  //
1287  // Stack:
1288  // caller fp          |
1289  // function slot      | entry frame
1290  // context slot       |
1291  // bad fp (0xff...f)  |
1292  // callee saved registers + ra
1293  // [ O32: 4 args slots]
1294  // args
1295
1296  // If this is the outermost JS call, set js_entry_sp value.
1297  Label non_outermost_js;
1298  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1299  __ li(a5, Operand(ExternalReference(js_entry_sp)));
1300  __ ld(a6, MemOperand(a5));
1301  __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
1302  __ sd(fp, MemOperand(a5));
1303  __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1304  Label cont;
1305  __ b(&cont);
1306  __ nop();   // Branch delay slot nop.
1307  __ bind(&non_outermost_js);
1308  __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1309  __ bind(&cont);
1310  __ push(a4);
1311
1312  // Jump to a faked try block that does the invoke, with a faked catch
1313  // block that sets the pending exception.
1314  __ jmp(&invoke);
1315  __ bind(&handler_entry);
1316  handler_offset_ = handler_entry.pos();
1317  // Caught exception: Store result (exception) in the pending exception
1318  // field in the JSEnv and return a failure sentinel.  Coming in here the
1319  // fp will be invalid because the PushTryHandler below sets it to 0 to
1320  // signal the existence of the JSEntry frame.
1321  __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1322                                      isolate)));
1323  __ sd(v0, MemOperand(a4));  // We come back from 'invoke'. result is in v0.
1324  __ LoadRoot(v0, Heap::kExceptionRootIndex);
1325  __ b(&exit);  // b exposes branch delay slot.
1326  __ nop();   // Branch delay slot nop.
1327
1328  // Invoke: Link this frame into the handler chain.  There's only one
1329  // handler block in this code object, so its index is 0.
1330  __ bind(&invoke);
1331  __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1332  // If an exception not caught by another handler occurs, this handler
1333  // returns control to the code after the bal(&invoke) above, which
1334  // restores all kCalleeSaved registers (including cp and fp) to their
1335  // saved values before returning a failure to C.
1336
1337  // Clear any pending exceptions.
1338  __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
1339  __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1340                                      isolate)));
1341  __ sd(a5, MemOperand(a4));
1342
1343  // Invoke the function by calling through JS entry trampoline builtin.
1344  // Notice that we cannot store a reference to the trampoline code directly in
1345  // this stub, because runtime stubs are not traversed when doing GC.
1346
1347  // Registers:
1348  // a0: entry_address
1349  // a1: function
1350  // a2: receiver_pointer
1351  // a3: argc
1352  // s0: argv
1353  //
1354  // Stack:
1355  // handler frame
1356  // entry frame
1357  // callee saved registers + ra
1358  // [ O32: 4 args slots]
1359  // args
1360
1361  if (type() == StackFrame::ENTRY_CONSTRUCT) {
1362    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1363                                      isolate);
1364    __ li(a4, Operand(construct_entry));
1365  } else {
1366    ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1367    __ li(a4, Operand(entry));
1368  }
1369  __ ld(t9, MemOperand(a4));  // Deref address.
1370  // Call JSEntryTrampoline.
1371  __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1372  __ Call(t9);
1373
1374  // Unlink this frame from the handler chain.
1375  __ PopTryHandler();
1376
1377  __ bind(&exit);  // v0 holds result
1378  // Check if the current stack frame is marked as the outermost JS frame.
1379  Label non_outermost_js_2;
1380  __ pop(a5);
1381  __ Branch(&non_outermost_js_2,
1382            ne,
1383            a5,
1384            Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1385  __ li(a5, Operand(ExternalReference(js_entry_sp)));
1386  __ sd(zero_reg, MemOperand(a5));
1387  __ bind(&non_outermost_js_2);
1388
1389  // Restore the top frame descriptors from the stack.
1390  __ pop(a5);
1391  __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1392                                      isolate)));
1393  __ sd(a5, MemOperand(a4));
1394
1395  // Reset the stack to the callee saved registers.
1396  __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1397
1398  // Restore callee-saved fpu registers.
1399  __ MultiPopFPU(kCalleeSavedFPU);
1400
1401  // Restore callee saved registers from the stack.
1402  __ MultiPop(kCalleeSaved | ra.bit());
1403  // Return.
1404  __ Jump(ra);
1405}
1406
1407
1408// Uses registers a0 to a4.
1409// Expected input (depending on whether args are in registers or on the stack):
1410// * object: a0 or at sp + 1 * kPointerSize.
1411// * function: a1 or at sp.
1412//
1413// An inlined call site may have been generated before calling this stub.
1414// In this case the offset to the inline site to patch is passed on the stack,
1415// in the safepoint slot for register a4.
1416void InstanceofStub::Generate(MacroAssembler* masm) {
1417  // Call site inlining and patching implies arguments in registers.
1418  DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1419  // ReturnTrueFalse is only implemented for inlined call sites.
1420  DCHECK(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
1421
1422  // Fixed register usage throughout the stub:
1423  const Register object = a0;  // Object (lhs).
1424  Register map = a3;  // Map of the object.
1425  const Register function = a1;  // Function (rhs).
1426  const Register prototype = a4;  // Prototype of the function.
1427  const Register inline_site = t1;
1428  const Register scratch = a2;
1429
1430  const int32_t kDeltaToLoadBoolResult = 7 * Assembler::kInstrSize;
1431
1432  Label slow, loop, is_instance, is_not_instance, not_js_object;
1433
1434  if (!HasArgsInRegisters()) {
1435    __ ld(object, MemOperand(sp, 1 * kPointerSize));
1436    __ ld(function, MemOperand(sp, 0));
1437  }
1438
1439  // Check that the left hand is a JS object and load map.
1440  __ JumpIfSmi(object, &not_js_object);
1441  __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
1442
1443  // If there is a call site cache don't look in the global cache, but do the
1444  // real lookup and update the call site cache.
1445  if (!HasCallSiteInlineCheck()) {
1446    Label miss;
1447    __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
1448    __ Branch(&miss, ne, function, Operand(at));
1449    __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
1450    __ Branch(&miss, ne, map, Operand(at));
1451    __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1452    __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1453
1454    __ bind(&miss);
1455  }
1456
1457  // Get the prototype of the function.
1458  __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1459
1460  // Check that the function prototype is a JS object.
1461  __ JumpIfSmi(prototype, &slow);
1462  __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1463
1464  // Update the global instanceof or call site inlined cache with the current
1465  // map and function. The cached answer will be set when it is known below.
1466  if (!HasCallSiteInlineCheck()) {
1467    __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1468    __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1469  } else {
1470    DCHECK(HasArgsInRegisters());
1471    // Patch the (relocated) inlined map check.
1472
1473    // The offset was stored in a4 safepoint slot.
1474    // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1475    __ LoadFromSafepointRegisterSlot(scratch, a4);
1476    __ Dsubu(inline_site, ra, scratch);
1477    // Get the map location in scratch and patch it.
1478    __ GetRelocatedValue(inline_site, scratch, v1);  // v1 used as scratch.
1479    __ sd(map, FieldMemOperand(scratch, Cell::kValueOffset));
1480  }
1481
1482  // Register mapping: a3 is object map and a4 is function prototype.
1483  // Get prototype of object into a2.
1484  __ ld(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1485
1486  // We don't need map any more. Use it as a scratch register.
1487  Register scratch2 = map;
1488  map = no_reg;
1489
1490  // Loop through the prototype chain looking for the function prototype.
1491  __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
1492  __ bind(&loop);
1493  __ Branch(&is_instance, eq, scratch, Operand(prototype));
1494  __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
1495  __ ld(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1496  __ ld(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1497  __ Branch(&loop);
1498
1499  __ bind(&is_instance);
1500  DCHECK(Smi::FromInt(0) == 0);
1501  if (!HasCallSiteInlineCheck()) {
1502    __ mov(v0, zero_reg);
1503    __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1504  } else {
1505    // Patch the call site to return true.
1506    __ LoadRoot(v0, Heap::kTrueValueRootIndex);
1507    __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1508    // Get the boolean result location in scratch and patch it.
1509    __ PatchRelocatedValue(inline_site, scratch, v0);
1510
1511    if (!ReturnTrueFalseObject()) {
1512      DCHECK_EQ(Smi::FromInt(0), 0);
1513      __ mov(v0, zero_reg);
1514    }
1515  }
1516  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1517
1518  __ bind(&is_not_instance);
1519  if (!HasCallSiteInlineCheck()) {
1520    __ li(v0, Operand(Smi::FromInt(1)));
1521    __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1522  } else {
1523    // Patch the call site to return false.
1524    __ LoadRoot(v0, Heap::kFalseValueRootIndex);
1525    __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1526    // Get the boolean result location in scratch and patch it.
1527    __ PatchRelocatedValue(inline_site, scratch, v0);
1528
1529    if (!ReturnTrueFalseObject()) {
1530      __ li(v0, Operand(Smi::FromInt(1)));
1531    }
1532  }
1533
1534  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1535
1536  Label object_not_null, object_not_null_or_smi;
1537  __ bind(&not_js_object);
1538  // Before null, smi and string value checks, check that the rhs is a function
1539  // as for a non-function rhs an exception needs to be thrown.
1540  __ JumpIfSmi(function, &slow);
1541  __ GetObjectType(function, scratch2, scratch);
1542  __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
1543
1544  // Null is not instance of anything.
1545  __ Branch(&object_not_null,
1546            ne,
1547            scratch,
1548            Operand(isolate()->factory()->null_value()));
1549  __ li(v0, Operand(Smi::FromInt(1)));
1550  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1551
1552  __ bind(&object_not_null);
1553  // Smi values are not instances of anything.
1554  __ JumpIfNotSmi(object, &object_not_null_or_smi);
1555  __ li(v0, Operand(Smi::FromInt(1)));
1556  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1557
1558  __ bind(&object_not_null_or_smi);
1559  // String values are not instances of anything.
1560  __ IsObjectJSStringType(object, scratch, &slow);
1561  __ li(v0, Operand(Smi::FromInt(1)));
1562  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1563
1564  // Slow-case.  Tail call builtin.
1565  __ bind(&slow);
1566  if (!ReturnTrueFalseObject()) {
1567    if (HasArgsInRegisters()) {
1568      __ Push(a0, a1);
1569    }
1570  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1571  } else {
1572    {
1573      FrameScope scope(masm, StackFrame::INTERNAL);
1574      __ Push(a0, a1);
1575      __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1576    }
1577    __ mov(a0, v0);
1578    __ LoadRoot(v0, Heap::kTrueValueRootIndex);
1579    __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
1580    __ LoadRoot(v0, Heap::kFalseValueRootIndex);
1581    __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1582  }
1583}
1584
1585
1586void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1587  Label miss;
1588  Register receiver = LoadDescriptor::ReceiverRegister();
1589  NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a3,
1590                                                          a4, &miss);
1591  __ bind(&miss);
1592  PropertyAccessCompiler::TailCallBuiltin(
1593      masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1594}
1595
1596
1597void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1598  // The displacement is the offset of the last parameter (if any)
1599  // relative to the frame pointer.
1600  const int kDisplacement =
1601      StandardFrameConstants::kCallerSPOffset - kPointerSize;
1602  DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
1603  DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1604
1605  // Check that the key is a smiGenerateReadElement.
1606  Label slow;
1607  __ JumpIfNotSmi(a1, &slow);
1608
1609  // Check if the calling frame is an arguments adaptor frame.
1610  Label adaptor;
1611  __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1612  __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1613  __ Branch(&adaptor,
1614            eq,
1615            a3,
1616            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1617
1618  // Check index (a1) against formal parameters count limit passed in
1619  // through register a0. Use unsigned comparison to get negative
1620  // check for free.
1621  __ Branch(&slow, hs, a1, Operand(a0));
1622
1623  // Read the argument from the stack and return it.
1624  __ dsubu(a3, a0, a1);
1625  __ SmiScale(a7, a3, kPointerSizeLog2);
1626  __ Daddu(a3, fp, Operand(a7));
1627  __ Ret(USE_DELAY_SLOT);
1628  __ ld(v0, MemOperand(a3, kDisplacement));
1629
1630  // Arguments adaptor case: Check index (a1) against actual arguments
1631  // limit found in the arguments adaptor frame. Use unsigned
1632  // comparison to get negative check for free.
1633  __ bind(&adaptor);
1634  __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1635  __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
1636
1637  // Read the argument from the adaptor frame and return it.
1638  __ dsubu(a3, a0, a1);
1639  __ SmiScale(a7, a3, kPointerSizeLog2);
1640  __ Daddu(a3, a2, Operand(a7));
1641  __ Ret(USE_DELAY_SLOT);
1642  __ ld(v0, MemOperand(a3, kDisplacement));
1643
1644  // Slow-case: Handle non-smi or out-of-bounds access to arguments
1645  // by calling the runtime system.
1646  __ bind(&slow);
1647  __ push(a1);
1648  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1649}
1650
1651
1652void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1653  // sp[0] : number of parameters
1654  // sp[4] : receiver displacement
1655  // sp[8] : function
1656  // Check if the calling frame is an arguments adaptor frame.
1657  Label runtime;
1658  __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1659  __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
1660  __ Branch(&runtime,
1661            ne,
1662            a2,
1663            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1664
1665  // Patch the arguments.length and the parameters pointer in the current frame.
1666  __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1667  __ sd(a2, MemOperand(sp, 0 * kPointerSize));
1668  __ SmiScale(a7, a2, kPointerSizeLog2);
1669  __ Daddu(a3, a3, Operand(a7));
1670  __ daddiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
1671  __ sd(a3, MemOperand(sp, 1 * kPointerSize));
1672
1673  __ bind(&runtime);
1674  __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1675}
1676
1677
1678void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1679  // Stack layout:
1680  //  sp[0] : number of parameters (tagged)
1681  //  sp[4] : address of receiver argument
1682  //  sp[8] : function
1683  // Registers used over whole function:
1684  //  a6 : allocated object (tagged)
1685  //  t1 : mapped parameter count (tagged)
1686
1687  __ ld(a1, MemOperand(sp, 0 * kPointerSize));
1688  // a1 = parameter count (tagged)
1689
1690  // Check if the calling frame is an arguments adaptor frame.
1691  Label runtime;
1692  Label adaptor_frame, try_allocate;
1693  __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1694  __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
1695  __ Branch(&adaptor_frame,
1696            eq,
1697            a2,
1698            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1699
1700  // No adaptor, parameter count = argument count.
1701  __ mov(a2, a1);
1702  __ Branch(&try_allocate);
1703
1704  // We have an adaptor frame. Patch the parameters pointer.
1705  __ bind(&adaptor_frame);
1706  __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1707  __ SmiScale(t2, a2, kPointerSizeLog2);
1708  __ Daddu(a3, a3, Operand(t2));
1709  __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1710  __ sd(a3, MemOperand(sp, 1 * kPointerSize));
1711
1712  // a1 = parameter count (tagged)
1713  // a2 = argument count (tagged)
1714  // Compute the mapped parameter count = min(a1, a2) in a1.
1715  Label skip_min;
1716  __ Branch(&skip_min, lt, a1, Operand(a2));
1717  __ mov(a1, a2);
1718  __ bind(&skip_min);
1719
1720  __ bind(&try_allocate);
1721
1722  // Compute the sizes of backing store, parameter map, and arguments object.
1723  // 1. Parameter map, has 2 extra words containing context and backing store.
1724  const int kParameterMapHeaderSize =
1725      FixedArray::kHeaderSize + 2 * kPointerSize;
1726  // If there are no mapped parameters, we do not need the parameter_map.
1727  Label param_map_size;
1728  DCHECK_EQ(0, Smi::FromInt(0));
1729  __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
1730  __ mov(t1, zero_reg);  // In delay slot: param map size = 0 when a1 == 0.
