1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X87
8
9#include "src/base/bits.h"
10#include "src/base/division-by-constant.h"
11#include "src/bootstrapper.h"
12#include "src/codegen.h"
13#include "src/cpu-profiler.h"
14#include "src/debug.h"
15#include "src/isolate-inl.h"
16#include "src/runtime.h"
17#include "src/serialize.h"
18
19namespace v8 {
20namespace internal {
21
22// -------------------------------------------------------------------------
23// MacroAssembler implementation.
24
25MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
26    : Assembler(arg_isolate, buffer, size),
27      generating_stub_(false),
28      has_frame_(false) {
29  if (isolate() != NULL) {
30    // TODO(titzer): should we just use a null handle here instead?
31    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
32                                  isolate());
33  }
34}
35
36
37void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
38  DCHECK(!r.IsDouble());
39  if (r.IsInteger8()) {
40    movsx_b(dst, src);
41  } else if (r.IsUInteger8()) {
42    movzx_b(dst, src);
43  } else if (r.IsInteger16()) {
44    movsx_w(dst, src);
45  } else if (r.IsUInteger16()) {
46    movzx_w(dst, src);
47  } else {
48    mov(dst, src);
49  }
50}
51
52
53void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
54  DCHECK(!r.IsDouble());
55  if (r.IsInteger8() || r.IsUInteger8()) {
56    mov_b(dst, src);
57  } else if (r.IsInteger16() || r.IsUInteger16()) {
58    mov_w(dst, src);
59  } else {
60    if (r.IsHeapObject()) {
61      AssertNotSmi(src);
62    } else if (r.IsSmi()) {
63      AssertSmi(src);
64    }
65    mov(dst, src);
66  }
67}
68
69
70void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
71  if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
72    Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
73    mov(destination, value);
74    return;
75  }
76  ExternalReference roots_array_start =
77      ExternalReference::roots_array_start(isolate());
78  mov(destination, Immediate(index));
79  mov(destination, Operand::StaticArray(destination,
80                                        times_pointer_size,
81                                        roots_array_start));
82}
83
84
85void MacroAssembler::StoreRoot(Register source,
86                               Register scratch,
87                               Heap::RootListIndex index) {
88  DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
89  ExternalReference roots_array_start =
90      ExternalReference::roots_array_start(isolate());
91  mov(scratch, Immediate(index));
92  mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
93      source);
94}
95
96
97void MacroAssembler::CompareRoot(Register with,
98                                 Register scratch,
99                                 Heap::RootListIndex index) {
100  ExternalReference roots_array_start =
101      ExternalReference::roots_array_start(isolate());
102  mov(scratch, Immediate(index));
103  cmp(with, Operand::StaticArray(scratch,
104                                times_pointer_size,
105                                roots_array_start));
106}
107
108
109void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
110  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
111  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
112  cmp(with, value);
113}
114
115
116void MacroAssembler::CompareRoot(const Operand& with,
117                                 Heap::RootListIndex index) {
118  DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index));
119  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
120  cmp(with, value);
121}
122
123
124void MacroAssembler::InNewSpace(
125    Register object,
126    Register scratch,
127    Condition cc,
128    Label* condition_met,
129    Label::Distance condition_met_distance) {
130  DCHECK(cc == equal || cc == not_equal);
131  if (scratch.is(object)) {
132    and_(scratch, Immediate(~Page::kPageAlignmentMask));
133  } else {
134    mov(scratch, Immediate(~Page::kPageAlignmentMask));
135    and_(scratch, object);
136  }
137  // Check that we can use a test_b.
138  DCHECK(MemoryChunk::IN_FROM_SPACE < 8);
139  DCHECK(MemoryChunk::IN_TO_SPACE < 8);
140  int mask = (1 << MemoryChunk::IN_FROM_SPACE)
141           | (1 << MemoryChunk::IN_TO_SPACE);
142  // If non-zero, the page belongs to new-space.
143  test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
144         static_cast<uint8_t>(mask));
145  j(cc, condition_met, condition_met_distance);
146}
147
148
149void MacroAssembler::RememberedSetHelper(
150    Register object,  // Only used for debug checks.
151    Register addr, Register scratch, SaveFPRegsMode save_fp,
152    MacroAssembler::RememberedSetFinalAction and_then) {
153  Label done;
154  if (emit_debug_code()) {
155    Label ok;
156    JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
157    int3();
158    bind(&ok);
159  }
160  // Load store buffer top.
161  ExternalReference store_buffer =
162      ExternalReference::store_buffer_top(isolate());
163  mov(scratch, Operand::StaticVariable(store_buffer));
164  // Store pointer to buffer.
165  mov(Operand(scratch, 0), addr);
166  // Increment buffer top.
167  add(scratch, Immediate(kPointerSize));
168  // Write back new top of buffer.
169  mov(Operand::StaticVariable(store_buffer), scratch);
170  // Call stub on end of buffer.
171  // Check for end of buffer.
172  test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
173  if (and_then == kReturnAtEnd) {
174    Label buffer_overflowed;
175    j(not_equal, &buffer_overflowed, Label::kNear);
176    ret(0);
177    bind(&buffer_overflowed);
178  } else {
179    DCHECK(and_then == kFallThroughAtEnd);
180    j(equal, &done, Label::kNear);
181  }
182  StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
183  CallStub(&store_buffer_overflow);
184  if (and_then == kReturnAtEnd) {
185    ret(0);
186  } else {
187    DCHECK(and_then == kFallThroughAtEnd);
188    bind(&done);
189  }
190}
191
192
193void MacroAssembler::ClampTOSToUint8(Register result_reg) {
194  Label done, conv_failure;
195  sub(esp, Immediate(kPointerSize));
196  fnclex();
197  fist_s(Operand(esp, 0));
198  pop(result_reg);
199  X87CheckIA();
200  j(equal, &conv_failure, Label::kNear);
201  test(result_reg, Immediate(0xFFFFFF00));
202  j(zero, &done, Label::kNear);
203  setcc(sign, result_reg);
204  sub(result_reg, Immediate(1));
205  and_(result_reg, Immediate(255));
206  jmp(&done, Label::kNear);
207  bind(&conv_failure);
208  fnclex();
209  fldz();
210  fld(1);
211  FCmp();
212  setcc(below, result_reg);  // 1 if negative, 0 if positive.
213  dec_b(result_reg);         // 0 if negative, 255 if positive.
214  bind(&done);
215}
216
217
218void MacroAssembler::ClampUint8(Register reg) {
219  Label done;
220  test(reg, Immediate(0xFFFFFF00));
221  j(zero, &done, Label::kNear);
222  setcc(negative, reg);  // 1 if negative, 0 if positive.
223  dec_b(reg);  // 0 if negative, 255 if positive.
224  bind(&done);
225}
226
227
228void MacroAssembler::SlowTruncateToI(Register result_reg,
229                                     Register input_reg,
230                                     int offset) {
231  DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
232  call(stub.GetCode(), RelocInfo::CODE_TARGET);
233}
234
235
236void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
237  sub(esp, Immediate(kDoubleSize));
238  fst_d(MemOperand(esp, 0));
239  SlowTruncateToI(result_reg, esp, 0);
240  add(esp, Immediate(kDoubleSize));
241}
242
243
244void MacroAssembler::X87TOSToI(Register result_reg,
245                               MinusZeroMode minus_zero_mode,
246                               Label* lost_precision, Label* is_nan,
247                               Label* minus_zero, Label::Distance dst) {
248  Label done;
249  sub(esp, Immediate(kPointerSize));
250  fld(0);
251  fist_s(MemOperand(esp, 0));
252  fild_s(MemOperand(esp, 0));
253  pop(result_reg);
254  FCmp();
255  j(not_equal, lost_precision, dst);
256  j(parity_even, is_nan, dst);
257  if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
258    test(result_reg, Operand(result_reg));
259    j(not_zero, &done, Label::kNear);
260    // To check for minus zero, we load the value again as float, and check
261    // if that is still 0.
262    sub(esp, Immediate(kPointerSize));
263    fst_s(MemOperand(esp, 0));
264    pop(result_reg);
265    test(result_reg, Operand(result_reg));
266    j(not_zero, minus_zero, dst);
267  }
268  bind(&done);
269}
270
271
272void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
273                                           Register input_reg) {
274  Label done, slow_case;
275
276  SlowTruncateToI(result_reg, input_reg);
277  bind(&done);
278}
279
280
281void MacroAssembler::LoadUint32NoSSE2(Register src) {
282  Label done;
283  push(src);
284  fild_s(Operand(esp, 0));
285  cmp(src, Immediate(0));
286  j(not_sign, &done, Label::kNear);
287  ExternalReference uint32_bias =
288        ExternalReference::address_of_uint32_bias();
289  fld_d(Operand::StaticVariable(uint32_bias));
290  faddp(1);
291  bind(&done);
292  add(esp, Immediate(kPointerSize));
293}
294
295
296void MacroAssembler::RecordWriteArray(
297    Register object, Register value, Register index, SaveFPRegsMode save_fp,
298    RememberedSetAction remembered_set_action, SmiCheck smi_check,
299    PointersToHereCheck pointers_to_here_check_for_value) {
300  // First, check if a write barrier is even needed. The tests below
301  // catch stores of Smis.
302  Label done;
303
304  // Skip barrier if writing a smi.
305  if (smi_check == INLINE_SMI_CHECK) {
306    DCHECK_EQ(0, kSmiTag);
307    test(value, Immediate(kSmiTagMask));
308    j(zero, &done);
309  }
310
311  // Array access: calculate the destination address in the same manner as
312  // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 2 to get an offset
313  // into an array of words.
314  Register dst = index;
315  lea(dst, Operand(object, index, times_half_pointer_size,
316                   FixedArray::kHeaderSize - kHeapObjectTag));
317
318  RecordWrite(object, dst, value, save_fp, remembered_set_action,
319              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
320
321  bind(&done);
322
323  // Clobber clobbered input registers when running with the debug-code flag
324  // turned on to provoke errors.
325  if (emit_debug_code()) {
326    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
327    mov(index, Immediate(bit_cast<int32_t>(kZapValue)));
328  }
329}
330
331
332void MacroAssembler::RecordWriteField(
333    Register object, int offset, Register value, Register dst,
334    SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action,
335    SmiCheck smi_check, PointersToHereCheck pointers_to_here_check_for_value) {
336  // First, check if a write barrier is even needed. The tests below
337  // catch stores of Smis.
338  Label done;
339
340  // Skip barrier if writing a smi.
341  if (smi_check == INLINE_SMI_CHECK) {
342    JumpIfSmi(value, &done, Label::kNear);
343  }
344
345  // Although the object register is tagged, the offset is relative to the start
346  // of the object, so so offset must be a multiple of kPointerSize.
347  DCHECK(IsAligned(offset, kPointerSize));
348
349  lea(dst, FieldOperand(object, offset));
350  if (emit_debug_code()) {
351    Label ok;
352    test_b(dst, (1 << kPointerSizeLog2) - 1);
353    j(zero, &ok, Label::kNear);
354    int3();
355    bind(&ok);
356  }
357
358  RecordWrite(object, dst, value, save_fp, remembered_set_action,
359              OMIT_SMI_CHECK, pointers_to_here_check_for_value);
360
361  bind(&done);
362
363  // Clobber clobbered input registers when running with the debug-code flag
364  // turned on to provoke errors.
365  if (emit_debug_code()) {
366    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
367    mov(dst, Immediate(bit_cast<int32_t>(kZapValue)));
368  }
369}
370
371
372void MacroAssembler::RecordWriteForMap(Register object, Handle<Map> map,
373                                       Register scratch1, Register scratch2,
374                                       SaveFPRegsMode save_fp) {
375  Label done;
376
377  Register address = scratch1;
378  Register value = scratch2;
379  if (emit_debug_code()) {
380    Label ok;
381    lea(address, FieldOperand(object, HeapObject::kMapOffset));
382    test_b(address, (1 << kPointerSizeLog2) - 1);
383    j(zero, &ok, Label::kNear);
384    int3();
385    bind(&ok);
386  }
387
388  DCHECK(!object.is(value));
389  DCHECK(!object.is(address));
390  DCHECK(!value.is(address));
391  AssertNotSmi(object);
392
393  if (!FLAG_incremental_marking) {
394    return;
395  }
396
397  // Compute the address.
398  lea(address, FieldOperand(object, HeapObject::kMapOffset));
399
400  // A single check of the map's pages interesting flag suffices, since it is
401  // only set during incremental collection, and then it's also guaranteed that
402  // the from object's page's interesting flag is also set.  This optimization
403  // relies on the fact that maps can never be in new space.
404  DCHECK(!isolate()->heap()->InNewSpace(*map));
405  CheckPageFlagForMap(map,
406                      MemoryChunk::kPointersToHereAreInterestingMask,
407                      zero,
408                      &done,
409                      Label::kNear);
410
411  RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
412                       save_fp);
413  CallStub(&stub);
414
415  bind(&done);
416
417  // Count number of write barriers in generated code.
418  isolate()->counters()->write_barriers_static()->Increment();
419  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
420
421  // Clobber clobbered input registers when running with the debug-code flag
422  // turned on to provoke errors.
