1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_MIPS64
8
9#include "src/code-stubs.h"
10#include "src/log.h"
11#include "src/macro-assembler.h"
12#include "src/regexp-macro-assembler.h"
13#include "src/regexp-stack.h"
14#include "src/unicode.h"
15
16#include "src/mips64/regexp-macro-assembler-mips64.h"
17
18namespace v8 {
19namespace internal {
20
21#ifndef V8_INTERPRETED_REGEXP
22/*
23 * This assembler uses the following register assignment convention
24 * - t3 : Temporarily stores the index of capture start after a matching pass
25 *        for a global regexp.
26 * - a5 : Pointer to current code object (Code*) including heap object tag.
27 * - a6 : Current position in input, as negative offset from end of string.
28 *        Please notice that this is the byte offset, not the character offset!
29 * - a7 : Currently loaded character. Must be loaded using
30 *        LoadCurrentCharacter before using any of the dispatch methods.
31 * - t0 : Points to tip of backtrack stack
32 * - t1 : Unused.
33 * - t2 : End of input (points to byte after last character in input).
34 * - fp : Frame pointer. Used to access arguments, local variables and
35 *         RegExp registers.
36 * - sp : Points to tip of C stack.
37 *
38 * The remaining registers are free for computations.
39 * Each call to a public method should retain this convention.
40 *
41 * TODO(plind): O32 documented here with intent of having single 32/64 codebase
42 *              in the future.
43 *
44 * The O32 stack will have the following structure:
45 *
46 *  - fp[76]  Isolate* isolate   (address of the current isolate)
47 *  - fp[72]  direct_call  (if 1, direct call from JavaScript code,
48 *                          if 0, call through the runtime system).
49 *  - fp[68]  stack_area_base (High end of the memory area to use as
50 *                             backtracking stack).
51 *  - fp[64]  capture array size (may fit multiple sets of matches)
52 *  - fp[60]  int* capture_array (int[num_saved_registers_], for output).
53 *  - fp[44..59]  MIPS O32 four argument slots
54 *  - fp[40]  secondary link/return address used by native call.
55 *  --- sp when called ---
56 *  - fp[36]  return address      (lr).
57 *  - fp[32]  old frame pointer   (r11).
58 *  - fp[0..31]  backup of registers s0..s7.
59 *  --- frame pointer ----
60 *  - fp[-4]  end of input       (address of end of string).
61 *  - fp[-8]  start of input     (address of first character in string).
62 *  - fp[-12] start index        (character index of start).
63 *  - fp[-16] void* input_string (location of a handle containing the string).
64 *  - fp[-20] success counter    (only for global regexps to count matches).
65 *  - fp[-24] Offset of location before start of input (effectively character
66 *            position -1). Used to initialize capture registers to a
67 *            non-position.
68 *  - fp[-28] At start (if 1, we are starting at the start of the
69 *    string, otherwise 0)
70 *  - fp[-32] register 0         (Only positions must be stored in the first
71 *  -         register 1          num_saved_registers_ registers)
72 *  -         ...
73 *  -         register num_registers-1
74 *  --- sp ---
75 *
76 *
77 * The N64 stack will have the following structure:
78 *
79 *  - fp[88]  Isolate* isolate   (address of the current isolate)               kIsolate
80 *  - fp[80]  secondary link/return address used by exit frame on native call.  kSecondaryReturnAddress
81                                                                                kStackFrameHeader
82 *  --- sp when called ---
83 *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
84 *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
85 *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
86 *  --- frame pointer ----
87 *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
88 *  - fp[-16] stack_base         (Top of backtracking stack).                   kStackHighEnd
89 *  - fp[-24] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
90 *  - fp[-32] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
91 *  - fp[-40] end of input       (address of end of string).                    kInputEnd
92 *  - fp[-48] start of input     (address of first character in string).        kInputStart
93 *  - fp[-56] start index        (character index of start).                    kStartIndex
94 *  - fp[-64] void* input_string (location of a handle containing the string).  kInputString
95 *  - fp[-72] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
96 *  - fp[-80] Offset of location before start of input (effectively character   kInputStartMinusOne
97 *            position -1). Used to initialize capture registers to a
98 *            non-position.
99 *  --------- The following output registers are 32-bit values. ---------
100 *  - fp[-88] register 0         (Only positions must be stored in the first    kRegisterZero
101 *  -         register 1          num_saved_registers_ registers)
102 *  -         ...
103 *  -         register num_registers-1
104 *  --- sp ---
105 *
106 * The first num_saved_registers_ registers are initialized to point to
107 * "character -1" in the string (i.e., char_size() bytes before the first
108 * character of the string). The remaining registers start out as garbage.
109 *
110 * The data up to the return address must be placed there by the calling
111 * code and the remaining arguments are passed in registers, e.g. by calling the
112 * code entry as cast to a function with the signature:
113 * int (*match)(String* input_string,
114 *              int start_index,
115 *              Address start,
116 *              Address end,
117 *              Address secondary_return_address,  // Only used by native call.
118 *              int* capture_output_array,
119 *              byte* stack_area_base,
120 *              bool direct_call = false,
121 *              void* return_address,
122 *              Isolate* isolate);
123 * The call is performed by NativeRegExpMacroAssembler::Execute()
124 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
125 * in mips/simulator-mips.h.
126 * When calling as a non-direct call (i.e., from C++ code), the return address
127 * area is overwritten with the ra register by the RegExp code. When doing a
128 * direct call from generated code, the return address is placed there by
129 * the calling code, as in a normal exit frame.
