ASTContext.h revision 2455636163fdd18581d7fdae816433f886d88213
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/PrettyPrinter.h"
23#include "clang/AST/TemplateName.h"
24#include "clang/AST/Type.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Support/Allocator.h"
29#include <vector>
30
31namespace llvm {
32  struct fltSemantics;
33}
34
35namespace clang {
36  class FileManager;
37  class ASTRecordLayout;
38  class Expr;
39  class ExternalASTSource;
40  class IdentifierTable;
41  class SelectorTable;
42  class SourceManager;
43  class TargetInfo;
44  // Decls
45  class Decl;
46  class ObjCPropertyDecl;
47  class RecordDecl;
48  class TagDecl;
49  class TranslationUnitDecl;
50  class TypeDecl;
51  class TypedefDecl;
52  class TemplateTypeParmDecl;
53  class FieldDecl;
54  class ObjCIvarRefExpr;
55  class ObjCIvarDecl;
56
57  namespace Builtin { class Context; }
58
59/// ASTContext - This class holds long-lived AST nodes (such as types and
60/// decls) that can be referred to throughout the semantic analysis of a file.
61class ASTContext {
62  std::vector<Type*> Types;
63  llvm::FoldingSet<ExtQualType> ExtQualTypes;
64  llvm::FoldingSet<ComplexType> ComplexTypes;
65  llvm::FoldingSet<PointerType> PointerTypes;
66  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
67  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
68  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
69  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
70  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
71  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
72  std::vector<VariableArrayType*> VariableArrayTypes;
73  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
74  std::vector<DependentSizedExtVectorType*> DependentSizedExtVectorTypes;
75  llvm::FoldingSet<VectorType> VectorTypes;
76  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
77  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
78  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
79  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
80  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
81  llvm::FoldingSet<TypenameType> TypenameTypes;
82  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
83  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
84
85  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
86  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
87
88  /// \brief The set of nested name specifiers.
89  ///
90  /// This set is managed by the NestedNameSpecifier class.
91  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
92  NestedNameSpecifier *GlobalNestedNameSpecifier;
93  friend class NestedNameSpecifier;
94
95  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
96  ///  This is lazily created.  This is intentionally not serialized.
97  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
98  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
99
100  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
101  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
102
103  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
104  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
105
106  /// BuiltinVaListType - built-in va list type.
107  /// This is initially null and set by Sema::LazilyCreateBuiltin when
108  /// a builtin that takes a valist is encountered.
109  QualType BuiltinVaListType;
110
111  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
112  QualType ObjCIdTypedefType;
113
114  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
115  QualType ObjCSelType;
116  const RecordType *SelStructType;
117
118  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
119  QualType ObjCProtoType;
120  const RecordType *ProtoStructType;
121
122  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
123  QualType ObjCClassTypedefType;
124
125  QualType ObjCConstantStringType;
126  RecordDecl *CFConstantStringTypeDecl;
127
128  RecordDecl *ObjCFastEnumerationStateTypeDecl;
129
130  /// \brief The type for the C FILE type.
131  TypeDecl *FILEDecl;
132
133  /// \brief Keeps track of all declaration attributes.
134  ///
135  /// Since so few decls have attrs, we keep them in a hash map instead of
136  /// wasting space in the Decl class.
137  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
138
139  /// \brief Keeps track of the static data member templates from which
140  /// static data members of class template specializations were instantiated.
141  ///
142  /// This data structure stores the mapping from instantiations of static
143  /// data members to the static data member representations within the
144  /// class template from which they were instantiated.
145  ///
146  /// Given the following example:
147  ///
148  /// \code
149  /// template<typename T>
150  /// struct X {
151  ///   static T value;
152  /// };
153  ///
154  /// template<typename T>
155  ///   T X<T>::value = T(17);
156  ///
157  /// int *x = &X<int>::value;
158  /// \endcode
159  ///
160  /// This mapping will contain an entry that maps from the VarDecl for
161  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
162  /// class template X).
