1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_TYPES_H_
6#define V8_TYPES_H_
7
8#include "src/conversions.h"
9#include "src/factory.h"
10#include "src/handles.h"
11#include "src/ostreams.h"
12
13namespace v8 {
14namespace internal {
15
16// SUMMARY
17//
18// A simple type system for compiler-internal use. It is based entirely on
19// union types, and all subtyping hence amounts to set inclusion. Besides the
20// obvious primitive types and some predefined unions, the type language also
21// can express class types (a.k.a. specific maps) and singleton types (i.e.,
22// concrete constants).
23//
24// Types consist of two dimensions: semantic (value range) and representation.
25// Both are related through subtyping.
26//
27//
28// SEMANTIC DIMENSION
29//
30// The following equations and inequations hold for the semantic axis:
31//
32//   None <= T
33//   T <= Any
34//
35//   Number = Signed32 \/ Unsigned32 \/ Double
36//   Smi <= Signed32
37//   Name = String \/ Symbol
38//   UniqueName = InternalizedString \/ Symbol
39//   InternalizedString < String
40//
41//   Receiver = Object \/ Proxy
42//   Array < Object
43//   Function < Object
44//   RegExp < Object
45//   Undetectable < Object
46//   Detectable = Receiver \/ Number \/ Name - Undetectable
47//
48//   Class(map) < T   iff instance_type(map) < T
49//   Constant(x) < T  iff instance_type(map(x)) < T
50//   Array(T) < Array
51//   Function(R, S, T0, T1, ...) < Function
52//   Context(T) < Internal
53//
54// Both structural Array and Function types are invariant in all parameters;
55// relaxing this would make Union and Intersect operations more involved.
56// There is no subtyping relation between Array, Function, or Context types
57// and respective Constant types, since these types cannot be reconstructed
58// for arbitrary heap values.
59// Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
60// change! (Its instance type cannot, however.)
61// TODO(rossberg): the latter is not currently true for proxies, because of fix,
62// but will hold once we implement direct proxies.
63// However, we also define a 'temporal' variant of the subtyping relation that
64// considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)).
65//
66//
67// REPRESENTATIONAL DIMENSION
68//
69// For the representation axis, the following holds:
70//
71//   None <= R
72//   R <= Any
73//
74//   UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
75//                 UntaggedInt16 \/ UntaggedInt32
76//   UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
77//   UntaggedNumber = UntaggedInt \/ UntaggedFloat
78//   Untagged = UntaggedNumber \/ UntaggedPtr
79//   Tagged = TaggedInt \/ TaggedPtr
80//
81// Subtyping relates the two dimensions, for example:
82//
83//   Number <= Tagged \/ UntaggedNumber
84//   Object <= TaggedPtr \/ UntaggedPtr
85//
86// That holds because the semantic type constructors defined by the API create
87// types that allow for all possible representations, and dually, the ones for
88// representation types initially include all semantic ranges. Representations
89// can then e.g. be narrowed for a given semantic type using intersection:
90//
91//   SignedSmall /\ TaggedInt       (a 'smi')
92//   Number /\ TaggedPtr            (a heap number)
93//
94//
95// RANGE TYPES
96//
97// A range type represents a continuous integer interval by its minimum and
98// maximum value.  Either value might be an infinity.
99//
100// Constant(v) is considered a subtype of Range(x..y) if v happens to be an
101// integer between x and y.
102//
103//
104// PREDICATES
105//
106// There are two main functions for testing types:
107//
108//   T1->Is(T2)     -- tests whether T1 is included in T2 (i.e., T1 <= T2)
109//   T1->Maybe(T2)  -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
110//
111// Typically, the former is to be used to select representations (e.g., via
112// T->Is(SignedSmall())), and the latter to check whether a specific case needs
113// handling (e.g., via T->Maybe(Number())).
114//
115// There is no functionality to discover whether a type is a leaf in the
116// lattice. That is intentional. It should always be possible to refine the
117// lattice (e.g., splitting up number types further) without invalidating any
118// existing assumptions or tests.
119// Consequently, do not normally use Equals for type tests, always use Is!
120//
121// The NowIs operator implements state-sensitive subtying, as described above.
122// Any compilation decision based on such temporary properties requires runtime
123// guarding!
124//
125//
126// PROPERTIES
127//
128// Various formal properties hold for constructors, operators, and predicates
129// over types. For example, constructors are injective and subtyping is a
130// complete partial order.
131//
132// See test/cctest/test-types.cc for a comprehensive executable specification,
133// especially with respect to the properties of the more exotic 'temporal'
134// constructors and predicates (those prefixed 'Now').
135//
136//
137// IMPLEMENTATION
138//
139// Internally, all 'primitive' types, and their unions, are represented as
140// bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the
141// respective map. Only structured types require allocation.
142// Note that the bitset representation is closed under both Union and Intersect.
143//
144// There are two type representations, using different allocation:
145//
146// - class Type (zone-allocated, for compiler and concurrent compilation)
147// - class HeapType (heap-allocated, for persistent types)
148//
149// Both provide the same API, and the Convert method can be used to interconvert
150// them. For zone types, no query method touches the heap, only constructors do.