423  if (emit_debug_code()) {
424    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
425    mov(scratch1, Immediate(bit_cast<int32_t>(kZapValue)));
426    mov(scratch2, Immediate(bit_cast<int32_t>(kZapValue)));
427  }
428}
429
430
431void MacroAssembler::RecordWrite(
432    Register object, Register address, Register value, SaveFPRegsMode fp_mode,
433    RememberedSetAction remembered_set_action, SmiCheck smi_check,
434    PointersToHereCheck pointers_to_here_check_for_value) {
435  DCHECK(!object.is(value));
436  DCHECK(!object.is(address));
437  DCHECK(!value.is(address));
438  AssertNotSmi(object);
439
440  if (remembered_set_action == OMIT_REMEMBERED_SET &&
441      !FLAG_incremental_marking) {
442    return;
443  }
444
445  if (emit_debug_code()) {
446    Label ok;
447    cmp(value, Operand(address, 0));
448    j(equal, &ok, Label::kNear);
449    int3();
450    bind(&ok);
451  }
452
453  // First, check if a write barrier is even needed. The tests below
454  // catch stores of Smis and stores into young gen.
455  Label done;
456
457  if (smi_check == INLINE_SMI_CHECK) {
458    // Skip barrier if writing a smi.
459    JumpIfSmi(value, &done, Label::kNear);
460  }
461
462  if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
463    CheckPageFlag(value,
464                  value,  // Used as scratch.
465                  MemoryChunk::kPointersToHereAreInterestingMask,
466                  zero,
467                  &done,
468                  Label::kNear);
469  }
470  CheckPageFlag(object,
471                value,  // Used as scratch.
472                MemoryChunk::kPointersFromHereAreInterestingMask,
473                zero,
474                &done,
475                Label::kNear);
476
477  RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
478                       fp_mode);
479  CallStub(&stub);
480
481  bind(&done);
482
483  // Count number of write barriers in generated code.
484  isolate()->counters()->write_barriers_static()->Increment();
485  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
486
487  // Clobber clobbered registers when running with the debug-code flag
488  // turned on to provoke errors.
489  if (emit_debug_code()) {
490    mov(address, Immediate(bit_cast<int32_t>(kZapValue)));
491    mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
492  }
493}
494
495
496void MacroAssembler::DebugBreak() {
497  Move(eax, Immediate(0));
498  mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
499  CEntryStub ces(isolate(), 1);
500  call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
501}
502
503
504bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
505  static const int kMaxImmediateBits = 17;
506  if (!RelocInfo::IsNone(x.rmode_)) return false;
507  return !is_intn(x.x_, kMaxImmediateBits);
508}
509
510
511void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
512  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
513    Move(dst, Immediate(x.x_ ^ jit_cookie()));
514    xor_(dst, jit_cookie());
515  } else {
516    Move(dst, x);
517  }
518}
519
520
521void MacroAssembler::SafePush(const Immediate& x) {
522  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
523    push(Immediate(x.x_ ^ jit_cookie()));
524    xor_(Operand(esp, 0), Immediate(jit_cookie()));
525  } else {
526    push(x);
527  }
528}
529
530
531void MacroAssembler::CmpObjectType(Register heap_object,
532                                   InstanceType type,
533                                   Register map) {
534  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
535  CmpInstanceType(map, type);
536}
537
538
539void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
540  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
541       static_cast<int8_t>(type));
542}
543
544
545void MacroAssembler::CheckFastElements(Register map,
546                                       Label* fail,
547                                       Label::Distance distance) {
548  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
549  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
550  STATIC_ASSERT(FAST_ELEMENTS == 2);
551  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
552  cmpb(FieldOperand(map, Map::kBitField2Offset),
553       Map::kMaximumBitField2FastHoleyElementValue);
554  j(above, fail, distance);
555}
556
557
558void MacroAssembler::CheckFastObjectElements(Register map,
559                                             Label* fail,
560                                             Label::Distance distance) {
561  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
562  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
563  STATIC_ASSERT(FAST_ELEMENTS == 2);
564  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
565  cmpb(FieldOperand(map, Map::kBitField2Offset),
566       Map::kMaximumBitField2FastHoleySmiElementValue);
567  j(below_equal, fail, distance);
568  cmpb(FieldOperand(map, Map::kBitField2Offset),
569       Map::kMaximumBitField2FastHoleyElementValue);
570  j(above, fail, distance);
571}
572
573
574void MacroAssembler::CheckFastSmiElements(Register map,
575                                          Label* fail,
576                                          Label::Distance distance) {
577  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
578  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
579  cmpb(FieldOperand(map, Map::kBitField2Offset),
580       Map::kMaximumBitField2FastHoleySmiElementValue);
581  j(above, fail, distance);
582}
583
584
585void MacroAssembler::StoreNumberToDoubleElements(
586    Register maybe_number,
587    Register elements,
588    Register key,
589    Register scratch,
590    Label* fail,
591    int elements_offset) {
592  Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
593  JumpIfSmi(maybe_number, &smi_value, Label::kNear);
594
595  CheckMap(maybe_number,
596           isolate()->factory()->heap_number_map(),
597           fail,
598           DONT_DO_SMI_CHECK);
599
600  // Double value, canonicalize NaN.
601  uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
602  cmp(FieldOperand(maybe_number, offset),
603      Immediate(kNaNOrInfinityLowerBoundUpper32));
604  j(greater_equal, &maybe_nan, Label::kNear);
605
606  bind(&not_nan);
607  ExternalReference canonical_nan_reference =
608      ExternalReference::address_of_canonical_non_hole_nan();
609  fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
610  bind(&have_double_value);
611  fstp_d(FieldOperand(elements, key, times_4,
612                      FixedDoubleArray::kHeaderSize - elements_offset));
613  jmp(&done);
614
615  bind(&maybe_nan);
616  // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
617  // it's an Infinity, and the non-NaN code path applies.
618  j(greater, &is_nan, Label::kNear);
619  cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
620  j(zero, &not_nan);
621  bind(&is_nan);
622  fld_d(Operand::StaticVariable(canonical_nan_reference));
623  jmp(&have_double_value, Label::kNear);
624
625  bind(&smi_value);
626  // Value is a smi. Convert to a double and store.
627  // Preserve original value.
628  mov(scratch, maybe_number);
629  SmiUntag(scratch);
630  push(scratch);
631  fild_s(Operand(esp, 0));
632  pop(scratch);
633  fstp_d(FieldOperand(elements, key, times_4,
634                      FixedDoubleArray::kHeaderSize - elements_offset));
635  bind(&done);
636}
637
638
639void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
640  cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
641}
642
643
644void MacroAssembler::CheckMap(Register obj,
645                              Handle<Map> map,
646                              Label* fail,
647                              SmiCheckType smi_check_type) {
648  if (smi_check_type == DO_SMI_CHECK) {
649    JumpIfSmi(obj, fail);
650  }
651
652  CompareMap(obj, map);
653  j(not_equal, fail);
654}
655
656
657void MacroAssembler::DispatchMap(Register obj,
658                                 Register unused,
659                                 Handle<Map> map,
660                                 Handle<Code> success,
661                                 SmiCheckType smi_check_type) {
662  Label fail;
663  if (smi_check_type == DO_SMI_CHECK) {
664    JumpIfSmi(obj, &fail);
665  }
666  cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
667  j(equal, success);
668
669  bind(&fail);
670}
671
672
673Condition MacroAssembler::IsObjectStringType(Register heap_object,
674                                             Register map,
675                                             Register instance_type) {
676  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
677  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
678  STATIC_ASSERT(kNotStringTag != 0);
679  test(instance_type, Immediate(kIsNotStringMask));
680  return zero;
681}
682
683
684Condition MacroAssembler::IsObjectNameType(Register heap_object,
685                                           Register map,
686                                           Register instance_type) {
687  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
688  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
689  cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
690  return below_equal;
691}
692
693
694void MacroAssembler::IsObjectJSObjectType(Register heap_object,
695                                          Register map,
696                                          Register scratch,
697                                          Label* fail) {
698  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
699  IsInstanceJSObjectType(map, scratch, fail);
700}
701
702
703void MacroAssembler::IsInstanceJSObjectType(Register map,
704                                            Register scratch,
705                                            Label* fail) {
706  movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
707  sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
708  cmp(scratch,
709      LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
710  j(above, fail);
711}
712
713
714void MacroAssembler::FCmp() {
715  fucompp();
716  push(eax);
717  fnstsw_ax();
718  sahf();
719  pop(eax);
720}
721
722
723void MacroAssembler::FXamMinusZero() {
724  fxam();
725  push(eax);
726  fnstsw_ax();
727  and_(eax, Immediate(0x4700));
728  // For minus zero, C3 == 1 && C1 == 1.
729  cmp(eax, Immediate(0x4200));
730  pop(eax);
731  fstp(0);
732}
733
734
735void MacroAssembler::FXamSign() {
736  fxam();
737  push(eax);
738  fnstsw_ax();
739  // For negative value (including -0.0), C1 == 1.
740  and_(eax, Immediate(0x0200));
741  pop(eax);
742  fstp(0);
743}
744
745
746void MacroAssembler::X87CheckIA() {
747  push(eax);
748  fnstsw_ax();
749  // For #IA, IE == 1 && SF == 0.
750  and_(eax, Immediate(0x0041));
751  cmp(eax, Immediate(0x0001));
752  pop(eax);
753}
754
755
756// rc=00B, round to nearest.
757// rc=01B, round down.
758// rc=10B, round up.
759// rc=11B, round toward zero.
760void MacroAssembler::X87SetRC(int rc) {
761  sub(esp, Immediate(kPointerSize));
762  fnstcw(MemOperand(esp, 0));
763  and_(MemOperand(esp, 0), Immediate(0xF3FF));
764  or_(MemOperand(esp, 0), Immediate(rc));
765  fldcw(MemOperand(esp, 0));
766  add(esp, Immediate(kPointerSize));
767}
768
769
770void MacroAssembler::X87SetFPUCW(int cw) {
771  push(Immediate(cw));
772  fldcw(MemOperand(esp, 0));
773  add(esp, Immediate(kPointerSize));
774}
775
776
777void MacroAssembler::AssertNumber(Register object) {
778  if (emit_debug_code()) {
779    Label ok;
780    JumpIfSmi(object, &ok);
781    cmp(FieldOperand(object, HeapObject::kMapOffset),
782        isolate()->factory()->heap_number_map());
783    Check(equal, kOperandNotANumber);
784    bind(&ok);
785  }
786}
787
788
789void MacroAssembler::AssertSmi(Register object) {
790  if (emit_debug_code()) {
791    test(object, Immediate(kSmiTagMask));
792    Check(equal, kOperandIsNotASmi);
793  }
794}
795
796
797void MacroAssembler::AssertString(Register object) {
798  if (emit_debug_code()) {
799    test(object, Immediate(kSmiTagMask));
800    Check(not_equal, kOperandIsASmiAndNotAString);
801    push(object);
802    mov(object, FieldOperand(object, HeapObject::kMapOffset));
803    CmpInstanceType(object, FIRST_NONSTRING_TYPE);
804    pop(object);
805    Check(below, kOperandIsNotAString);
806  }
807}
808
809
810void MacroAssembler::AssertName(Register object) {
811  if (emit_debug_code()) {
812    test(object, Immediate(kSmiTagMask));
813    Check(not_equal, kOperandIsASmiAndNotAName);
814    push(object);
815    mov(object, FieldOperand(object, HeapObject::kMapOffset));
816    CmpInstanceType(object, LAST_NAME_TYPE);
817    pop(object);
818    Check(below_equal, kOperandIsNotAName);
819  }
820}
821
822
823void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
824  if (emit_debug_code()) {
825    Label done_checking;
826    AssertNotSmi(object);
827    cmp(object, isolate()->factory()->undefined_value());
828    j(equal, &done_checking);
829    cmp(FieldOperand(object, 0),
830        Immediate(isolate()->factory()->allocation_site_map()));
831    Assert(equal, kExpectedUndefinedOrCell);
832    bind(&done_checking);
833  }
834}
835
836
837void MacroAssembler::AssertNotSmi(Register object) {
838  if (emit_debug_code()) {
839    test(object, Immediate(kSmiTagMask));
840    Check(not_equal, kOperandIsASmi);
841  }
842}
843
844
845void MacroAssembler::StubPrologue() {
846  push(ebp);  // Caller's frame pointer.
847  mov(ebp, esp);
848  push(esi);  // Callee's context.
849  push(Immediate(Smi::FromInt(StackFrame::STUB)));
850}
851
852
853void MacroAssembler::Prologue(bool code_pre_aging) {
854  PredictableCodeSizeScope predictible_code_size_scope(this,
855      kNoCodeAgeSequenceLength);
856  if (code_pre_aging) {
857      // Pre-age the code.
858    call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
859        RelocInfo::CODE_AGE_SEQUENCE);
860    Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
861  } else {
862    push(ebp);  // Caller's frame pointer.
863    mov(ebp, esp);
864    push(esi);  // Callee's context.
865    push(edi);  // Callee's JS function.
866  }
867}
868
869
870void MacroAssembler::EnterFrame(StackFrame::Type type) {
871  push(ebp);
872  mov(ebp, esp);
873  push(esi);
874  push(Immediate(Smi::FromInt(type)));
875  push(Immediate(CodeObject()));
876  if (emit_debug_code()) {
877    cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
878    Check(not_equal, kCodeObjectNotProperlyPatched);
879  }
880}
881
882
883void MacroAssembler::LeaveFrame(StackFrame::Type type) {
884  if (emit_debug_code()) {
885    cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
886        Immediate(Smi::FromInt(type)));
887    Check(equal, kStackFrameTypesMustMatch);
888  }
889  leave();
890}
891
892
893void MacroAssembler::EnterExitFramePrologue() {
894  // Set up the frame structure on the stack.