163  llvm::DenseMap<VarDecl *, VarDecl *> InstantiatedFromStaticDataMember;
164
165  TranslationUnitDecl *TUDecl;
166
167  /// SourceMgr - The associated SourceManager object.
168  SourceManager &SourceMgr;
169
170  /// LangOpts - The language options used to create the AST associated with
171  ///  this ASTContext object.
172  LangOptions LangOpts;
173
174  /// \brief Whether we have already loaded comment source ranges from an
175  /// external source.
176  bool LoadedExternalComments;
177
178  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
179  bool FreeMemory;
180  llvm::MallocAllocator MallocAlloc;
181  llvm::BumpPtrAllocator BumpAlloc;
182
183  /// \brief Mapping from declarations to their comments, once we have
184  /// already looked up the comment associated with a given declaration.
185  llvm::DenseMap<const Decl *, std::string> DeclComments;
186
187public:
188  TargetInfo &Target;
189  IdentifierTable &Idents;
190  SelectorTable &Selectors;
191  Builtin::Context &BuiltinInfo;
192  DeclarationNameTable DeclarationNames;
193  llvm::OwningPtr<ExternalASTSource> ExternalSource;
194  clang::PrintingPolicy PrintingPolicy;
195
196  /// \brief Source ranges for all of the comments in the source file,
197  /// sorted in order of appearance in the translation unit.
198  std::vector<SourceRange> Comments;
199
200  SourceManager& getSourceManager() { return SourceMgr; }
201  const SourceManager& getSourceManager() const { return SourceMgr; }
202  void *Allocate(unsigned Size, unsigned Align = 8) {
203    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
204                        BumpAlloc.Allocate(Size, Align);
205  }
206  void Deallocate(void *Ptr) {
207    if (FreeMemory)
208      MallocAlloc.Deallocate(Ptr);
209  }
210  const LangOptions& getLangOptions() const { return LangOpts; }
211
212  FullSourceLoc getFullLoc(SourceLocation Loc) const {
213    return FullSourceLoc(Loc,SourceMgr);
214  }
215
216  /// \brief Retrieve the attributes for the given declaration.
217  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
218
219  /// \brief Erase the attributes corresponding to the given declaration.
220  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
221
222  /// \brief If this variable is an instantiated static data member of a
223  /// class template specialization, returns the templated static data member
224  /// from which it was instantiated.
225  VarDecl *getInstantiatedFromStaticDataMember(VarDecl *Var);
226
227  /// \brief Note that the static data member \p Inst is an instantiation of
228  /// the static data member template \p Tmpl of a class template.
229  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl);
230
231  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
232
233  const char *getCommentForDecl(const Decl *D);
234
235  // Builtin Types.
236  QualType VoidTy;
237  QualType BoolTy;
238  QualType CharTy;
239  QualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
240  QualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
241  QualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
242  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
243  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
244  QualType UnsignedLongLongTy, UnsignedInt128Ty;
245  QualType FloatTy, DoubleTy, LongDoubleTy;
246  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
247  QualType VoidPtrTy, NullPtrTy;
248  QualType OverloadTy;
249  QualType DependentTy;
250  QualType UndeducedAutoTy;
251  QualType ObjCBuiltinIdTy, ObjCBuiltinClassTy;
252
253  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
254             IdentifierTable &idents, SelectorTable &sels,
255             Builtin::Context &builtins,
256             bool FreeMemory = true, unsigned size_reserve=0);
257
258  ~ASTContext();
259
260  /// \brief Attach an external AST source to the AST context.
261  ///
262  /// The external AST source provides the ability to load parts of
263  /// the abstract syntax tree as needed from some external storage,
264  /// e.g., a precompiled header.
265  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
266
267  /// \brief Retrieve a pointer to the external AST source associated
268  /// with this AST context, if any.