151
152
153// -----------------------------------------------------------------------------
154// Values for bitset types
155
156#define MASK_BITSET_TYPE_LIST(V) \
157  V(Representation, 0xff800000u) \
158  V(Semantic,       0x007ffffeu)
159
160#define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
161#define SEMANTIC(k)       ((k) & BitsetType::kSemantic)
162
163#define REPRESENTATION_BITSET_TYPE_LIST(V) \
164  V(None,             0)                   \
165  V(UntaggedInt1,     1u << 23 | kSemantic) \
166  V(UntaggedInt8,     1u << 24 | kSemantic) \
167  V(UntaggedInt16,    1u << 25 | kSemantic) \
168  V(UntaggedInt32,    1u << 26 | kSemantic) \
169  V(UntaggedFloat32,  1u << 27 | kSemantic) \
170  V(UntaggedFloat64,  1u << 28 | kSemantic) \
171  V(UntaggedPtr,      1u << 29 | kSemantic) \
172  V(TaggedInt,        1u << 30 | kSemantic) \
173  V(TaggedPtr,        1u << 31 | kSemantic) \
174  \
175  V(UntaggedInt,      kUntaggedInt1 | kUntaggedInt8 |      \
176                      kUntaggedInt16 | kUntaggedInt32)     \
177  V(UntaggedFloat,    kUntaggedFloat32 | kUntaggedFloat64) \
178  V(UntaggedNumber,   kUntaggedInt | kUntaggedFloat)       \
179  V(Untagged,         kUntaggedNumber | kUntaggedPtr)      \
180  V(Tagged,           kTaggedInt | kTaggedPtr)
181
182#define SEMANTIC_BITSET_TYPE_LIST(V) \
183  V(Null,                1u << 1  | REPRESENTATION(kTaggedPtr)) \
184  V(Undefined,           1u << 2  | REPRESENTATION(kTaggedPtr)) \
185  V(Boolean,             1u << 3  | REPRESENTATION(kTaggedPtr)) \
186  V(UnsignedSmall,       1u << 4  | REPRESENTATION(kTagged | kUntaggedNumber)) \
187  V(OtherSignedSmall,    1u << 5  | REPRESENTATION(kTagged | kUntaggedNumber)) \
188  V(OtherUnsigned31,     1u << 6  | REPRESENTATION(kTagged | kUntaggedNumber)) \
189  V(OtherUnsigned32,     1u << 7  | REPRESENTATION(kTagged | kUntaggedNumber)) \
190  V(OtherSigned32,       1u << 8  | REPRESENTATION(kTagged | kUntaggedNumber)) \
191  V(MinusZero,           1u << 9  | REPRESENTATION(kTagged | kUntaggedNumber)) \
192  V(NaN,                 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
193  V(OtherNumber,         1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \
194  V(Symbol,              1u << 12 | REPRESENTATION(kTaggedPtr)) \
195  V(InternalizedString,  1u << 13 | REPRESENTATION(kTaggedPtr)) \
196  V(OtherString,         1u << 14 | REPRESENTATION(kTaggedPtr)) \
197  V(Undetectable,        1u << 15 | REPRESENTATION(kTaggedPtr)) \
198  V(Array,               1u << 16 | REPRESENTATION(kTaggedPtr)) \
199  V(Buffer,              1u << 17 | REPRESENTATION(kTaggedPtr)) \
200  V(Function,            1u << 18 | REPRESENTATION(kTaggedPtr)) \
201  V(RegExp,              1u << 19 | REPRESENTATION(kTaggedPtr)) \
202  V(OtherObject,         1u << 20 | REPRESENTATION(kTaggedPtr)) \
203  V(Proxy,               1u << 21 | REPRESENTATION(kTaggedPtr)) \
204  V(Internal,            1u << 22 | REPRESENTATION(kTagged | kUntagged)) \
205  \
206  V(SignedSmall,         kUnsignedSmall | kOtherSignedSmall) \
207  V(Signed32,            kSignedSmall | kOtherUnsigned31 | kOtherSigned32) \
208  V(Unsigned32,          kUnsignedSmall | kOtherUnsigned31 | kOtherUnsigned32) \
209  V(Integral32,          kSigned32 | kUnsigned32) \
210  V(OrderedNumber,       kIntegral32 | kMinusZero | kOtherNumber) \
211  V(Number,              kOrderedNumber | kNaN) \
212  V(String,              kInternalizedString | kOtherString) \
213  V(UniqueName,          kSymbol | kInternalizedString) \
214  V(Name,                kSymbol | kString) \
215  V(NumberOrString,      kNumber | kString) \
216  V(Primitive,           kNumber | kName | kBoolean | kNull | kUndefined) \
217  V(DetectableObject,    kArray | kFunction | kRegExp | kOtherObject) \
218  V(DetectableReceiver,  kDetectableObject | kProxy) \
219  V(Detectable,          kDetectableReceiver | kNumber | kName) \
220  V(Object,              kDetectableObject | kUndetectable) \
221  V(Receiver,            kObject | kProxy) \
222  V(NonNumber,           kBoolean | kName | kNull | kReceiver | \
223                         kUndefined | kInternal) \
224  V(Any,                 0xfffffffeu)
225
226/*
227 * The following diagrams show how integers (in the mathematical sense) are
228 * divided among the different atomic numerical types.