895  DCHECK(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
896  DCHECK(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
897  DCHECK(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
898  push(ebp);
899  mov(ebp, esp);
900
901  // Reserve room for entry stack pointer and push the code object.
902  DCHECK(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
903  push(Immediate(0));  // Saved entry sp, patched before call.
904  push(Immediate(CodeObject()));  // Accessed from ExitFrame::code_slot.
905
906  // Save the frame pointer and the context in top.
907  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
908  ExternalReference context_address(Isolate::kContextAddress, isolate());
909  mov(Operand::StaticVariable(c_entry_fp_address), ebp);
910  mov(Operand::StaticVariable(context_address), esi);
911}
912
913
914void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
915  // Optionally save FPU state.
916  if (save_doubles) {
917    // Store FPU state to m108byte.
918    int space = 108 + argc * kPointerSize;
919    sub(esp, Immediate(space));
920    const int offset = -2 * kPointerSize;  // entry fp + code object.
921    fnsave(MemOperand(ebp, offset - 108));
922  } else {
923    sub(esp, Immediate(argc * kPointerSize));
924  }
925
926  // Get the required frame alignment for the OS.
927  const int kFrameAlignment = base::OS::ActivationFrameAlignment();
928  if (kFrameAlignment > 0) {
929    DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
930    and_(esp, -kFrameAlignment);
931  }
932
933  // Patch the saved entry sp.
934  mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
935}
936
937
938void MacroAssembler::EnterExitFrame(bool save_doubles) {
939  EnterExitFramePrologue();
940
941  // Set up argc and argv in callee-saved registers.
942  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
943  mov(edi, eax);
944  lea(esi, Operand(ebp, eax, times_4, offset));
945
946  // Reserve space for argc, argv and isolate.
947  EnterExitFrameEpilogue(3, save_doubles);
948}
949
950
951void MacroAssembler::EnterApiExitFrame(int argc) {
952  EnterExitFramePrologue();
953  EnterExitFrameEpilogue(argc, false);
954}
955
956
957void MacroAssembler::LeaveExitFrame(bool save_doubles) {
958  // Optionally restore FPU state.
959  if (save_doubles) {
960    const int offset = -2 * kPointerSize;
961    frstor(MemOperand(ebp, offset - 108));
962  }
963
964  // Get the return address from the stack and restore the frame pointer.
965  mov(ecx, Operand(ebp, 1 * kPointerSize));
966  mov(ebp, Operand(ebp, 0 * kPointerSize));
967
968  // Pop the arguments and the receiver from the caller stack.
969  lea(esp, Operand(esi, 1 * kPointerSize));
970
971  // Push the return address to get ready to return.
972  push(ecx);
973
974  LeaveExitFrameEpilogue(true);
975}
976
977
978void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
979  // Restore current context from top and clear it in debug mode.
980  ExternalReference context_address(Isolate::kContextAddress, isolate());
981  if (restore_context) {
982    mov(esi, Operand::StaticVariable(context_address));
983  }
984#ifdef DEBUG
985  mov(Operand::StaticVariable(context_address), Immediate(0));
986#endif
987
988  // Clear the top frame.
989  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
990                                       isolate());
991  mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
992}
993
994
995void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
996  mov(esp, ebp);
997  pop(ebp);
998
999  LeaveExitFrameEpilogue(restore_context);
1000}
1001
1002
1003void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1004                                    int handler_index) {
1005  // Adjust this code if not the case.
1006  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1007  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1008  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1009  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1010  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1011  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1012
1013  // We will build up the handler from the bottom by pushing on the stack.
1014  // First push the frame pointer and context.
1015  if (kind == StackHandler::JS_ENTRY) {
1016    // The frame pointer does not point to a JS frame so we save NULL for
1017    // ebp. We expect the code throwing an exception to check ebp before
1018    // dereferencing it to restore the context.
1019    push(Immediate(0));  // NULL frame pointer.
1020    push(Immediate(Smi::FromInt(0)));  // No context.
1021  } else {
1022    push(ebp);
1023    push(esi);
1024  }
1025  // Push the state and the code object.
1026  unsigned state =
1027      StackHandler::IndexField::encode(handler_index) |
1028      StackHandler::KindField::encode(kind);
1029  push(Immediate(state));
1030  Push(CodeObject());
1031
1032  // Link the current handler as the next handler.
1033  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1034  push(Operand::StaticVariable(handler_address));
1035  // Set this new handler as the current one.
1036  mov(Operand::StaticVariable(handler_address), esp);
1037}
1038
1039
1040void MacroAssembler::PopTryHandler() {
1041  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1042  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1043  pop(Operand::StaticVariable(handler_address));
1044  add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1045}
1046
1047
1048void MacroAssembler::JumpToHandlerEntry() {
1049  // Compute the handler entry address and jump to it.  The handler table is
1050  // a fixed array of (smi-tagged) code offsets.
1051  // eax = exception, edi = code object, edx = state.
1052  mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
1053  shr(edx, StackHandler::kKindWidth);
1054  mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
1055  SmiUntag(edx);
1056  lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1057  jmp(edi);
1058}
1059
1060
1061void MacroAssembler::Throw(Register value) {
1062  // Adjust this code if not the case.
1063  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1064  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1065  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1066  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1067  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1068  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1069
1070  // The exception is expected in eax.
1071  if (!value.is(eax)) {
1072    mov(eax, value);
1073  }
1074  // Drop the stack pointer to the top of the top handler.
1075  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1076  mov(esp, Operand::StaticVariable(handler_address));
1077  // Restore the next handler.
1078  pop(Operand::StaticVariable(handler_address));
1079
1080  // Remove the code object and state, compute the handler address in edi.
1081  pop(edi);  // Code object.
1082  pop(edx);  // Index and state.
1083
1084  // Restore the context and frame pointer.
1085  pop(esi);  // Context.
1086  pop(ebp);  // Frame pointer.
1087
1088  // If the handler is a JS frame, restore the context to the frame.
1089  // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
1090  // ebp or esi.
1091  Label skip;
1092  test(esi, esi);
1093  j(zero, &skip, Label::kNear);
1094  mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1095  bind(&skip);
1096
1097  JumpToHandlerEntry();
1098}
1099
1100
1101void MacroAssembler::ThrowUncatchable(Register value) {
1102  // Adjust this code if not the case.
1103  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1104  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1105  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1106  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1107  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1108  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1109
1110  // The exception is expected in eax.
1111  if (!value.is(eax)) {
1112    mov(eax, value);
1113  }
1114  // Drop the stack pointer to the top of the top stack handler.
1115  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1116  mov(esp, Operand::StaticVariable(handler_address));
1117
1118  // Unwind the handlers until the top ENTRY handler is found.
1119  Label fetch_next, check_kind;
1120  jmp(&check_kind, Label::kNear);
1121  bind(&fetch_next);
1122  mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
1123
1124  bind(&check_kind);
1125  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1126  test(Operand(esp, StackHandlerConstants::kStateOffset),
1127       Immediate(StackHandler::KindField::kMask));
1128  j(not_zero, &fetch_next);
1129
1130  // Set the top handler address to next handler past the top ENTRY handler.
1131  pop(Operand::StaticVariable(handler_address));
1132
1133  // Remove the code object and state, compute the handler address in edi.
1134  pop(edi);  // Code object.
1135  pop(edx);  // Index and state.
1136
1137  // Clear the context pointer and frame pointer (0 was saved in the handler).
1138  pop(esi);
1139  pop(ebp);
1140
1141  JumpToHandlerEntry();
1142}
1143
1144
1145void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1146                                            Register scratch1,
1147                                            Register scratch2,
1148                                            Label* miss) {
1149  Label same_contexts;
1150
1151  DCHECK(!holder_reg.is(scratch1));
1152  DCHECK(!holder_reg.is(scratch2));
1153  DCHECK(!scratch1.is(scratch2));
1154
1155  // Load current lexical context from the stack frame.
1156  mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
1157
1158  // When generating debug code, make sure the lexical context is set.
1159  if (emit_debug_code()) {
1160    cmp(scratch1, Immediate(0));
1161    Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
1162  }
1163  // Load the native context of the current context.
1164  int offset =
1165      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1166  mov(scratch1, FieldOperand(scratch1, offset));
1167  mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
1168
1169  // Check the context is a native context.
1170  if (emit_debug_code()) {
1171    // Read the first word and compare to native_context_map.
1172    cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
1173        isolate()->factory()->native_context_map());
1174    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1175  }
1176
1177  // Check if both contexts are the same.
1178  cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1179  j(equal, &same_contexts);
1180
1181  // Compare security tokens, save holder_reg on the stack so we can use it
1182  // as a temporary register.
1183  //
1184  // Check that the security token in the calling global object is
1185  // compatible with the security token in the receiving global
1186  // object.
1187  mov(scratch2,
1188      FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1189
1190  // Check the context is a native context.
1191  if (emit_debug_code()) {
1192    cmp(scratch2, isolate()->factory()->null_value());
1193    Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
1194
1195    // Read the first word and compare to native_context_map(),
1196    cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
1197        isolate()->factory()->native_context_map());
1198    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1199  }
1200
1201  int token_offset = Context::kHeaderSize +
1202                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
1203  mov(scratch1, FieldOperand(scratch1, token_offset));
1204  cmp(scratch1, FieldOperand(scratch2, token_offset));
1205  j(not_equal, miss);
1206
1207  bind(&same_contexts);
1208}
1209
1210
1211// Compute the hash code from the untagged key.  This must be kept in sync with
1212// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
1213// code-stub-hydrogen.cc
1214//
1215// Note: r0 will contain hash code
1216void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
1217  // Xor original key with a seed.
1218  if (serializer_enabled()) {
1219    ExternalReference roots_array_start =
1220        ExternalReference::roots_array_start(isolate());
1221    mov(scratch, Immediate(Heap::kHashSeedRootIndex));
1222    mov(scratch,
1223        Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
1224    SmiUntag(scratch);
1225    xor_(r0, scratch);
1226  } else {
1227    int32_t seed = isolate()->heap()->HashSeed();
1228    xor_(r0, Immediate(seed));
1229  }
1230
1231  // hash = ~hash + (hash << 15);
1232  mov(scratch, r0);
1233  not_(r0);
1234  shl(scratch, 15);
1235  add(r0, scratch);
1236  // hash = hash ^ (hash >> 12);
1237  mov(scratch, r0);
1238  shr(scratch, 12);
1239  xor_(r0, scratch);
1240  // hash = hash + (hash << 2);
1241  lea(r0, Operand(r0, r0, times_4, 0));
1242  // hash = hash ^ (hash >> 4);
1243  mov(scratch, r0);
1244  shr(scratch, 4);
1245  xor_(r0, scratch);
1246  // hash = hash * 2057;
1247  imul(r0, r0, 2057);
1248  // hash = hash ^ (hash >> 16);
1249  mov(scratch, r0);
1250  shr(scratch, 16);
1251  xor_(r0, scratch);
1252}
1253
1254
1255
1256void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1257                                              Register elements,
1258                                              Register key,
1259                                              Register r0,
1260                                              Register r1,
1261                                              Register r2,
1262                                              Register result) {
1263  // Register use:
1264  //
1265  // elements - holds the slow-case elements of the receiver and is unchanged.
1266  //
1267  // key      - holds the smi key on entry and is unchanged.
1268  //
1269  // Scratch registers:
1270  //
1271  // r0 - holds the untagged key on entry and holds the hash once computed.
1272  //
1273  // r1 - used to hold the capacity mask of the dictionary
1274  //
1275  // r2 - used for the index into the dictionary.
1276  //
1277  // result - holds the result on exit if the load succeeds and we fall through.
1278
1279  Label done;
1280
1281  GetNumberHash(r0, r1);
1282
1283  // Compute capacity mask.
1284  mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1285  shr(r1, kSmiTagSize);  // convert smi to int
1286  dec(r1);
1287
1288  // Generate an unrolled loop that performs a few probes before giving up.
1289  for (int i = 0; i < kNumberDictionaryProbes; i++) {
1290    // Use r2 for index calculations and keep the hash intact in r0.
1291    mov(r2, r0);
1292    // Compute the masked index: (hash + i + i * i) & mask.
1293    if (i > 0) {
1294      add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1295    }
1296    and_(r2, r1);
1297
1298    // Scale the index by multiplying by the entry size.
1299    DCHECK(SeededNumberDictionary::kEntrySize == 3);
1300    lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3
1301
1302    // Check if the key matches.
1303    cmp(key, FieldOperand(elements,
1304                          r2,
1305                          times_pointer_size,
1306                          SeededNumberDictionary::kElementsStartOffset));
1307    if (i != (kNumberDictionaryProbes - 1)) {
1308      j(equal, &done);
1309    } else {
1310      j(not_equal, miss);
1311    }
1312  }
1313
1314  bind(&done);
1315  // Check that the value is a normal propety.
1316  const int kDetailsOffset =
1317      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1318  DCHECK_EQ(NORMAL, 0);
1319  test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1320       Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1321  j(not_zero, miss);
1322
1323  // Get the value at the masked, scaled index.
1324  const int kValueOffset =
1325      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1326  mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
1327}
1328
1329
1330void MacroAssembler::LoadAllocationTopHelper(Register result,
1331                                             Register scratch,
1332                                             AllocationFlags flags) {
1333  ExternalReference allocation_top =
1334      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1335
1336  // Just return if allocation top is already known.