269  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
270
271  void PrintStats() const;
272  const std::vector<Type*>& getTypes() const { return Types; }
273
274  //===--------------------------------------------------------------------===//
275  //                           Type Constructors
276  //===--------------------------------------------------------------------===//
277
278  /// getAddSpaceQualType - Return the uniqued reference to the type for an
279  /// address space qualified type with the specified type and address space.
280  /// The resulting type has a union of the qualifiers from T and the address
281  /// space. If T already has an address space specifier, it is silently
282  /// replaced.
283  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
284
285  /// getObjCGCQualType - Returns the uniqued reference to the type for an
286  /// objc gc qualified type. The retulting type has a union of the qualifiers
287  /// from T and the gc attribute.
288  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
289
290  /// getNoReturnType - Add the noreturn attribute to the given type which must
291  /// be a FunctionType or a pointer to an allowable type or a BlockPointer.
292  QualType getNoReturnType(QualType T);
293
294  /// getComplexType - Return the uniqued reference to the type for a complex
295  /// number with the specified element type.
296  QualType getComplexType(QualType T);
297
298  /// getPointerType - Return the uniqued reference to the type for a pointer to
299  /// the specified type.
300  QualType getPointerType(QualType T);
301
302  /// getBlockPointerType - Return the uniqued reference to the type for a block
303  /// of the specified type.
304  QualType getBlockPointerType(QualType T);
305
306  /// getLValueReferenceType - Return the uniqued reference to the type for an
307  /// lvalue reference to the specified type.
308  QualType getLValueReferenceType(QualType T);
309
310  /// getRValueReferenceType - Return the uniqued reference to the type for an
311  /// rvalue reference to the specified type.
312  QualType getRValueReferenceType(QualType T);
313
314  /// getMemberPointerType - Return the uniqued reference to the type for a
315  /// member pointer to the specified type in the specified class. The class
316  /// is a Type because it could be a dependent name.
317  QualType getMemberPointerType(QualType T, const Type *Cls);
318
319  /// getVariableArrayType - Returns a non-unique reference to the type for a
320  /// variable array of the specified element type.
321  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
322                                ArrayType::ArraySizeModifier ASM,
323                                unsigned EltTypeQuals,
324                                SourceRange Brackets);
325
326  /// getDependentSizedArrayType - Returns a non-unique reference to
327  /// the type for a dependently-sized array of the specified element
328  /// type. FIXME: We will need these to be uniqued, or at least
329  /// comparable, at some point.
330  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
331                                      ArrayType::ArraySizeModifier ASM,
332                                      unsigned EltTypeQuals,
333                                      SourceRange Brackets);
334
335  /// getIncompleteArrayType - Returns a unique reference to the type for a
336  /// incomplete array of the specified element type.
337  QualType getIncompleteArrayType(QualType EltTy,
338                                  ArrayType::ArraySizeModifier ASM,
339                                  unsigned EltTypeQuals);
340
341  /// getConstantArrayType - Return the unique reference to the type for a
342  /// constant array of the specified element type.
343  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
344                                ArrayType::ArraySizeModifier ASM,
345                                unsigned EltTypeQuals);
346
347  /// getConstantArrayWithExprType - Return a reference to the type for a
348  /// constant array of the specified element type.
349  QualType getConstantArrayWithExprType(QualType EltTy,
350                                        const llvm::APInt &ArySize,
351                                        Expr *ArySizeExpr,
352                                        ArrayType::ArraySizeModifier ASM,
353                                        unsigned EltTypeQuals,
354                                        SourceRange Brackets);
355
356  /// getConstantArrayWithoutExprType - Return a reference to the type
357  /// for a constant array of the specified element type.
358  QualType getConstantArrayWithoutExprType(QualType EltTy,
359                                           const llvm::APInt &ArySize,
360                                           ArrayType::ArraySizeModifier ASM,
361                                           unsigned EltTypeQuals);
362
363  /// getVectorType - Return the unique reference to a vector type of
364  /// the specified element type and size. VectorType must be a built-in type.