229 *
230 * If SmiValuesAre31Bits():
231 *
232 *   ON    OS32     OSS     US     OU31    OU32     ON
233 * ______[_______[_______[_______[_______[_______[_______
234 *     -2^31   -2^30     0      2^30    2^31    2^32
235 *
236 * Otherwise:
237 *
238 *   ON         OSS             US         OU32     ON
239 * ______[_______________[_______________[_______[_______
240 *     -2^31             0              2^31    2^32
241 *
242 *
243 * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
244 *
245 */
246
247#define PROPER_BITSET_TYPE_LIST(V) \
248  REPRESENTATION_BITSET_TYPE_LIST(V) \
249  SEMANTIC_BITSET_TYPE_LIST(V)
250
251#define BITSET_TYPE_LIST(V) \
252  MASK_BITSET_TYPE_LIST(V) \
253  PROPER_BITSET_TYPE_LIST(V)
254
255
256// -----------------------------------------------------------------------------
257// The abstract Type class, parameterized over the low-level representation.
258
259// struct Config {
260//   typedef TypeImpl<Config> Type;
261//   typedef Base;
262//   typedef Struct;
263//   typedef Region;
264//   template<class> struct Handle { typedef type; }  // No template typedefs...
265//   template<class T> static Handle<T>::type handle(T* t);  // !is_bitset(t)
266//   template<class T> static Handle<T>::type cast(Handle<Type>::type);
267//   static bool is_bitset(Type*);
268//   static bool is_class(Type*);
269//   static bool is_struct(Type*, int tag);
270//   static bitset as_bitset(Type*);
271//   static i::Handle<i::Map> as_class(Type*);
272//   static Handle<Struct>::type as_struct(Type*);
273//   static Type* from_bitset(bitset);
274//   static Handle<Type>::type from_bitset(bitset, Region*);
275//   static Handle<Type>::type from_class(i::Handle<Map>, Region*);
276//   static Handle<Type>::type from_struct(Handle<Struct>::type, int tag);
277//   static Handle<Struct>::type struct_create(int tag, int length, Region*);
278//   static void struct_shrink(Handle<Struct>::type, int length);
279//   static int struct_tag(Handle<Struct>::type);
280//   static int struct_length(Handle<Struct>::type);
281//   static Handle<Type>::type struct_get(Handle<Struct>::type, int);
282//   static void struct_set(Handle<Struct>::type, int, Handle<Type>::type);
283//   template<class V>
284//   static i::Handle<V> struct_get_value(Handle<Struct>::type, int);
285//   template<class V>
286//   static void struct_set_value(Handle<Struct>::type, int, i::Handle<V>);
287// }
288template<class Config>
289class TypeImpl : public Config::Base {
290 public:
291  // Auxiliary types.
292
293  typedef uint32_t bitset;  // Internal
294  class BitsetType;         // Internal
295  class StructuralType;     // Internal
296  class UnionType;          // Internal
297
298  class ClassType;
299  class ConstantType;
300  class RangeType;
301  class ContextType;
302  class ArrayType;
303  class FunctionType;
304
305  typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
306  typedef typename Config::template Handle<ClassType>::type ClassHandle;
307  typedef typename Config::template Handle<ConstantType>::type ConstantHandle;
308  typedef typename Config::template Handle<RangeType>::type RangeHandle;
309  typedef typename Config::template Handle<ContextType>::type ContextHandle;
310  typedef typename Config::template Handle<ArrayType>::type ArrayHandle;
311  typedef typename Config::template Handle<FunctionType>::type FunctionHandle;
312  typedef typename Config::template Handle<UnionType>::type UnionHandle;
313  typedef typename Config::Region Region;
314
315  // Constructors.