1731  __ SmiScale(t1, a1, kPointerSizeLog2);
1732  __ daddiu(t1, t1, kParameterMapHeaderSize);
1733  __ bind(&param_map_size);
1734
1735  // 2. Backing store.
1736  __ SmiScale(t2, a2, kPointerSizeLog2);
1737  __ Daddu(t1, t1, Operand(t2));
1738  __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
1739
1740  // 3. Arguments object.
1741  __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize));
1742
1743  // Do the allocation of all three objects in one go.
1744  __ Allocate(t1, v0, a3, a4, &runtime, TAG_OBJECT);
1745
1746  // v0 = address of new object(s) (tagged)
1747  // a2 = argument count (smi-tagged)
1748  // Get the arguments boilerplate from the current native context into a4.
1749  const int kNormalOffset =
1750      Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1751  const int kAliasedOffset =
1752      Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1753
1754  __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1755  __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
1756  Label skip2_ne, skip2_eq;
1757  __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
1758  __ ld(a4, MemOperand(a4, kNormalOffset));
1759  __ bind(&skip2_ne);
1760
1761  __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
1762  __ ld(a4, MemOperand(a4, kAliasedOffset));
1763  __ bind(&skip2_eq);
1764
1765  // v0 = address of new object (tagged)
1766  // a1 = mapped parameter count (tagged)
1767  // a2 = argument count (smi-tagged)
1768  // a4 = address of arguments map (tagged)
1769  __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
1770  __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
1771  __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1772  __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
1773
1774  // Set up the callee in-object property.
1775  STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1776  __ ld(a3, MemOperand(sp, 2 * kPointerSize));
1777  __ AssertNotSmi(a3);
1778  const int kCalleeOffset = JSObject::kHeaderSize +
1779      Heap::kArgumentsCalleeIndex * kPointerSize;
1780  __ sd(a3, FieldMemOperand(v0, kCalleeOffset));
1781
1782  // Use the length (smi tagged) and set that as an in-object property too.
1783  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1784  const int kLengthOffset = JSObject::kHeaderSize +
1785      Heap::kArgumentsLengthIndex * kPointerSize;
1786  __ sd(a2, FieldMemOperand(v0, kLengthOffset));
1787
1788  // Set up the elements pointer in the allocated arguments object.
1789  // If we allocated a parameter map, a4 will point there, otherwise
1790  // it will point to the backing store.
1791  __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize));
1792  __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1793
1794  // v0 = address of new object (tagged)
1795  // a1 = mapped parameter count (tagged)
1796  // a2 = argument count (tagged)
1797  // a4 = address of parameter map or backing store (tagged)
1798  // Initialize parameter map. If there are no mapped arguments, we're done.
1799  Label skip_parameter_map;
1800  Label skip3;
1801  __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
1802  // Move backing store address to a3, because it is
1803  // expected there when filling in the unmapped arguments.
1804  __ mov(a3, a4);
1805  __ bind(&skip3);
1806
1807  __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
1808
1809  __ LoadRoot(a6, Heap::kSloppyArgumentsElementsMapRootIndex);
1810  __ sd(a6, FieldMemOperand(a4, FixedArray::kMapOffset));
1811  __ Daddu(a6, a1, Operand(Smi::FromInt(2)));
1812  __ sd(a6, FieldMemOperand(a4, FixedArray::kLengthOffset));
1813  __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
1814  __ SmiScale(t2, a1, kPointerSizeLog2);
1815  __ Daddu(a6, a4, Operand(t2));
1816  __ Daddu(a6, a6, Operand(kParameterMapHeaderSize));
1817  __ sd(a6, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
1818
1819  // Copy the parameter slots and the holes in the arguments.
1820  // We need to fill in mapped_parameter_count slots. They index the context,
1821  // where parameters are stored in reverse order, at
1822  //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1823  // The mapped parameter thus need to get indices
1824  //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
1825  //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1826  // We loop from right to left.
1827  Label parameters_loop, parameters_test;
1828  __ mov(a6, a1);
1829  __ ld(t1, MemOperand(sp, 0 * kPointerSize));
1830  __ Daddu(t1, t1, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1831  __ Dsubu(t1, t1, Operand(a1));
1832  __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
1833  __ SmiScale(t2, a6, kPointerSizeLog2);
1834  __ Daddu(a3, a4, Operand(t2));
1835  __ Daddu(a3, a3, Operand(kParameterMapHeaderSize));
1836
1837  // a6 = loop variable (tagged)
1838  // a1 = mapping index (tagged)
1839  // a3 = address of backing store (tagged)
1840  // a4 = address of parameter map (tagged)
1841  // a5 = temporary scratch (a.o., for address calculation)
1842  // a7 = the hole value
1843  __ jmp(&parameters_test);
1844
1845  __ bind(&parameters_loop);
1846
1847  __ Dsubu(a6, a6, Operand(Smi::FromInt(1)));
1848  __ SmiScale(a5, a6, kPointerSizeLog2);
1849  __ Daddu(a5, a5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1850  __ Daddu(t2, a4, a5);
1851  __ sd(t1, MemOperand(t2));
1852  __ Dsubu(a5, a5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1853  __ Daddu(t2, a3, a5);
1854  __ sd(a7, MemOperand(t2));
1855  __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
1856  __ bind(&parameters_test);
1857  __ Branch(&parameters_loop, ne, a6, Operand(Smi::FromInt(0)));
1858
1859  __ bind(&skip_parameter_map);
1860  // a2 = argument count (tagged)
1861  // a3 = address of backing store (tagged)
1862  // a5 = scratch
1863  // Copy arguments header and remaining slots (if there are any).
1864  __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex);
1865  __ sd(a5, FieldMemOperand(a3, FixedArray::kMapOffset));
1866  __ sd(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
1867
1868  Label arguments_loop, arguments_test;
1869  __ mov(t1, a1);
1870  __ ld(a4, MemOperand(sp, 1 * kPointerSize));
1871  __ SmiScale(t2, t1, kPointerSizeLog2);
1872  __ Dsubu(a4, a4, Operand(t2));
1873  __ jmp(&arguments_test);
1874
1875  __ bind(&arguments_loop);
1876  __ Dsubu(a4, a4, Operand(kPointerSize));
1877  __ ld(a6, MemOperand(a4, 0));
1878  __ SmiScale(t2, t1, kPointerSizeLog2);
1879  __ Daddu(a5, a3, Operand(t2));
1880  __ sd(a6, FieldMemOperand(a5, FixedArray::kHeaderSize));
1881  __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
1882
1883  __ bind(&arguments_test);
1884  __ Branch(&arguments_loop, lt, t1, Operand(a2));
1885
1886  // Return and remove the on-stack parameters.
1887  __ DropAndRet(3);
1888
1889  // Do the runtime call to allocate the arguments object.
1890  // a2 = argument count (tagged)
1891  __ bind(&runtime);
1892  __ sd(a2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
1893  __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1894}
1895
1896
1897void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1898  // Return address is in ra.
1899  Label slow;
1900
1901  Register receiver = LoadDescriptor::ReceiverRegister();
1902  Register key = LoadDescriptor::NameRegister();
1903
1904  // Check that the key is an array index, that is Uint32.
1905  __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
1906  __ Branch(&slow, ne, t0, Operand(zero_reg));
1907
1908  // Everything is fine, call runtime.
1909  __ Push(receiver, key);  // Receiver, key.
1910
1911  // Perform tail call to the entry.
1912  __ TailCallExternalReference(
1913      ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1914                        masm->isolate()),
1915      2, 1);
1916
1917  __ bind(&slow);
1918  PropertyAccessCompiler::TailCallBuiltin(
1919      masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1920}
1921
1922
1923void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1924  // sp[0] : number of parameters
1925  // sp[4] : receiver displacement
1926  // sp[8] : function
1927  // Check if the calling frame is an arguments adaptor frame.
1928  Label adaptor_frame, try_allocate, runtime;
1929  __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1930  __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1931  __ Branch(&adaptor_frame,
1932            eq,
1933            a3,
1934            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1935
1936  // Get the length from the frame.
1937  __ ld(a1, MemOperand(sp, 0));
1938  __ Branch(&try_allocate);
1939
1940  // Patch the arguments.length and the parameters pointer.
1941  __ bind(&adaptor_frame);
1942  __ ld(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1943  __ sd(a1, MemOperand(sp, 0));
1944  __ SmiScale(at, a1, kPointerSizeLog2);
1945
1946  __ Daddu(a3, a2, Operand(at));
1947
1948  __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1949  __ sd(a3, MemOperand(sp, 1 * kPointerSize));
1950
1951  // Try the new space allocation. Start out with computing the size
1952  // of the arguments object and the elements array in words.
1953  Label add_arguments_object;
1954  __ bind(&try_allocate);
1955  __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
1956  __ SmiUntag(a1);
1957
1958  __ Daddu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
1959  __ bind(&add_arguments_object);
1960  __ Daddu(a1, a1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1961
1962  // Do the allocation of both objects in one go.
1963  __ Allocate(a1, v0, a2, a3, &runtime,
1964              static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1965
1966  // Get the arguments boilerplate from the current native context.
1967  __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1968  __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
1969  __ ld(a4, MemOperand(a4, Context::SlotOffset(
1970      Context::STRICT_ARGUMENTS_MAP_INDEX)));
1971
1972  __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
1973  __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
1974  __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1975  __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
1976
1977  // Get the length (smi tagged) and set that as an in-object property too.
1978  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1979  __ ld(a1, MemOperand(sp, 0 * kPointerSize));
1980  __ AssertSmi(a1);
1981  __ sd(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
1982      Heap::kArgumentsLengthIndex * kPointerSize));
1983
1984  Label done;
1985  __ Branch(&done, eq, a1, Operand(zero_reg));
1986
1987  // Get the parameters pointer from the stack.
1988  __ ld(a2, MemOperand(sp, 1 * kPointerSize));
1989
1990  // Set up the elements pointer in the allocated arguments object and
1991  // initialize the header in the elements fixed array.
1992  __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize));
1993  __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1994  __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
1995  __ sd(a3, FieldMemOperand(a4, FixedArray::kMapOffset));
1996  __ sd(a1, FieldMemOperand(a4, FixedArray::kLengthOffset));
1997  // Untag the length for the loop.
1998  __ SmiUntag(a1);
1999
2000
2001  // Copy the fixed array slots.
2002  Label loop;
2003  // Set up a4 to point to the first array slot.
2004  __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2005  __ bind(&loop);
2006  // Pre-decrement a2 with kPointerSize on each iteration.
2007  // Pre-decrement in order to skip receiver.
2008  __ Daddu(a2, a2, Operand(-kPointerSize));
2009  __ ld(a3, MemOperand(a2));
2010  // Post-increment a4 with kPointerSize on each iteration.
2011  __ sd(a3, MemOperand(a4));
2012  __ Daddu(a4, a4, Operand(kPointerSize));
2013  __ Dsubu(a1, a1, Operand(1));
2014  __ Branch(&loop, ne, a1, Operand(zero_reg));
2015
2016  // Return and remove the on-stack parameters.
2017  __ bind(&done);
2018  __ DropAndRet(3);
2019
2020  // Do the runtime call to allocate the arguments object.
2021  __ bind(&runtime);
2022  __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
2023}
2024
2025
2026void RegExpExecStub::Generate(MacroAssembler* masm) {
2027  // Just jump directly to runtime if native RegExp is not selected at compile
2028  // time or if regexp entry in generated code is turned off runtime switch or
2029  // at compilation.
2030#ifdef V8_INTERPRETED_REGEXP
2031  __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2032#else  // V8_INTERPRETED_REGEXP
2033
2034  // Stack frame on entry.
2035  //  sp[0]: last_match_info (expected JSArray)
2036  //  sp[4]: previous index
2037  //  sp[8]: subject string
2038  //  sp[12]: JSRegExp object
2039
2040  const int kLastMatchInfoOffset = 0 * kPointerSize;
2041  const int kPreviousIndexOffset = 1 * kPointerSize;
2042  const int kSubjectOffset = 2 * kPointerSize;
2043  const int kJSRegExpOffset = 3 * kPointerSize;
2044
2045  Label runtime;
2046  // Allocation of registers for this function. These are in callee save
2047  // registers and will be preserved by the call to the native RegExp code, as
2048  // this code is called using the normal C calling convention. When calling
2049  // directly from generated code the native RegExp code will not do a GC and
2050  // therefore the content of these registers are safe to use after the call.
2051  // MIPS - using s0..s2, since we are not using CEntry Stub.
2052  Register subject = s0;
2053  Register regexp_data = s1;
2054  Register last_match_info_elements = s2;
2055
2056  // Ensure that a RegExp stack is allocated.
2057  ExternalReference address_of_regexp_stack_memory_address =
2058      ExternalReference::address_of_regexp_stack_memory_address(
2059          isolate());
2060  ExternalReference address_of_regexp_stack_memory_size =
2061      ExternalReference::address_of_regexp_stack_memory_size(isolate());
2062  __ li(a0, Operand(address_of_regexp_stack_memory_size));
2063  __ ld(a0, MemOperand(a0, 0));
2064  __ Branch(&runtime, eq, a0, Operand(zero_reg));
2065
2066  // Check that the first argument is a JSRegExp object.
2067  __ ld(a0, MemOperand(sp, kJSRegExpOffset));
2068  STATIC_ASSERT(kSmiTag == 0);
2069  __ JumpIfSmi(a0, &runtime);
2070  __ GetObjectType(a0, a1, a1);
2071  __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
2072
2073  // Check that the RegExp has been compiled (data contains a fixed array).
2074  __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
2075  if (FLAG_debug_code) {
2076    __ SmiTst(regexp_data, a4);
2077    __ Check(nz,
2078             kUnexpectedTypeForRegExpDataFixedArrayExpected,
2079             a4,
2080             Operand(zero_reg));
2081    __ GetObjectType(regexp_data, a0, a0);
2082    __ Check(eq,
2083             kUnexpectedTypeForRegExpDataFixedArrayExpected,
2084             a0,
2085             Operand(FIXED_ARRAY_TYPE));
2086  }
2087
2088  // regexp_data: RegExp data (FixedArray)
2089  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2090  __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2091  __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2092
2093  // regexp_data: RegExp data (FixedArray)
2094  // Check that the number of captures fit in the static offsets vector buffer.
2095  __ ld(a2,
2096         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2097  // Check (number_of_captures + 1) * 2 <= offsets vector size
2098  // Or          number_of_captures * 2 <= offsets vector size - 2
2099  // Or          number_of_captures     <= offsets vector size / 2 - 1
2100  // Multiplying by 2 comes for free since a2 is smi-tagged.
2101  STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2102  int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
2103  __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
2104
2105  // Reset offset for possibly sliced string.
2106  __ mov(t0, zero_reg);
2107  __ ld(subject, MemOperand(sp, kSubjectOffset));
2108  __ JumpIfSmi(subject, &runtime);
2109  __ mov(a3, subject);  // Make a copy of the original subject string.
2110  __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2111  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2112  // subject: subject string
2113  // a3: subject string
2114  // a0: subject string instance type
2115  // regexp_data: RegExp data (FixedArray)
2116  // Handle subject string according to its encoding and representation:
2117  // (1) Sequential string?  If yes, go to (5).
2118  // (2) Anything but sequential or cons?  If yes, go to (6).
2119  // (3) Cons string.  If the string is flat, replace subject with first string.
2120  //     Otherwise bailout.
2121  // (4) Is subject external?  If yes, go to (7).
2122  // (5) Sequential string.  Load regexp code according to encoding.
2123  // (E) Carry on.
2124  /// [...]
2125
2126  // Deferred code at the end of the stub:
2127  // (6) Not a long external string?  If yes, go to (8).
2128  // (7) External string.  Make it, offset-wise, look like a sequential string.
2129  //     Go to (5).
2130  // (8) Short external string or not a string?  If yes, bail out to runtime.
2131  // (9) Sliced string.  Replace subject with parent.  Go to (4).