1337  if ((flags & RESULT_CONTAINS_TOP) != 0) {
1338    // No use of scratch if allocation top is provided.
1339    DCHECK(scratch.is(no_reg));
1340#ifdef DEBUG
1341    // Assert that result actually contains top on entry.
1342    cmp(result, Operand::StaticVariable(allocation_top));
1343    Check(equal, kUnexpectedAllocationTop);
1344#endif
1345    return;
1346  }
1347
1348  // Move address of new object to result. Use scratch register if available.
1349  if (scratch.is(no_reg)) {
1350    mov(result, Operand::StaticVariable(allocation_top));
1351  } else {
1352    mov(scratch, Immediate(allocation_top));
1353    mov(result, Operand(scratch, 0));
1354  }
1355}
1356
1357
1358void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1359                                               Register scratch,
1360                                               AllocationFlags flags) {
1361  if (emit_debug_code()) {
1362    test(result_end, Immediate(kObjectAlignmentMask));
1363    Check(zero, kUnalignedAllocationInNewSpace);
1364  }
1365
1366  ExternalReference allocation_top =
1367      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1368
1369  // Update new top. Use scratch if available.
1370  if (scratch.is(no_reg)) {
1371    mov(Operand::StaticVariable(allocation_top), result_end);
1372  } else {
1373    mov(Operand(scratch, 0), result_end);
1374  }
1375}
1376
1377
1378void MacroAssembler::Allocate(int object_size,
1379                              Register result,
1380                              Register result_end,
1381                              Register scratch,
1382                              Label* gc_required,
1383                              AllocationFlags flags) {
1384  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1385  DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
1386  if (!FLAG_inline_new) {
1387    if (emit_debug_code()) {
1388      // Trash the registers to simulate an allocation failure.
1389      mov(result, Immediate(0x7091));
1390      if (result_end.is_valid()) {
1391        mov(result_end, Immediate(0x7191));
1392      }
1393      if (scratch.is_valid()) {
1394        mov(scratch, Immediate(0x7291));
1395      }
1396    }
1397    jmp(gc_required);
1398    return;
1399  }
1400  DCHECK(!result.is(result_end));
1401
1402  // Load address of new object into result.
1403  LoadAllocationTopHelper(result, scratch, flags);
1404
1405  ExternalReference allocation_limit =
1406      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1407
1408  // Align the next allocation. Storing the filler map without checking top is
1409  // safe in new-space because the limit of the heap is aligned there.
1410  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1411    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1412    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1413    Label aligned;
1414    test(result, Immediate(kDoubleAlignmentMask));
1415    j(zero, &aligned, Label::kNear);
1416    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1417      cmp(result, Operand::StaticVariable(allocation_limit));
1418      j(above_equal, gc_required);
1419    }
1420    mov(Operand(result, 0),
1421        Immediate(isolate()->factory()->one_pointer_filler_map()));
1422    add(result, Immediate(kDoubleSize / 2));
1423    bind(&aligned);
1424  }
1425
1426  // Calculate new top and bail out if space is exhausted.
1427  Register top_reg = result_end.is_valid() ? result_end : result;
1428  if (!top_reg.is(result)) {
1429    mov(top_reg, result);
1430  }
1431  add(top_reg, Immediate(object_size));
1432  j(carry, gc_required);
1433  cmp(top_reg, Operand::StaticVariable(allocation_limit));
1434  j(above, gc_required);
1435
1436  // Update allocation top.
1437  UpdateAllocationTopHelper(top_reg, scratch, flags);
1438
1439  // Tag result if requested.
1440  bool tag_result = (flags & TAG_OBJECT) != 0;
1441  if (top_reg.is(result)) {
1442    if (tag_result) {
1443      sub(result, Immediate(object_size - kHeapObjectTag));
1444    } else {
1445      sub(result, Immediate(object_size));
1446    }
1447  } else if (tag_result) {
1448    DCHECK(kHeapObjectTag == 1);
1449    inc(result);
1450  }
1451}
1452
1453
1454void MacroAssembler::Allocate(int header_size,
1455                              ScaleFactor element_size,
1456                              Register element_count,
1457                              RegisterValueType element_count_type,
1458                              Register result,
1459                              Register result_end,
1460                              Register scratch,
1461                              Label* gc_required,
1462                              AllocationFlags flags) {
1463  DCHECK((flags & SIZE_IN_WORDS) == 0);
1464  if (!FLAG_inline_new) {
1465    if (emit_debug_code()) {
1466      // Trash the registers to simulate an allocation failure.
1467      mov(result, Immediate(0x7091));
1468      mov(result_end, Immediate(0x7191));
1469      if (scratch.is_valid()) {
1470        mov(scratch, Immediate(0x7291));
1471      }
1472      // Register element_count is not modified by the function.
1473    }
1474    jmp(gc_required);
1475    return;
1476  }
1477  DCHECK(!result.is(result_end));
1478
1479  // Load address of new object into result.
1480  LoadAllocationTopHelper(result, scratch, flags);
1481
1482  ExternalReference allocation_limit =
1483      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1484
1485  // Align the next allocation. Storing the filler map without checking top is
1486  // safe in new-space because the limit of the heap is aligned there.
1487  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1488    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1489    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1490    Label aligned;
1491    test(result, Immediate(kDoubleAlignmentMask));
1492    j(zero, &aligned, Label::kNear);
1493    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1494      cmp(result, Operand::StaticVariable(allocation_limit));
1495      j(above_equal, gc_required);
1496    }
1497    mov(Operand(result, 0),
1498        Immediate(isolate()->factory()->one_pointer_filler_map()));
1499    add(result, Immediate(kDoubleSize / 2));
1500    bind(&aligned);
1501  }
1502
1503  // Calculate new top and bail out if space is exhausted.
1504  // We assume that element_count*element_size + header_size does not
1505  // overflow.
1506  if (element_count_type == REGISTER_VALUE_IS_SMI) {
1507    STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
1508    STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
1509    STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
1510    DCHECK(element_size >= times_2);
1511    DCHECK(kSmiTagSize == 1);
1512    element_size = static_cast<ScaleFactor>(element_size - 1);
1513  } else {
1514    DCHECK(element_count_type == REGISTER_VALUE_IS_INT32);
1515  }
1516  lea(result_end, Operand(element_count, element_size, header_size));
1517  add(result_end, result);
1518  j(carry, gc_required);
1519  cmp(result_end, Operand::StaticVariable(allocation_limit));
1520  j(above, gc_required);
1521
1522  if ((flags & TAG_OBJECT) != 0) {
1523    DCHECK(kHeapObjectTag == 1);
1524    inc(result);
1525  }
1526
1527  // Update allocation top.
1528  UpdateAllocationTopHelper(result_end, scratch, flags);
1529}
1530
1531
1532void MacroAssembler::Allocate(Register object_size,
1533                              Register result,
1534                              Register result_end,
1535                              Register scratch,
1536                              Label* gc_required,
1537                              AllocationFlags flags) {
1538  DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1539  if (!FLAG_inline_new) {
1540    if (emit_debug_code()) {
1541      // Trash the registers to simulate an allocation failure.
1542      mov(result, Immediate(0x7091));
1543      mov(result_end, Immediate(0x7191));
1544      if (scratch.is_valid()) {
1545        mov(scratch, Immediate(0x7291));
1546      }
1547      // object_size is left unchanged by this function.
1548    }
1549    jmp(gc_required);
1550    return;
1551  }
1552  DCHECK(!result.is(result_end));
1553
1554  // Load address of new object into result.
1555  LoadAllocationTopHelper(result, scratch, flags);
1556
1557  ExternalReference allocation_limit =
1558      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1559
1560  // Align the next allocation. Storing the filler map without checking top is
1561  // safe in new-space because the limit of the heap is aligned there.
1562  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1563    DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1564    DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
1565    Label aligned;
1566    test(result, Immediate(kDoubleAlignmentMask));
1567    j(zero, &aligned, Label::kNear);
1568    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1569      cmp(result, Operand::StaticVariable(allocation_limit));
1570      j(above_equal, gc_required);
1571    }
1572    mov(Operand(result, 0),
1573        Immediate(isolate()->factory()->one_pointer_filler_map()));
1574    add(result, Immediate(kDoubleSize / 2));
1575    bind(&aligned);
1576  }
1577
1578  // Calculate new top and bail out if space is exhausted.
1579  if (!object_size.is(result_end)) {
1580    mov(result_end, object_size);
1581  }
1582  add(result_end, result);
1583  j(carry, gc_required);
1584  cmp(result_end, Operand::StaticVariable(allocation_limit));
1585  j(above, gc_required);
1586
1587  // Tag result if requested.
1588  if ((flags & TAG_OBJECT) != 0) {
1589    DCHECK(kHeapObjectTag == 1);
1590    inc(result);
1591  }
1592
1593  // Update allocation top.
1594  UpdateAllocationTopHelper(result_end, scratch, flags);
1595}
1596
1597
1598void MacroAssembler::UndoAllocationInNewSpace(Register object) {
1599  ExternalReference new_space_allocation_top =
1600      ExternalReference::new_space_allocation_top_address(isolate());
1601
1602  // Make sure the object has no tag before resetting top.
1603  and_(object, Immediate(~kHeapObjectTagMask));
1604#ifdef DEBUG
1605  cmp(object, Operand::StaticVariable(new_space_allocation_top));
1606  Check(below, kUndoAllocationOfNonAllocatedMemory);
1607#endif
1608  mov(Operand::StaticVariable(new_space_allocation_top), object);
1609}
1610
1611
1612void MacroAssembler::AllocateHeapNumber(Register result,
1613                                        Register scratch1,
1614                                        Register scratch2,
1615                                        Label* gc_required,
1616                                        MutableMode mode) {
1617  // Allocate heap number in new space.
1618  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
1619           TAG_OBJECT);
1620
1621  Handle<Map> map = mode == MUTABLE
1622      ? isolate()->factory()->mutable_heap_number_map()
1623      : isolate()->factory()->heap_number_map();
1624
1625  // Set the map.
1626  mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(map));
1627}
1628
1629
1630void MacroAssembler::AllocateTwoByteString(Register result,
1631                                           Register length,
1632                                           Register scratch1,
1633                                           Register scratch2,
1634                                           Register scratch3,
1635                                           Label* gc_required) {
1636  // Calculate the number of bytes needed for the characters in the string while
1637  // observing object alignment.
1638  DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1639  DCHECK(kShortSize == 2);
1640  // scratch1 = length * 2 + kObjectAlignmentMask.
1641  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1642  and_(scratch1, Immediate(~kObjectAlignmentMask));
1643
1644  // Allocate two byte string in new space.
1645  Allocate(SeqTwoByteString::kHeaderSize,
1646           times_1,
1647           scratch1,
1648           REGISTER_VALUE_IS_INT32,
1649           result,
1650           scratch2,
1651           scratch3,
1652           gc_required,
1653           TAG_OBJECT);
1654
1655  // Set the map, length and hash field.
1656  mov(FieldOperand(result, HeapObject::kMapOffset),
1657      Immediate(isolate()->factory()->string_map()));
1658  mov(scratch1, length);
1659  SmiTag(scratch1);
1660  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1661  mov(FieldOperand(result, String::kHashFieldOffset),
1662      Immediate(String::kEmptyHashField));
1663}
1664
1665
1666void MacroAssembler::AllocateOneByteString(Register result, Register length,
1667                                           Register scratch1, Register scratch2,
1668                                           Register scratch3,
1669                                           Label* gc_required) {
1670  // Calculate the number of bytes needed for the characters in the string while
1671  // observing object alignment.
1672  DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1673  mov(scratch1, length);
1674  DCHECK(kCharSize == 1);
1675  add(scratch1, Immediate(kObjectAlignmentMask));
1676  and_(scratch1, Immediate(~kObjectAlignmentMask));
1677
1678  // Allocate one-byte string in new space.
1679  Allocate(SeqOneByteString::kHeaderSize,
1680           times_1,
1681           scratch1,
1682           REGISTER_VALUE_IS_INT32,
1683           result,
1684           scratch2,
1685           scratch3,
1686           gc_required,
1687           TAG_OBJECT);
1688
1689  // Set the map, length and hash field.
1690  mov(FieldOperand(result, HeapObject::kMapOffset),
1691      Immediate(isolate()->factory()->one_byte_string_map()));
1692  mov(scratch1, length);
1693  SmiTag(scratch1);
1694  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1695  mov(FieldOperand(result, String::kHashFieldOffset),
1696      Immediate(String::kEmptyHashField));
1697}
1698
1699
1700void MacroAssembler::AllocateOneByteString(Register result, int length,
1701                                           Register scratch1, Register scratch2,
1702                                           Label* gc_required) {
1703  DCHECK(length > 0);
1704
1705  // Allocate one-byte string in new space.
1706  Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
1707           gc_required, TAG_OBJECT);
1708
1709  // Set the map, length and hash field.
1710  mov(FieldOperand(result, HeapObject::kMapOffset),
1711      Immediate(isolate()->factory()->one_byte_string_map()));
1712  mov(FieldOperand(result, String::kLengthOffset),
1713      Immediate(Smi::FromInt(length)));
1714  mov(FieldOperand(result, String::kHashFieldOffset),
1715      Immediate(String::kEmptyHashField));
1716}
1717
1718
1719void MacroAssembler::AllocateTwoByteConsString(Register result,
1720                                        Register scratch1,
1721                                        Register scratch2,
1722                                        Label* gc_required) {
1723  // Allocate heap number in new space.