365  QualType getVectorType(QualType VectorType, unsigned NumElts);
366
367  /// getExtVectorType - Return the unique reference to an extended vector type
368  /// of the specified element type and size.  VectorType must be a built-in
369  /// type.
370  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
371
372  /// getDependentSizedExtVectorType - Returns a non-unique reference to
373  /// the type for a dependently-sized vector of the specified element
374  /// type. FIXME: We will need these to be uniqued, or at least
375  /// comparable, at some point.
376  QualType getDependentSizedExtVectorType(QualType VectorType,
377                                          Expr *SizeExpr,
378                                          SourceLocation AttrLoc);
379
380  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
381  ///
382  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false);
383
384  /// getFunctionType - Return a normal function type with a typed argument
385  /// list.  isVariadic indicates whether the argument list includes '...'.
386  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
387                           unsigned NumArgs, bool isVariadic,
388                           unsigned TypeQuals, bool hasExceptionSpec = false,
389                           bool hasAnyExceptionSpec = false,
390                           unsigned NumExs = 0, const QualType *ExArray = 0,
391                           bool NoReturn = false);
392
393  /// getTypeDeclType - Return the unique reference to the type for
394  /// the specified type declaration.
395  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
396
397  /// getTypedefType - Return the unique reference to the type for the
398  /// specified typename decl.
399  QualType getTypedefType(TypedefDecl *Decl);
400
401  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
402                                   bool ParameterPack,
403                                   IdentifierInfo *Name = 0);
404
405  QualType getTemplateSpecializationType(TemplateName T,
406                                         const TemplateArgument *Args,
407                                         unsigned NumArgs,
408                                         QualType Canon = QualType());
409
410  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
411                                QualType NamedType);
412  QualType getTypenameType(NestedNameSpecifier *NNS,
413                           const IdentifierInfo *Name,
414                           QualType Canon = QualType());
415  QualType getTypenameType(NestedNameSpecifier *NNS,
416                           const TemplateSpecializationType *TemplateId,
417                           QualType Canon = QualType());
418
419  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
420                                ObjCProtocolDecl **Protocols = 0,
421                                unsigned NumProtocols = 0);
422
423  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
424  /// given interface decl and the conforming protocol list.
425  QualType getObjCObjectPointerType(QualType OIT,
426                                    ObjCProtocolDecl **ProtocolList = 0,
427                                    unsigned NumProtocols = 0);
428
429  /// getTypeOfType - GCC extension.
430  QualType getTypeOfExprType(Expr *e);
431  QualType getTypeOfType(QualType t);
432
433  /// getDecltypeType - C++0x decltype.
434  QualType getDecltypeType(Expr *e);
435
436  /// getTagDeclType - Return the unique reference to the type for the
437  /// specified TagDecl (struct/union/class/enum) decl.
438  QualType getTagDeclType(TagDecl *Decl);
439
440  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
441  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
442  QualType getSizeType() const;
443
444  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
445  /// returns a type compatible with the type defined in <stddef.h> as defined
446  /// by the target.
447  QualType getWCharType() const { return WCharTy; }
448
449  /// getSignedWCharType - Return the type of "signed wchar_t".
450  /// Used when in C++, as a GCC extension.
451  QualType getSignedWCharType() const;
452
453  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
454  /// Used when in C++, as a GCC extension.
455  QualType getUnsignedWCharType() const;
456
457  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
458  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
459  QualType getPointerDiffType() const;
460
461  // getCFConstantStringType - Return the C structure type used to represent
462  // constant CFStrings.
463  QualType getCFConstantStringType();
464
465  /// Get the structure type used to representation CFStrings, or NULL
466  /// if it hasn't yet been built.
467  QualType getRawCFConstantStringType() {
468    if (CFConstantStringTypeDecl)
469      return getTagDeclType(CFConstantStringTypeDecl);
470    return QualType();
471  }
472  void setCFConstantStringType(QualType T);
473
474  // This setter/getter represents the ObjC type for an NSConstantString.