2132
2133  Label check_underlying;   // (4)
2134  Label seq_string;         // (5)
2135  Label not_seq_nor_cons;   // (6)
2136  Label external_string;    // (7)
2137  Label not_long_external;  // (8)
2138
2139  // (1) Sequential string?  If yes, go to (5).
2140  __ And(a1,
2141         a0,
2142         Operand(kIsNotStringMask |
2143                 kStringRepresentationMask |
2144                 kShortExternalStringMask));
2145  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2146  __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (5).
2147
2148  // (2) Anything but sequential or cons?  If yes, go to (6).
2149  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2150  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2151  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2152  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2153  // Go to (6).
2154  __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
2155
2156  // (3) Cons string.  Check that it's flat.
2157  // Replace subject with first string and reload instance type.
2158  __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
2159  __ LoadRoot(a1, Heap::kempty_stringRootIndex);
2160  __ Branch(&runtime, ne, a0, Operand(a1));
2161  __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2162
2163  // (4) Is subject external?  If yes, go to (7).
2164  __ bind(&check_underlying);
2165  __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2166  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2167  STATIC_ASSERT(kSeqStringTag == 0);
2168  __ And(at, a0, Operand(kStringRepresentationMask));
2169  // The underlying external string is never a short external string.
2170  STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2171  STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2172  __ Branch(&external_string, ne, at, Operand(zero_reg));  // Go to (7).
2173
2174  // (5) Sequential string.  Load regexp code according to encoding.
2175  __ bind(&seq_string);
2176  // subject: sequential subject string (or look-alike, external string)
2177  // a3: original subject string
2178  // Load previous index and check range before a3 is overwritten.  We have to
2179  // use a3 instead of subject here because subject might have been only made
2180  // to look like a sequential string when it actually is an external string.
2181  __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
2182  __ JumpIfNotSmi(a1, &runtime);
2183  __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
2184  __ Branch(&runtime, ls, a3, Operand(a1));
2185  __ SmiUntag(a1);
2186
2187  STATIC_ASSERT(kStringEncodingMask == 4);
2188  STATIC_ASSERT(kOneByteStringTag == 4);
2189  STATIC_ASSERT(kTwoByteStringTag == 0);
2190  __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one_byte.
2191  __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2192  __ dsra(a3, a0, 2);  // a3 is 1 for one_byte, 0 for UC16 (used below).
2193  __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2194  __ Movz(t9, a5, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
2195
2196  // (E) Carry on.  String handling is done.
2197  // t9: irregexp code
2198  // Check that the irregexp code has been generated for the actual string
2199  // encoding. If it has, the field contains a code object otherwise it contains
2200  // a smi (code flushing support).
2201  __ JumpIfSmi(t9, &runtime);
2202
2203  // a1: previous index
2204  // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
2205  // t9: code
2206  // subject: Subject string
2207  // regexp_data: RegExp data (FixedArray)
2208  // All checks done. Now push arguments for native regexp code.
2209  __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
2210                      1, a0, a2);
2211
2212  // Isolates: note we add an additional parameter here (isolate pointer).
2213  const int kRegExpExecuteArguments = 9;
2214  const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4;
2215  __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2216
2217  // Stack pointer now points to cell where return address is to be written.
2218  // Arguments are before that on the stack or in registers, meaning we
2219  // treat the return address as argument 5. Thus every argument after that
2220  // needs to be shifted back by 1. Since DirectCEntryStub will handle
2221  // allocating space for the c argument slots, we don't need to calculate
2222  // that into the argument positions on the stack. This is how the stack will
2223  // look (sp meaning the value of sp at this moment):
2224  // Abi n64:
2225  //   [sp + 1] - Argument 9
2226  //   [sp + 0] - saved ra
2227  // Abi O32:
2228  //   [sp + 5] - Argument 9
2229  //   [sp + 4] - Argument 8
2230  //   [sp + 3] - Argument 7
2231  //   [sp + 2] - Argument 6
2232  //   [sp + 1] - Argument 5
2233  //   [sp + 0] - saved ra
2234
2235  if (kMipsAbi == kN64) {
2236    // Argument 9: Pass current isolate address.
2237    __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2238    __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2239
2240    // Argument 8: Indicate that this is a direct call from JavaScript.
2241    __ li(a7, Operand(1));
2242
2243    // Argument 7: Start (high end) of backtracking stack memory area.
2244    __ li(a0, Operand(address_of_regexp_stack_memory_address));
2245    __ ld(a0, MemOperand(a0, 0));
2246    __ li(a2, Operand(address_of_regexp_stack_memory_size));
2247    __ ld(a2, MemOperand(a2, 0));
2248    __ daddu(a6, a0, a2);
2249
2250    // Argument 6: Set the number of capture registers to zero to force global
2251    // regexps to behave as non-global. This does not affect non-global regexps.
2252    __ mov(a5, zero_reg);
2253
2254    // Argument 5: static offsets vector buffer.
2255    __ li(a4, Operand(
2256          ExternalReference::address_of_static_offsets_vector(isolate())));
2257  } else {  // O32.
2258    DCHECK(kMipsAbi == kO32);
2259
2260    // Argument 9: Pass current isolate address.
2261    // CFunctionArgumentOperand handles MIPS stack argument slots.
2262    __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2263    __ sd(a0, MemOperand(sp, 5 * kPointerSize));
2264
2265    // Argument 8: Indicate that this is a direct call from JavaScript.
2266    __ li(a0, Operand(1));
2267    __ sd(a0, MemOperand(sp, 4 * kPointerSize));
2268
2269    // Argument 7: Start (high end) of backtracking stack memory area.
2270    __ li(a0, Operand(address_of_regexp_stack_memory_address));
2271    __ ld(a0, MemOperand(a0, 0));
2272    __ li(a2, Operand(address_of_regexp_stack_memory_size));
2273    __ ld(a2, MemOperand(a2, 0));
2274    __ daddu(a0, a0, a2);
2275    __ sd(a0, MemOperand(sp, 3 * kPointerSize));
2276
2277    // Argument 6: Set the number of capture registers to zero to force global
2278    // regexps to behave as non-global. This does not affect non-global regexps.
2279    __ mov(a0, zero_reg);
2280    __ sd(a0, MemOperand(sp, 2 * kPointerSize));
2281
2282    // Argument 5: static offsets vector buffer.
2283    __ li(a0, Operand(
2284          ExternalReference::address_of_static_offsets_vector(isolate())));
2285    __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2286  }
2287
2288  // For arguments 4 and 3 get string length, calculate start of string data
2289  // and calculate the shift of the index (0 for one_byte and 1 for two byte).
2290  __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2291  __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
2292  // Load the length from the original subject string from the previous stack
2293  // frame. Therefore we have to use fp, which points exactly to two pointer
2294  // sizes below the previous sp. (Because creating a new stack frame pushes
2295  // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2296  __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2297  // If slice offset is not 0, load the length from the original sliced string.
2298  // Argument 4, a3: End of string data
2299  // Argument 3, a2: Start of string data
2300  // Prepare start and end index of the input.
2301  __ dsllv(t1, t0, a3);
2302  __ daddu(t0, t2, t1);
2303  __ dsllv(t1, a1, a3);
2304  __ daddu(a2, t0, t1);
2305
2306  __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
2307
2308  __ SmiUntag(t2);
2309  __ dsllv(t1, t2, a3);
2310  __ daddu(a3, t0, t1);
2311  // Argument 2 (a1): Previous index.
2312  // Already there
2313
2314  // Argument 1 (a0): Subject string.
2315  __ mov(a0, subject);
2316
2317  // Locate the code entry and call it.
2318  __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
2319  DirectCEntryStub stub(isolate());
2320  stub.GenerateCall(masm, t9);
2321
2322  __ LeaveExitFrame(false, no_reg, true);
2323
2324  // v0: result
2325  // subject: subject string (callee saved)
2326  // regexp_data: RegExp data (callee saved)
2327  // last_match_info_elements: Last match info elements (callee saved)
2328  // Check the result.
2329  Label success;
2330  __ Branch(&success, eq, v0, Operand(1));
2331  // We expect exactly one result since we force the called regexp to behave
2332  // as non-global.
2333  Label failure;
2334  __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
2335  // If not exception it can only be retry. Handle that in the runtime system.
2336  __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2337  // Result must now be exception. If there is no pending exception already a
2338  // stack overflow (on the backtrack stack) was detected in RegExp code but
2339  // haven't created the exception yet. Handle that in the runtime system.
2340  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2341  __ li(a1, Operand(isolate()->factory()->the_hole_value()));
2342  __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2343                                      isolate())));
2344  __ ld(v0, MemOperand(a2, 0));
2345  __ Branch(&runtime, eq, v0, Operand(a1));
2346
2347  __ sd(a1, MemOperand(a2, 0));  // Clear pending exception.
2348
2349  // Check if the exception is a termination. If so, throw as uncatchable.
2350  __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
2351  Label termination_exception;
2352  __ Branch(&termination_exception, eq, v0, Operand(a0));
2353
2354  __ Throw(v0);
2355
2356  __ bind(&termination_exception);
2357  __ ThrowUncatchable(v0);
2358
2359  __ bind(&failure);
2360  // For failure and exception return null.
2361  __ li(v0, Operand(isolate()->factory()->null_value()));
2362  __ DropAndRet(4);
2363
2364  // Process the result from the native regexp code.
2365  __ bind(&success);
2366
2367  __ lw(a1, UntagSmiFieldMemOperand(
2368      regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2369  // Calculate number of capture registers (number_of_captures + 1) * 2.
2370  __ Daddu(a1, a1, Operand(1));
2371  __ dsll(a1, a1, 1);  // Multiply by 2.
2372
2373  __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
2374  __ JumpIfSmi(a0, &runtime);
2375  __ GetObjectType(a0, a2, a2);
2376  __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
2377  // Check that the JSArray is in fast case.
2378  __ ld(last_match_info_elements,
2379        FieldMemOperand(a0, JSArray::kElementsOffset));
2380  __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2381  __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2382  __ Branch(&runtime, ne, a0, Operand(at));
2383  // Check that the last match info has space for the capture registers and the
2384  // additional information.
2385  __ ld(a0,
2386        FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2387  __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
2388
2389  __ SmiUntag(at, a0);
2390  __ Branch(&runtime, gt, a2, Operand(at));
2391
2392  // a1: number of capture registers
2393  // subject: subject string
2394  // Store the capture count.
2395  __ SmiTag(a2, a1);  // To smi.
2396  __ sd(a2, FieldMemOperand(last_match_info_elements,
2397                             RegExpImpl::kLastCaptureCountOffset));
2398  // Store last subject and last input.
2399  __ sd(subject,
2400         FieldMemOperand(last_match_info_elements,
2401                         RegExpImpl::kLastSubjectOffset));
2402  __ mov(a2, subject);
2403  __ RecordWriteField(last_match_info_elements,
2404                      RegExpImpl::kLastSubjectOffset,
2405                      subject,
2406                      a7,
2407                      kRAHasNotBeenSaved,
2408                      kDontSaveFPRegs);
2409  __ mov(subject, a2);
2410  __ sd(subject,
2411         FieldMemOperand(last_match_info_elements,
2412                         RegExpImpl::kLastInputOffset));
2413  __ RecordWriteField(last_match_info_elements,
2414                      RegExpImpl::kLastInputOffset,
2415                      subject,
2416                      a7,
2417                      kRAHasNotBeenSaved,
2418                      kDontSaveFPRegs);
2419
2420  // Get the static offsets vector filled by the native regexp code.
2421  ExternalReference address_of_static_offsets_vector =
2422      ExternalReference::address_of_static_offsets_vector(isolate());
2423  __ li(a2, Operand(address_of_static_offsets_vector));
2424
2425  // a1: number of capture registers
2426  // a2: offsets vector
2427  Label next_capture, done;
2428  // Capture register counter starts from number of capture registers and
2429  // counts down until wrapping after zero.
2430  __ Daddu(a0,
2431         last_match_info_elements,
2432         Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2433  __ bind(&next_capture);
2434  __ Dsubu(a1, a1, Operand(1));
2435  __ Branch(&done, lt, a1, Operand(zero_reg));
2436  // Read the value from the static offsets vector buffer.
2437  __ lw(a3, MemOperand(a2, 0));
2438  __ daddiu(a2, a2, kIntSize);
2439  // Store the smi value in the last match info.
2440  __ SmiTag(a3);
2441  __ sd(a3, MemOperand(a0, 0));
2442  __ Branch(&next_capture, USE_DELAY_SLOT);
2443  __ daddiu(a0, a0, kPointerSize);  // In branch delay slot.
2444
2445  __ bind(&done);
2446
2447  // Return last match info.
2448  __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
2449  __ DropAndRet(4);
2450
2451  // Do the runtime call to execute the regexp.
2452  __ bind(&runtime);
2453  __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2454
2455  // Deferred code for string handling.
2456  // (6) Not a long external string?  If yes, go to (8).
2457  __ bind(&not_seq_nor_cons);
2458  // Go to (8).
2459  __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
2460
2461  // (7) External string.  Make it, offset-wise, look like a sequential string.
2462  __ bind(&external_string);
2463  __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2464  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2465  if (FLAG_debug_code) {
2466    // Assert that we do not have a cons or slice (indirect strings) here.
2467    // Sequential strings have already been ruled out.
2468    __ And(at, a0, Operand(kIsIndirectStringMask));
2469    __ Assert(eq,
2470              kExternalStringExpectedButNotFound,
2471              at,
2472              Operand(zero_reg));
2473  }
2474  __ ld(subject,
2475        FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2476  // Move the pointer so that offset-wise, it looks like a sequential string.
2477  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2478  __ Dsubu(subject,
2479          subject,
2480          SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2481  __ jmp(&seq_string);    // Go to (5).
2482
2483  // (8) Short external string or not a string?  If yes, bail out to runtime.
2484  __ bind(&not_long_external);
2485  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2486  __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
2487  __ Branch(&runtime, ne, at, Operand(zero_reg));
2488
2489  // (9) Sliced string.  Replace subject with parent.  Go to (4).
2490  // Load offset into t0 and replace subject string with parent.
2491  __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2492  __ SmiUntag(t0);
2493  __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2494  __ jmp(&check_underlying);  // Go to (4).
2495#endif  // V8_INTERPRETED_REGEXP
2496}
2497
2498
2499static void GenerateRecordCallTarget(MacroAssembler* masm) {
2500  // Cache the called function in a feedback vector slot.  Cache states
2501  // are uninitialized, monomorphic (indicated by a JSFunction), and
2502  // megamorphic.
2503  // a0 : number of arguments to the construct function
2504  // a1 : the function to call
2505  // a2 : Feedback vector
2506  // a3 : slot in feedback vector (Smi)
2507  Label initialize, done, miss, megamorphic, not_array_function;
2508
2509  DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2510            masm->isolate()->heap()->megamorphic_symbol());
2511  DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2512            masm->isolate()->heap()->uninitialized_symbol());
2513
2514  // Load the cache state into a4.
2515  __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2516  __ Daddu(a4, a2, Operand(a4));
2517  __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
2518
2519  // A monomorphic cache hit or an already megamorphic state: invoke the
2520  // function without changing the state.
2521  __ Branch(&done, eq, a4, Operand(a1));
2522
2523  if (!FLAG_pretenuring_call_new) {
2524    // If we came here, we need to see if we are the array function.
2525    // If we didn't have a matching function, and we didn't find the megamorph
2526    // sentinel, then we have in the slot either some other function or an
2527    // AllocationSite. Do a map check on the object in a3.
2528    __ ld(a5, FieldMemOperand(a4, 0));
2529    __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2530    __ Branch(&miss, ne, a5, Operand(at));
2531
2532    // Make sure the function is the Array() function
2533    __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
2534    __ Branch(&megamorphic, ne, a1, Operand(a4));
2535    __ jmp(&done);
2536  }
2537
2538  __ bind(&miss);
2539
2540  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2541  // megamorphic.