316
317  #define DEFINE_TYPE_CONSTRUCTOR(type, value)                                \
318    static TypeImpl* type() {                                                 \
319      return BitsetType::New(BitsetType::k##type);                            \
320    }                                                                         \
321    static TypeHandle type(Region* region) {                                  \
322      return BitsetType::New(BitsetType::k##type, region);                    \
323    }
324  PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
325  #undef DEFINE_TYPE_CONSTRUCTOR
326
327  static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
328    return ClassType::New(map, region);
329  }
330  static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
331    return ConstantType::New(value, region);
332  }
333  static TypeHandle Range(
334      i::Handle<i::Object> min, i::Handle<i::Object> max, Region* region) {
335    return RangeType::New(min, max, region);
336  }
337  static TypeHandle Context(TypeHandle outer, Region* region) {
338    return ContextType::New(outer, region);
339  }
340  static TypeHandle Array(TypeHandle element, Region* region) {
341    return ArrayType::New(element, region);
342  }
343  static FunctionHandle Function(
344      TypeHandle result, TypeHandle receiver, int arity, Region* region) {
345    return FunctionType::New(result, receiver, arity, region);
346  }
347  static TypeHandle Function(TypeHandle result, Region* region) {
348    return Function(result, Any(region), 0, region);
349  }
350  static TypeHandle Function(
351      TypeHandle result, TypeHandle param0, Region* region) {
352    FunctionHandle function = Function(result, Any(region), 1, region);
353    function->InitParameter(0, param0);
354    return function;
355  }
356  static TypeHandle Function(
357      TypeHandle result, TypeHandle param0, TypeHandle param1, Region* region) {
358    FunctionHandle function = Function(result, Any(region), 2, region);
359    function->InitParameter(0, param0);
360    function->InitParameter(1, param1);
361    return function;
362  }
363  static TypeHandle Function(
364      TypeHandle result, TypeHandle param0, TypeHandle param1,
365      TypeHandle param2, Region* region) {
366    FunctionHandle function = Function(result, Any(region), 3, region);
367    function->InitParameter(0, param0);
368    function->InitParameter(1, param1);
369    function->InitParameter(2, param2);
370    return function;
371  }
372
373  static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
374  static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
375
376  static TypeHandle Of(double value, Region* region) {
377    return Config::from_bitset(BitsetType::Lub(value), region);
378  }
379  static TypeHandle Of(i::Object* value, Region* region) {
380    return Config::from_bitset(BitsetType::Lub(value), region);
381  }
382  static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
383    return Of(*value, region);
384  }
385
386  // Predicates.
387
388  bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); }
389
390  bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
391  template<class TypeHandle>
392  bool Is(TypeHandle that) { return this->Is(*that); }
393
394  bool Maybe(TypeImpl* that);
395  template<class TypeHandle>
396  bool Maybe(TypeHandle that) { return this->Maybe(*that); }
397
398  bool Equals(TypeImpl* that) { return this->Is(that) && that->Is(this); }
399  template<class TypeHandle>
400  bool Equals(TypeHandle that) { return this->Equals(*that); }
401
402  // Equivalent to Constant(val)->Is(this), but avoiding allocation.
403  bool Contains(i::Object* val);
404  bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }
405
406  // State-dependent versions of the above that consider subtyping between
407  // a constant and its map class.
408  inline static TypeHandle NowOf(i::Object* value, Region* region);
409  static TypeHandle NowOf(i::Handle<i::Object> value, Region* region) {
410    return NowOf(*value, region);
411  }
412  bool NowIs(TypeImpl* that);
413  template<class TypeHandle>
414  bool NowIs(TypeHandle that)  { return this->NowIs(*that); }
415  inline bool NowContains(i::Object* val);
416  bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); }
417
418  bool NowStable();
419
420  // Inspection.
421
422  bool IsClass() {
423    return Config::is_class(this)
424        || Config::is_struct(this, StructuralType::kClassTag);
425  }
426  bool IsConstant() {
427    return Config::is_struct(this, StructuralType::kConstantTag);
428  }
429  bool IsRange() {
430    return Config::is_struct(this, StructuralType::kRangeTag);
431  }
432  bool IsContext() {
433    return Config::is_struct(this, StructuralType::kContextTag);
434  }
435  bool IsArray() {
436    return Config::is_struct(this, StructuralType::kArrayTag);
437  }
438  bool IsFunction() {
439    return Config::is_struct(this, StructuralType::kFunctionTag);
440  }
441
442  ClassType* AsClass() { return ClassType::cast(this); }
443  ConstantType* AsConstant() { return ConstantType::cast(this); }
444  RangeType* AsRange() { return RangeType::cast(this); }
445  ContextType* AsContext() { return ContextType::cast(this); }
446  ArrayType* AsArray() { return ArrayType::cast(this); }
447  FunctionType* AsFunction() { return FunctionType::cast(this); }
448
449  // Minimum and maximum of a numeric type.
450  // These functions do not distinguish between -0 and +0.  If the type equals
451  // kNaN, they return NaN; otherwise kNaN is ignored.  Only call these
452  // functions on subtypes of Number.
453  double Min();
454  double Max();
455
456  int NumClasses();
457  int NumConstants();
458
459  template<class T> class Iterator;
460  Iterator<i::Map> Classes() {
461    if (this->IsBitset()) return Iterator<i::Map>();
462    return Iterator<i::Map>(Config::handle(this));
463  }
464  Iterator<i::Object> Constants() {
465    if (this->IsBitset()) return Iterator<i::Object>();
466    return Iterator<i::Object>(Config::handle(this));
467  }
468
469  // Casting and conversion.
470
471  static inline TypeImpl* cast(typename Config::Base* object);
472
473  template<class OtherTypeImpl>
474  static TypeHandle Convert(
475      typename OtherTypeImpl::TypeHandle type, Region* region);
476
477  // Printing.
478
479  enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
480
481  void PrintTo(OStream& os, PrintDimension dim = BOTH_DIMS);  // NOLINT
482
483#ifdef DEBUG
484  void Print();
485#endif
486
487 protected:
488  // Friends.