1724  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1725           TAG_OBJECT);
1726
1727  // Set the map. The other fields are left uninitialized.
1728  mov(FieldOperand(result, HeapObject::kMapOffset),
1729      Immediate(isolate()->factory()->cons_string_map()));
1730}
1731
1732
1733void MacroAssembler::AllocateOneByteConsString(Register result,
1734                                               Register scratch1,
1735                                               Register scratch2,
1736                                               Label* gc_required) {
1737  Allocate(ConsString::kSize,
1738           result,
1739           scratch1,
1740           scratch2,
1741           gc_required,
1742           TAG_OBJECT);
1743
1744  // Set the map. The other fields are left uninitialized.
1745  mov(FieldOperand(result, HeapObject::kMapOffset),
1746      Immediate(isolate()->factory()->cons_one_byte_string_map()));
1747}
1748
1749
1750void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1751                                          Register scratch1,
1752                                          Register scratch2,
1753                                          Label* gc_required) {
1754  // Allocate heap number in new space.
1755  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1756           TAG_OBJECT);
1757
1758  // Set the map. The other fields are left uninitialized.
1759  mov(FieldOperand(result, HeapObject::kMapOffset),
1760      Immediate(isolate()->factory()->sliced_string_map()));
1761}
1762
1763
1764void MacroAssembler::AllocateOneByteSlicedString(Register result,
1765                                                 Register scratch1,
1766                                                 Register scratch2,
1767                                                 Label* gc_required) {
1768  // Allocate heap number in new space.
1769  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1770           TAG_OBJECT);
1771
1772  // Set the map. The other fields are left uninitialized.
1773  mov(FieldOperand(result, HeapObject::kMapOffset),
1774      Immediate(isolate()->factory()->sliced_one_byte_string_map()));
1775}
1776
1777
1778// Copy memory, byte-by-byte, from source to destination.  Not optimized for
1779// long or aligned copies.  The contents of scratch and length are destroyed.
1780// Source and destination are incremented by length.
1781// Many variants of movsb, loop unrolling, word moves, and indexed operands
1782// have been tried here already, and this is fastest.
1783// A simpler loop is faster on small copies, but 30% slower on large ones.
1784// The cld() instruction must have been emitted, to set the direction flag(),
1785// before calling this function.
1786void MacroAssembler::CopyBytes(Register source,
1787                               Register destination,
1788                               Register length,
1789                               Register scratch) {
1790  Label short_loop, len4, len8, len12, done, short_string;
1791  DCHECK(source.is(esi));
1792  DCHECK(destination.is(edi));
1793  DCHECK(length.is(ecx));
1794  cmp(length, Immediate(4));
1795  j(below, &short_string, Label::kNear);
1796
1797  // Because source is 4-byte aligned in our uses of this function,
1798  // we keep source aligned for the rep_movs call by copying the odd bytes
1799  // at the end of the ranges.
1800  mov(scratch, Operand(source, length, times_1, -4));
1801  mov(Operand(destination, length, times_1, -4), scratch);
1802
1803  cmp(length, Immediate(8));
1804  j(below_equal, &len4, Label::kNear);
1805  cmp(length, Immediate(12));
1806  j(below_equal, &len8, Label::kNear);
1807  cmp(length, Immediate(16));
1808  j(below_equal, &len12, Label::kNear);
1809
1810  mov(scratch, ecx);
1811  shr(ecx, 2);
1812  rep_movs();
1813  and_(scratch, Immediate(0x3));
1814  add(destination, scratch);
1815  jmp(&done, Label::kNear);
1816
1817  bind(&len12);
1818  mov(scratch, Operand(source, 8));
1819  mov(Operand(destination, 8), scratch);
1820  bind(&len8);
1821  mov(scratch, Operand(source, 4));
1822  mov(Operand(destination, 4), scratch);
1823  bind(&len4);
1824  mov(scratch, Operand(source, 0));
1825  mov(Operand(destination, 0), scratch);
1826  add(destination, length);
1827  jmp(&done, Label::kNear);
1828
1829  bind(&short_string);
1830  test(length, length);
1831  j(zero, &done, Label::kNear);
1832
1833  bind(&short_loop);
1834  mov_b(scratch, Operand(source, 0));
1835  mov_b(Operand(destination, 0), scratch);
1836  inc(source);
1837  inc(destination);
1838  dec(length);
1839  j(not_zero, &short_loop);
1840
1841  bind(&done);
1842}
1843
1844
1845void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
1846                                                Register end_offset,
1847                                                Register filler) {
1848  Label loop, entry;
1849  jmp(&entry);
1850  bind(&loop);
1851  mov(Operand(start_offset, 0), filler);
1852  add(start_offset, Immediate(kPointerSize));
1853  bind(&entry);
1854  cmp(start_offset, end_offset);
1855  j(less, &loop);
1856}
1857
1858
1859void MacroAssembler::BooleanBitTest(Register object,
1860                                    int field_offset,
1861                                    int bit_index) {
1862  bit_index += kSmiTagSize + kSmiShiftSize;
1863  DCHECK(base::bits::IsPowerOfTwo32(kBitsPerByte));
1864  int byte_index = bit_index / kBitsPerByte;
1865  int byte_bit_index = bit_index & (kBitsPerByte - 1);
1866  test_b(FieldOperand(object, field_offset + byte_index),
1867         static_cast<byte>(1 << byte_bit_index));
1868}
1869
1870
1871
1872void MacroAssembler::NegativeZeroTest(Register result,
1873                                      Register op,
1874                                      Label* then_label) {
1875  Label ok;
1876  test(result, result);
1877  j(not_zero, &ok);
1878  test(op, op);
1879  j(sign, then_label);
1880  bind(&ok);
1881}
1882
1883
1884void MacroAssembler::NegativeZeroTest(Register result,
1885                                      Register op1,
1886                                      Register op2,
1887                                      Register scratch,
1888                                      Label* then_label) {
1889  Label ok;
1890  test(result, result);
1891  j(not_zero, &ok);
1892  mov(scratch, op1);
1893  or_(scratch, op2);
1894  j(sign, then_label);
1895  bind(&ok);
1896}
1897
1898
1899void MacroAssembler::TryGetFunctionPrototype(Register function,
1900                                             Register result,
1901                                             Register scratch,
1902                                             Label* miss,
1903                                             bool miss_on_bound_function) {
1904  Label non_instance;
1905  if (miss_on_bound_function) {
1906    // Check that the receiver isn't a smi.
1907    JumpIfSmi(function, miss);
1908
1909    // Check that the function really is a function.
1910    CmpObjectType(function, JS_FUNCTION_TYPE, result);
1911    j(not_equal, miss);
1912
1913    // If a bound function, go to miss label.
1914    mov(scratch,
1915        FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
1916    BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
1917                   SharedFunctionInfo::kBoundFunction);
1918    j(not_zero, miss);
1919
1920    // Make sure that the function has an instance prototype.
1921    movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
1922    test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
1923    j(not_zero, &non_instance);
1924  }
1925
1926  // Get the prototype or initial map from the function.
1927  mov(result,
1928      FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1929
1930  // If the prototype or initial map is the hole, don't return it and
1931  // simply miss the cache instead. This will allow us to allocate a
1932  // prototype object on-demand in the runtime system.
1933  cmp(result, Immediate(isolate()->factory()->the_hole_value()));
1934  j(equal, miss);
1935
1936  // If the function does not have an initial map, we're done.
1937  Label done;
1938  CmpObjectType(result, MAP_TYPE, scratch);
1939  j(not_equal, &done);
1940
1941  // Get the prototype from the initial map.
1942  mov(result, FieldOperand(result, Map::kPrototypeOffset));
1943
1944  if (miss_on_bound_function) {
1945    jmp(&done);
1946
1947    // Non-instance prototype: Fetch prototype from constructor field
1948    // in initial map.
1949    bind(&non_instance);
1950    mov(result, FieldOperand(result, Map::kConstructorOffset));
1951  }
1952
1953  // All done.
1954  bind(&done);
1955}
1956
1957
1958void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1959  DCHECK(AllowThisStubCall(stub));  // Calls are not allowed in some stubs.
1960  call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1961}
1962
1963
1964void MacroAssembler::TailCallStub(CodeStub* stub) {
1965  jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
1966}
1967
1968
1969void MacroAssembler::StubReturn(int argc) {
1970  DCHECK(argc >= 1 && generating_stub());
1971  ret((argc - 1) * kPointerSize);
1972}
1973
1974
1975bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
1976  return has_frame_ || !stub->SometimesSetsUpAFrame();
1977}
1978
1979
1980void MacroAssembler::IndexFromHash(Register hash, Register index) {
1981  // The assert checks that the constants for the maximum number of digits
1982  // for an array index cached in the hash field and the number of bits
1983  // reserved for it does not conflict.
1984  DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
1985         (1 << String::kArrayIndexValueBits));
1986  if (!index.is(hash)) {
1987    mov(index, hash);
1988  }
1989  DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
1990}
1991
1992
1993void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
1994                                 SaveFPRegsMode save_doubles) {
1995  // If the expected number of arguments of the runtime function is
1996  // constant, we check that the actual number of arguments match the
1997  // expectation.
1998  CHECK(f->nargs < 0 || f->nargs == num_arguments);
1999
2000  // TODO(1236192): Most runtime routines don't need the number of
2001  // arguments passed in because it is constant. At some point we
2002  // should remove this need and make the runtime routine entry code
2003  // smarter.
2004  Move(eax, Immediate(num_arguments));
2005  mov(ebx, Immediate(ExternalReference(f, isolate())));
2006  CEntryStub ces(isolate(), 1, save_doubles);
2007  CallStub(&ces);
2008}
2009
2010
2011void MacroAssembler::CallExternalReference(ExternalReference ref,
2012                                           int num_arguments) {
2013  mov(eax, Immediate(num_arguments));
2014  mov(ebx, Immediate(ref));
2015
2016  CEntryStub stub(isolate(), 1);
2017  CallStub(&stub);
2018}
2019
2020
2021void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2022                                               int num_arguments,
2023                                               int result_size) {
2024  // TODO(1236192): Most runtime routines don't need the number of
2025  // arguments passed in because it is constant. At some point we
2026  // should remove this need and make the runtime routine entry code
2027  // smarter.
2028  Move(eax, Immediate(num_arguments));
2029  JumpToExternalReference(ext);
2030}
2031
2032
2033void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2034                                     int num_arguments,
2035                                     int result_size) {
2036  TailCallExternalReference(ExternalReference(fid, isolate()),
2037                            num_arguments,
2038                            result_size);
2039}
2040
2041
2042Operand ApiParameterOperand(int index) {
2043  return Operand(esp, index * kPointerSize);
2044}
2045
2046
2047void MacroAssembler::PrepareCallApiFunction(int argc) {
2048  EnterApiExitFrame(argc);
2049  if (emit_debug_code()) {
2050    mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
2051  }
2052}
2053
2054
2055void MacroAssembler::CallApiFunctionAndReturn(
2056    Register function_address,
2057    ExternalReference thunk_ref,
2058    Operand thunk_last_arg,
2059    int stack_space,
2060    Operand return_value_operand,
2061    Operand* context_restore_operand) {
2062  ExternalReference next_address =
2063      ExternalReference::handle_scope_next_address(isolate());
2064  ExternalReference limit_address =
2065      ExternalReference::handle_scope_limit_address(isolate());
2066  ExternalReference level_address =
2067      ExternalReference::handle_scope_level_address(isolate());
2068
2069  DCHECK(edx.is(function_address));
2070  // Allocate HandleScope in callee-save registers.
2071  mov(ebx, Operand::StaticVariable(next_address));
2072  mov(edi, Operand::StaticVariable(limit_address));
2073  add(Operand::StaticVariable(level_address), Immediate(1));
2074
2075  if (FLAG_log_timer_events) {
2076    FrameScope frame(this, StackFrame::MANUAL);
2077    PushSafepointRegisters();
2078    PrepareCallCFunction(1, eax);
2079    mov(Operand(esp, 0),
2080        Immediate(ExternalReference::isolate_address(isolate())));
2081    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2082    PopSafepointRegisters();
2083  }
2084
2085
2086  Label profiler_disabled;
2087  Label end_profiler_check;
2088  mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
2089  cmpb(Operand(eax, 0), 0);
2090  j(zero, &profiler_disabled);
2091
2092  // Additional parameter is the address of the actual getter function.
2093  mov(thunk_last_arg, function_address);
2094  // Call the api function.
2095  mov(eax, Immediate(thunk_ref));
2096  call(eax);
2097  jmp(&end_profiler_check);
2098
2099  bind(&profiler_disabled);
2100  // Call the api function.
2101  call(function_address);
2102  bind(&end_profiler_check);
2103
2104  if (FLAG_log_timer_events) {
2105    FrameScope frame(this, StackFrame::MANUAL);
2106    PushSafepointRegisters();
2107    PrepareCallCFunction(1, eax);
2108    mov(Operand(esp, 0),
2109        Immediate(ExternalReference::isolate_address(isolate())));
2110    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2111    PopSafepointRegisters();
2112  }
2113
2114  Label prologue;
2115  // Load the value from ReturnValue
2116  mov(eax, return_value_operand);
2117
2118  Label promote_scheduled_exception;
2119  Label exception_handled;
2120  Label delete_allocated_handles;
2121  Label leave_exit_frame;
2122
2123  bind(&prologue);
2124  // No more valid handles (the result handle was the last one). Restore
2125  // previous handle scope.