475  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
476  QualType getObjCConstantStringInterface() const {
477    return ObjCConstantStringType;
478  }
479
480  //// This gets the struct used to keep track of fast enumerations.
481  QualType getObjCFastEnumerationStateType();
482
483  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
484  /// been built.
485  QualType getRawObjCFastEnumerationStateType() {
486    if (ObjCFastEnumerationStateTypeDecl)
487      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
488    return QualType();
489  }
490
491  void setObjCFastEnumerationStateType(QualType T);
492
493  /// \brief Set the type for the C FILE type.
494  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
495
496  /// \brief Retrieve the C FILE type.
497  QualType getFILEType() {
498    if (FILEDecl)
499      return getTypeDeclType(FILEDecl);
500    return QualType();
501  }
502
503  /// getObjCEncodingForType - Emit the ObjC type encoding for the
504  /// given type into \arg S. If \arg NameFields is specified then
505  /// record field names are also encoded.
506  void getObjCEncodingForType(QualType t, std::string &S,
507                              const FieldDecl *Field=0);
508
509  void getLegacyIntegralTypeEncoding(QualType &t) const;
510
511  // Put the string version of type qualifiers into S.
512  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
513                                       std::string &S) const;
514
515  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
516  /// declaration.
517  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
518
519  /// getObjCEncodingForPropertyDecl - Return the encoded type for
520  /// this method declaration. If non-NULL, Container must be either
521  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
522  /// only be NULL when getting encodings for protocol properties.
523  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
524                                      const Decl *Container,
525                                      std::string &S);
526
527  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
528  /// purpose.
529  int getObjCEncodingTypeSize(QualType t);
530
531  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
532  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
533  QualType getObjCIdType() const { return ObjCIdTypedefType; }
534  void setObjCIdType(QualType T);
535
536  void setObjCSelType(QualType T);
537  QualType getObjCSelType() const { return ObjCSelType; }
538
539  void setObjCProtoType(QualType QT);
540  QualType getObjCProtoType() const { return ObjCProtoType; }
541
542  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
543  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
544  /// struct.
545  QualType getObjCClassType() const { return ObjCClassTypedefType; }
546  void setObjCClassType(QualType T);
547
548  void setBuiltinVaListType(QualType T);
549  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
550
551  QualType getFixedWidthIntType(unsigned Width, bool Signed);
552
553  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
554                                        bool TemplateKeyword,
555                                        TemplateDecl *Template);
556
557  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
558                                        const IdentifierInfo *Name);
559
560  enum GetBuiltinTypeError {
561    GE_None,        //< No error
562    GE_Missing_FILE //< Missing the FILE type from <stdio.h>
563  };
564
565  /// GetBuiltinType - Return the type for the specified builtin.
566  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
567
568private:
569  QualType getFromTargetType(unsigned Type) const;
570
571  //===--------------------------------------------------------------------===//
572  //                         Type Predicates.
573  //===--------------------------------------------------------------------===//
574
575public:
576  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
577  /// garbage collection attribute.
578  ///
579  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
580
581  /// isObjCNSObjectType - Return true if this is an NSObject object with
582  /// its NSObject attribute set.
583  bool isObjCNSObjectType(QualType Ty) const;
584
585  //===--------------------------------------------------------------------===//
586  //                         Type Sizing and Analysis
587  //===--------------------------------------------------------------------===//
588
589  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
590  /// scalar floating point type.
591  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
592
593  /// getTypeInfo - Get the size and alignment of the specified complete type in
594  /// bits.
595  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
596  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
597    return getTypeInfo(T.getTypePtr());
598  }
599
600  /// getTypeSize - Return the size of the specified type, in bits.  This method
601  /// does not work on incomplete types.
602  uint64_t getTypeSize(QualType T) {
603    return getTypeInfo(T).first;
604  }
605  uint64_t getTypeSize(const Type *T) {
606    return getTypeInfo(T).first;
607  }
608
609  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
610  /// This method does not work on incomplete types.