489
490  template<class> friend class Iterator;
491  template<class> friend class TypeImpl;
492
493  // Handle conversion.
494
495  template<class T>
496  static typename Config::template Handle<T>::type handle(T* type) {
497    return Config::handle(type);
498  }
499  TypeImpl* unhandle() { return this; }
500
501  // Internal inspection.
502
503  bool IsNone() { return this == None(); }
504  bool IsAny() { return this == Any(); }
505  bool IsBitset() { return Config::is_bitset(this); }
506  bool IsUnion() { return Config::is_struct(this, StructuralType::kUnionTag); }
507
508  bitset AsBitset() {
509    DCHECK(this->IsBitset());
510    return static_cast<BitsetType*>(this)->Bitset();
511  }
512  UnionType* AsUnion() { return UnionType::cast(this); }
513
514  // Auxiliary functions.
515
516  bitset BitsetGlb() { return BitsetType::Glb(this); }
517  bitset BitsetLub() { return BitsetType::Lub(this); }
518
519  bool SlowIs(TypeImpl* that);
520
521  static bool IsInteger(double x) {
522    return nearbyint(x) == x && !i::IsMinusZero(x);  // Allows for infinities.
523  }
524  static bool IsInteger(i::Object* x) {
525    return x->IsNumber() && IsInteger(x->Number());
526  }
527
528  struct Limits {
529    i::Handle<i::Object> min;
530    i::Handle<i::Object> max;
531    Limits(i::Handle<i::Object> min, i::Handle<i::Object> max) :
532      min(min), max(max) {}
533    explicit Limits(RangeType* range) :
534      min(range->Min()), max(range->Max()) {}
535  };
536
537  static Limits Intersect(Limits lhs, Limits rhs);
538  static Limits Union(Limits lhs, Limits rhs);
539  static bool Overlap(RangeType* lhs, RangeType* rhs);
540  static bool Contains(RangeType* lhs, RangeType* rhs);
541  static bool Contains(RangeType* range, i::Object* val);
542
543  RangeType* GetRange();
544  static int UpdateRange(
545      RangeHandle type, UnionHandle result, int size, Region* region);
546
547  bool SimplyEquals(TypeImpl* that);
548  template<class TypeHandle>
549  bool SimplyEquals(TypeHandle that) { return this->SimplyEquals(*that); }
550
551  static int AddToUnion(
552      TypeHandle type, UnionHandle result, int size, Region* region);
553  static int IntersectAux(
554      TypeHandle type, TypeHandle other,
555      UnionHandle result, int size, Region* region);
556  static TypeHandle NormalizeUnion(UnionHandle unioned, int size);
557};
558
559
560// -----------------------------------------------------------------------------
561// Bitset types (internal).
562
563template<class Config>
564class TypeImpl<Config>::BitsetType : public TypeImpl<Config> {
565 protected:
566  friend class TypeImpl<Config>;
567
568  enum {
569    #define DECLARE_TYPE(type, value) k##type = (value),
570    BITSET_TYPE_LIST(DECLARE_TYPE)
571    #undef DECLARE_TYPE
572    kUnusedEOL = 0
573  };
574
575  bitset Bitset() { return Config::as_bitset(this); }
576
577  static TypeImpl* New(bitset bits) {
578    DCHECK(bits == kNone || IsInhabited(bits));
579    return Config::from_bitset(bits);
580  }
581  static TypeHandle New(bitset bits, Region* region) {
582    DCHECK(bits == kNone || IsInhabited(bits));
583    return Config::from_bitset(bits, region);
584  }
585  // TODO(neis): Eventually allow again for types with empty semantics
586  // part and modify intersection and possibly subtyping accordingly.
587
588  static bool IsInhabited(bitset bits) {
589    return bits & kSemantic;
590  }
591
592  static bool Is(bitset bits1, bitset bits2) {
593    return (bits1 | bits2) == bits2;
594  }
595
596  static double Min(bitset);
597  static double Max(bitset);
598
599  static bitset Glb(TypeImpl* type);  // greatest lower bound that's a bitset
600  static bitset Lub(TypeImpl* type);  // least upper bound that's a bitset
601  static bitset Lub(i::Object* value);
602  static bitset Lub(double value);
603  static bitset Lub(int32_t value);
604  static bitset Lub(uint32_t value);
605  static bitset Lub(i::Map* map);
606  static bitset Lub(Limits lim);
607
608  static const char* Name(bitset);
609  static void Print(OStream& os, bitset);  // NOLINT
610#ifdef DEBUG
611  static void Print(bitset);
612#endif
613
614 private:
615  struct BitsetMin{
616    bitset bits;
617    double min;
618  };
619  static const BitsetMin BitsetMins31[];
620  static const BitsetMin BitsetMins32[];
621  static const BitsetMin* BitsetMins() {
622    return i::SmiValuesAre31Bits() ? BitsetMins31 : BitsetMins32;
623  }
624  static size_t BitsetMinsSize() {
625    return i::SmiValuesAre31Bits() ? 7 : 5;
626    /* arraysize(BitsetMins31) : arraysize(BitsetMins32); */
627    // Using arraysize here doesn't compile on Windows.