130 */
131
132#define __ ACCESS_MASM(masm_)
133
134RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(
135    Mode mode,
136    int registers_to_save,
137    Zone* zone)
138    : NativeRegExpMacroAssembler(zone),
139      masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
140      mode_(mode),
141      num_registers_(registers_to_save),
142      num_saved_registers_(registers_to_save),
143      entry_label_(),
144      start_label_(),
145      success_label_(),
146      backtrack_label_(),
147      exit_label_(),
148      internal_failure_label_() {
149  DCHECK_EQ(0, registers_to_save % 2);
150  __ jmp(&entry_label_);   // We'll write the entry code later.
151  // If the code gets too big or corrupted, an internal exception will be
152  // raised, and we will exit right away.
153  __ bind(&internal_failure_label_);
154  __ li(v0, Operand(FAILURE));
155  __ Ret();
156  __ bind(&start_label_);  // And then continue from here.
157}
158
159
160RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
161  delete masm_;
162  // Unuse labels in case we throw away the assembler without calling GetCode.
163  entry_label_.Unuse();
164  start_label_.Unuse();
165  success_label_.Unuse();
166  backtrack_label_.Unuse();
167  exit_label_.Unuse();
168  check_preempt_label_.Unuse();
169  stack_overflow_label_.Unuse();
170  internal_failure_label_.Unuse();
171}
172
173
174int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
175  return RegExpStack::kStackLimitSlack;
176}
177
178
179void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
180  if (by != 0) {
181    __ Daddu(current_input_offset(),
182            current_input_offset(), Operand(by * char_size()));
183  }
184}
185
186
187void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
188  DCHECK(reg >= 0);
189  DCHECK(reg < num_registers_);
190  if (by != 0) {
191    __ ld(a0, register_location(reg));
192    __ Daddu(a0, a0, Operand(by));
193    __ sd(a0, register_location(reg));
194  }
195}
196
197
198void RegExpMacroAssemblerMIPS::Backtrack() {
199  CheckPreemption();
200  // Pop Code* offset from backtrack stack, add Code* and jump to location.
201  Pop(a0);
202  __ Daddu(a0, a0, code_pointer());
203  __ Jump(a0);
204}
205
206
207void RegExpMacroAssemblerMIPS::Bind(Label* label) {
208  __ bind(label);
209}
210
211
212void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
213  BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
214}
215
216
217void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
218  BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
219}
220
221
222void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
223  Label not_at_start;
224  // Did we start the match at the start of the string at all?
225  __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
226  BranchOrBacktrack(&not_at_start, ne, a0, Operand(zero_reg));
227
228  // If we did, are we still at the start of the input?
229  __ ld(a1, MemOperand(frame_pointer(), kInputStart));
230  __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
231  BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
232  __ bind(&not_at_start);
233}
234
235
236void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) {
237  // Did we start the match at the start of the string at all?
238  __ lw(a0, MemOperand(frame_pointer(), kStartIndex));
239  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg));
240  // If we did, are we still at the start of the input?
241  __ ld(a1, MemOperand(frame_pointer(), kInputStart));
242  __ Daddu(a0, end_of_input_address(), Operand(current_input_offset()));
243  BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
244}
245
246
247void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
248  BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
249}
250
251
252void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
253  Label backtrack_non_equal;
254  __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
255  __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
256  __ Daddu(backtrack_stackpointer(),
257          backtrack_stackpointer(),
258          Operand(kIntSize));
259  __ bind(&backtrack_non_equal);
260  BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
261}
262
263
264void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
265    int start_reg,
266    Label* on_no_match) {
267  Label fallthrough;
268  __ ld(a0, register_location(start_reg));  // Index of start of capture.
269  __ ld(a1, register_location(start_reg + 1));  // Index of end of capture.
270  __ Dsubu(a1, a1, a0);  // Length of capture.
271
272  // If length is zero, either the capture is empty or it is not participating.
273  // In either case succeed immediately.
274  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
275
276  __ Daddu(t1, a1, current_input_offset());
277  // Check that there are enough characters left in the input.
278  BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
279
280  if (mode_ == LATIN1) {
281    Label success;
282    Label fail;
283    Label loop_check;
284
285    // a0 - offset of start of capture.
286    // a1 - length of capture.
287    __ Daddu(a0, a0, Operand(end_of_input_address()));
288    __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
289    __ Daddu(a1, a0, Operand(a1));
290
291    // a0 - Address of start of capture.
292    // a1 - Address of end of capture.
293    // a2 - Address of current input position.
294
295    Label loop;
296    __ bind(&loop);
297    __ lbu(a3, MemOperand(a0, 0));
298    __ daddiu(a0, a0, char_size());
299    __ lbu(a4, MemOperand(a2, 0));
300    __ daddiu(a2, a2, char_size());
301
302    __ Branch(&loop_check, eq, a4, Operand(a3));
303
304    // Mismatch, try case-insensitive match (converting letters to lower-case).
305    __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
306    __ Or(a4, a4, Operand(0x20));  // Also convert input character.
307    __ Branch(&fail, ne, a4, Operand(a3));
308    __ Dsubu(a3, a3, Operand('a'));
309    __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
310    // Latin-1: Check for values in range [224,254] but not 247.
311    __ Dsubu(a3, a3, Operand(224 - 'a'));
312    // Weren't Latin-1 letters.
313    __ Branch(&fail, hi, a3, Operand(254 - 224));
314    // Check for 247.