611  unsigned getTypeAlign(QualType T) {
612    return getTypeInfo(T).second;
613  }
614  unsigned getTypeAlign(const Type *T) {
615    return getTypeInfo(T).second;
616  }
617
618  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
619  /// type for the current target in bits.  This can be different than the ABI
620  /// alignment in cases where it is beneficial for performance to overalign
621  /// a data type.
622  unsigned getPreferredTypeAlign(const Type *T);
623
624  /// getDeclAlignInBytes - Return the alignment of the specified decl
625  /// that should be returned by __alignof().  Note that bitfields do
626  /// not have a valid alignment, so this method will assert on them.
627  unsigned getDeclAlignInBytes(const Decl *D);
628
629  /// getASTRecordLayout - Get or compute information about the layout of the
630  /// specified record (struct/union/class), which indicates its size and field
631  /// position information.
632  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
633
634  /// getASTObjCInterfaceLayout - Get or compute information about the
635  /// layout of the specified Objective-C interface.
636  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
637
638  /// getASTObjCImplementationLayout - Get or compute information about
639  /// the layout of the specified Objective-C implementation. This may
640  /// differ from the interface if synthesized ivars are present.
641  const ASTRecordLayout &
642  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
643
644  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
645                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
646
647  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
648                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
649                               bool CollectSynthesized = true);
650  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
651                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
652  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
653                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
654  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
655  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
656
657  //===--------------------------------------------------------------------===//
658  //                            Type Operators
659  //===--------------------------------------------------------------------===//
660
661  /// getCanonicalType - Return the canonical (structural) type corresponding to
662  /// the specified potentially non-canonical type.  The non-canonical version
663  /// of a type may have many "decorated" versions of types.  Decorators can
664  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
665  /// to be free of any of these, allowing two canonical types to be compared
666  /// for exact equality with a simple pointer comparison.
667  QualType getCanonicalType(QualType T);
668  const Type *getCanonicalType(const Type *T) {
669    return T->getCanonicalTypeInternal().getTypePtr();
670  }
671
672  /// \brief Determine whether the given types are equivalent.
673  bool hasSameType(QualType T1, QualType T2) {
674    return getCanonicalType(T1) == getCanonicalType(T2);
675  }
676
677  /// \brief Determine whether the given types are equivalent after
678  /// cvr-qualifiers have been removed.
679  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
680    T1 = getCanonicalType(T1);
681    T2 = getCanonicalType(T2);
682    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
683  }
684
685  /// \brief Retrieves the "canonical" declaration of
686
687  /// \brief Retrieves the "canonical" nested name specifier for a
688  /// given nested name specifier.
689  ///
690  /// The canonical nested name specifier is a nested name specifier
691  /// that uniquely identifies a type or namespace within the type
692  /// system. For example, given:
693  ///
694  /// \code
695  /// namespace N {
696  ///   struct S {
697  ///     template<typename T> struct X { typename T* type; };
698  ///   };
699  /// }
700  ///
701  /// template<typename T> struct Y {
702  ///   typename N::S::X<T>::type member;
703  /// };
704  /// \endcode
705  ///
706  /// Here, the nested-name-specifier for N::S::X<T>:: will be
707  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
708  /// by declarations in the type system and the canonical type for
709  /// the template type parameter 'T' is template-param-0-0.
710  NestedNameSpecifier *
711  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
712
713  /// \brief Retrieves the "canonical" template name that refers to a
714  /// given template.
715  ///
716  /// The canonical template name is the simplest expression that can
717  /// be used to refer to a given template. For most templates, this
718  /// expression is just the template declaration itself. For example,
719  /// the template std::vector can be referred to via a variety of
720  /// names---std::vector, ::std::vector, vector (if vector is in
721  /// scope), etc.---but all of these names map down to the same
722  /// TemplateDecl, which is used to form the canonical template name.
723  ///
724  /// Dependent template names are more interesting. Here, the
725  /// template name could be something like T::template apply or
726  /// std::allocator<T>::template rebind, where the nested name
727  /// specifier itself is dependent. In this case, the canonical
728  /// template name uses the shortest form of the dependent
729  /// nested-name-specifier, which itself contains all canonical
730  /// types, values, and templates.