628  }
629};
630
631
632// -----------------------------------------------------------------------------
633// Superclass for non-bitset types (internal).
634// Contains a tag and a variable number of type or value fields.
635
636template<class Config>
637class TypeImpl<Config>::StructuralType : public TypeImpl<Config> {
638 protected:
639  template<class> friend class TypeImpl;
640  friend struct ZoneTypeConfig;  // For tags.
641  friend struct HeapTypeConfig;
642
643  enum Tag {
644    kClassTag,
645    kConstantTag,
646    kRangeTag,
647    kContextTag,
648    kArrayTag,
649    kFunctionTag,
650    kUnionTag
651  };
652
653  int Length() {
654    return Config::struct_length(Config::as_struct(this));
655  }
656  TypeHandle Get(int i) {
657    DCHECK(0 <= i && i < this->Length());
658    return Config::struct_get(Config::as_struct(this), i);
659  }
660  void Set(int i, TypeHandle type) {
661    DCHECK(0 <= i && i < this->Length());
662    Config::struct_set(Config::as_struct(this), i, type);
663  }
664  void Shrink(int length) {
665    DCHECK(2 <= length && length <= this->Length());
666    Config::struct_shrink(Config::as_struct(this), length);
667  }
668  template<class V> i::Handle<V> GetValue(int i) {
669    DCHECK(0 <= i && i < this->Length());
670    return Config::template struct_get_value<V>(Config::as_struct(this), i);
671  }
672  template<class V> void SetValue(int i, i::Handle<V> x) {
673    DCHECK(0 <= i && i < this->Length());
674    Config::struct_set_value(Config::as_struct(this), i, x);
675  }
676
677  static TypeHandle New(Tag tag, int length, Region* region) {
678    DCHECK(1 <= length);
679    return Config::from_struct(Config::struct_create(tag, length, region));
680  }
681};
682
683
684// -----------------------------------------------------------------------------
685// Union types (internal).
686// A union is a structured type with the following invariants:
687// - its length is at least 2
688// - at most one field is a bitset, and it must go into index 0
689// - no field is a union
690// - no field is a subtype of any other field
691template<class Config>
692class TypeImpl<Config>::UnionType : public StructuralType {
693 public:
694  static UnionHandle New(int length, Region* region) {
695    return Config::template cast<UnionType>(
696        StructuralType::New(StructuralType::kUnionTag, length, region));
697  }
698
699  static UnionType* cast(TypeImpl* type) {
700    DCHECK(type->IsUnion());
701    return static_cast<UnionType*>(type);
702  }
703
704  bool Wellformed();
705};
706
707
708// -----------------------------------------------------------------------------
709// Class types.
710
711template<class Config>
712class TypeImpl<Config>::ClassType : public StructuralType {
713 public:
714  TypeHandle Bound(Region* region) {
715    return Config::is_class(this) ?
716        BitsetType::New(BitsetType::Lub(*Config::as_class(this)), region) :
717        this->Get(0);
718  }
719  i::Handle<i::Map> Map() {
720    return Config::is_class(this) ? Config::as_class(this) :
721        this->template GetValue<i::Map>(1);
722  }
723
724  static ClassHandle New(i::Handle<i::Map> map, Region* region) {
725    ClassHandle type =
726        Config::template cast<ClassType>(Config::from_class(map, region));
727    if (!type->IsClass()) {
728      type = Config::template cast<ClassType>(
729          StructuralType::New(StructuralType::kClassTag, 2, region));
730      type->Set(0, BitsetType::New(BitsetType::Lub(*map), region));
731      type->SetValue(1, map);
732    }
733    return type;
734  }
735
736  static ClassType* cast(TypeImpl* type) {
737    DCHECK(type->IsClass());
738    return static_cast<ClassType*>(type);
739  }
740};
741
742
743// -----------------------------------------------------------------------------
744// Constant types.
745
746template<class Config>
747class TypeImpl<Config>::ConstantType : public StructuralType {
748 public:
749  TypeHandle Bound() { return this->Get(0); }
750  i::Handle<i::Object> Value() { return this->template GetValue<i::Object>(1); }
751
752  static ConstantHandle New(i::Handle<i::Object> value, Region* region) {
753    ConstantHandle type = Config::template cast<ConstantType>(
754        StructuralType::New(StructuralType::kConstantTag, 2, region));
755    type->Set(0, BitsetType::New(BitsetType::Lub(*value), region));
756    type->SetValue(1, value);
757    return type;
758  }
759
760  static ConstantType* cast(TypeImpl* type) {
761    DCHECK(type->IsConstant());
762    return static_cast<ConstantType*>(type);
763  }
764};
765// TODO(neis): Also cache value if numerical.
766// TODO(neis): Allow restricting the representation.
767
768
769// -----------------------------------------------------------------------------
770// Range types.