315    __ Branch(&fail, eq, a3, Operand(247 - 224));
316
317    __ bind(&loop_check);
318    __ Branch(&loop, lt, a0, Operand(a1));
319    __ jmp(&success);
320
321    __ bind(&fail);
322    GoTo(on_no_match);
323
324    __ bind(&success);
325    // Compute new value of character position after the matched part.
326    __ Dsubu(current_input_offset(), a2, end_of_input_address());
327  } else {
328    DCHECK(mode_ == UC16);
329    // Put regexp engine registers on stack.
330    RegList regexp_registers_to_retain = current_input_offset().bit() |
331        current_character().bit() | backtrack_stackpointer().bit();
332    __ MultiPush(regexp_registers_to_retain);
333
334    int argument_count = 4;
335    __ PrepareCallCFunction(argument_count, a2);
336
337    // a0 - offset of start of capture.
338    // a1 - length of capture.
339
340    // Put arguments into arguments registers.
341    // Parameters are
342    //   a0: Address byte_offset1 - Address captured substring's start.
343    //   a1: Address byte_offset2 - Address of current character position.
344    //   a2: size_t byte_length - length of capture in bytes(!).
345    //   a3: Isolate* isolate.
346
347    // Address of start of capture.
348    __ Daddu(a0, a0, Operand(end_of_input_address()));
349    // Length of capture.
350    __ mov(a2, a1);
351    // Save length in callee-save register for use on return.
352    __ mov(s3, a1);
353    // Address of current input position.
354    __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
355    // Isolate.
356    __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
357
358    {
359      AllowExternalCallThatCantCauseGC scope(masm_);
360      ExternalReference function =
361          ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
362      __ CallCFunction(function, argument_count);
363    }
364
365    // Restore regexp engine registers.
366    __ MultiPop(regexp_registers_to_retain);
367    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
368    __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
369
370    // Check if function returned non-zero for success or zero for failure.
371    BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
372    // On success, increment position by length of capture.
373    __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
374  }
375
376  __ bind(&fallthrough);
377}
378
379
380void RegExpMacroAssemblerMIPS::CheckNotBackReference(
381    int start_reg,
382    Label* on_no_match) {
383  Label fallthrough;
384  Label success;
385
386  // Find length of back-referenced capture.
387  __ ld(a0, register_location(start_reg));
388  __ ld(a1, register_location(start_reg + 1));
389  __ Dsubu(a1, a1, a0);  // Length to check.
390  // Succeed on empty capture (including no capture).
391  __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
392
393  __ Daddu(t1, a1, current_input_offset());
394  // Check that there are enough characters left in the input.
395  BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
396
397  // Compute pointers to match string and capture string.
398  __ Daddu(a0, a0, Operand(end_of_input_address()));
399  __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
400  __ Daddu(a1, a1, Operand(a0));
401
402  Label loop;
403  __ bind(&loop);
404  if (mode_ == LATIN1) {
405    __ lbu(a3, MemOperand(a0, 0));
406    __ daddiu(a0, a0, char_size());
407    __ lbu(a4, MemOperand(a2, 0));
408    __ daddiu(a2, a2, char_size());
409  } else {
410    DCHECK(mode_ == UC16);
411    __ lhu(a3, MemOperand(a0, 0));
412    __ daddiu(a0, a0, char_size());
413    __ lhu(a4, MemOperand(a2, 0));
414    __ daddiu(a2, a2, char_size());
415  }
416  BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
417  __ Branch(&loop, lt, a0, Operand(a1));
418
419  // Move current character position to position after match.
420  __ Dsubu(current_input_offset(), a2, end_of_input_address());
421  __ bind(&fallthrough);
422}
423
424
425void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
426                                                 Label* on_not_equal) {
427  BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
428}
429
430
431void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
432                                                      uint32_t mask,
433                                                      Label* on_equal) {
434  __ And(a0, current_character(), Operand(mask));
435  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
436  BranchOrBacktrack(on_equal, eq, a0, rhs);
437}
438
439
440void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
441                                                         uint32_t mask,
442                                                         Label* on_not_equal) {
443  __ And(a0, current_character(), Operand(mask));
444  Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
445  BranchOrBacktrack(on_not_equal, ne, a0, rhs);
446}
447
448
449void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
450    uc16 c,
451    uc16 minus,
452    uc16 mask,
453    Label* on_not_equal) {
454  DCHECK(minus < String::kMaxUtf16CodeUnit);
455  __ Dsubu(a0, current_character(), Operand(minus));
456  __ And(a0, a0, Operand(mask));
457  BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
458}
459
460
461void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
462    uc16 from,
463    uc16 to,
464    Label* on_in_range) {
465  __ Dsubu(a0, current_character(), Operand(from));
466  // Unsigned lower-or-same condition.
467  BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
468}
469
470
471void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
472    uc16 from,
473    uc16 to,
474    Label* on_not_in_range) {
475  __ Dsubu(a0, current_character(), Operand(from));
476  // Unsigned higher condition.
477  BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
478}
479
480
481void RegExpMacroAssemblerMIPS::CheckBitInTable(
482    Handle<ByteArray> table,
483    Label* on_bit_set) {
484  __ li(a0, Operand(table));
485  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
486    __ And(a1, current_character(), Operand(kTableSize - 1));
487    __ Daddu(a0, a0, a1);
488  } else {
489    __ Daddu(a0, a0, current_character());
490  }
491
492  __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
493  BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
494}
495
496
497bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
498                                                          Label* on_no_match) {
499  // Range checks (c in min..max) are generally implemented by an unsigned
500  // (c - min) <= (max - min) check.