2126  mov(Operand::StaticVariable(next_address), ebx);
2127  sub(Operand::StaticVariable(level_address), Immediate(1));
2128  Assert(above_equal, kInvalidHandleScopeLevel);
2129  cmp(edi, Operand::StaticVariable(limit_address));
2130  j(not_equal, &delete_allocated_handles);
2131  bind(&leave_exit_frame);
2132
2133  // Check if the function scheduled an exception.
2134  ExternalReference scheduled_exception_address =
2135      ExternalReference::scheduled_exception_address(isolate());
2136  cmp(Operand::StaticVariable(scheduled_exception_address),
2137      Immediate(isolate()->factory()->the_hole_value()));
2138  j(not_equal, &promote_scheduled_exception);
2139  bind(&exception_handled);
2140
2141#if ENABLE_EXTRA_CHECKS
2142  // Check if the function returned a valid JavaScript value.
2143  Label ok;
2144  Register return_value = eax;
2145  Register map = ecx;
2146
2147  JumpIfSmi(return_value, &ok, Label::kNear);
2148  mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
2149
2150  CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2151  j(below, &ok, Label::kNear);
2152
2153  CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2154  j(above_equal, &ok, Label::kNear);
2155
2156  cmp(map, isolate()->factory()->heap_number_map());
2157  j(equal, &ok, Label::kNear);
2158
2159  cmp(return_value, isolate()->factory()->undefined_value());
2160  j(equal, &ok, Label::kNear);
2161
2162  cmp(return_value, isolate()->factory()->true_value());
2163  j(equal, &ok, Label::kNear);
2164
2165  cmp(return_value, isolate()->factory()->false_value());
2166  j(equal, &ok, Label::kNear);
2167
2168  cmp(return_value, isolate()->factory()->null_value());
2169  j(equal, &ok, Label::kNear);
2170
2171  Abort(kAPICallReturnedInvalidObject);
2172
2173  bind(&ok);
2174#endif
2175
2176  bool restore_context = context_restore_operand != NULL;
2177  if (restore_context) {
2178    mov(esi, *context_restore_operand);
2179  }
2180  LeaveApiExitFrame(!restore_context);
2181  ret(stack_space * kPointerSize);
2182
2183  bind(&promote_scheduled_exception);
2184  {
2185    FrameScope frame(this, StackFrame::INTERNAL);
2186    CallRuntime(Runtime::kPromoteScheduledException, 0);
2187  }
2188  jmp(&exception_handled);
2189
2190  // HandleScope limit has changed. Delete allocated extensions.
2191  ExternalReference delete_extensions =
2192      ExternalReference::delete_handle_scope_extensions(isolate());
2193  bind(&delete_allocated_handles);
2194  mov(Operand::StaticVariable(limit_address), edi);
2195  mov(edi, eax);
2196  mov(Operand(esp, 0),
2197      Immediate(ExternalReference::isolate_address(isolate())));
2198  mov(eax, Immediate(delete_extensions));
2199  call(eax);
2200  mov(eax, edi);
2201  jmp(&leave_exit_frame);
2202}
2203
2204
2205void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
2206  // Set the entry point and jump to the C entry runtime stub.
2207  mov(ebx, Immediate(ext));
2208  CEntryStub ces(isolate(), 1);
2209  jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
2210}
2211
2212
2213void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2214                                    const ParameterCount& actual,
2215                                    Handle<Code> code_constant,
2216                                    const Operand& code_operand,
2217                                    Label* done,
2218                                    bool* definitely_mismatches,
2219                                    InvokeFlag flag,
2220                                    Label::Distance done_near,
2221                                    const CallWrapper& call_wrapper) {
2222  bool definitely_matches = false;
2223  *definitely_mismatches = false;
2224  Label invoke;
2225  if (expected.is_immediate()) {
2226    DCHECK(actual.is_immediate());
2227    if (expected.immediate() == actual.immediate()) {
2228      definitely_matches = true;
2229    } else {
2230      mov(eax, actual.immediate());
2231      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2232      if (expected.immediate() == sentinel) {
2233        // Don't worry about adapting arguments for builtins that
2234        // don't want that done. Skip adaption code by making it look
2235        // like we have a match between expected and actual number of
2236        // arguments.
2237        definitely_matches = true;
2238      } else {
2239        *definitely_mismatches = true;
2240        mov(ebx, expected.immediate());
2241      }
2242    }
2243  } else {
2244    if (actual.is_immediate()) {
2245      // Expected is in register, actual is immediate. This is the
2246      // case when we invoke function values without going through the
2247      // IC mechanism.
2248      cmp(expected.reg(), actual.immediate());
2249      j(equal, &invoke);
2250      DCHECK(expected.reg().is(ebx));
2251      mov(eax, actual.immediate());
2252    } else if (!expected.reg().is(actual.reg())) {
2253      // Both expected and actual are in (different) registers. This
2254      // is the case when we invoke functions using call and apply.
2255      cmp(expected.reg(), actual.reg());
2256      j(equal, &invoke);
2257      DCHECK(actual.reg().is(eax));
2258      DCHECK(expected.reg().is(ebx));
2259    }
2260  }
2261
2262  if (!definitely_matches) {
2263    Handle<Code> adaptor =
2264        isolate()->builtins()->ArgumentsAdaptorTrampoline();
2265    if (!code_constant.is_null()) {
2266      mov(edx, Immediate(code_constant));
2267      add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2268    } else if (!code_operand.is_reg(edx)) {
2269      mov(edx, code_operand);
2270    }
2271
2272    if (flag == CALL_FUNCTION) {
2273      call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
2274      call(adaptor, RelocInfo::CODE_TARGET);
2275      call_wrapper.AfterCall();
2276      if (!*definitely_mismatches) {
2277        jmp(done, done_near);
2278      }
2279    } else {
2280      jmp(adaptor, RelocInfo::CODE_TARGET);
2281    }
2282    bind(&invoke);
2283  }
2284}
2285
2286
2287void MacroAssembler::InvokeCode(const Operand& code,
2288                                const ParameterCount& expected,
2289                                const ParameterCount& actual,
2290                                InvokeFlag flag,
2291                                const CallWrapper& call_wrapper) {
2292  // You can't call a function without a valid frame.
2293  DCHECK(flag == JUMP_FUNCTION || has_frame());
2294
2295  Label done;
2296  bool definitely_mismatches = false;
2297  InvokePrologue(expected, actual, Handle<Code>::null(), code,
2298                 &done, &definitely_mismatches, flag, Label::kNear,
2299                 call_wrapper);
2300  if (!definitely_mismatches) {
2301    if (flag == CALL_FUNCTION) {
2302      call_wrapper.BeforeCall(CallSize(code));
2303      call(code);
2304      call_wrapper.AfterCall();
2305    } else {
2306      DCHECK(flag == JUMP_FUNCTION);
2307      jmp(code);
2308    }
2309    bind(&done);
2310  }
2311}
2312
2313
2314void MacroAssembler::InvokeFunction(Register fun,
2315                                    const ParameterCount& actual,
2316                                    InvokeFlag flag,
2317                                    const CallWrapper& call_wrapper) {
2318  // You can't call a function without a valid frame.
2319  DCHECK(flag == JUMP_FUNCTION || has_frame());
2320
2321  DCHECK(fun.is(edi));
2322  mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2323  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2324  mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2325  SmiUntag(ebx);
2326
2327  ParameterCount expected(ebx);
2328  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2329             expected, actual, flag, call_wrapper);
2330}
2331
2332
2333void MacroAssembler::InvokeFunction(Register fun,
2334                                    const ParameterCount& expected,
2335                                    const ParameterCount& actual,
2336                                    InvokeFlag flag,
2337                                    const CallWrapper& call_wrapper) {
2338  // You can't call a function without a valid frame.
2339  DCHECK(flag == JUMP_FUNCTION || has_frame());
2340
2341  DCHECK(fun.is(edi));
2342  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2343
2344  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2345             expected, actual, flag, call_wrapper);
2346}
2347
2348
2349void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2350                                    const ParameterCount& expected,
2351                                    const ParameterCount& actual,
2352                                    InvokeFlag flag,
2353                                    const CallWrapper& call_wrapper) {
2354  LoadHeapObject(edi, function);
2355  InvokeFunction(edi, expected, actual, flag, call_wrapper);
2356}
2357
2358
2359void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2360                                   InvokeFlag flag,
2361                                   const CallWrapper& call_wrapper) {
2362  // You can't call a builtin without a valid frame.
2363  DCHECK(flag == JUMP_FUNCTION || has_frame());
2364
2365  // Rely on the assertion to check that the number of provided
2366  // arguments match the expected number of arguments. Fake a
2367  // parameter count to avoid emitting code to do the check.
2368  ParameterCount expected(0);
2369  GetBuiltinFunction(edi, id);
2370  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2371             expected, expected, flag, call_wrapper);
2372}
2373
2374
2375void MacroAssembler::GetBuiltinFunction(Register target,
2376                                        Builtins::JavaScript id) {
2377  // Load the JavaScript builtin function from the builtins object.
2378  mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2379  mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2380  mov(target, FieldOperand(target,
2381                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2382}
2383
2384
2385void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2386  DCHECK(!target.is(edi));
2387  // Load the JavaScript builtin function from the builtins object.
2388  GetBuiltinFunction(edi, id);
2389  // Load the code entry point from the function into the target register.
2390  mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2391}
2392
2393
2394void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2395  if (context_chain_length > 0) {
2396    // Move up the chain of contexts to the context containing the slot.
2397    mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2398    for (int i = 1; i < context_chain_length; i++) {
2399      mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2400    }
2401  } else {
2402    // Slot is in the current function context.  Move it into the
2403    // destination register in case we store into it (the write barrier
2404    // cannot be allowed to destroy the context in esi).
2405    mov(dst, esi);
2406  }
2407
2408  // We should not have found a with context by walking the context chain
2409  // (i.e., the static scope chain and runtime context chain do not agree).
2410  // A variable occurring in such a scope should have slot type LOOKUP and
2411  // not CONTEXT.
2412  if (emit_debug_code()) {
2413    cmp(FieldOperand(dst, HeapObject::kMapOffset),
2414        isolate()->factory()->with_context_map());
2415    Check(not_equal, kVariableResolvedToWithContext);
2416  }
2417}
2418
2419
2420void MacroAssembler::LoadTransitionedArrayMapConditional(
2421    ElementsKind expected_kind,
2422    ElementsKind transitioned_kind,
2423    Register map_in_out,
2424    Register scratch,
2425    Label* no_map_match) {
2426  // Load the global or builtins object from the current context.
2427  mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2428  mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
2429
2430  // Check that the function's map is the same as the expected cached map.
2431  mov(scratch, Operand(scratch,
2432                       Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2433
2434  size_t offset = expected_kind * kPointerSize +
2435      FixedArrayBase::kHeaderSize;
2436  cmp(map_in_out, FieldOperand(scratch, offset));
2437  j(not_equal, no_map_match);
2438
2439  // Use the transitioned cached map.
2440  offset = transitioned_kind * kPointerSize +
2441      FixedArrayBase::kHeaderSize;
2442  mov(map_in_out, FieldOperand(scratch, offset));
2443}
2444
2445
2446void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2447  // Load the global or builtins object from the current context.
2448  mov(function,
2449      Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2450  // Load the native context from the global or builtins object.
2451  mov(function,
2452      FieldOperand(function, GlobalObject::kNativeContextOffset));
2453  // Load the function from the native context.
2454  mov(function, Operand(function, Context::SlotOffset(index)));
2455}
2456
2457
2458void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2459                                                  Register map) {
2460  // Load the initial map.  The global functions all have initial maps.
2461  mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2462  if (emit_debug_code()) {
2463    Label ok, fail;
2464    CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2465    jmp(&ok);
2466    bind(&fail);
2467    Abort(kGlobalFunctionsMustHaveInitialMap);
2468    bind(&ok);
2469  }
2470}
2471
2472
2473// Store the value in register src in the safepoint register stack
2474// slot for register dst.
2475void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2476  mov(SafepointRegisterSlot(dst), src);
2477}
2478
2479
2480void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
2481  mov(SafepointRegisterSlot(dst), src);
2482}
2483
2484
2485void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2486  mov(dst, SafepointRegisterSlot(src));
2487}
2488
2489
2490Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2491  return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2492}
2493
2494
2495int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2496  // The registers are pushed starting with the lowest encoding,
2497  // which means that lowest encodings are furthest away from
2498  // the stack pointer.
2499  DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2500  return kNumSafepointRegisters - reg_code - 1;
2501}
2502
2503
2504void MacroAssembler::LoadHeapObject(Register result,
2505                                    Handle<HeapObject> object) {
2506  AllowDeferredHandleDereference embedding_raw_address;
2507  if (isolate()->heap()->InNewSpace(*object)) {
2508    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2509    mov(result, Operand::ForCell(cell));
2510  } else {
2511    mov(result, object);
2512  }
2513}
2514
2515
2516void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
2517  AllowDeferredHandleDereference using_raw_address;
2518  if (isolate()->heap()->InNewSpace(*object)) {
2519    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2520    cmp(reg, Operand::ForCell(cell));
2521  } else {
2522    cmp(reg, object);
2523  }
2524}
2525
2526
2527void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2528  AllowDeferredHandleDereference using_raw_address;
2529  if (isolate()->heap()->InNewSpace(*object)) {
2530    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2531    push(Operand::ForCell(cell));
2532  } else {
2533    Push(object);
2534  }
2535}
2536
2537
2538void MacroAssembler::Ret() {
2539  ret(0);
2540}
2541
2542
2543void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2544  if (is_uint16(bytes_dropped)) {
2545    ret(bytes_dropped);
2546  } else {
2547    pop(scratch);
2548    add(esp, Immediate(bytes_dropped));
2549    push(scratch);
2550    ret(0);
2551  }
2552}
2553
2554
2555void MacroAssembler::VerifyX87StackDepth(uint32_t depth) {
2556  // Turn off the stack depth check when serializer is enabled to reduce the
2557  // code size.