731  TemplateName getCanonicalTemplateName(TemplateName Name);
732
733  /// Type Query functions.  If the type is an instance of the specified class,
734  /// return the Type pointer for the underlying maximally pretty type.  This
735  /// is a member of ASTContext because this may need to do some amount of
736  /// canonicalization, e.g. to move type qualifiers into the element type.
737  const ArrayType *getAsArrayType(QualType T);
738  const ConstantArrayType *getAsConstantArrayType(QualType T) {
739    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
740  }
741  const VariableArrayType *getAsVariableArrayType(QualType T) {
742    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
743  }
744  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
745    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
746  }
747
748  /// getBaseElementType - Returns the innermost element type of a variable
749  /// length array type. For example, will return "int" for int[m][n]
750  QualType getBaseElementType(const VariableArrayType *VAT);
751
752  /// getBaseElementType - Returns the innermost element type of a type
753  /// (which needn't actually be an array type).
754  QualType getBaseElementType(QualType QT);
755
756  /// getArrayDecayedType - Return the properly qualified result of decaying the
757  /// specified array type to a pointer.  This operation is non-trivial when
758  /// handling typedefs etc.  The canonical type of "T" must be an array type,
759  /// this returns a pointer to a properly qualified element of the array.
760  ///
761  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
762  QualType getArrayDecayedType(QualType T);
763
764  /// getIntegerTypeOrder - Returns the highest ranked integer type:
765  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
766  /// LHS < RHS, return -1.
767  int getIntegerTypeOrder(QualType LHS, QualType RHS);
768
769  /// getFloatingTypeOrder - Compare the rank of the two specified floating
770  /// point types, ignoring the domain of the type (i.e. 'double' ==
771  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
772  /// LHS < RHS, return -1.
773  int getFloatingTypeOrder(QualType LHS, QualType RHS);
774
775  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
776  /// point or a complex type (based on typeDomain/typeSize).
777  /// 'typeDomain' is a real floating point or complex type.
778  /// 'typeSize' is a real floating point or complex type.
779  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
780                                             QualType typeDomain) const;
781
782private:
783  // Helper for integer ordering
784  unsigned getIntegerRank(Type* T);
785
786public:
787
788  //===--------------------------------------------------------------------===//
789  //                    Type Compatibility Predicates
790  //===--------------------------------------------------------------------===//
791
792  /// Compatibility predicates used to check assignment expressions.
793  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
794
795  bool isObjCIdType(QualType T) const {
796    return T == ObjCIdTypedefType;
797  }
798  bool isObjCClassType(QualType T) const {
799    return T == ObjCClassTypedefType;
800  }
801  bool isObjCSelType(QualType T) const {
802    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
803    return T->getAsStructureType() == SelStructType;
804  }
805  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
806  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
807                                         bool ForCompare);
808
809  // Check the safety of assignment from LHS to RHS
810  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
811                               const ObjCObjectPointerType *RHSOPT);
812  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
813                               const ObjCInterfaceType *RHS);
814  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
815
816  // Functions for calculating composite types
817  QualType mergeTypes(QualType, QualType);
818  QualType mergeFunctionTypes(QualType, QualType);
819
820  //===--------------------------------------------------------------------===//
821  //                    Integer Predicates
822  //===--------------------------------------------------------------------===//
823
824  // The width of an integer, as defined in C99 6.2.6.2. This is the number
825  // of bits in an integer type excluding any padding bits.
826  unsigned getIntWidth(QualType T);
827
828  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
829  // unsigned integer type.  This method takes a signed type, and returns the
830  // corresponding unsigned integer type.
831  QualType getCorrespondingUnsignedType(QualType T);
832
833  //===--------------------------------------------------------------------===//
834  //                    Type Iterators.