501  switch (type) {
502  case 's':
503    // Match space-characters.
504    if (mode_ == LATIN1) {
505      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
506      Label success;
507      __ Branch(&success, eq, current_character(), Operand(' '));
508      // Check range 0x09..0x0d.
509      __ Dsubu(a0, current_character(), Operand('\t'));
510      __ Branch(&success, ls, a0, Operand('\r' - '\t'));
511      // \u00a0 (NBSP).
512      BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
513      __ bind(&success);
514      return true;
515    }
516    return false;
517  case 'S':
518    // The emitted code for generic character classes is good enough.
519    return false;
520  case 'd':
521    // Match Latin1 digits ('0'..'9').
522    __ Dsubu(a0, current_character(), Operand('0'));
523    BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
524    return true;
525  case 'D':
526    // Match non Latin1-digits.
527    __ Dsubu(a0, current_character(), Operand('0'));
528    BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
529    return true;
530  case '.': {
531    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
532    __ Xor(a0, current_character(), Operand(0x01));
533    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
534    __ Dsubu(a0, a0, Operand(0x0b));
535    BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
536    if (mode_ == UC16) {
537      // Compare original value to 0x2028 and 0x2029, using the already
538      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
539      // 0x201d (0x2028 - 0x0b) or 0x201e.
540      __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
541      BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
542    }
543    return true;
544  }
545  case 'n': {
546    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
547    __ Xor(a0, current_character(), Operand(0x01));
548    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
549    __ Dsubu(a0, a0, Operand(0x0b));
550    if (mode_ == LATIN1) {
551      BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
552    } else {
553      Label done;
554      BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
555      // Compare original value to 0x2028 and 0x2029, using the already
556      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
557      // 0x201d (0x2028 - 0x0b) or 0x201e.
558      __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
559      BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
560      __ bind(&done);
561    }
562    return true;
563  }
564  case 'w': {
565    if (mode_ != LATIN1) {
566      // Table is 256 entries, so all Latin1 characters can be tested.
567      BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
568    }
569    ExternalReference map = ExternalReference::re_word_character_map();
570    __ li(a0, Operand(map));
571    __ Daddu(a0, a0, current_character());
572    __ lbu(a0, MemOperand(a0, 0));
573    BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
574    return true;
575  }
576  case 'W': {
577    Label done;
578    if (mode_ != LATIN1) {
579      // Table is 256 entries, so all Latin1 characters can be tested.
580      __ Branch(&done, hi, current_character(), Operand('z'));
581    }
582    ExternalReference map = ExternalReference::re_word_character_map();
583    __ li(a0, Operand(map));
584    __ Daddu(a0, a0, current_character());
585    __ lbu(a0, MemOperand(a0, 0));
586    BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
587    if (mode_ != LATIN1) {
588      __ bind(&done);
589    }
590    return true;
591  }
592  case '*':
593    // Match any character.
594    return true;
595  // No custom implementation (yet): s(UC16), S(UC16).
596  default:
597    return false;
598  }
599}
600
601
602void RegExpMacroAssemblerMIPS::Fail() {
603  __ li(v0, Operand(FAILURE));
604  __ jmp(&exit_label_);
605}
606
607
608Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
609  Label return_v0;
610  if (masm_->has_exception()) {
611    // If the code gets corrupted due to long regular expressions and lack of
612    // space on trampolines, an internal exception flag is set. If this case
613    // is detected, we will jump into exit sequence right away.
614    __ bind_to(&entry_label_, internal_failure_label_.pos());
615  } else {
616    // Finalize code - write the entry point code now we know how many
617    // registers we need.
618
619    // Entry code:
620    __ bind(&entry_label_);
621
622    // Tell the system that we have a stack frame.  Because the type is MANUAL,
623    // no is generated.
624    FrameScope scope(masm_, StackFrame::MANUAL);
625
626    // Actually emit code to start a new stack frame.
627    // Push arguments
628    // Save callee-save registers.
629    // Start new stack frame.
630    // Store link register in existing stack-cell.
631    // Order here should correspond to order of offset constants in header file.
632    // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
633    // or dont save.
634    RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
635        s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
636    RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
637
638    if (kMipsAbi == kN64) {
639      // TODO(plind): Should probably alias a4-a7, for clarity.
640      argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
641    }
642
643    __ MultiPush(argument_registers | registers_to_retain | ra.bit());
644    // Set frame pointer in space for it if this is not a direct call
645    // from generated code.
646    // TODO(plind): this 8 is the # of argument regs, should have definition.
647    __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
648    __ mov(a0, zero_reg);
649    __ push(a0);  // Make room for success counter and initialize it to 0.
650    __ push(a0);  // Make room for "position - 1" constant (value irrelevant).
651
652    // Check if we have space on the stack for registers.
653    Label stack_limit_hit;
654    Label stack_ok;
655
656    ExternalReference stack_limit =
657        ExternalReference::address_of_stack_limit(masm_->isolate());
658    __ li(a0, Operand(stack_limit));
659    __ ld(a0, MemOperand(a0));
660    __ Dsubu(a0, sp, a0);
661    // Handle it if the stack pointer is already below the stack limit.
662    __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
663    // Check if there is room for the variable number of registers above
664    // the stack limit.
665    __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
666    // Exit with OutOfMemory exception. There is not enough space on the stack
667    // for our working registers.
668    __ li(v0, Operand(EXCEPTION));
669    __ jmp(&return_v0);
670
671    __ bind(&stack_limit_hit);
672    CallCheckStackGuardState(a0);
673    // If returned value is non-zero, we exit with the returned value as result.