2558  if (serializer_enabled()) return;
2559  // Make sure the floating point stack is either empty or has depth items.
2560  DCHECK(depth <= 7);
2561  // This is very expensive.
2562  DCHECK(FLAG_debug_code && FLAG_enable_slow_asserts);
2563
2564  // The top-of-stack (tos) is 7 if there is one item pushed.
2565  int tos = (8 - depth) % 8;
2566  const int kTopMask = 0x3800;
2567  push(eax);
2568  fwait();
2569  fnstsw_ax();
2570  and_(eax, kTopMask);
2571  shr(eax, 11);
2572  cmp(eax, Immediate(tos));
2573  Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
2574  fnclex();
2575  pop(eax);
2576}
2577
2578
2579void MacroAssembler::Drop(int stack_elements) {
2580  if (stack_elements > 0) {
2581    add(esp, Immediate(stack_elements * kPointerSize));
2582  }
2583}
2584
2585
2586void MacroAssembler::Move(Register dst, Register src) {
2587  if (!dst.is(src)) {
2588    mov(dst, src);
2589  }
2590}
2591
2592
2593void MacroAssembler::Move(Register dst, const Immediate& x) {
2594  if (x.is_zero()) {
2595    xor_(dst, dst);  // Shorter than mov of 32-bit immediate 0.
2596  } else {
2597    mov(dst, x);
2598  }
2599}
2600
2601
2602void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
2603  mov(dst, x);
2604}
2605
2606
2607void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2608  if (FLAG_native_code_counters && counter->Enabled()) {
2609    mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
2610  }
2611}
2612
2613
2614void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2615  DCHECK(value > 0);
2616  if (FLAG_native_code_counters && counter->Enabled()) {
2617    Operand operand = Operand::StaticVariable(ExternalReference(counter));
2618    if (value == 1) {
2619      inc(operand);
2620    } else {
2621      add(operand, Immediate(value));
2622    }
2623  }
2624}
2625
2626
2627void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2628  DCHECK(value > 0);
2629  if (FLAG_native_code_counters && counter->Enabled()) {
2630    Operand operand = Operand::StaticVariable(ExternalReference(counter));
2631    if (value == 1) {
2632      dec(operand);
2633    } else {
2634      sub(operand, Immediate(value));
2635    }
2636  }
2637}
2638
2639
2640void MacroAssembler::IncrementCounter(Condition cc,
2641                                      StatsCounter* counter,
2642                                      int value) {
2643  DCHECK(value > 0);
2644  if (FLAG_native_code_counters && counter->Enabled()) {
2645    Label skip;
2646    j(NegateCondition(cc), &skip);
2647    pushfd();
2648    IncrementCounter(counter, value);
2649    popfd();
2650    bind(&skip);
2651  }
2652}
2653
2654
2655void MacroAssembler::DecrementCounter(Condition cc,
2656                                      StatsCounter* counter,
2657                                      int value) {
2658  DCHECK(value > 0);
2659  if (FLAG_native_code_counters && counter->Enabled()) {
2660    Label skip;
2661    j(NegateCondition(cc), &skip);
2662    pushfd();
2663    DecrementCounter(counter, value);
2664    popfd();
2665    bind(&skip);
2666  }
2667}
2668
2669
2670void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
2671  if (emit_debug_code()) Check(cc, reason);
2672}
2673
2674
2675void MacroAssembler::AssertFastElements(Register elements) {
2676  if (emit_debug_code()) {
2677    Factory* factory = isolate()->factory();
2678    Label ok;
2679    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2680        Immediate(factory->fixed_array_map()));
2681    j(equal, &ok);
2682    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2683        Immediate(factory->fixed_double_array_map()));
2684    j(equal, &ok);
2685    cmp(FieldOperand(elements, HeapObject::kMapOffset),
2686        Immediate(factory->fixed_cow_array_map()));
2687    j(equal, &ok);
2688    Abort(kJSObjectWithFastElementsMapHasSlowElements);
2689    bind(&ok);
2690  }
2691}
2692
2693
2694void MacroAssembler::Check(Condition cc, BailoutReason reason) {
2695  Label L;
2696  j(cc, &L);
2697  Abort(reason);
2698  // will not return here
2699  bind(&L);
2700}
2701
2702
2703void MacroAssembler::CheckStackAlignment() {
2704  int frame_alignment = base::OS::ActivationFrameAlignment();
2705  int frame_alignment_mask = frame_alignment - 1;
2706  if (frame_alignment > kPointerSize) {
2707    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2708    Label alignment_as_expected;
2709    test(esp, Immediate(frame_alignment_mask));
2710    j(zero, &alignment_as_expected);
2711    // Abort if stack is not aligned.
2712    int3();
2713    bind(&alignment_as_expected);
2714  }
2715}
2716
2717
2718void MacroAssembler::Abort(BailoutReason reason) {
2719#ifdef DEBUG
2720  const char* msg = GetBailoutReason(reason);
2721  if (msg != NULL) {
2722    RecordComment("Abort message: ");
2723    RecordComment(msg);
2724  }
2725
2726  if (FLAG_trap_on_abort) {
2727    int3();
2728    return;
2729  }
2730#endif
2731
2732  push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
2733  // Disable stub call restrictions to always allow calls to abort.
2734  if (!has_frame_) {
2735    // We don't actually want to generate a pile of code for this, so just
2736    // claim there is a stack frame, without generating one.
2737    FrameScope scope(this, StackFrame::NONE);
2738    CallRuntime(Runtime::kAbort, 1);
2739  } else {
2740    CallRuntime(Runtime::kAbort, 1);
2741  }
2742  // will not return here
2743  int3();
2744}
2745
2746
2747void MacroAssembler::LoadInstanceDescriptors(Register map,
2748                                             Register descriptors) {
2749  mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
2750}
2751
2752
2753void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
2754  mov(dst, FieldOperand(map, Map::kBitField3Offset));
2755  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
2756}
2757
2758
2759void MacroAssembler::LookupNumberStringCache(Register object,
2760                                             Register result,
2761                                             Register scratch1,
2762                                             Register scratch2,
2763                                             Label* not_found) {
2764  // Use of registers. Register result is used as a temporary.
2765  Register number_string_cache = result;
2766  Register mask = scratch1;
2767  Register scratch = scratch2;
2768
2769  // Load the number string cache.
2770  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2771  // Make the hash mask from the length of the number string cache. It
2772  // contains two elements (number and string) for each cache entry.
2773  mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
2774  shr(mask, kSmiTagSize + 1);  // Untag length and divide it by two.
2775  sub(mask, Immediate(1));  // Make mask.
2776
2777  // Calculate the entry in the number string cache. The hash value in the
2778  // number string cache for smis is just the smi value, and the hash for
2779  // doubles is the xor of the upper and lower words. See
2780  // Heap::GetNumberStringCache.
2781  Label smi_hash_calculated;
2782  Label load_result_from_cache;
2783  Label not_smi;
2784  STATIC_ASSERT(kSmiTag == 0);
2785  JumpIfNotSmi(object, &not_smi, Label::kNear);
2786  mov(scratch, object);
2787  SmiUntag(scratch);
2788  jmp(&smi_hash_calculated, Label::kNear);
2789  bind(&not_smi);
2790  cmp(FieldOperand(object, HeapObject::kMapOffset),
2791      isolate()->factory()->heap_number_map());
2792  j(not_equal, not_found);
2793  STATIC_ASSERT(8 == kDoubleSize);
2794  mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
2795  xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
2796  // Object is heap number and hash is now in scratch. Calculate cache index.
2797  and_(scratch, mask);
2798  Register index = scratch;
2799  Register probe = mask;
2800  mov(probe,
2801      FieldOperand(number_string_cache,
2802                   index,
2803                   times_twice_pointer_size,
2804                   FixedArray::kHeaderSize));
2805  JumpIfSmi(probe, not_found);
2806  fld_d(FieldOperand(object, HeapNumber::kValueOffset));
2807  fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
2808  FCmp();
2809  j(parity_even, not_found);  // Bail out if NaN is involved.
2810  j(not_equal, not_found);  // The cache did not contain this value.
2811  jmp(&load_result_from_cache, Label::kNear);
2812
2813  bind(&smi_hash_calculated);
2814  // Object is smi and hash is now in scratch. Calculate cache index.
2815  and_(scratch, mask);
2816  // Check if the entry is the smi we are looking for.
2817  cmp(object,
2818      FieldOperand(number_string_cache,
2819                   index,
2820                   times_twice_pointer_size,
2821                   FixedArray::kHeaderSize));
2822  j(not_equal, not_found);
2823
2824  // Get the result from the cache.
2825  bind(&load_result_from_cache);
2826  mov(result,
2827      FieldOperand(number_string_cache,
2828                   index,
2829                   times_twice_pointer_size,
2830                   FixedArray::kHeaderSize + kPointerSize));
2831  IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
2832}
2833
2834
2835void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
2836    Register instance_type, Register scratch, Label* failure) {
2837  if (!scratch.is(instance_type)) {
2838    mov(scratch, instance_type);
2839  }
2840  and_(scratch,
2841       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
2842  cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
2843  j(not_equal, failure);
2844}
2845
2846
2847void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register object1,
2848                                                           Register object2,
2849                                                           Register scratch1,
2850                                                           Register scratch2,
2851                                                           Label* failure) {
2852  // Check that both objects are not smis.
2853  STATIC_ASSERT(kSmiTag == 0);
2854  mov(scratch1, object1);
2855  and_(scratch1, object2);
2856  JumpIfSmi(scratch1, failure);
2857
2858  // Load instance type for both strings.
2859  mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
2860  mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
2861  movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
2862  movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
2863
2864  // Check that both are flat one-byte strings.
2865  const int kFlatOneByteStringMask =
2866      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
2867  const int kFlatOneByteStringTag =
2868      kStringTag | kOneByteStringTag | kSeqStringTag;
2869  // Interleave bits from both instance types and compare them in one check.
2870  DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
2871  and_(scratch1, kFlatOneByteStringMask);
2872  and_(scratch2, kFlatOneByteStringMask);
2873  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
2874  cmp(scratch1, kFlatOneByteStringTag | (kFlatOneByteStringTag << 3));
2875  j(not_equal, failure);
2876}
2877
2878
2879void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
2880                                                     Label* not_unique_name,
2881                                                     Label::Distance distance) {
2882  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
2883  Label succeed;
2884  test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
2885  j(zero, &succeed);
2886  cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
2887  j(not_equal, not_unique_name, distance);
2888
2889  bind(&succeed);
2890}
2891
2892
2893void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
2894                                               Register index,
2895                                               Register value,
2896                                               uint32_t encoding_mask) {
2897  Label is_object;
2898  JumpIfNotSmi(string, &is_object, Label::kNear);
2899  Abort(kNonObject);
2900  bind(&is_object);
2901
2902  push(value);
2903  mov(value, FieldOperand(string, HeapObject::kMapOffset));
2904  movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
2905
2906  and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
2907  cmp(value, Immediate(encoding_mask));
2908  pop(value);
2909  Check(equal, kUnexpectedStringType);
2910
2911  // The index is assumed to be untagged coming in, tag it to compare with the
2912  // string length without using a temp register, it is restored at the end of
2913  // this function.
2914  SmiTag(index);
2915  Check(no_overflow, kIndexIsTooLarge);
2916
2917  cmp(index, FieldOperand(string, String::kLengthOffset));
2918  Check(less, kIndexIsTooLarge);
2919
2920  cmp(index, Immediate(Smi::FromInt(0)));
2921  Check(greater_equal, kIndexIsNegative);
2922
2923  // Restore the index
2924  SmiUntag(index);
2925}
2926
2927
2928void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
2929  int frame_alignment = base::OS::ActivationFrameAlignment();
2930  if (frame_alignment != 0) {
2931    // Make stack end at alignment and make room for num_arguments words
2932    // and the original value of esp.
2933    mov(scratch, esp);
2934    sub(esp, Immediate((num_arguments + 1) * kPointerSize));
2935    DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
2936    and_(esp, -frame_alignment);
2937    mov(Operand(esp, num_arguments * kPointerSize), scratch);
2938  } else {
2939    sub(esp, Immediate(num_arguments * kPointerSize));
2940  }
2941}
2942
2943
2944void MacroAssembler::CallCFunction(ExternalReference function,
2945                                   int num_arguments) {
2946  // Trashing eax is ok as it will be the return value.
2947  mov(eax, Immediate(function));
2948  CallCFunction(eax, num_arguments);
2949}
2950
2951
2952void MacroAssembler::CallCFunction(Register function,
2953                                   int num_arguments) {
2954  DCHECK(has_frame());
2955  // Check stack alignment.