2542  __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
2543  __ Branch(&initialize, eq, a4, Operand(at));
2544  // MegamorphicSentinel is an immortal immovable object (undefined) so no
2545  // write-barrier is needed.
2546  __ bind(&megamorphic);
2547  __ dsrl(a4, a3, 32- kPointerSizeLog2);
2548  __ Daddu(a4, a2, Operand(a4));
2549  __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2550  __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
2551  __ jmp(&done);
2552
2553  // An uninitialized cache is patched with the function.
2554  __ bind(&initialize);
2555  if (!FLAG_pretenuring_call_new) {
2556    // Make sure the function is the Array() function.
2557    __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
2558    __ Branch(&not_array_function, ne, a1, Operand(a4));
2559
2560    // The target function is the Array constructor,
2561    // Create an AllocationSite if we don't already have it, store it in the
2562    // slot.
2563    {
2564      FrameScope scope(masm, StackFrame::INTERNAL);
2565      const RegList kSavedRegs =
2566          1 << 4  |  // a0
2567          1 << 5  |  // a1
2568          1 << 6  |  // a2
2569          1 << 7;    // a3
2570
2571      // Arguments register must be smi-tagged to call out.
2572      __ SmiTag(a0);
2573      __ MultiPush(kSavedRegs);
2574
2575      CreateAllocationSiteStub create_stub(masm->isolate());
2576      __ CallStub(&create_stub);
2577
2578      __ MultiPop(kSavedRegs);
2579      __ SmiUntag(a0);
2580    }
2581    __ Branch(&done);
2582
2583    __ bind(&not_array_function);
2584  }
2585
2586  __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2587  __ Daddu(a4, a2, Operand(a4));
2588  __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2589  __ sd(a1, MemOperand(a4, 0));
2590
2591  __ Push(a4, a2, a1);
2592  __ RecordWrite(a2, a4, a1, kRAHasNotBeenSaved, kDontSaveFPRegs,
2593                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2594  __ Pop(a4, a2, a1);
2595
2596  __ bind(&done);
2597}
2598
2599
2600static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2601  __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2602
2603  // Do not transform the receiver for strict mode functions.
2604  int32_t strict_mode_function_mask =
2605      1 <<  SharedFunctionInfo::kStrictModeBitWithinByte ;
2606  // Do not transform the receiver for native (Compilerhints already in a3).
2607  int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
2608
2609  __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kStrictModeByteOffset));
2610  __ And(at, a4, Operand(strict_mode_function_mask));
2611  __ Branch(cont, ne, at, Operand(zero_reg));
2612  __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kNativeByteOffset));
2613  __ And(at, a4, Operand(native_mask));
2614  __ Branch(cont, ne, at, Operand(zero_reg));
2615}
2616
2617
2618static void EmitSlowCase(MacroAssembler* masm,
2619                         int argc,
2620                         Label* non_function) {
2621  // Check for function proxy.
2622  __ Branch(non_function, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
2623  __ push(a1);  // put proxy as additional argument
2624  __ li(a0, Operand(argc + 1, RelocInfo::NONE32));
2625  __ mov(a2, zero_reg);
2626  __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
2627  {
2628    Handle<Code> adaptor =
2629        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2630    __ Jump(adaptor, RelocInfo::CODE_TARGET);
2631  }
2632
2633  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2634  // of the original receiver from the call site).
2635  __ bind(non_function);
2636  __ sd(a1, MemOperand(sp, argc * kPointerSize));
2637  __ li(a0, Operand(argc));  // Set up the number of arguments.
2638  __ mov(a2, zero_reg);
2639  __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
2640  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2641          RelocInfo::CODE_TARGET);
2642}
2643
2644
2645static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2646  // Wrap the receiver and patch it back onto the stack.
2647  { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2648    __ Push(a1, a3);
2649    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2650    __ pop(a1);
2651  }
2652  __ Branch(USE_DELAY_SLOT, cont);
2653  __ sd(v0, MemOperand(sp, argc * kPointerSize));
2654}
2655
2656
2657static void CallFunctionNoFeedback(MacroAssembler* masm,
2658                                   int argc, bool needs_checks,
2659                                   bool call_as_method) {
2660  // a1 : the function to call
2661  Label slow, non_function, wrap, cont;
2662
2663  if (needs_checks) {
2664    // Check that the function is really a JavaScript function.
2665    // a1: pushed function (to be verified)
2666    __ JumpIfSmi(a1, &non_function);
2667
2668    // Goto slow case if we do not have a function.
2669    __ GetObjectType(a1, a4, a4);
2670    __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
2671  }
2672
2673  // Fast-case: Invoke the function now.
2674  // a1: pushed function
2675  ParameterCount actual(argc);
2676
2677  if (call_as_method) {
2678    if (needs_checks) {
2679      EmitContinueIfStrictOrNative(masm, &cont);
2680    }
2681
2682    // Compute the receiver in sloppy mode.
2683    __ ld(a3, MemOperand(sp, argc * kPointerSize));
2684
2685    if (needs_checks) {
2686      __ JumpIfSmi(a3, &wrap);
2687      __ GetObjectType(a3, a4, a4);
2688      __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
2689    } else {
2690      __ jmp(&wrap);
2691    }
2692
2693    __ bind(&cont);
2694  }
2695  __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
2696
2697  if (needs_checks) {
2698    // Slow-case: Non-function called.
2699    __ bind(&slow);
2700    EmitSlowCase(masm, argc, &non_function);
2701  }
2702
2703  if (call_as_method) {
2704    __ bind(&wrap);
2705    // Wrap the receiver and patch it back onto the stack.
2706    EmitWrapCase(masm, argc, &cont);
2707  }
2708}
2709
2710
2711void CallFunctionStub::Generate(MacroAssembler* masm) {
2712  CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2713}
2714
2715
2716void CallConstructStub::Generate(MacroAssembler* masm) {
2717  // a0 : number of arguments
2718  // a1 : the function to call
2719  // a2 : feedback vector
2720  // a3 : (only if a2 is not undefined) slot in feedback vector (Smi)
2721  Label slow, non_function_call;
2722  // Check that the function is not a smi.
2723  __ JumpIfSmi(a1, &non_function_call);
2724  // Check that the function is a JSFunction.
2725  __ GetObjectType(a1, a4, a4);
2726  __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
2727
2728  if (RecordCallTarget()) {
2729    GenerateRecordCallTarget(masm);
2730
2731    __ dsrl(at, a3, 32 - kPointerSizeLog2);
2732    __ Daddu(a5, a2, at);
2733    if (FLAG_pretenuring_call_new) {
2734      // Put the AllocationSite from the feedback vector into a2.
2735      // By adding kPointerSize we encode that we know the AllocationSite
2736      // entry is at the feedback vector slot given by a3 + 1.
2737      __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
2738    } else {
2739      Label feedback_register_initialized;
2740      // Put the AllocationSite from the feedback vector into a2, or undefined.
2741      __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
2742      __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
2743      __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2744      __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
2745      __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2746      __ bind(&feedback_register_initialized);
2747    }
2748
2749    __ AssertUndefinedOrAllocationSite(a2, a5);
2750  }
2751
2752  // Jump to the function-specific construct stub.
2753  Register jmp_reg = a4;
2754  __ ld(jmp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2755  __ ld(jmp_reg, FieldMemOperand(jmp_reg,
2756                                 SharedFunctionInfo::kConstructStubOffset));
2757  __ Daddu(at, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2758  __ Jump(at);
2759
2760  // a0: number of arguments
2761  // a1: called object
2762  // a4: object type
2763  Label do_call;
2764  __ bind(&slow);
2765  __ Branch(&non_function_call, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
2766  __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2767  __ jmp(&do_call);
2768
2769  __ bind(&non_function_call);
2770  __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2771  __ bind(&do_call);
2772  // Set expected number of arguments to zero (not changing r0).
2773  __ li(a2, Operand(0, RelocInfo::NONE32));
2774  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2775           RelocInfo::CODE_TARGET);
2776}
2777
2778
2779// StringCharCodeAtGenerator.
2780void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2781  DCHECK(!a4.is(index_));
2782  DCHECK(!a4.is(result_));
2783  DCHECK(!a4.is(object_));
2784
2785  // If the receiver is a smi trigger the non-string case.
2786  __ JumpIfSmi(object_, receiver_not_string_);
2787
2788  // Fetch the instance type of the receiver into result register.
2789  __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2790  __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2791  // If the receiver is not a string trigger the non-string case.
2792  __ And(a4, result_, Operand(kIsNotStringMask));
2793  __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
2794
2795  // If the index is non-smi trigger the non-smi case.
2796  __ JumpIfNotSmi(index_, &index_not_smi_);
2797
2798  __ bind(&got_smi_index_);
2799
2800  // Check for index out of range.
2801  __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
2802  __ Branch(index_out_of_range_, ls, a4, Operand(index_));
2803
2804  __ SmiUntag(index_);
2805
2806  StringCharLoadGenerator::Generate(masm,
2807                                    object_,
2808                                    index_,
2809                                    result_,
2810                                    &call_runtime_);
2811
2812  __ SmiTag(result_);
2813  __ bind(&exit_);
2814}
2815
2816
2817static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2818  __ ld(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2819  __ ld(vector, FieldMemOperand(vector,
2820                                JSFunction::kSharedFunctionInfoOffset));
2821  __ ld(vector, FieldMemOperand(vector,
2822                                SharedFunctionInfo::kFeedbackVectorOffset));
2823}
2824
2825
2826void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2827  // a1 - function
2828  // a3 - slot id
2829  Label miss;
2830
2831  EmitLoadTypeFeedbackVector(masm, a2);
2832
2833  __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, at);
2834  __ Branch(&miss, ne, a1, Operand(at));
2835
2836  __ li(a0, Operand(arg_count()));
2837  __ dsrl(at, a3, 32 - kPointerSizeLog2);
2838  __ Daddu(at, a2, Operand(at));
2839  __ ld(a4, FieldMemOperand(at, FixedArray::kHeaderSize));
2840
2841  // Verify that a4 contains an AllocationSite
2842  __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
2843  __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2844  __ Branch(&miss, ne, a5, Operand(at));
2845
2846  __ mov(a2, a4);
2847  ArrayConstructorStub stub(masm->isolate(), arg_count());
2848  __ TailCallStub(&stub);
2849
2850  __ bind(&miss);
2851  GenerateMiss(masm);
2852
2853  // The slow case, we need this no matter what to complete a call after a miss.
2854  CallFunctionNoFeedback(masm,
2855                         arg_count(),
2856                         true,
2857                         CallAsMethod());
2858
2859  // Unreachable.
2860  __ stop("Unexpected code address");
2861}
2862
2863
2864void CallICStub::Generate(MacroAssembler* masm) {
2865  // a1 - function
2866  // a3 - slot id (Smi)
2867  Label extra_checks_or_miss, slow_start;
2868  Label slow, non_function, wrap, cont;
2869  Label have_js_function;
2870  int argc = arg_count();
2871  ParameterCount actual(argc);
2872
2873  EmitLoadTypeFeedbackVector(masm, a2);
2874
2875  // The checks. First, does r1 match the recorded monomorphic target?
2876  __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2877  __ Daddu(a4, a2, Operand(a4));
2878  __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
2879  __ Branch(&extra_checks_or_miss, ne, a1, Operand(a4));
2880
2881  __ bind(&have_js_function);
2882  if (CallAsMethod()) {
2883    EmitContinueIfStrictOrNative(masm, &cont);
2884    // Compute the receiver in sloppy mode.
2885    __ ld(a3, MemOperand(sp, argc * kPointerSize));
2886
2887    __ JumpIfSmi(a3, &wrap);
2888    __ GetObjectType(a3, a4, a4);
2889    __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
2890
2891    __ bind(&cont);
2892  }
2893
2894  __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
2895
2896  __ bind(&slow);
2897  EmitSlowCase(masm, argc, &non_function);
2898
2899  if (CallAsMethod()) {
2900    __ bind(&wrap);
2901    EmitWrapCase(masm, argc, &cont);
2902  }
2903
2904  __ bind(&extra_checks_or_miss);
2905  Label miss;
2906
2907  __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2908  __ Branch(&slow_start, eq, a4, Operand(at));
2909  __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
2910  __ Branch(&miss, eq, a4, Operand(at));
2911
2912  if (!FLAG_trace_ic) {
2913    // We are going megamorphic. If the feedback is a JSFunction, it is fine
2914    // to handle it here. More complex cases are dealt with in the runtime.
2915    __ AssertNotSmi(a4);
2916    __ GetObjectType(a4, a5, a5);
2917    __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
2918    __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2919    __ Daddu(a4, a2, Operand(a4));
2920    __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2921    __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
2922    __ Branch(&slow_start);
2923  }
2924
2925  // We are here because tracing is on or we are going monomorphic.
2926  __ bind(&miss);
2927  GenerateMiss(masm);
2928
2929  // the slow case
2930  __ bind(&slow_start);
2931  // Check that the function is really a JavaScript function.
2932  // r1: pushed function (to be verified)
2933  __ JumpIfSmi(a1, &non_function);
2934
2935  // Goto slow case if we do not have a function.
2936  __ GetObjectType(a1, a4, a4);
2937  __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
2938  __ Branch(&have_js_function);
2939}
2940
2941
2942void CallICStub::GenerateMiss(MacroAssembler* masm) {
2943  // Get the receiver of the function from the stack; 1 ~ return address.
2944  __ ld(a4, MemOperand(sp, (arg_count() + 1) * kPointerSize));
2945
2946  {
2947    FrameScope scope(masm, StackFrame::INTERNAL);
2948
2949    // Push the receiver and the function and feedback info.
2950    __ Push(a4, a1, a2, a3);
2951
2952    // Call the entry.
2953    IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2954                                               : IC::kCallIC_Customization_Miss;
2955
2956    ExternalReference miss = ExternalReference(IC_Utility(id),
2957                                               masm->isolate());
2958    __ CallExternalReference(miss, 4);
2959
2960    // Move result to a1 and exit the internal frame.
2961    __ mov(a1, v0);
2962  }
2963}
2964
2965
2966void StringCharCodeAtGenerator::GenerateSlow(
2967    MacroAssembler* masm,
2968    const RuntimeCallHelper& call_helper) {
2969  __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2970
2971  // Index is not a smi.
2972  __ bind(&index_not_smi_);
2973  // If index is a heap number, try converting it to an integer.
2974  __ CheckMap(index_,
2975              result_,
2976              Heap::kHeapNumberMapRootIndex,
2977              index_not_number_,
2978              DONT_DO_SMI_CHECK);
2979  call_helper.BeforeCall(masm);
2980  // Consumed by runtime conversion function:
2981  __ Push(object_, index_);
2982  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2983    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2984  } else {
2985    DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2986    // NumberToSmi discards numbers that are not exact integers.
2987    __ CallRuntime(Runtime::kNumberToSmi, 1);
2988  }
2989
2990  // Save the conversion result before the pop instructions below
2991  // have a chance to overwrite it.
2992
2993  __ Move(index_, v0);
2994  __ pop(object_);
2995  // Reload the instance type.
2996  __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2997  __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2998  call_helper.AfterCall(masm);
2999  // If index is still not a smi, it must be out of range.
3000  __ JumpIfNotSmi(index_, index_out_of_range_);
3001  // Otherwise, return to the fast path.
3002  __ Branch(&got_smi_index_);
3003
3004  // Call runtime. We get here when the receiver is a string and the
3005  // index is a number, but the code of getting the actual character
3006  // is too complex (e.g., when the string needs to be flattened).
3007  __ bind(&call_runtime_);
3008  call_helper.BeforeCall(masm);
3009  __ SmiTag(index_);
3010  __ Push(object_, index_);
3011  __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3012
3013  __ Move(result_, v0);
3014
3015  call_helper.AfterCall(masm);
3016  __ jmp(&exit_);
3017
3018  __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3019}
3020
3021
3022// -------------------------------------------------------------------------
3023// StringCharFromCodeGenerator
3024
3025void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3026  // Fast case of Heap::LookupSingleCharacterStringFromCode.