674    __ Branch(&return_v0, ne, v0, Operand(zero_reg));
675
676    __ bind(&stack_ok);
677    // Allocate space on stack for registers.
678    __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
679    // Load string end.
680    __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
681    // Load input start.
682    __ ld(a0, MemOperand(frame_pointer(), kInputStart));
683    // Find negative length (offset of start relative to end).
684    __ Dsubu(current_input_offset(), a0, end_of_input_address());
685    // Set a0 to address of char before start of the input string
686    // (effectively string position -1).
687    __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
688    __ Dsubu(a0, current_input_offset(), Operand(char_size()));
689    __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
690    __ Dsubu(a0, a0, t1);
691    // Store this value in a local variable, for use when clearing
692    // position registers.
693    __ sd(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
694
695    // Initialize code pointer register
696    __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
697
698    Label load_char_start_regexp, start_regexp;
699    // Load newline if index is at start, previous character otherwise.
700    __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
701    __ li(current_character(), Operand('\n'));
702    __ jmp(&start_regexp);
703
704    // Global regexp restarts matching here.
705    __ bind(&load_char_start_regexp);
706    // Load previous char as initial value of current character register.
707    LoadCurrentCharacterUnchecked(-1, 1);
708    __ bind(&start_regexp);
709
710    // Initialize on-stack registers.
711    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
712      // Fill saved registers with initial value = start offset - 1.
713      if (num_saved_registers_ > 8) {
714        // Address of register 0.
715        __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
716        __ li(a2, Operand(num_saved_registers_));
717        Label init_loop;
718        __ bind(&init_loop);
719        __ sd(a0, MemOperand(a1));
720        __ Daddu(a1, a1, Operand(-kPointerSize));
721        __ Dsubu(a2, a2, Operand(1));
722        __ Branch(&init_loop, ne, a2, Operand(zero_reg));
723      } else {
724        for (int i = 0; i < num_saved_registers_; i++) {
725          __ sd(a0, register_location(i));
726        }
727      }
728    }
729
730    // Initialize backtrack stack pointer.
731    __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
732
733    __ jmp(&start_label_);
734
735
736    // Exit code:
737    if (success_label_.is_linked()) {
738      // Save captures when successful.
739      __ bind(&success_label_);
740      if (num_saved_registers_ > 0) {
741        // Copy captures to output.
742        __ ld(a1, MemOperand(frame_pointer(), kInputStart));
743        __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
744        __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
745        __ Dsubu(a1, end_of_input_address(), a1);
746        // a1 is length of input in bytes.
747        if (mode_ == UC16) {
748          __ dsrl(a1, a1, 1);
749        }
750        // a1 is length of input in characters.
751        __ Daddu(a1, a1, Operand(a2));
752        // a1 is length of string in characters.
753
754        DCHECK_EQ(0, num_saved_registers_ % 2);
755        // Always an even number of capture registers. This allows us to
756        // unroll the loop once to add an operation between a load of a register
757        // and the following use of that register.
758        for (int i = 0; i < num_saved_registers_; i += 2) {
759          __ ld(a2, register_location(i));
760          __ ld(a3, register_location(i + 1));
761          if (i == 0 && global_with_zero_length_check()) {
762            // Keep capture start in a4 for the zero-length check later.
763            __ mov(t3, a2);
764          }
765          if (mode_ == UC16) {
766            __ dsra(a2, a2, 1);
767            __ Daddu(a2, a2, a1);
768            __ dsra(a3, a3, 1);
769            __ Daddu(a3, a3, a1);
770          } else {
771            __ Daddu(a2, a1, Operand(a2));
772            __ Daddu(a3, a1, Operand(a3));
773          }
774          // V8 expects the output to be an int32_t array.
775          __ sw(a2, MemOperand(a0));
776          __ Daddu(a0, a0, kIntSize);
777          __ sw(a3, MemOperand(a0));
778          __ Daddu(a0, a0, kIntSize);
779        }
780      }
781
782      if (global()) {
783        // Restart matching if the regular expression is flagged as global.
784        __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
785        __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
786        __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
787        // Increment success counter.
788        __ Daddu(a0, a0, 1);
789        __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
790        // Capture results have been stored, so the number of remaining global
791        // output registers is reduced by the number of stored captures.
792        __ Dsubu(a1, a1, num_saved_registers_);
793        // Check whether we have enough room for another set of capture results.
794        __ mov(v0, a0);
795        __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
796
797        __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
798        // Advance the location for output.
799        __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
800        __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
801
802        // Prepare a0 to initialize registers with its value in the next run.
803        __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
804
805        if (global_with_zero_length_check()) {
806          // Special case for zero-length matches.
807          // t3: capture start index
808          // Not a zero-length match, restart.
809          __ Branch(
810              &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
811          // Offset from the end is zero if we already reached the end.
812          __ Branch(&exit_label_, eq, current_input_offset(),
813                    Operand(zero_reg));
814          // Advance current position after a zero-length match.
815          __ Daddu(current_input_offset(),
816                  current_input_offset(),
817                  Operand((mode_ == UC16) ? 2 : 1));
818        }
819
820        __ Branch(&load_char_start_regexp);
821      } else {
822        __ li(v0, Operand(SUCCESS));
823      }
824    }
825    // Exit and return v0.
826    __ bind(&exit_label_);
827    if (global()) {
828      __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
829    }
830
831    __ bind(&return_v0);
832    // Skip sp past regexp registers and local variables..
833    __ mov(sp, frame_pointer());
834    // Restore registers s0..s7 and return (restoring ra to pc).