2956  if (emit_debug_code()) {
2957    CheckStackAlignment();
2958  }
2959
2960  call(function);
2961  if (base::OS::ActivationFrameAlignment() != 0) {
2962    mov(esp, Operand(esp, num_arguments * kPointerSize));
2963  } else {
2964    add(esp, Immediate(num_arguments * kPointerSize));
2965  }
2966}
2967
2968
2969#ifdef DEBUG
2970bool AreAliased(Register reg1,
2971                Register reg2,
2972                Register reg3,
2973                Register reg4,
2974                Register reg5,
2975                Register reg6,
2976                Register reg7,
2977                Register reg8) {
2978  int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
2979      reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
2980      reg7.is_valid() + reg8.is_valid();
2981
2982  RegList regs = 0;
2983  if (reg1.is_valid()) regs |= reg1.bit();
2984  if (reg2.is_valid()) regs |= reg2.bit();
2985  if (reg3.is_valid()) regs |= reg3.bit();
2986  if (reg4.is_valid()) regs |= reg4.bit();
2987  if (reg5.is_valid()) regs |= reg5.bit();
2988  if (reg6.is_valid()) regs |= reg6.bit();
2989  if (reg7.is_valid()) regs |= reg7.bit();
2990  if (reg8.is_valid()) regs |= reg8.bit();
2991  int n_of_non_aliasing_regs = NumRegs(regs);
2992
2993  return n_of_valid_regs != n_of_non_aliasing_regs;
2994}
2995#endif
2996
2997
2998CodePatcher::CodePatcher(byte* address, int size)
2999    : address_(address),
3000      size_(size),
3001      masm_(NULL, address, size + Assembler::kGap) {
3002  // Create a new macro assembler pointing to the address of the code to patch.
3003  // The size is adjusted with kGap on order for the assembler to generate size
3004  // bytes of instructions without failing with buffer size constraints.
3005  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3006}
3007
3008
3009CodePatcher::~CodePatcher() {
3010  // Indicate that code has changed.
3011  CpuFeatures::FlushICache(address_, size_);
3012
3013  // Check that the code was patched as expected.
3014  DCHECK(masm_.pc_ == address_ + size_);
3015  DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3016}
3017
3018
3019void MacroAssembler::CheckPageFlag(
3020    Register object,
3021    Register scratch,
3022    int mask,
3023    Condition cc,
3024    Label* condition_met,
3025    Label::Distance condition_met_distance) {
3026  DCHECK(cc == zero || cc == not_zero);
3027  if (scratch.is(object)) {
3028    and_(scratch, Immediate(~Page::kPageAlignmentMask));
3029  } else {
3030    mov(scratch, Immediate(~Page::kPageAlignmentMask));
3031    and_(scratch, object);
3032  }
3033  if (mask < (1 << kBitsPerByte)) {
3034    test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
3035           static_cast<uint8_t>(mask));
3036  } else {
3037    test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
3038  }
3039  j(cc, condition_met, condition_met_distance);
3040}
3041
3042
3043void MacroAssembler::CheckPageFlagForMap(
3044    Handle<Map> map,
3045    int mask,
3046    Condition cc,
3047    Label* condition_met,
3048    Label::Distance condition_met_distance) {
3049  DCHECK(cc == zero || cc == not_zero);
3050  Page* page = Page::FromAddress(map->address());
3051  DCHECK(!serializer_enabled());  // Serializer cannot match page_flags.
3052  ExternalReference reference(ExternalReference::page_flags(page));
3053  // The inlined static address check of the page's flags relies
3054  // on maps never being compacted.
3055  DCHECK(!isolate()->heap()->mark_compact_collector()->
3056         IsOnEvacuationCandidate(*map));
3057  if (mask < (1 << kBitsPerByte)) {
3058    test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
3059  } else {
3060    test(Operand::StaticVariable(reference), Immediate(mask));
3061  }
3062  j(cc, condition_met, condition_met_distance);
3063}
3064
3065
3066void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
3067                                        Register scratch,
3068                                        Label* if_deprecated) {
3069  if (map->CanBeDeprecated()) {
3070    mov(scratch, map);
3071    mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
3072    and_(scratch, Immediate(Map::Deprecated::kMask));
3073    j(not_zero, if_deprecated);
3074  }
3075}
3076
3077
3078void MacroAssembler::JumpIfBlack(Register object,
3079                                 Register scratch0,
3080                                 Register scratch1,
3081                                 Label* on_black,
3082                                 Label::Distance on_black_near) {
3083  HasColor(object, scratch0, scratch1,
3084           on_black, on_black_near,
3085           1, 0);  // kBlackBitPattern.
3086  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3087}
3088
3089
3090void MacroAssembler::HasColor(Register object,
3091                              Register bitmap_scratch,
3092                              Register mask_scratch,
3093                              Label* has_color,
3094                              Label::Distance has_color_distance,
3095                              int first_bit,
3096                              int second_bit) {
3097  DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
3098
3099  GetMarkBits(object, bitmap_scratch, mask_scratch);
3100
3101  Label other_color, word_boundary;
3102  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3103  j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
3104  add(mask_scratch, mask_scratch);  // Shift left 1 by adding.
3105  j(zero, &word_boundary, Label::kNear);
3106  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3107  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3108  jmp(&other_color, Label::kNear);
3109
3110  bind(&word_boundary);
3111  test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
3112
3113  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3114  bind(&other_color);
3115}
3116
3117
3118void MacroAssembler::GetMarkBits(Register addr_reg,
3119                                 Register bitmap_reg,
3120                                 Register mask_reg) {
3121  DCHECK(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
3122  mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
3123  and_(bitmap_reg, addr_reg);
3124  mov(ecx, addr_reg);
3125  int shift =
3126      Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
3127  shr(ecx, shift);
3128  and_(ecx,
3129       (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
3130
3131  add(bitmap_reg, ecx);
3132  mov(ecx, addr_reg);
3133  shr(ecx, kPointerSizeLog2);
3134  and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
3135  mov(mask_reg, Immediate(1));
3136  shl_cl(mask_reg);
3137}
3138
3139
3140void MacroAssembler::EnsureNotWhite(
3141    Register value,
3142    Register bitmap_scratch,
3143    Register mask_scratch,
3144    Label* value_is_white_and_not_data,
3145    Label::Distance distance) {
3146  DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
3147  GetMarkBits(value, bitmap_scratch, mask_scratch);
3148
3149  // If the value is black or grey we don't need to do anything.
3150  DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3151  DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3152  DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
3153  DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3154
3155  Label done;
3156
3157  // Since both black and grey have a 1 in the first position and white does
3158  // not have a 1 there we only need to check one bit.
3159  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3160  j(not_zero, &done, Label::kNear);
3161
3162  if (emit_debug_code()) {
3163    // Check for impossible bit pattern.
3164    Label ok;
3165    push(mask_scratch);
3166    // shl.  May overflow making the check conservative.
3167    add(mask_scratch, mask_scratch);
3168    test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3169    j(zero, &ok, Label::kNear);
3170    int3();
3171    bind(&ok);
3172    pop(mask_scratch);
3173  }
3174
3175  // Value is white.  We check whether it is data that doesn't need scanning.
3176  // Currently only checks for HeapNumber and non-cons strings.
3177  Register map = ecx;  // Holds map while checking type.
3178  Register length = ecx;  // Holds length of object after checking type.
3179  Label not_heap_number;
3180  Label is_data_object;
3181
3182  // Check for heap-number
3183  mov(map, FieldOperand(value, HeapObject::kMapOffset));
3184  cmp(map, isolate()->factory()->heap_number_map());
3185  j(not_equal, &not_heap_number, Label::kNear);
3186  mov(length, Immediate(HeapNumber::kSize));
3187  jmp(&is_data_object, Label::kNear);
3188
3189  bind(&not_heap_number);
3190  // Check for strings.
3191  DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3192  DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3193  // If it's a string and it's not a cons string then it's an object containing
3194  // no GC pointers.
3195  Register instance_type = ecx;
3196  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
3197  test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
3198  j(not_zero, value_is_white_and_not_data);
3199  // It's a non-indirect (non-cons and non-slice) string.
3200  // If it's external, the length is just ExternalString::kSize.
3201  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3202  Label not_external;
3203  // External strings are the only ones with the kExternalStringTag bit
3204  // set.
3205  DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
3206  DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
3207  test_b(instance_type, kExternalStringTag);
3208  j(zero, &not_external, Label::kNear);
3209  mov(length, Immediate(ExternalString::kSize));
3210  jmp(&is_data_object, Label::kNear);
3211
3212  bind(&not_external);
3213  // Sequential string, either Latin1 or UC16.
3214  DCHECK(kOneByteStringTag == 0x04);
3215  and_(length, Immediate(kStringEncodingMask));
3216  xor_(length, Immediate(kStringEncodingMask));
3217  add(length, Immediate(0x04));
3218  // Value now either 4 (if Latin1) or 8 (if UC16), i.e., char-size shifted
3219  // by 2. If we multiply the string length as smi by this, it still
3220  // won't overflow a 32-bit value.
3221  DCHECK_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
3222  DCHECK(SeqOneByteString::kMaxSize <=
3223         static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
3224  imul(length, FieldOperand(value, String::kLengthOffset));
3225  shr(length, 2 + kSmiTagSize + kSmiShiftSize);
3226  add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
3227  and_(length, Immediate(~kObjectAlignmentMask));
3228
3229  bind(&is_data_object);
3230  // Value is a data object, and it is white.  Mark it black.  Since we know
3231  // that the object is white we can make it black by flipping one bit.
3232  or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
3233
3234  and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
3235  add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
3236      length);
3237  if (emit_debug_code()) {
3238    mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3239    cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
3240    Check(less_equal, kLiveBytesCountOverflowChunkSize);
3241  }
3242
3243  bind(&done);
3244}
3245
3246
3247void MacroAssembler::EnumLength(Register dst, Register map) {
3248  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3249  mov(dst, FieldOperand(map, Map::kBitField3Offset));
3250  and_(dst, Immediate(Map::EnumLengthBits::kMask));
3251  SmiTag(dst);
3252}
3253
3254
3255void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3256  Label next, start;
3257  mov(ecx, eax);
3258
3259  // Check if the enum length field is properly initialized, indicating that
3260  // there is an enum cache.
3261  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3262
3263  EnumLength(edx, ebx);
3264  cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
3265  j(equal, call_runtime);
3266
3267  jmp(&start);
3268
3269  bind(&next);
3270  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3271
3272  // For all objects but the receiver, check that the cache is empty.
3273  EnumLength(edx, ebx);
3274  cmp(edx, Immediate(Smi::FromInt(0)));
3275  j(not_equal, call_runtime);
3276
3277  bind(&start);
3278
3279  // Check that there are no elements. Register rcx contains the current JS
3280  // object we've reached through the prototype chain.
3281  Label no_elements;
3282  mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
3283  cmp(ecx, isolate()->factory()->empty_fixed_array());
3284  j(equal, &no_elements);
3285
3286  // Second chance, the object may be using the empty slow element dictionary.
3287  cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
3288  j(not_equal, call_runtime);
3289
3290  bind(&no_elements);
3291  mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3292  cmp(ecx, isolate()->factory()->null_value());
3293  j(not_equal, &next);
3294}
3295
3296
3297void MacroAssembler::TestJSArrayForAllocationMemento(
3298    Register receiver_reg,
3299    Register scratch_reg,
3300    Label* no_memento_found) {
3301  ExternalReference new_space_start =
3302      ExternalReference::new_space_start(isolate());
3303  ExternalReference new_space_allocation_top =
3304      ExternalReference::new_space_allocation_top_address(isolate());
3305
3306  lea(scratch_reg, Operand(receiver_reg,
3307      JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3308  cmp(scratch_reg, Immediate(new_space_start));
3309  j(less, no_memento_found);
3310  cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
3311  j(greater, no_memento_found);
3312  cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
3313      Immediate(isolate()->factory()->allocation_memento_map()));
3314}
3315
3316
3317void MacroAssembler::JumpIfDictionaryInPrototypeChain(
3318    Register object,
3319    Register scratch0,
3320    Register scratch1,
3321    Label* found) {
3322  DCHECK(!scratch1.is(scratch0));
3323  Factory* factory = isolate()->factory();
3324  Register current = scratch0;
3325  Label loop_again;
3326
3327  // scratch contained elements pointer.
3328  mov(current, object);
3329
3330  // Loop based on the map going up the prototype chain.
3331  bind(&loop_again);
3332  mov(current, FieldOperand(current, HeapObject::kMapOffset));
3333  mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
3334  DecodeField<Map::ElementsKindBits>(scratch1);
3335  cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
3336  j(equal, found);
3337  mov(current, FieldOperand(current, Map::kPrototypeOffset));
3338  cmp(current, Immediate(factory->null_value()));
3339  j(not_equal, &loop_again);
3340}
3341
3342
3343void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
3344  DCHECK(!dividend.is(eax));
3345  DCHECK(!dividend.is(edx));
3346  base::MagicNumbersForDivision<uint32_t> mag =
3347      base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
3348  mov(eax, Immediate(mag.multiplier));
3349  imul(dividend);
3350  bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
3351  if (divisor > 0 && neg) add(edx, dividend);
3352  if (divisor < 0 && !neg && mag.multiplier > 0) sub(edx, dividend);
3353  if (mag.shift > 0) sar(edx, mag.shift);
3354  mov(eax, dividend);
3355  shr(eax, 31);
3356  add(edx, eax);
3357}
3358
3359
3360} }  // namespace v8::internal
3361
3362#endif  // V8_TARGET_ARCH_X87
3363