3027
3028  DCHECK(!a4.is(result_));
3029  DCHECK(!a4.is(code_));
3030
3031  STATIC_ASSERT(kSmiTag == 0);
3032  DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
3033  __ And(a4,
3034         code_,
3035         Operand(kSmiTagMask |
3036                 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3037  __ Branch(&slow_case_, ne, a4, Operand(zero_reg));
3038
3039
3040  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3041  // At this point code register contains smi tagged one_byte char code.
3042  STATIC_ASSERT(kSmiTag == 0);
3043  __ SmiScale(a4, code_, kPointerSizeLog2);
3044  __ Daddu(result_, result_, a4);
3045  __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3046  __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
3047  __ Branch(&slow_case_, eq, result_, Operand(a4));
3048  __ bind(&exit_);
3049}
3050
3051
3052void StringCharFromCodeGenerator::GenerateSlow(
3053    MacroAssembler* masm,
3054    const RuntimeCallHelper& call_helper) {
3055  __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3056
3057  __ bind(&slow_case_);
3058  call_helper.BeforeCall(masm);
3059  __ push(code_);
3060  __ CallRuntime(Runtime::kCharFromCode, 1);
3061  __ Move(result_, v0);
3062
3063  call_helper.AfterCall(masm);
3064  __ Branch(&exit_);
3065
3066  __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3067}
3068
3069
3070enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
3071
3072
3073void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3074                                          Register dest,
3075                                          Register src,
3076                                          Register count,
3077                                          Register scratch,
3078                                          String::Encoding encoding) {
3079  if (FLAG_debug_code) {
3080    // Check that destination is word aligned.
3081    __ And(scratch, dest, Operand(kPointerAlignmentMask));
3082    __ Check(eq,
3083             kDestinationOfCopyNotAligned,
3084             scratch,
3085             Operand(zero_reg));
3086  }
3087
3088  // Assumes word reads and writes are little endian.
3089  // Nothing to do for zero characters.
3090  Label done;
3091
3092  if (encoding == String::TWO_BYTE_ENCODING) {
3093    __ Daddu(count, count, count);
3094  }
3095
3096  Register limit = count;  // Read until dest equals this.
3097  __ Daddu(limit, dest, Operand(count));
3098
3099  Label loop_entry, loop;
3100  // Copy bytes from src to dest until dest hits limit.
3101  __ Branch(&loop_entry);
3102  __ bind(&loop);
3103  __ lbu(scratch, MemOperand(src));
3104  __ daddiu(src, src, 1);
3105  __ sb(scratch, MemOperand(dest));
3106  __ daddiu(dest, dest, 1);
3107  __ bind(&loop_entry);
3108  __ Branch(&loop, lt, dest, Operand(limit));
3109
3110  __ bind(&done);
3111}
3112
3113
3114void SubStringStub::Generate(MacroAssembler* masm) {
3115  Label runtime;
3116  // Stack frame on entry.
3117  //  ra: return address
3118  //  sp[0]: to
3119  //  sp[4]: from
3120  //  sp[8]: string
3121
3122  // This stub is called from the native-call %_SubString(...), so
3123  // nothing can be assumed about the arguments. It is tested that:
3124  //  "string" is a sequential string,
3125  //  both "from" and "to" are smis, and
3126  //  0 <= from <= to <= string.length.
3127  // If any of these assumptions fail, we call the runtime system.
3128
3129  const int kToOffset = 0 * kPointerSize;
3130  const int kFromOffset = 1 * kPointerSize;
3131  const int kStringOffset = 2 * kPointerSize;
3132
3133  __ ld(a2, MemOperand(sp, kToOffset));
3134  __ ld(a3, MemOperand(sp, kFromOffset));
3135// Does not needed?
3136//  STATIC_ASSERT(kFromOffset == kToOffset + 4);
3137  STATIC_ASSERT(kSmiTag == 0);
3138// Does not needed?
3139// STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3140
3141  // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
3142  // safe in this case.
3143  __ JumpIfNotSmi(a2, &runtime);
3144  __ JumpIfNotSmi(a3, &runtime);
3145  // Both a2 and a3 are untagged integers.
3146
3147  __ SmiUntag(a2, a2);
3148  __ SmiUntag(a3, a3);
3149  __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
3150
3151  __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
3152  __ Dsubu(a2, a2, a3);
3153
3154  // Make sure first argument is a string.
3155  __ ld(v0, MemOperand(sp, kStringOffset));
3156  __ JumpIfSmi(v0, &runtime);
3157  __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
3158  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3159  __ And(a4, a1, Operand(kIsNotStringMask));
3160
3161  __ Branch(&runtime, ne, a4, Operand(zero_reg));
3162
3163  Label single_char;
3164  __ Branch(&single_char, eq, a2, Operand(1));
3165
3166  // Short-cut for the case of trivial substring.
3167  Label return_v0;
3168  // v0: original string
3169  // a2: result string length
3170  __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
3171  __ SmiUntag(a4);
3172  // Return original string.
3173  __ Branch(&return_v0, eq, a2, Operand(a4));
3174  // Longer than original string's length or negative: unsafe arguments.
3175  __ Branch(&runtime, hi, a2, Operand(a4));
3176  // Shorter than original string's length: an actual substring.
3177
3178  // Deal with different string types: update the index if necessary
3179  // and put the underlying string into a5.
3180  // v0: original string
3181  // a1: instance type
3182  // a2: length
3183  // a3: from index (untagged)
3184  Label underlying_unpacked, sliced_string, seq_or_external_string;
3185  // If the string is not indirect, it can only be sequential or external.
3186  STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3187  STATIC_ASSERT(kIsIndirectStringMask != 0);
3188  __ And(a4, a1, Operand(kIsIndirectStringMask));
3189  __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
3190  // a4 is used as a scratch register and can be overwritten in either case.
3191  __ And(a4, a1, Operand(kSlicedNotConsMask));
3192  __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
3193  // Cons string.  Check whether it is flat, then fetch first part.
3194  __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
3195  __ LoadRoot(a4, Heap::kempty_stringRootIndex);
3196  __ Branch(&runtime, ne, a5, Operand(a4));
3197  __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
3198  // Update instance type.
3199  __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3200  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3201  __ jmp(&underlying_unpacked);
3202
3203  __ bind(&sliced_string);
3204  // Sliced string.  Fetch parent and correct start index by offset.
3205  __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3206  __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3207  __ SmiUntag(a4);  // Add offset to index.
3208  __ Daddu(a3, a3, a4);
3209  // Update instance type.
3210  __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3211  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3212  __ jmp(&underlying_unpacked);
3213
3214  __ bind(&seq_or_external_string);
3215  // Sequential or external string.  Just move string to the expected register.
3216  __ mov(a5, v0);
3217
3218  __ bind(&underlying_unpacked);
3219
3220  if (FLAG_string_slices) {
3221    Label copy_routine;
3222    // a5: underlying subject string
3223    // a1: instance type of underlying subject string
3224    // a2: length
3225    // a3: adjusted start index (untagged)
3226    // Short slice.  Copy instead of slicing.
3227    __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
3228    // Allocate new sliced string.  At this point we do not reload the instance
3229    // type including the string encoding because we simply rely on the info
3230    // provided by the original string.  It does not matter if the original
3231    // string's encoding is wrong because we always have to recheck encoding of
3232    // the newly created string's parent anyways due to externalized strings.
3233    Label two_byte_slice, set_slice_header;
3234    STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3235    STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3236    __ And(a4, a1, Operand(kStringEncodingMask));
3237    __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
3238    __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
3239    __ jmp(&set_slice_header);
3240    __ bind(&two_byte_slice);
3241    __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
3242    __ bind(&set_slice_header);
3243    __ SmiTag(a3);
3244    __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3245    __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3246    __ jmp(&return_v0);
3247
3248    __ bind(&copy_routine);
3249  }
3250
3251  // a5: underlying subject string
3252  // a1: instance type of underlying subject string
3253  // a2: length
3254  // a3: adjusted start index (untagged)
3255  Label two_byte_sequential, sequential_string, allocate_result;
3256  STATIC_ASSERT(kExternalStringTag != 0);
3257  STATIC_ASSERT(kSeqStringTag == 0);
3258  __ And(a4, a1, Operand(kExternalStringTag));
3259  __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
3260
3261  // Handle external string.
3262  // Rule out short external strings.
3263  STATIC_ASSERT(kShortExternalStringTag != 0);
3264  __ And(a4, a1, Operand(kShortExternalStringTag));
3265  __ Branch(&runtime, ne, a4, Operand(zero_reg));
3266  __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
3267  // a5 already points to the first character of underlying string.
3268  __ jmp(&allocate_result);
3269
3270  __ bind(&sequential_string);
3271  // Locate first character of underlying subject string.
3272  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3273  __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3274
3275  __ bind(&allocate_result);
3276  // Sequential acii string.  Allocate the result.
3277  STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3278  __ And(a4, a1, Operand(kStringEncodingMask));
3279  __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
3280
3281  // Allocate and copy the resulting one_byte string.
3282  __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
3283
3284  // Locate first character of substring to copy.
3285  __ Daddu(a5, a5, a3);
3286
3287  // Locate first character of result.
3288  __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3289
3290  // v0: result string
3291  // a1: first character of result string
3292  // a2: result string length
3293  // a5: first character of substring to copy
3294  STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3295  StringHelper::GenerateCopyCharacters(
3296      masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
3297  __ jmp(&return_v0);
3298
3299  // Allocate and copy the resulting two-byte string.
3300  __ bind(&two_byte_sequential);
3301  __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
3302
3303  // Locate first character of substring to copy.
3304  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3305  __ dsll(a4, a3, 1);
3306  __ Daddu(a5, a5, a4);
3307  // Locate first character of result.
3308  __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3309
3310  // v0: result string.
3311  // a1: first character of result.
3312  // a2: result length.
3313  // a5: first character of substring to copy.
3314  STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3315  StringHelper::GenerateCopyCharacters(
3316      masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
3317
3318  __ bind(&return_v0);
3319  Counters* counters = isolate()->counters();
3320  __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
3321  __ DropAndRet(3);
3322
3323  // Just jump to runtime to create the sub string.
3324  __ bind(&runtime);
3325  __ TailCallRuntime(Runtime::kSubString, 3, 1);
3326
3327  __ bind(&single_char);
3328  // v0: original string
3329  // a1: instance type
3330  // a2: length
3331  // a3: from index (untagged)
3332  StringCharAtGenerator generator(
3333      v0, a3, a2, v0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3334  generator.GenerateFast(masm);
3335  __ DropAndRet(3);
3336  generator.SkipSlow(masm, &runtime);
3337}
3338
3339
3340void StringHelper::GenerateFlatOneByteStringEquals(
3341    MacroAssembler* masm, Register left, Register right, Register scratch1,
3342    Register scratch2, Register scratch3) {
3343  Register length = scratch1;
3344
3345  // Compare lengths.
3346  Label strings_not_equal, check_zero_length;
3347  __ ld(length, FieldMemOperand(left, String::kLengthOffset));
3348  __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3349  __ Branch(&check_zero_length, eq, length, Operand(scratch2));
3350  __ bind(&strings_not_equal);
3351  // Can not put li in delayslot, it has multi instructions.
3352  __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
3353  __ Ret();
3354
3355  // Check if the length is zero.
3356  Label compare_chars;
3357  __ bind(&check_zero_length);
3358  STATIC_ASSERT(kSmiTag == 0);
3359  __ Branch(&compare_chars, ne, length, Operand(zero_reg));
3360  DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
3361  __ Ret(USE_DELAY_SLOT);
3362  __ li(v0, Operand(Smi::FromInt(EQUAL)));
3363
3364  // Compare characters.
3365  __ bind(&compare_chars);
3366
3367  GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3368                                  v0, &strings_not_equal);
3369
3370  // Characters are equal.
3371  __ Ret(USE_DELAY_SLOT);
3372  __ li(v0, Operand(Smi::FromInt(EQUAL)));
3373}
3374
3375
3376void StringHelper::GenerateCompareFlatOneByteStrings(
3377    MacroAssembler* masm, Register left, Register right, Register scratch1,
3378    Register scratch2, Register scratch3, Register scratch4) {
3379  Label result_not_equal, compare_lengths;
3380  // Find minimum length and length difference.
3381  __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
3382  __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3383  __ Dsubu(scratch3, scratch1, Operand(scratch2));
3384  Register length_delta = scratch3;
3385  __ slt(scratch4, scratch2, scratch1);
3386  __ Movn(scratch1, scratch2, scratch4);
3387  Register min_length = scratch1;
3388  STATIC_ASSERT(kSmiTag == 0);
3389  __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
3390
3391  // Compare loop.
3392  GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3393                                  scratch4, v0, &result_not_equal);
3394
3395  // Compare lengths - strings up to min-length are equal.
3396  __ bind(&compare_lengths);
3397  DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3398  // Use length_delta as result if it's zero.
3399  __ mov(scratch2, length_delta);
3400  __ mov(scratch4, zero_reg);
3401  __ mov(v0, zero_reg);
3402
3403  __ bind(&result_not_equal);
3404  // Conditionally update the result based either on length_delta or
3405  // the last comparion performed in the loop above.
3406  Label ret;
3407  __ Branch(&ret, eq, scratch2, Operand(scratch4));
3408  __ li(v0, Operand(Smi::FromInt(GREATER)));
3409  __ Branch(&ret, gt, scratch2, Operand(scratch4));
3410  __ li(v0, Operand(Smi::FromInt(LESS)));
3411  __ bind(&ret);
3412  __ Ret();
3413}
3414
3415
3416void StringHelper::GenerateOneByteCharsCompareLoop(
3417    MacroAssembler* masm, Register left, Register right, Register length,
3418    Register scratch1, Register scratch2, Register scratch3,
3419    Label* chars_not_equal) {
3420  // Change index to run from -length to -1 by adding length to string
3421  // start. This means that loop ends when index reaches zero, which
3422  // doesn't need an additional compare.
3423  __ SmiUntag(length);
3424  __ Daddu(scratch1, length,
3425          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3426  __ Daddu(left, left, Operand(scratch1));
3427  __ Daddu(right, right, Operand(scratch1));
3428  __ Dsubu(length, zero_reg, length);
3429  Register index = length;  // index = -length;
3430
3431
3432  // Compare loop.
3433  Label loop;
3434  __ bind(&loop);
3435  __ Daddu(scratch3, left, index);
3436  __ lbu(scratch1, MemOperand(scratch3));
3437  __ Daddu(scratch3, right, index);
3438  __ lbu(scratch2, MemOperand(scratch3));
3439  __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
3440  __ Daddu(index, index, 1);
3441  __ Branch(&loop, ne, index, Operand(zero_reg));
3442}
3443
3444
3445void StringCompareStub::Generate(MacroAssembler* masm) {
3446  Label runtime;
3447
3448  Counters* counters = isolate()->counters();
3449
3450  // Stack frame on entry.
3451  //  sp[0]: right string
3452  //  sp[4]: left string
3453  __ ld(a1, MemOperand(sp, 1 * kPointerSize));  // Left.
3454  __ ld(a0, MemOperand(sp, 0 * kPointerSize));  // Right.
3455
3456  Label not_same;
3457  __ Branch(&not_same, ne, a0, Operand(a1));
3458  STATIC_ASSERT(EQUAL == 0);
3459  STATIC_ASSERT(kSmiTag == 0);
3460  __ li(v0, Operand(Smi::FromInt(EQUAL)));
3461  __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
3462  __ DropAndRet(2);
3463
3464  __ bind(&not_same);
3465
3466  // Check that both objects are sequential one_byte strings.
3467  __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
3468
3469  // Compare flat one_byte strings natively. Remove arguments from stack first.