835    __ MultiPop(registers_to_retain | ra.bit());
836    __ Ret();
837
838    // Backtrack code (branch target for conditional backtracks).
839    if (backtrack_label_.is_linked()) {
840      __ bind(&backtrack_label_);
841      Backtrack();
842    }
843
844    Label exit_with_exception;
845
846    // Preempt-code.
847    if (check_preempt_label_.is_linked()) {
848      SafeCallTarget(&check_preempt_label_);
849      // Put regexp engine registers on stack.
850      RegList regexp_registers_to_retain = current_input_offset().bit() |
851          current_character().bit() | backtrack_stackpointer().bit();
852      __ MultiPush(regexp_registers_to_retain);
853      CallCheckStackGuardState(a0);
854      __ MultiPop(regexp_registers_to_retain);
855      // If returning non-zero, we should end execution with the given
856      // result as return value.
857      __ Branch(&return_v0, ne, v0, Operand(zero_reg));
858
859      // String might have moved: Reload end of string from frame.
860      __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
861      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
862      SafeReturn();
863    }
864
865    // Backtrack stack overflow code.
866    if (stack_overflow_label_.is_linked()) {
867      SafeCallTarget(&stack_overflow_label_);
868      // Reached if the backtrack-stack limit has been hit.
869      // Put regexp engine registers on stack first.
870      RegList regexp_registers = current_input_offset().bit() |
871          current_character().bit();
872      __ MultiPush(regexp_registers);
873      Label grow_failed;
874      // Call GrowStack(backtrack_stackpointer(), &stack_base)
875      static const int num_arguments = 3;
876      __ PrepareCallCFunction(num_arguments, a0);
877      __ mov(a0, backtrack_stackpointer());
878      __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
879      __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
880      ExternalReference grow_stack =
881          ExternalReference::re_grow_stack(masm_->isolate());
882      __ CallCFunction(grow_stack, num_arguments);
883      // Restore regexp registers.
884      __ MultiPop(regexp_registers);
885      // If return NULL, we have failed to grow the stack, and
886      // must exit with a stack-overflow exception.
887      __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
888      // Otherwise use return value as new stack pointer.
889      __ mov(backtrack_stackpointer(), v0);
890      // Restore saved registers and continue.
891      __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
892      __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
893      SafeReturn();
894    }
895
896    if (exit_with_exception.is_linked()) {
897      // If any of the code above needed to exit with an exception.
898      __ bind(&exit_with_exception);
899      // Exit with Result EXCEPTION(-1) to signal thrown exception.
900      __ li(v0, Operand(EXCEPTION));
901      __ jmp(&return_v0);
902    }
903  }
904
905  CodeDesc code_desc;
906  masm_->GetCode(&code_desc);
907  Handle<Code> code = isolate()->factory()->NewCode(
908      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
909  LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
910  return Handle<HeapObject>::cast(code);
911}
912
913
914void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
915  if (to == NULL) {
916    Backtrack();
917    return;
918  }
919  __ jmp(to);
920  return;
921}
922
923
924void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
925                                            int comparand,
926                                            Label* if_ge) {
927  __ ld(a0, register_location(reg));
928    BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
929}
930
931
932void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
933                                            int comparand,
934                                            Label* if_lt) {
935  __ ld(a0, register_location(reg));
936  BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
937}
938
939
940void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
941                                               Label* if_eq) {
942  __ ld(a0, register_location(reg));
943  BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
944}
945
946
947RegExpMacroAssembler::IrregexpImplementation
948    RegExpMacroAssemblerMIPS::Implementation() {
949  return kMIPSImplementation;
950}
951
952
953void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
954                                                    Label* on_end_of_input,
955                                                    bool check_bounds,
956                                                    int characters) {
957  DCHECK(cp_offset >= -1);      // ^ and \b can look behind one character.
958  DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
959  if (check_bounds) {
960    CheckPosition(cp_offset + characters - 1, on_end_of_input);
961  }
962  LoadCurrentCharacterUnchecked(cp_offset, characters);
963}
964
965
966void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
967  Pop(current_input_offset());
968}
969
970
971void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
972  Pop(a0);
973  __ sd(a0, register_location(register_index));
974}
975
976
977void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
978  if (label->is_bound()) {
979    int target = label->pos();
980    __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
981  } else {
982    Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
983    Label after_constant;
984    __ Branch(&after_constant);
985    int offset = masm_->pc_offset();
986    int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
987    __ emit(0);
988    masm_->label_at_put(label, offset);
989    __ bind(&after_constant);
990    if (is_int16(cp_offset)) {
991      __ lwu(a0, MemOperand(code_pointer(), cp_offset));
992    } else {
993      __ Daddu(a0, code_pointer(), cp_offset);
994      __ lwu(a0, MemOperand(a0, 0));
995    }
996  }
997  Push(a0);
998  CheckStackLimit();
999}
1000
1001
1002void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1003  Push(current_input_offset());
1004}
1005
1006
1007void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1008                                            StackCheckFlag check_stack_limit) {
1009  __ ld(a0, register_location(register_index));
1010  Push(a0);
1011  if (check_stack_limit) CheckStackLimit();
1012}
1013
1014
1015void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1016  __ ld(current_input_offset(), register_location(reg));
1017}
1018
1019
1020void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1021  __ ld(backtrack_stackpointer(), register_location(reg));
1022  __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1023  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1024}
1025
1026
1027void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1028  Label after_position;
1029  __ Branch(&after_position,
1030            ge,
1031            current_input_offset(),
1032            Operand(-by * char_size()));
1033  __ li(current_input_offset(), -by * char_size());
1034  // On RegExp code entry (where this operation is used), the character before
1035  // the current position is expected to be already loaded.