771
772template<class Config>
773class TypeImpl<Config>::RangeType : public StructuralType {
774 public:
775  int BitsetLub() { return this->Get(0)->AsBitset(); }
776  i::Handle<i::Object> Min() { return this->template GetValue<i::Object>(1); }
777  i::Handle<i::Object> Max() { return this->template GetValue<i::Object>(2); }
778
779  static RangeHandle New(
780      i::Handle<i::Object> min, i::Handle<i::Object> max, Region* region) {
781    DCHECK(min->Number() <= max->Number());
782    RangeHandle type = Config::template cast<RangeType>(
783        StructuralType::New(StructuralType::kRangeTag, 3, region));
784    type->Set(0, BitsetType::New(BitsetType::Lub(Limits(min, max)), region));
785    type->SetValue(1, min);
786    type->SetValue(2, max);
787    return type;
788  }
789
790  static RangeHandle New(Limits lim, Region* region) {
791    return New(lim.min, lim.max, region);
792  }
793
794  static RangeType* cast(TypeImpl* type) {
795    DCHECK(type->IsRange());
796    return static_cast<RangeType*>(type);
797  }
798};
799// TODO(neis): Also cache min and max values.
800// TODO(neis): Allow restricting the representation.
801
802
803// -----------------------------------------------------------------------------
804// Context types.
805
806template<class Config>
807class TypeImpl<Config>::ContextType : public StructuralType {
808 public:
809  TypeHandle Outer() { return this->Get(0); }
810
811  static ContextHandle New(TypeHandle outer, Region* region) {
812    ContextHandle type = Config::template cast<ContextType>(
813        StructuralType::New(StructuralType::kContextTag, 1, region));
814    type->Set(0, outer);
815    return type;
816  }
817
818  static ContextType* cast(TypeImpl* type) {
819    DCHECK(type->IsContext());
820    return static_cast<ContextType*>(type);
821  }
822};
823
824
825// -----------------------------------------------------------------------------
826// Array types.
827
828template<class Config>
829class TypeImpl<Config>::ArrayType : public StructuralType {
830 public:
831  TypeHandle Element() { return this->Get(0); }
832
833  static ArrayHandle New(TypeHandle element, Region* region) {
834    ArrayHandle type = Config::template cast<ArrayType>(
835        StructuralType::New(StructuralType::kArrayTag, 1, region));
836    type->Set(0, element);
837    return type;
838  }
839
840  static ArrayType* cast(TypeImpl* type) {
841    DCHECK(type->IsArray());
842    return static_cast<ArrayType*>(type);
843  }
844};
845
846
847// -----------------------------------------------------------------------------
848// Function types.
849
850template<class Config>
851class TypeImpl<Config>::FunctionType : public StructuralType {
852 public:
853  int Arity() { return this->Length() - 2; }
854  TypeHandle Result() { return this->Get(0); }
855  TypeHandle Receiver() { return this->Get(1); }
856  TypeHandle Parameter(int i) { return this->Get(2 + i); }
857
858  void InitParameter(int i, TypeHandle type) { this->Set(2 + i, type); }
859
860  static FunctionHandle New(
861      TypeHandle result, TypeHandle receiver, int arity, Region* region) {
862    FunctionHandle type = Config::template cast<FunctionType>(
863        StructuralType::New(StructuralType::kFunctionTag, 2 + arity, region));
864    type->Set(0, result);
865    type->Set(1, receiver);
866    return type;
867  }
868
869  static FunctionType* cast(TypeImpl* type) {
870    DCHECK(type->IsFunction());
871    return static_cast<FunctionType*>(type);
872  }
873};
874
875
876// -----------------------------------------------------------------------------
877// Type iterators.
878
879template<class Config> template<class T>
880class TypeImpl<Config>::Iterator {
881 public:
882  bool Done() const { return index_ < 0; }
883  i::Handle<T> Current();
884  void Advance();
885
886 private:
887  template<class> friend class TypeImpl;
888
889  Iterator() : index_(-1) {}
890  explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
891    Advance();
892  }
893
894  inline bool matches(TypeHandle type);
895  inline TypeHandle get_type();
896
897  TypeHandle type_;
898  int index_;
899};
900
901
902// -----------------------------------------------------------------------------
903// Zone-allocated types; they are either (odd) integers to represent bitsets, or
904// (even) pointers to structures for everything else.