3470  __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
3471  __ Daddu(sp, sp, Operand(2 * kPointerSize));
3472  StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, a4, a5);
3473
3474  __ bind(&runtime);
3475  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3476}
3477
3478
3479void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3480  // ----------- S t a t e -------------
3481  //  -- a1    : left
3482  //  -- a0    : right
3483  //  -- ra    : return address
3484  // -----------------------------------
3485
3486  // Load a2 with the allocation site. We stick an undefined dummy value here
3487  // and replace it with the real allocation site later when we instantiate this
3488  // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3489  __ li(a2, handle(isolate()->heap()->undefined_value()));
3490
3491  // Make sure that we actually patched the allocation site.
3492  if (FLAG_debug_code) {
3493    __ And(at, a2, Operand(kSmiTagMask));
3494    __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
3495    __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
3496    __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3497    __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
3498  }
3499
3500  // Tail call into the stub that handles binary operations with allocation
3501  // sites.
3502  BinaryOpWithAllocationSiteStub stub(isolate(), state());
3503  __ TailCallStub(&stub);
3504}
3505
3506
3507void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3508  DCHECK(state() == CompareICState::SMI);
3509  Label miss;
3510  __ Or(a2, a1, a0);
3511  __ JumpIfNotSmi(a2, &miss);
3512
3513  if (GetCondition() == eq) {
3514    // For equality we do not care about the sign of the result.
3515    __ Ret(USE_DELAY_SLOT);
3516    __ Dsubu(v0, a0, a1);
3517  } else {
3518    // Untag before subtracting to avoid handling overflow.
3519    __ SmiUntag(a1);
3520    __ SmiUntag(a0);
3521    __ Ret(USE_DELAY_SLOT);
3522    __ Dsubu(v0, a1, a0);
3523  }
3524
3525  __ bind(&miss);
3526  GenerateMiss(masm);
3527}
3528
3529
3530void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3531  DCHECK(state() == CompareICState::NUMBER);
3532
3533  Label generic_stub;
3534  Label unordered, maybe_undefined1, maybe_undefined2;
3535  Label miss;
3536
3537  if (left() == CompareICState::SMI) {
3538    __ JumpIfNotSmi(a1, &miss);
3539  }
3540  if (right() == CompareICState::SMI) {
3541    __ JumpIfNotSmi(a0, &miss);
3542  }
3543
3544  // Inlining the double comparison and falling back to the general compare
3545  // stub if NaN is involved.
3546  // Load left and right operand.
3547  Label done, left, left_smi, right_smi;
3548  __ JumpIfSmi(a0, &right_smi);
3549  __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3550              DONT_DO_SMI_CHECK);
3551  __ Dsubu(a2, a0, Operand(kHeapObjectTag));
3552  __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
3553  __ Branch(&left);
3554  __ bind(&right_smi);
3555  __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
3556  FPURegister single_scratch = f6;
3557  __ mtc1(a2, single_scratch);
3558  __ cvt_d_w(f2, single_scratch);
3559
3560  __ bind(&left);
3561  __ JumpIfSmi(a1, &left_smi);
3562  __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3563              DONT_DO_SMI_CHECK);
3564  __ Dsubu(a2, a1, Operand(kHeapObjectTag));
3565  __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
3566  __ Branch(&done);
3567  __ bind(&left_smi);
3568  __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
3569  single_scratch = f8;
3570  __ mtc1(a2, single_scratch);
3571  __ cvt_d_w(f0, single_scratch);
3572
3573  __ bind(&done);
3574
3575  // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
3576  Label fpu_eq, fpu_lt;
3577  // Test if equal, and also handle the unordered/NaN case.
3578  __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
3579
3580  // Test if less (unordered case is already handled).
3581  __ BranchF(&fpu_lt, NULL, lt, f0, f2);
3582
3583  // Otherwise it's greater, so just fall thru, and return.
3584  DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
3585  __ Ret(USE_DELAY_SLOT);
3586  __ li(v0, Operand(GREATER));
3587
3588  __ bind(&fpu_eq);
3589  __ Ret(USE_DELAY_SLOT);
3590  __ li(v0, Operand(EQUAL));
3591
3592  __ bind(&fpu_lt);
3593  __ Ret(USE_DELAY_SLOT);
3594  __ li(v0, Operand(LESS));
3595
3596  __ bind(&unordered);
3597  __ bind(&generic_stub);
3598  CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3599                     CompareICState::GENERIC, CompareICState::GENERIC);
3600  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3601
3602  __ bind(&maybe_undefined1);
3603  if (Token::IsOrderedRelationalCompareOp(op())) {
3604    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3605    __ Branch(&miss, ne, a0, Operand(at));
3606    __ JumpIfSmi(a1, &unordered);
3607    __ GetObjectType(a1, a2, a2);
3608    __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
3609    __ jmp(&unordered);
3610  }
3611
3612  __ bind(&maybe_undefined2);
3613  if (Token::IsOrderedRelationalCompareOp(op())) {
3614    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3615    __ Branch(&unordered, eq, a1, Operand(at));
3616  }
3617
3618  __ bind(&miss);
3619  GenerateMiss(masm);
3620}
3621
3622
3623void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3624  DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3625  Label miss;
3626
3627  // Registers containing left and right operands respectively.
3628  Register left = a1;
3629  Register right = a0;
3630  Register tmp1 = a2;
3631  Register tmp2 = a3;
3632
3633  // Check that both operands are heap objects.
3634  __ JumpIfEitherSmi(left, right, &miss);
3635
3636  // Check that both operands are internalized strings.
3637  __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3638  __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3639  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3640  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3641  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3642  __ Or(tmp1, tmp1, Operand(tmp2));
3643  __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3644  __ Branch(&miss, ne, at, Operand(zero_reg));
3645
3646  // Make sure a0 is non-zero. At this point input operands are
3647  // guaranteed to be non-zero.
3648  DCHECK(right.is(a0));
3649  STATIC_ASSERT(EQUAL == 0);
3650  STATIC_ASSERT(kSmiTag == 0);
3651  __ mov(v0, right);
3652  // Internalized strings are compared by identity.
3653  __ Ret(ne, left, Operand(right));
3654  DCHECK(is_int16(EQUAL));
3655  __ Ret(USE_DELAY_SLOT);
3656  __ li(v0, Operand(Smi::FromInt(EQUAL)));
3657
3658  __ bind(&miss);
3659  GenerateMiss(masm);
3660}
3661
3662
3663void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3664  DCHECK(state() == CompareICState::UNIQUE_NAME);
3665  DCHECK(GetCondition() == eq);
3666  Label miss;
3667
3668  // Registers containing left and right operands respectively.
3669  Register left = a1;
3670  Register right = a0;
3671  Register tmp1 = a2;
3672  Register tmp2 = a3;
3673
3674  // Check that both operands are heap objects.
3675  __ JumpIfEitherSmi(left, right, &miss);
3676
3677  // Check that both operands are unique names. This leaves the instance
3678  // types loaded in tmp1 and tmp2.
3679  __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3680  __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3681  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3682  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3683
3684  __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3685  __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3686
3687  // Use a0 as result
3688  __ mov(v0, a0);
3689
3690  // Unique names are compared by identity.
3691  Label done;
3692  __ Branch(&done, ne, left, Operand(right));
3693  // Make sure a0 is non-zero. At this point input operands are
3694  // guaranteed to be non-zero.
3695  DCHECK(right.is(a0));
3696  STATIC_ASSERT(EQUAL == 0);
3697  STATIC_ASSERT(kSmiTag == 0);
3698  __ li(v0, Operand(Smi::FromInt(EQUAL)));
3699  __ bind(&done);
3700  __ Ret();
3701
3702  __ bind(&miss);
3703  GenerateMiss(masm);
3704}
3705
3706
3707void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3708  DCHECK(state() == CompareICState::STRING);
3709  Label miss;
3710
3711  bool equality = Token::IsEqualityOp(op());
3712
3713  // Registers containing left and right operands respectively.
3714  Register left = a1;
3715  Register right = a0;
3716  Register tmp1 = a2;
3717  Register tmp2 = a3;
3718  Register tmp3 = a4;
3719  Register tmp4 = a5;
3720  Register tmp5 = a6;
3721
3722  // Check that both operands are heap objects.
3723  __ JumpIfEitherSmi(left, right, &miss);
3724
3725  // Check that both operands are strings. This leaves the instance
3726  // types loaded in tmp1 and tmp2.
3727  __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3728  __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3729  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3730  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3731  STATIC_ASSERT(kNotStringTag != 0);
3732  __ Or(tmp3, tmp1, tmp2);
3733  __ And(tmp5, tmp3, Operand(kIsNotStringMask));
3734  __ Branch(&miss, ne, tmp5, Operand(zero_reg));
3735
3736  // Fast check for identical strings.
3737  Label left_ne_right;
3738  STATIC_ASSERT(EQUAL == 0);
3739  STATIC_ASSERT(kSmiTag == 0);
3740  __ Branch(&left_ne_right, ne, left, Operand(right));
3741  __ Ret(USE_DELAY_SLOT);
3742  __ mov(v0, zero_reg);  // In the delay slot.
3743  __ bind(&left_ne_right);
3744
3745  // Handle not identical strings.
3746
3747  // Check that both strings are internalized strings. If they are, we're done
3748  // because we already know they are not identical. We know they are both
3749  // strings.
3750  if (equality) {
3751    DCHECK(GetCondition() == eq);
3752    STATIC_ASSERT(kInternalizedTag == 0);
3753    __ Or(tmp3, tmp1, Operand(tmp2));
3754    __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
3755    Label is_symbol;
3756    __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
3757    // Make sure a0 is non-zero. At this point input operands are
3758    // guaranteed to be non-zero.
3759    DCHECK(right.is(a0));
3760    __ Ret(USE_DELAY_SLOT);
3761    __ mov(v0, a0);  // In the delay slot.
3762    __ bind(&is_symbol);
3763  }
3764
3765  // Check that both strings are sequential one_byte.
3766  Label runtime;
3767  __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3768                                                    &runtime);
3769
3770  // Compare flat one_byte strings. Returns when done.
3771  if (equality) {
3772    StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3773                                                  tmp3);
3774  } else {
3775    StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3776                                                    tmp2, tmp3, tmp4);
3777  }
3778
3779  // Handle more complex cases in runtime.
3780  __ bind(&runtime);
3781  __ Push(left, right);
3782  if (equality) {
3783    __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3784  } else {
3785    __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3786  }
3787
3788  __ bind(&miss);
3789  GenerateMiss(masm);
3790}
3791
3792
3793void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3794  DCHECK(state() == CompareICState::OBJECT);
3795  Label miss;
3796  __ And(a2, a1, Operand(a0));
3797  __ JumpIfSmi(a2, &miss);
3798
3799  __ GetObjectType(a0, a2, a2);
3800  __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
3801  __ GetObjectType(a1, a2, a2);
3802  __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
3803
3804  DCHECK(GetCondition() == eq);
3805  __ Ret(USE_DELAY_SLOT);
3806  __ dsubu(v0, a0, a1);
3807
3808  __ bind(&miss);
3809  GenerateMiss(masm);
3810}
3811
3812
3813void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3814  Label miss;
3815  __ And(a2, a1, a0);
3816  __ JumpIfSmi(a2, &miss);
3817  __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
3818  __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
3819  __ Branch(&miss, ne, a2, Operand(known_map_));
3820  __ Branch(&miss, ne, a3, Operand(known_map_));
3821
3822  __ Ret(USE_DELAY_SLOT);
3823  __ dsubu(v0, a0, a1);
3824
3825  __ bind(&miss);
3826  GenerateMiss(masm);
3827}
3828
3829
3830void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3831  {
3832    // Call the runtime system in a fresh internal frame.
3833    ExternalReference miss =
3834        ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3835    FrameScope scope(masm, StackFrame::INTERNAL);
3836    __ Push(a1, a0);
3837    __ Push(ra, a1, a0);
3838    __ li(a4, Operand(Smi::FromInt(op())));
3839    __ daddiu(sp, sp, -kPointerSize);
3840    __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
3841    __ sd(a4, MemOperand(sp));  // In the delay slot.
3842    // Compute the entry point of the rewritten stub.
3843    __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
3844    // Restore registers.
3845    __ Pop(a1, a0, ra);
3846  }
3847  __ Jump(a2);
3848}
3849
3850
3851void DirectCEntryStub::Generate(MacroAssembler* masm) {
3852  // Make place for arguments to fit C calling convention. Most of the callers
3853  // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
3854  // so they handle stack restoring and we don't have to do that here.
3855  // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
3856  // kCArgsSlotsSize stack space after the call.
3857  __ daddiu(sp, sp, -kCArgsSlotsSize);
3858  // Place the return address on the stack, making the call
3859  // GC safe. The RegExp backend also relies on this.
3860  __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
3861  __ Call(t9);  // Call the C++ function.
3862  __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
3863
3864  if (FLAG_debug_code && FLAG_enable_slow_asserts) {
3865    // In case of an error the return address may point to a memory area
3866    // filled with kZapValue by the GC.
3867    // Dereference the address and check for this.
3868    __ Uld(a4, MemOperand(t9));
3869    __ Assert(ne, kReceivedInvalidReturnAddress, a4,
3870        Operand(reinterpret_cast<uint64_t>(kZapValue)));
3871  }
3872  __ Jump(t9);
3873}
3874
3875
3876void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3877                                    Register target) {
3878  intptr_t loc =
3879      reinterpret_cast<intptr_t>(GetCode().location());
3880  __ Move(t9, target);
3881  __ li(ra, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
3882  __ Call(ra);
3883}
3884
3885
3886void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3887                                                      Label* miss,
3888                                                      Label* done,
3889                                                      Register receiver,
3890                                                      Register properties,
3891                                                      Handle<Name> name,
3892                                                      Register scratch0) {
3893  DCHECK(name->IsUniqueName());
3894  // If names of slots in range from 1 to kProbes - 1 for the hash value are
3895  // not equal to the name and kProbes-th slot is not used (its name is the
3896  // undefined value), it guarantees the hash table doesn't contain the
3897  // property. It's true even if some slots represent deleted properties
3898  // (their names are the hole value).
3899  for (int i = 0; i < kInlinedProbes; i++) {
3900    // scratch0 points to properties hash.
3901    // Compute the masked index: (hash + i + i * i) & mask.
3902    Register index = scratch0;
3903    // Capacity is smi 2^n.
3904    __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
3905    __ Dsubu(index, index, Operand(1));
3906    __ And(index, index,
3907           Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
3908
3909    // Scale the index by multiplying by the entry size.
3910    DCHECK(NameDictionary::kEntrySize == 3);
3911    __ dsll(at, index, 1);
3912    __ Daddu(index, index, at);  // index *= 3.
3913
3914    Register entity_name = scratch0;
3915    // Having undefined at this place means the name is not contained.
3916    DCHECK_EQ(kSmiTagSize, 1);
3917    Register tmp = properties;
3918
3919    __ dsll(scratch0, index, kPointerSizeLog2);
3920    __ Daddu(tmp, properties, scratch0);
3921    __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3922
3923    DCHECK(!tmp.is(entity_name));
3924    __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3925    __ Branch(done, eq, entity_name, Operand(tmp));
3926
3927    // Load the hole ready for use below:
3928    __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3929
3930    // Stop if found the property.
3931    __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
3932
3933    Label good;
3934    __ Branch(&good, eq, entity_name, Operand(tmp));
3935
3936    // Check if the entry name is not a unique name.
3937    __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3938    __ lbu(entity_name,
3939           FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3940    __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3941    __ bind(&good);
3942
3943    // Restore the properties.
3944    __ ld(properties,
3945          FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3946  }
3947
3948  const int spill_mask =
3949      (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
3950       a2.bit() | a1.bit() | a0.bit() | v0.bit());
3951
3952  __ MultiPush(spill_mask);
3953  __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3954  __ li(a1, Operand(Handle<Name>(name)));
3955  NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3956  __ CallStub(&stub);
3957  __ mov(at, v0);
3958  __ MultiPop(spill_mask);
3959
3960  __ Branch(done, eq, at, Operand(zero_reg));
3961  __ Branch(miss, ne, at, Operand(zero_reg));
3962}
3963
3964
3965// Probe the name dictionary in the |elements| register. Jump to the
3966// |done| label if a property with the given name is found. Jump to
3967// the |miss| label otherwise.