1036  // We have advanced the position, so it's safe to read backwards.
1037  LoadCurrentCharacterUnchecked(-1, 1);
1038  __ bind(&after_position);
1039}
1040
1041
1042void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1043  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1044  __ li(a0, Operand(to));
1045  __ sd(a0, register_location(register_index));
1046}
1047
1048
1049bool RegExpMacroAssemblerMIPS::Succeed() {
1050  __ jmp(&success_label_);
1051  return global();
1052}
1053
1054
1055void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1056                                                              int cp_offset) {
1057  if (cp_offset == 0) {
1058    __ sd(current_input_offset(), register_location(reg));
1059  } else {
1060    __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1061    __ sd(a0, register_location(reg));
1062  }
1063}
1064
1065
1066void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1067  DCHECK(reg_from <= reg_to);
1068  __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne));
1069  for (int reg = reg_from; reg <= reg_to; reg++) {
1070    __ sd(a0, register_location(reg));
1071  }
1072}
1073
1074
1075void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1076  __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1077  __ Dsubu(a0, backtrack_stackpointer(), a1);
1078  __ sd(a0, register_location(reg));
1079}
1080
1081
1082bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1083  return false;
1084}
1085
1086
1087// Private methods:
1088
1089void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1090  int stack_alignment = base::OS::ActivationFrameAlignment();
1091
1092  // Align the stack pointer and save the original sp value on the stack.
1093  __ mov(scratch, sp);
1094  __ Dsubu(sp, sp, Operand(kPointerSize));
1095  DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
1096  __ And(sp, sp, Operand(-stack_alignment));
1097  __ sd(scratch, MemOperand(sp));
1098
1099  __ mov(a2, frame_pointer());
1100  // Code* of self.
1101  __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1102
1103  // We need to make room for the return address on the stack.
1104  DCHECK(IsAligned(stack_alignment, kPointerSize));
1105  __ Dsubu(sp, sp, Operand(stack_alignment));
1106
1107  // Stack pointer now points to cell where return address is to be written.
1108  // Arguments are in registers, meaning we teat the return address as
1109  // argument 5. Since DirectCEntryStub will handleallocating space for the C
1110  // argument slots, we don't need to care about that here. This is how the
1111  // stack will look (sp meaning the value of sp at this moment):
1112  // [sp + 3] - empty slot if needed for alignment.
1113  // [sp + 2] - saved sp.
1114  // [sp + 1] - second word reserved for return value.
1115  // [sp + 0] - first word reserved for return value.
1116
1117  // a0 will point to the return address, placed by DirectCEntry.
1118  __ mov(a0, sp);
1119
1120  ExternalReference stack_guard_check =
1121      ExternalReference::re_check_stack_guard_state(masm_->isolate());
1122  __ li(t9, Operand(stack_guard_check));
1123  DirectCEntryStub stub(isolate());
1124  stub.GenerateCall(masm_, t9);
1125
1126  // DirectCEntryStub allocated space for the C argument slots so we have to
1127  // drop them with the return address from the stack with loading saved sp.
1128  // At this point stack must look:
1129  // [sp + 7] - empty slot if needed for alignment.
1130  // [sp + 6] - saved sp.
1131  // [sp + 5] - second word reserved for return value.
1132  // [sp + 4] - first word reserved for return value.
1133  // [sp + 3] - C argument slot.
1134  // [sp + 2] - C argument slot.
1135  // [sp + 1] - C argument slot.
1136  // [sp + 0] - C argument slot.
1137  __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1138
1139  __ li(code_pointer(), Operand(masm_->CodeObject()));
1140}
1141
1142
1143// Helper function for reading a value out of a stack frame.
1144template <typename T>
1145static T& frame_entry(Address re_frame, int frame_offset) {
1146  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1147}
1148
1149
1150int RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1151                                                   Code* re_code,
1152                                                   Address re_frame) {
1153  Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1154  StackLimitCheck check(isolate);
1155  if (check.JsHasOverflowed()) {
1156    isolate->StackOverflow();
1157    return EXCEPTION;
1158  }
1159
1160  // If not real stack overflow the stack guard was used to interrupt
1161  // execution for another purpose.
1162
1163  // If this is a direct call from JavaScript retry the RegExp forcing the call
1164  // through the runtime system. Currently the direct call cannot handle a GC.
1165  if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1166    return RETRY;
1167  }
1168
1169  // Prepare for possible GC.
1170  HandleScope handles(isolate);
1171  Handle<Code> code_handle(re_code);
1172
1173  Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1174  // Current string.
1175  bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1176
1177  DCHECK(re_code->instruction_start() <= *return_address);
1178  DCHECK(*return_address <=
1179      re_code->instruction_start() + re_code->instruction_size());
1180
1181  Object* result = isolate->stack_guard()->HandleInterrupts();
1182
1183  if (*code_handle != re_code) {  // Return address no longer valid.
1184    int delta = code_handle->address() - re_code->address();
1185    // Overwrite the return address on the stack.
1186    *return_address += delta;
1187  }
1188
1189  if (result->IsException()) {
1190    return EXCEPTION;
1191  }
1192
1193  Handle<String> subject_tmp = subject;
1194  int slice_offset = 0;
1195
1196  // Extract the underlying string and the slice offset.