905
906struct ZoneTypeConfig {
907  typedef TypeImpl<ZoneTypeConfig> Type;
908  class Base {};
909  typedef void* Struct;
910  typedef i::Zone Region;
911  template<class T> struct Handle { typedef T* type; };
912
913  template<class T> static inline T* handle(T* type);
914  template<class T> static inline T* cast(Type* type);
915
916  static inline bool is_bitset(Type* type);
917  static inline bool is_class(Type* type);
918  static inline bool is_struct(Type* type, int tag);
919
920  static inline Type::bitset as_bitset(Type* type);
921  static inline i::Handle<i::Map> as_class(Type* type);
922  static inline Struct* as_struct(Type* type);
923
924  static inline Type* from_bitset(Type::bitset);
925  static inline Type* from_bitset(Type::bitset, Zone* zone);
926  static inline Type* from_class(i::Handle<i::Map> map, Zone* zone);
927  static inline Type* from_struct(Struct* structured);
928
929  static inline Struct* struct_create(int tag, int length, Zone* zone);
930  static inline void struct_shrink(Struct* structure, int length);
931  static inline int struct_tag(Struct* structure);
932  static inline int struct_length(Struct* structure);
933  static inline Type* struct_get(Struct* structure, int i);
934  static inline void struct_set(Struct* structure, int i, Type* type);
935  template<class V>
936  static inline i::Handle<V> struct_get_value(Struct* structure, int i);
937  template<class V> static inline void struct_set_value(
938      Struct* structure, int i, i::Handle<V> x);
939};
940
941typedef TypeImpl<ZoneTypeConfig> Type;
942
943
944// -----------------------------------------------------------------------------
945// Heap-allocated types; either smis for bitsets, maps for classes, boxes for
946// constants, or fixed arrays for unions.
947
948struct HeapTypeConfig {
949  typedef TypeImpl<HeapTypeConfig> Type;
950  typedef i::Object Base;
951  typedef i::FixedArray Struct;
952  typedef i::Isolate Region;
953  template<class T> struct Handle { typedef i::Handle<T> type; };
954
955  template<class T> static inline i::Handle<T> handle(T* type);
956  template<class T> static inline i::Handle<T> cast(i::Handle<Type> type);
957
958  static inline bool is_bitset(Type* type);
959  static inline bool is_class(Type* type);
960  static inline bool is_struct(Type* type, int tag);
961
962  static inline Type::bitset as_bitset(Type* type);
963  static inline i::Handle<i::Map> as_class(Type* type);
964  static inline i::Handle<Struct> as_struct(Type* type);
965
966  static inline Type* from_bitset(Type::bitset);
967  static inline i::Handle<Type> from_bitset(Type::bitset, Isolate* isolate);
968  static inline i::Handle<Type> from_class(
969      i::Handle<i::Map> map, Isolate* isolate);
970  static inline i::Handle<Type> from_struct(i::Handle<Struct> structure);
971
972  static inline i::Handle<Struct> struct_create(
973      int tag, int length, Isolate* isolate);
974  static inline void struct_shrink(i::Handle<Struct> structure, int length);
975  static inline int struct_tag(i::Handle<Struct> structure);
976  static inline int struct_length(i::Handle<Struct> structure);
977  static inline i::Handle<Type> struct_get(i::Handle<Struct> structure, int i);
978  static inline void struct_set(
979      i::Handle<Struct> structure, int i, i::Handle<Type> type);
980  template<class V>
981  static inline i::Handle<V> struct_get_value(
982      i::Handle<Struct> structure, int i);
983  template<class V>
984  static inline void struct_set_value(
985      i::Handle<Struct> structure, int i, i::Handle<V> x);
986};
987
988typedef TypeImpl<HeapTypeConfig> HeapType;
989
990
991// -----------------------------------------------------------------------------
992// Type bounds. A simple struct to represent a pair of lower/upper types.
993
994template<class Config>
995struct BoundsImpl {
996  typedef TypeImpl<Config> Type;
997  typedef typename Type::TypeHandle TypeHandle;
998  typedef typename Type::Region Region;
999
1000  TypeHandle lower;
1001  TypeHandle upper;
1002
1003  BoundsImpl() {}
1004  explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {}
1005  BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) {
1006    DCHECK(lower->Is(upper));
1007  }
1008
1009  // Unrestricted bounds.
1010  static BoundsImpl Unbounded(Region* region) {
1011    return BoundsImpl(Type::None(region), Type::Any(region));
1012  }
1013
1014  // Meet: both b1 and b2 are known to hold.
1015  static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) {
1016    TypeHandle lower = Type::Union(b1.lower, b2.lower, region);
1017    TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region);
1018    // Lower bounds are considered approximate, correct as necessary.
1019    lower = Type::Intersect(lower, upper, region);
1020    return BoundsImpl(lower, upper);
1021  }
1022
1023  // Join: either b1 or b2 is known to hold.
1024  static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) {
1025    TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region);
1026    TypeHandle upper = Type::Union(b1.upper, b2.upper, region);
1027    return BoundsImpl(lower, upper);
1028  }
1029
1030  static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) {
1031    // Lower bounds are considered approximate, correct as necessary.
1032    t = Type::Intersect(t, b.upper, region);
1033    TypeHandle lower = Type::Union(b.lower, t, region);
1034    return BoundsImpl(lower, b.upper);
1035  }
1036  static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) {
1037    TypeHandle lower = Type::Intersect(b.lower, t, region);
1038    TypeHandle upper = Type::Intersect(b.upper, t, region);
1039    return BoundsImpl(lower, upper);
1040  }
1041
1042  bool Narrows(BoundsImpl that) {
1043    return that.lower->Is(this->lower) && this->upper->Is(that.upper);
1044  }
1045};
1046
1047typedef BoundsImpl<ZoneTypeConfig> Bounds;
1048
1049} }  // namespace v8::internal
1050
1051#endif  // V8_TYPES_H_
1052