3968// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3969void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3970                                                      Label* miss,
3971                                                      Label* done,
3972                                                      Register elements,
3973                                                      Register name,
3974                                                      Register scratch1,
3975                                                      Register scratch2) {
3976  DCHECK(!elements.is(scratch1));
3977  DCHECK(!elements.is(scratch2));
3978  DCHECK(!name.is(scratch1));
3979  DCHECK(!name.is(scratch2));
3980
3981  __ AssertName(name);
3982
3983  // Compute the capacity mask.
3984  __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
3985  __ SmiUntag(scratch1);
3986  __ Dsubu(scratch1, scratch1, Operand(1));
3987
3988  // Generate an unrolled loop that performs a few probes before
3989  // giving up. Measurements done on Gmail indicate that 2 probes
3990  // cover ~93% of loads from dictionaries.
3991  for (int i = 0; i < kInlinedProbes; i++) {
3992    // Compute the masked index: (hash + i + i * i) & mask.
3993    __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3994    if (i > 0) {
3995      // Add the probe offset (i + i * i) left shifted to avoid right shifting
3996      // the hash in a separate instruction. The value hash + i + i * i is right
3997      // shifted in the following and instruction.
3998      DCHECK(NameDictionary::GetProbeOffset(i) <
3999             1 << (32 - Name::kHashFieldOffset));
4000      __ Daddu(scratch2, scratch2, Operand(
4001          NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4002    }
4003    __ dsrl(scratch2, scratch2, Name::kHashShift);
4004    __ And(scratch2, scratch1, scratch2);
4005
4006    // Scale the index by multiplying by the element size.
4007    DCHECK(NameDictionary::kEntrySize == 3);
4008    // scratch2 = scratch2 * 3.
4009
4010    __ dsll(at, scratch2, 1);
4011    __ Daddu(scratch2, scratch2, at);
4012
4013    // Check if the key is identical to the name.
4014    __ dsll(at, scratch2, kPointerSizeLog2);
4015    __ Daddu(scratch2, elements, at);
4016    __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
4017    __ Branch(done, eq, name, Operand(at));
4018  }
4019
4020  const int spill_mask =
4021      (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
4022       a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
4023      ~(scratch1.bit() | scratch2.bit());
4024
4025  __ MultiPush(spill_mask);
4026  if (name.is(a0)) {
4027    DCHECK(!elements.is(a1));
4028    __ Move(a1, name);
4029    __ Move(a0, elements);
4030  } else {
4031    __ Move(a0, elements);
4032    __ Move(a1, name);
4033  }
4034  NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4035  __ CallStub(&stub);
4036  __ mov(scratch2, a2);
4037  __ mov(at, v0);
4038  __ MultiPop(spill_mask);
4039
4040  __ Branch(done, ne, at, Operand(zero_reg));
4041  __ Branch(miss, eq, at, Operand(zero_reg));
4042}
4043
4044
4045void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4046  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
4047  // we cannot call anything that could cause a GC from this stub.
4048  // Registers:
4049  //  result: NameDictionary to probe
4050  //  a1: key
4051  //  dictionary: NameDictionary to probe.
4052  //  index: will hold an index of entry if lookup is successful.
4053  //         might alias with result_.
4054  // Returns:
4055  //  result_ is zero if lookup failed, non zero otherwise.
4056
4057  Register result = v0;
4058  Register dictionary = a0;
4059  Register key = a1;
4060  Register index = a2;
4061  Register mask = a3;
4062  Register hash = a4;
4063  Register undefined = a5;
4064  Register entry_key = a6;
4065
4066  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4067
4068  __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
4069  __ SmiUntag(mask);
4070  __ Dsubu(mask, mask, Operand(1));
4071
4072  __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4073
4074  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4075
4076  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4077    // Compute the masked index: (hash + i + i * i) & mask.
4078    // Capacity is smi 2^n.
4079    if (i > 0) {
4080      // Add the probe offset (i + i * i) left shifted to avoid right shifting
4081      // the hash in a separate instruction. The value hash + i + i * i is right
4082      // shifted in the following and instruction.
4083      DCHECK(NameDictionary::GetProbeOffset(i) <
4084             1 << (32 - Name::kHashFieldOffset));
4085      __ Daddu(index, hash, Operand(
4086          NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4087    } else {
4088      __ mov(index, hash);
4089    }
4090    __ dsrl(index, index, Name::kHashShift);
4091    __ And(index, mask, index);
4092
4093    // Scale the index by multiplying by the entry size.
4094    DCHECK(NameDictionary::kEntrySize == 3);
4095    // index *= 3.
4096    __ mov(at, index);
4097    __ dsll(index, index, 1);
4098    __ Daddu(index, index, at);
4099
4100
4101    DCHECK_EQ(kSmiTagSize, 1);
4102    __ dsll(index, index, kPointerSizeLog2);
4103    __ Daddu(index, index, dictionary);
4104    __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
4105
4106    // Having undefined at this place means the name is not contained.
4107    __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
4108
4109    // Stop if found the property.
4110    __ Branch(&in_dictionary, eq, entry_key, Operand(key));
4111
4112    if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4113      // Check if the entry name is not a unique name.
4114      __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4115      __ lbu(entry_key,
4116             FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4117      __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4118    }
4119  }
4120
4121  __ bind(&maybe_in_dictionary);
4122  // If we are doing negative lookup then probing failure should be
4123  // treated as a lookup success. For positive lookup probing failure
4124  // should be treated as lookup failure.
4125  if (mode() == POSITIVE_LOOKUP) {
4126    __ Ret(USE_DELAY_SLOT);
4127    __ mov(result, zero_reg);
4128  }
4129
4130  __ bind(&in_dictionary);
4131  __ Ret(USE_DELAY_SLOT);
4132  __ li(result, 1);
4133
4134  __ bind(&not_in_dictionary);
4135  __ Ret(USE_DELAY_SLOT);
4136  __ mov(result, zero_reg);
4137}
4138
4139
4140void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4141    Isolate* isolate) {
4142  StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4143  stub1.GetCode();
4144  // Hydrogen code stubs need stub2 at snapshot time.
4145  StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4146  stub2.GetCode();
4147}
4148
4149
4150// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
4151// the value has just been written into the object, now this stub makes sure
4152// we keep the GC informed.  The word in the object where the value has been
4153// written is in the address register.
4154void RecordWriteStub::Generate(MacroAssembler* masm) {
4155  Label skip_to_incremental_noncompacting;
4156  Label skip_to_incremental_compacting;
4157
4158  // The first two branch+nop instructions are generated with labels so as to
4159  // get the offset fixed up correctly by the bind(Label*) call.  We patch it
4160  // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
4161  // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
4162  // incremental heap marking.
4163  // See RecordWriteStub::Patch for details.
4164  __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
4165  __ nop();
4166  __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
4167  __ nop();
4168
4169  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4170    __ RememberedSetHelper(object(),
4171                           address(),
4172                           value(),
4173                           save_fp_regs_mode(),
4174                           MacroAssembler::kReturnAtEnd);
4175  }
4176  __ Ret();
4177
4178  __ bind(&skip_to_incremental_noncompacting);
4179  GenerateIncremental(masm, INCREMENTAL);
4180
4181  __ bind(&skip_to_incremental_compacting);
4182  GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4183
4184  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4185  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4186
4187  PatchBranchIntoNop(masm, 0);
4188  PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
4189}
4190
4191
4192void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4193  regs_.Save(masm);
4194
4195  if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4196    Label dont_need_remembered_set;
4197
4198    __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4199    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
4200                           regs_.scratch0(),
4201                           &dont_need_remembered_set);
4202
4203    __ CheckPageFlag(regs_.object(),
4204                     regs_.scratch0(),
4205                     1 << MemoryChunk::SCAN_ON_SCAVENGE,
4206                     ne,
4207                     &dont_need_remembered_set);
4208
4209    // First notify the incremental marker if necessary, then update the
4210    // remembered set.
4211    CheckNeedsToInformIncrementalMarker(
4212        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4213    InformIncrementalMarker(masm);
4214    regs_.Restore(masm);
4215    __ RememberedSetHelper(object(),
4216                           address(),
4217                           value(),
4218                           save_fp_regs_mode(),
4219                           MacroAssembler::kReturnAtEnd);
4220
4221    __ bind(&dont_need_remembered_set);
4222  }
4223
4224  CheckNeedsToInformIncrementalMarker(
4225      masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4226  InformIncrementalMarker(masm);
4227  regs_.Restore(masm);
4228  __ Ret();
4229}
4230
4231
4232void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4233  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4234  int argument_count = 3;
4235  __ PrepareCallCFunction(argument_count, regs_.scratch0());
4236  Register address =
4237      a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4238  DCHECK(!address.is(regs_.object()));
4239  DCHECK(!address.is(a0));
4240  __ Move(address, regs_.address());
4241  __ Move(a0, regs_.object());
4242  __ Move(a1, address);
4243  __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4244
4245  AllowExternalCallThatCantCauseGC scope(masm);
4246  __ CallCFunction(
4247      ExternalReference::incremental_marking_record_write_function(isolate()),
4248      argument_count);
4249  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4250}
4251
4252
4253void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4254    MacroAssembler* masm,
4255    OnNoNeedToInformIncrementalMarker on_no_need,
4256    Mode mode) {
4257  Label on_black;
4258  Label need_incremental;
4259  Label need_incremental_pop_scratch;
4260
4261  __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4262  __ ld(regs_.scratch1(),
4263        MemOperand(regs_.scratch0(),
4264                   MemoryChunk::kWriteBarrierCounterOffset));
4265  __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
4266  __ sd(regs_.scratch1(),
4267         MemOperand(regs_.scratch0(),
4268                    MemoryChunk::kWriteBarrierCounterOffset));
4269  __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
4270
4271  // Let's look at the color of the object:  If it is not black we don't have
4272  // to inform the incremental marker.
4273  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4274
4275  regs_.Restore(masm);
4276  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4277    __ RememberedSetHelper(object(),
4278                           address(),
4279                           value(),
4280                           save_fp_regs_mode(),
4281                           MacroAssembler::kReturnAtEnd);
4282  } else {
4283    __ Ret();
4284  }
4285
4286  __ bind(&on_black);
4287
4288  // Get the value from the slot.
4289  __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4290
4291  if (mode == INCREMENTAL_COMPACTION) {
4292    Label ensure_not_white;
4293
4294    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
4295                     regs_.scratch1(),  // Scratch.
4296                     MemoryChunk::kEvacuationCandidateMask,
4297                     eq,
4298                     &ensure_not_white);
4299
4300    __ CheckPageFlag(regs_.object(),
4301                     regs_.scratch1(),  // Scratch.
4302                     MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4303                     eq,
4304                     &need_incremental);
4305
4306    __ bind(&ensure_not_white);
4307  }
4308
4309  // We need extra registers for this, so we push the object and the address
4310  // register temporarily.
4311  __ Push(regs_.object(), regs_.address());
4312  __ EnsureNotWhite(regs_.scratch0(),  // The value.
4313                    regs_.scratch1(),  // Scratch.
4314                    regs_.object(),  // Scratch.
4315                    regs_.address(),  // Scratch.
4316                    &need_incremental_pop_scratch);
4317  __ Pop(regs_.object(), regs_.address());
4318
4319  regs_.Restore(masm);
4320  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4321    __ RememberedSetHelper(object(),
4322                           address(),
4323                           value(),
4324                           save_fp_regs_mode(),
4325                           MacroAssembler::kReturnAtEnd);
4326  } else {
4327    __ Ret();
4328  }
4329
4330  __ bind(&need_incremental_pop_scratch);
4331  __ Pop(regs_.object(), regs_.address());
4332
4333  __ bind(&need_incremental);
4334
4335  // Fall through when we need to inform the incremental marker.
4336}
4337
4338
4339void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4340  // ----------- S t a t e -------------
4341  //  -- a0    : element value to store
4342  //  -- a3    : element index as smi
4343  //  -- sp[0] : array literal index in function as smi
4344  //  -- sp[4] : array literal
4345  // clobbers a1, a2, a4
4346  // -----------------------------------
4347
4348  Label element_done;
4349  Label double_elements;
4350  Label smi_element;
4351  Label slow_elements;
4352  Label fast_elements;
4353
4354  // Get array literal index, array literal and its map.
4355  __ ld(a4, MemOperand(sp, 0 * kPointerSize));
4356  __ ld(a1, MemOperand(sp, 1 * kPointerSize));
4357  __ ld(a2, FieldMemOperand(a1, JSObject::kMapOffset));
4358
4359  __ CheckFastElements(a2, a5, &double_elements);
4360  // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4361  __ JumpIfSmi(a0, &smi_element);
4362  __ CheckFastSmiElements(a2, a5, &fast_elements);
4363
4364  // Store into the array literal requires a elements transition. Call into
4365  // the runtime.
4366  __ bind(&slow_elements);
4367  // call.
4368  __ Push(a1, a3, a0);
4369  __ ld(a5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4370  __ ld(a5, FieldMemOperand(a5, JSFunction::kLiteralsOffset));
4371  __ Push(a5, a4);
4372  __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4373
4374  // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4375  __ bind(&fast_elements);
4376  __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
4377  __ SmiScale(a6, a3, kPointerSizeLog2);
4378  __ Daddu(a6, a5, a6);
4379  __ Daddu(a6, a6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4380  __ sd(a0, MemOperand(a6, 0));
4381  // Update the write barrier for the array store.
4382  __ RecordWrite(a5, a6, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
4383                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4384  __ Ret(USE_DELAY_SLOT);
4385  __ mov(v0, a0);
4386
4387  // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4388  // and value is Smi.
4389  __ bind(&smi_element);
4390  __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
4391  __ SmiScale(a6, a3, kPointerSizeLog2);
4392  __ Daddu(a6, a5, a6);
4393  __ sd(a0, FieldMemOperand(a6, FixedArray::kHeaderSize));
4394  __ Ret(USE_DELAY_SLOT);
4395  __ mov(v0, a0);
4396
4397  // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4398  __ bind(&double_elements);
4399  __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
4400  __ StoreNumberToDoubleElements(a0, a3, a5, a7, t1, a2, &slow_elements);
4401  __ Ret(USE_DELAY_SLOT);
4402  __ mov(v0, a0);
4403}
4404
4405
4406void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4407  CEntryStub ces(isolate(), 1, kSaveFPRegs);
4408  __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4409  int parameter_count_offset =
4410      StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4411  __ ld(a1, MemOperand(fp, parameter_count_offset));
4412  if (function_mode() == JS_FUNCTION_STUB_MODE) {
4413    __ Daddu(a1, a1, Operand(1));
4414  }
4415  masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4416  __ dsll(a1, a1, kPointerSizeLog2);
4417  __ Ret(USE_DELAY_SLOT);
4418  __ Daddu(sp, sp, a1);
4419}
4420
4421
4422void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4423  EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4424  VectorLoadStub stub(isolate(), state());
4425  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4426}
4427
4428
4429void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4430  EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4431  VectorKeyedLoadStub stub(isolate());
4432  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4433}
4434
4435
4436void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4437  if (masm->isolate()->function_entry_hook() != NULL) {
4438    ProfileEntryHookStub stub(masm->isolate());
4439    __ push(ra);
4440    __ CallStub(&stub);
4441    __ pop(ra);
4442  }
4443}
4444
4445
4446void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4447  // The entry hook is a "push ra" instruction, followed by a call.
4448  // Note: on MIPS "push" is 2 instruction
4449  const int32_t kReturnAddressDistanceFromFunctionStart =
4450      Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
4451
4452  // This should contain all kJSCallerSaved registers.