1197  if (StringShape(*subject_tmp).IsCons()) {
1198    subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1199  } else if (StringShape(*subject_tmp).IsSliced()) {
1200    SlicedString* slice = SlicedString::cast(*subject_tmp);
1201    subject_tmp = Handle<String>(slice->parent());
1202    slice_offset = slice->offset();
1203  }
1204
1205  // String might have changed.
1206  if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1207    // If we changed between an Latin1 and an UC16 string, the specialized
1208    // code cannot be used, and we need to restart regexp matching from
1209    // scratch (including, potentially, compiling a new version of the code).
1210    return RETRY;
1211  }
1212
1213  // Otherwise, the content of the string might have moved. It must still
1214  // be a sequential or external string with the same content.
1215  // Update the start and end pointers in the stack frame to the current
1216  // location (whether it has actually moved or not).
1217  DCHECK(StringShape(*subject_tmp).IsSequential() ||
1218      StringShape(*subject_tmp).IsExternal());
1219
1220  // The original start address of the characters to match.
1221  const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1222
1223  // Find the current start address of the same character at the current string
1224  // position.
1225  int start_index = frame_entry<int>(re_frame, kStartIndex);
1226  const byte* new_address = StringCharacterPosition(*subject_tmp,
1227                                                    start_index + slice_offset);
1228
1229  if (start_address != new_address) {
1230    // If there is a difference, update the object pointer and start and end
1231    // addresses in the RegExp stack frame to match the new value.
1232    const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1233    int byte_length = static_cast<int>(end_address - start_address);
1234    frame_entry<const String*>(re_frame, kInputString) = *subject;
1235    frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1236    frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1237  } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1238    // Subject string might have been a ConsString that underwent
1239    // short-circuiting during GC. That will not change start_address but
1240    // will change pointer inside the subject handle.
1241    frame_entry<const String*>(re_frame, kInputString) = *subject;
1242  }
1243
1244  return 0;
1245}
1246
1247
1248MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1249  DCHECK(register_index < (1<<30));
1250  if (num_registers_ <= register_index) {
1251    num_registers_ = register_index + 1;
1252  }
1253  return MemOperand(frame_pointer(),
1254                    kRegisterZero - register_index * kPointerSize);
1255}
1256
1257
1258void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1259                                             Label* on_outside_input) {
1260  BranchOrBacktrack(on_outside_input,
1261                    ge,
1262                    current_input_offset(),
1263                    Operand(-cp_offset * char_size()));
1264}
1265
1266
1267void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1268                                                 Condition condition,
1269                                                 Register rs,
1270                                                 const Operand& rt) {
1271  if (condition == al) {  // Unconditional.
1272    if (to == NULL) {
1273      Backtrack();
1274      return;
1275    }
1276    __ jmp(to);
1277    return;
1278  }
1279  if (to == NULL) {
1280    __ Branch(&backtrack_label_, condition, rs, rt);
1281    return;
1282  }
1283  __ Branch(to, condition, rs, rt);
1284}
1285
1286
1287void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1288                                        Condition cond,
1289                                        Register rs,
1290                                        const Operand& rt) {
1291  __ BranchAndLink(to, cond, rs, rt);
1292}
1293
1294
1295void RegExpMacroAssemblerMIPS::SafeReturn() {
1296  __ pop(ra);
1297  __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1298  __ Jump(t1);
1299}
1300
1301
1302void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1303  __ bind(name);
1304  __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1305  __ push(ra);
1306}
1307
1308
1309void RegExpMacroAssemblerMIPS::Push(Register source) {
1310  DCHECK(!source.is(backtrack_stackpointer()));
1311  __ Daddu(backtrack_stackpointer(),
1312          backtrack_stackpointer(),
1313          Operand(-kIntSize));
1314  __ sw(source, MemOperand(backtrack_stackpointer()));
1315}
1316
1317
1318void RegExpMacroAssemblerMIPS::Pop(Register target) {
1319  DCHECK(!target.is(backtrack_stackpointer()));
1320  __ lw(target, MemOperand(backtrack_stackpointer()));
1321  __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1322}
1323
1324
1325void RegExpMacroAssemblerMIPS::CheckPreemption() {
1326  // Check for preemption.
1327  ExternalReference stack_limit =
1328      ExternalReference::address_of_stack_limit(masm_->isolate());
1329  __ li(a0, Operand(stack_limit));
1330  __ ld(a0, MemOperand(a0));
1331  SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1332}
1333
1334
1335void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1336  ExternalReference stack_limit =
1337      ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1338
1339  __ li(a0, Operand(stack_limit));
1340  __ ld(a0, MemOperand(a0));
1341  SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1342}
1343
1344
1345void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1346                                                             int characters) {
1347  Register offset = current_input_offset();
1348  if (cp_offset != 0) {
1349    // t3 is not being used to store the capture start index at this point.
1350    __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1351    offset = t3;
1352  }
1353  // We assume that we cannot do unaligned loads on MIPS, so this function
1354  // must only be used to load a single character at a time.
1355  DCHECK(characters == 1);
1356  __ Daddu(t1, end_of_input_address(), Operand(offset));
1357  if (mode_ == LATIN1) {
1358    __ lbu(current_character(), MemOperand(t1, 0));
1359  } else {
1360    DCHECK(mode_ == UC16);
1361    __ lhu(current_character(), MemOperand(t1, 0));
1362  }
1363}
1364
1365#undef __
1366
1367#endif  // V8_INTERPRETED_REGEXP
1368
1369}}  // namespace v8::internal
1370
1371#endif  // V8_TARGET_ARCH_MIPS64
1372