4453  const RegList kSavedRegs =
4454     kJSCallerSaved |  // Caller saved registers.
4455     s5.bit();         // Saved stack pointer.
4456
4457  // We also save ra, so the count here is one higher than the mask indicates.
4458  const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4459
4460  // Save all caller-save registers as this may be called from anywhere.
4461  __ MultiPush(kSavedRegs | ra.bit());
4462
4463  // Compute the function's address for the first argument.
4464  __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
4465
4466  // The caller's return address is above the saved temporaries.
4467  // Grab that for the second argument to the hook.
4468  __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
4469
4470  // Align the stack if necessary.
4471  int frame_alignment = masm->ActivationFrameAlignment();
4472  if (frame_alignment > kPointerSize) {
4473    __ mov(s5, sp);
4474    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4475    __ And(sp, sp, Operand(-frame_alignment));
4476  }
4477
4478  __ Dsubu(sp, sp, kCArgsSlotsSize);
4479#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
4480  int64_t entry_hook =
4481      reinterpret_cast<int64_t>(isolate()->function_entry_hook());
4482  __ li(t9, Operand(entry_hook));
4483#else
4484  // Under the simulator we need to indirect the entry hook through a
4485  // trampoline function at a known address.
4486  // It additionally takes an isolate as a third parameter.
4487  __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4488
4489  ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4490  __ li(t9, Operand(ExternalReference(&dispatcher,
4491                                      ExternalReference::BUILTIN_CALL,
4492                                      isolate())));
4493#endif
4494  // Call C function through t9 to conform ABI for PIC.
4495  __ Call(t9);
4496
4497  // Restore the stack pointer if needed.
4498  if (frame_alignment > kPointerSize) {
4499    __ mov(sp, s5);
4500  } else {
4501    __ Daddu(sp, sp, kCArgsSlotsSize);
4502  }
4503
4504  // Also pop ra to get Ret(0).
4505  __ MultiPop(kSavedRegs | ra.bit());
4506  __ Ret();
4507}
4508
4509
4510template<class T>
4511static void CreateArrayDispatch(MacroAssembler* masm,
4512                                AllocationSiteOverrideMode mode) {
4513  if (mode == DISABLE_ALLOCATION_SITES) {
4514    T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4515    __ TailCallStub(&stub);
4516  } else if (mode == DONT_OVERRIDE) {
4517    int last_index = GetSequenceIndexFromFastElementsKind(
4518        TERMINAL_FAST_ELEMENTS_KIND);
4519    for (int i = 0; i <= last_index; ++i) {
4520      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4521      T stub(masm->isolate(), kind);
4522      __ TailCallStub(&stub, eq, a3, Operand(kind));
4523    }
4524
4525    // If we reached this point there is a problem.
4526    __ Abort(kUnexpectedElementsKindInArrayConstructor);
4527  } else {
4528    UNREACHABLE();
4529  }
4530}
4531
4532
4533static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4534                                           AllocationSiteOverrideMode mode) {
4535  // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4536  // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4537  // a0 - number of arguments
4538  // a1 - constructor?
4539  // sp[0] - last argument
4540  Label normal_sequence;
4541  if (mode == DONT_OVERRIDE) {
4542    DCHECK(FAST_SMI_ELEMENTS == 0);
4543    DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4544    DCHECK(FAST_ELEMENTS == 2);
4545    DCHECK(FAST_HOLEY_ELEMENTS == 3);
4546    DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4547    DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4548
4549    // is the low bit set? If so, we are holey and that is good.
4550    __ And(at, a3, Operand(1));
4551    __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
4552  }
4553  // look at the first argument
4554  __ ld(a5, MemOperand(sp, 0));
4555  __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
4556
4557  if (mode == DISABLE_ALLOCATION_SITES) {
4558    ElementsKind initial = GetInitialFastElementsKind();
4559    ElementsKind holey_initial = GetHoleyElementsKind(initial);
4560
4561    ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4562                                                  holey_initial,
4563                                                  DISABLE_ALLOCATION_SITES);
4564    __ TailCallStub(&stub_holey);
4565
4566    __ bind(&normal_sequence);
4567    ArraySingleArgumentConstructorStub stub(masm->isolate(),
4568                                            initial,
4569                                            DISABLE_ALLOCATION_SITES);
4570    __ TailCallStub(&stub);
4571  } else if (mode == DONT_OVERRIDE) {
4572    // We are going to create a holey array, but our kind is non-holey.
4573    // Fix kind and retry (only if we have an allocation site in the slot).
4574    __ Daddu(a3, a3, Operand(1));
4575
4576    if (FLAG_debug_code) {
4577      __ ld(a5, FieldMemOperand(a2, 0));
4578      __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
4579      __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
4580    }
4581
4582    // Save the resulting elements kind in type info. We can't just store a3
4583    // in the AllocationSite::transition_info field because elements kind is
4584    // restricted to a portion of the field...upper bits need to be left alone.
4585    STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4586    __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4587    __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4588    __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4589
4590
4591    __ bind(&normal_sequence);
4592    int last_index = GetSequenceIndexFromFastElementsKind(
4593        TERMINAL_FAST_ELEMENTS_KIND);
4594    for (int i = 0; i <= last_index; ++i) {
4595      ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4596      ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4597      __ TailCallStub(&stub, eq, a3, Operand(kind));
4598    }
4599
4600    // If we reached this point there is a problem.
4601    __ Abort(kUnexpectedElementsKindInArrayConstructor);
4602  } else {
4603    UNREACHABLE();
4604  }
4605}
4606
4607
4608template<class T>
4609static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4610  int to_index = GetSequenceIndexFromFastElementsKind(
4611      TERMINAL_FAST_ELEMENTS_KIND);
4612  for (int i = 0; i <= to_index; ++i) {
4613    ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4614    T stub(isolate, kind);
4615    stub.GetCode();
4616    if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4617      T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4618      stub1.GetCode();
4619    }
4620  }
4621}
4622
4623
4624void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4625  ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4626      isolate);
4627  ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4628      isolate);
4629  ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4630      isolate);
4631}
4632
4633
4634void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4635    Isolate* isolate) {
4636  ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4637  for (int i = 0; i < 2; i++) {
4638    // For internal arrays we only need a few things.
4639    InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4640    stubh1.GetCode();
4641    InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4642    stubh2.GetCode();
4643    InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4644    stubh3.GetCode();
4645  }
4646}
4647
4648
4649void ArrayConstructorStub::GenerateDispatchToArrayStub(
4650    MacroAssembler* masm,
4651    AllocationSiteOverrideMode mode) {
4652  if (argument_count() == ANY) {
4653    Label not_zero_case, not_one_case;
4654    __ And(at, a0, a0);
4655    __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
4656    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4657
4658    __ bind(&not_zero_case);
4659    __ Branch(&not_one_case, gt, a0, Operand(1));
4660    CreateArrayDispatchOneArgument(masm, mode);
4661
4662    __ bind(&not_one_case);
4663    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4664  } else if (argument_count() == NONE) {
4665    CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4666  } else if (argument_count() == ONE) {
4667    CreateArrayDispatchOneArgument(masm, mode);
4668  } else if (argument_count() == MORE_THAN_ONE) {
4669    CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4670  } else {
4671    UNREACHABLE();
4672  }
4673}
4674
4675
4676void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4677  // ----------- S t a t e -------------
4678  //  -- a0 : argc (only if argument_count() == ANY)
4679  //  -- a1 : constructor
4680  //  -- a2 : AllocationSite or undefined
4681  //  -- sp[0] : return address
4682  //  -- sp[4] : last argument
4683  // -----------------------------------
4684
4685  if (FLAG_debug_code) {
4686    // The array construct code is only set for the global and natives
4687    // builtin Array functions which always have maps.
4688
4689    // Initial map for the builtin Array function should be a map.
4690    __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4691    // Will both indicate a NULL and a Smi.
4692    __ SmiTst(a4, at);
4693    __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4694        at, Operand(zero_reg));
4695    __ GetObjectType(a4, a4, a5);
4696    __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4697        a5, Operand(MAP_TYPE));
4698
4699    // We should either have undefined in a2 or a valid AllocationSite
4700    __ AssertUndefinedOrAllocationSite(a2, a4);
4701  }
4702
4703  Label no_info;
4704  // Get the elements kind and case on that.
4705  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4706  __ Branch(&no_info, eq, a2, Operand(at));
4707
4708  __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4709  __ SmiUntag(a3);
4710  STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4711  __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
4712  GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4713
4714  __ bind(&no_info);
4715  GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4716}
4717
4718
4719void InternalArrayConstructorStub::GenerateCase(
4720    MacroAssembler* masm, ElementsKind kind) {
4721
4722  InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4723  __ TailCallStub(&stub0, lo, a0, Operand(1));
4724
4725  InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4726  __ TailCallStub(&stubN, hi, a0, Operand(1));
4727
4728  if (IsFastPackedElementsKind(kind)) {
4729    // We might need to create a holey array
4730    // look at the first argument.
4731    __ ld(at, MemOperand(sp, 0));
4732
4733    InternalArraySingleArgumentConstructorStub
4734        stub1_holey(isolate(), GetHoleyElementsKind(kind));
4735    __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
4736  }
4737
4738  InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4739  __ TailCallStub(&stub1);
4740}
4741
4742
4743void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4744  // ----------- S t a t e -------------
4745  //  -- a0 : argc
4746  //  -- a1 : constructor
4747  //  -- sp[0] : return address
4748  //  -- sp[4] : last argument
4749  // -----------------------------------
4750
4751  if (FLAG_debug_code) {
4752    // The array construct code is only set for the global and natives
4753    // builtin Array functions which always have maps.
4754
4755    // Initial map for the builtin Array function should be a map.
4756    __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4757    // Will both indicate a NULL and a Smi.
4758    __ SmiTst(a3, at);
4759    __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4760        at, Operand(zero_reg));
4761    __ GetObjectType(a3, a3, a4);
4762    __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4763        a4, Operand(MAP_TYPE));
4764  }
4765
4766  // Figure out the right elements kind.
4767  __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4768
4769  // Load the map's "bit field 2" into a3. We only need the first byte,
4770  // but the following bit field extraction takes care of that anyway.
4771  __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
4772  // Retrieve elements_kind from bit field 2.
4773  __ DecodeField<Map::ElementsKindBits>(a3);
4774
4775  if (FLAG_debug_code) {
4776    Label done;
4777    __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
4778    __ Assert(
4779        eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
4780        a3, Operand(FAST_HOLEY_ELEMENTS));
4781    __ bind(&done);
4782  }
4783
4784  Label fast_elements_case;
4785  __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
4786  GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4787
4788  __ bind(&fast_elements_case);
4789  GenerateCase(masm, FAST_ELEMENTS);
4790}
4791
4792
4793void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4794  // ----------- S t a t e -------------
4795  //  -- a0                  : callee
4796  //  -- a4                  : call_data
4797  //  -- a2                  : holder
4798  //  -- a1                  : api_function_address
4799  //  -- cp                  : context
4800  //  --
4801  //  -- sp[0]               : last argument
4802  //  -- ...
4803  //  -- sp[(argc - 1)* 4]   : first argument
4804  //  -- sp[argc * 4]        : receiver
4805  // -----------------------------------
4806
4807  Register callee = a0;
4808  Register call_data = a4;
4809  Register holder = a2;
4810  Register api_function_address = a1;
4811  Register context = cp;
4812
4813  int argc = this->argc();
4814  bool is_store = this->is_store();
4815  bool call_data_undefined = this->call_data_undefined();
4816
4817  typedef FunctionCallbackArguments FCA;
4818
4819  STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4820  STATIC_ASSERT(FCA::kCalleeIndex == 5);
4821  STATIC_ASSERT(FCA::kDataIndex == 4);
4822  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4823  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4824  STATIC_ASSERT(FCA::kIsolateIndex == 1);
4825  STATIC_ASSERT(FCA::kHolderIndex == 0);
4826  STATIC_ASSERT(FCA::kArgsLength == 7);
4827
4828  // Save context, callee and call data.
4829  __ Push(context, callee, call_data);
4830  // Load context from callee.
4831  __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4832
4833  Register scratch = call_data;
4834  if (!call_data_undefined) {
4835    __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4836  }
4837  // Push return value and default return value.
4838  __ Push(scratch, scratch);
4839  __ li(scratch,
4840        Operand(ExternalReference::isolate_address(isolate())));
4841  // Push isolate and holder.
4842  __ Push(scratch, holder);
4843
4844  // Prepare arguments.
4845  __ mov(scratch, sp);
4846
4847  // Allocate the v8::Arguments structure in the arguments' space since
4848  // it's not controlled by GC.
4849  const int kApiStackSpace = 4;
4850
4851  FrameScope frame_scope(masm, StackFrame::MANUAL);
4852  __ EnterExitFrame(false, kApiStackSpace);
4853
4854  DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
4855  // a0 = FunctionCallbackInfo&
4856  // Arguments is after the return address.
4857  __ Daddu(a0, sp, Operand(1 * kPointerSize));
4858  // FunctionCallbackInfo::implicit_args_
4859  __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
4860  // FunctionCallbackInfo::values_
4861  __ Daddu(at, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4862  __ sd(at, MemOperand(a0, 1 * kPointerSize));
4863  // FunctionCallbackInfo::length_ = argc
4864  __ li(at, Operand(argc));
4865  __ sd(at, MemOperand(a0, 2 * kPointerSize));
4866  // FunctionCallbackInfo::is_construct_call = 0
4867  __ sd(zero_reg, MemOperand(a0, 3 * kPointerSize));
4868
4869  const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4870  ExternalReference thunk_ref =
4871      ExternalReference::invoke_function_callback(isolate());
4872
4873  AllowExternalCallThatCantCauseGC scope(masm);
4874  MemOperand context_restore_operand(
4875      fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4876  // Stores return the first js argument.
4877  int return_value_offset = 0;
4878  if (is_store) {
4879    return_value_offset = 2 + FCA::kArgsLength;
4880  } else {
4881    return_value_offset = 2 + FCA::kReturnValueOffset;
4882  }
4883  MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4884
4885  __ CallApiFunctionAndReturn(api_function_address,
4886                              thunk_ref,
4887                              kStackUnwindSpace,
4888                              return_value_operand,
4889                              &context_restore_operand);
4890}
4891
4892
4893void CallApiGetterStub::Generate(MacroAssembler* masm) {
4894  // ----------- S t a t e -------------
4895  //  -- sp[0]                  : name
4896  //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
4897  //  -- ...
4898  //  -- a2                     : api_function_address
4899  // -----------------------------------
4900
4901  Register api_function_address = ApiGetterDescriptor::function_address();
4902  DCHECK(api_function_address.is(a2));
4903
4904  __ mov(a0, sp);  // a0 = Handle<Name>
4905  __ Daddu(a1, a0, Operand(1 * kPointerSize));  // a1 = PCA
4906
4907  const int kApiStackSpace = 1;
4908  FrameScope frame_scope(masm, StackFrame::MANUAL);
4909  __ EnterExitFrame(false, kApiStackSpace);
4910
4911  // Create PropertyAccessorInfo instance on the stack above the exit frame with
4912  // a1 (internal::Object** args_) as the data.
4913  __ sd(a1, MemOperand(sp, 1 * kPointerSize));
4914  __ Daddu(a1, sp, Operand(1 * kPointerSize));  // a1 = AccessorInfo&
4915
4916  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4917
4918  ExternalReference thunk_ref =
4919      ExternalReference::invoke_accessor_getter_callback(isolate());
4920  __ CallApiFunctionAndReturn(api_function_address,
4921                              thunk_ref,
4922                              kStackUnwindSpace,
4923                              MemOperand(fp, 6 * kPointerSize),
4924                              NULL);
4925}
4926
4927
4928#undef __
4929
4930} }  // namespace v8::internal
4931
4932#endif  // V8_TARGET_ARCH_MIPS64
4933