835  //===--------------------------------------------------------------------===//
836
837  typedef std::vector<Type*>::iterator       type_iterator;
838  typedef std::vector<Type*>::const_iterator const_type_iterator;
839
840  type_iterator types_begin() { return Types.begin(); }
841  type_iterator types_end() { return Types.end(); }
842  const_type_iterator types_begin() const { return Types.begin(); }
843  const_type_iterator types_end() const { return Types.end(); }
844
845  //===--------------------------------------------------------------------===//
846  //                    Integer Values
847  //===--------------------------------------------------------------------===//
848
849  /// MakeIntValue - Make an APSInt of the appropriate width and
850  /// signedness for the given \arg Value and integer \arg Type.
851  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
852    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
853    Res = Value;
854    return Res;
855  }
856
857  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
858  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
859  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
860  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
861
862  /// \brief Set the implementation of ObjCInterfaceDecl.
863  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
864                             ObjCImplementationDecl *ImplD);
865  /// \brief Set the implementation of ObjCCategoryDecl.
866  void setObjCImplementation(ObjCCategoryDecl *CatD,
867                             ObjCCategoryImplDecl *ImplD);
868
869private:
870  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
871  void operator=(const ASTContext&); // DO NOT IMPLEMENT
872
873  void InitBuiltinTypes();
874  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
875
876  // Return the ObjC type encoding for a given type.
877  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
878                                  bool ExpandPointedToStructures,
879                                  bool ExpandStructures,
880                                  const FieldDecl *Field,
881                                  bool OutermostType = false,
882                                  bool EncodingProperty = false);
883
884  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
885                                       const ObjCImplementationDecl *Impl);
886};
887
888}  // end namespace clang
889
890// operator new and delete aren't allowed inside namespaces.
891// The throw specifications are mandated by the standard.
892/// @brief Placement new for using the ASTContext's allocator.
893///
894/// This placement form of operator new uses the ASTContext's allocator for
895/// obtaining memory. It is a non-throwing new, which means that it returns
896/// null on error. (If that is what the allocator does. The current does, so if
897/// this ever changes, this operator will have to be changed, too.)
898/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
899/// @code
900/// // Default alignment (16)
901/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
902/// // Specific alignment
903/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
904/// @endcode
905/// Please note that you cannot use delete on the pointer; it must be
906/// deallocated using an explicit destructor call followed by
907/// @c Context.Deallocate(Ptr).
908///
909/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
910/// @param C The ASTContext that provides the allocator.
911/// @param Alignment The alignment of the allocated memory (if the underlying
912///                  allocator supports it).
913/// @return The allocated memory. Could be NULL.
914inline void *operator new(size_t Bytes, clang::ASTContext &C,
915                          size_t Alignment) throw () {
916  return C.Allocate(Bytes, Alignment);
917}
918/// @brief Placement delete companion to the new above.
919///
920/// This operator is just a companion to the new above. There is no way of
921/// invoking it directly; see the new operator for more details. This operator
922/// is called implicitly by the compiler if a placement new expression using
923/// the ASTContext throws in the object constructor.
924inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
925              throw () {
926  C.Deallocate(Ptr);
927}
928
929/// This placement form of operator new[] uses the ASTContext's allocator for
930/// obtaining memory. It is a non-throwing new[], which means that it returns
931/// null on error.
932/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
933/// @code
934/// // Default alignment (16)
935/// char *data = new (Context) char[10];
936/// // Specific alignment
937/// char *data = new (Context, 8) char[10];
938/// @endcode
939/// Please note that you cannot use delete on the pointer; it must be
940/// deallocated using an explicit destructor call followed by
941/// @c Context.Deallocate(Ptr).
942///
943/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
944/// @param C The ASTContext that provides the allocator.
945/// @param Alignment The alignment of the allocated memory (if the underlying
946///                  allocator supports it).
947/// @return The allocated memory. Could be NULL.
948inline void *operator new[](size_t Bytes, clang::ASTContext& C,
949                            size_t Alignment = 16) throw () {
950  return C.Allocate(Bytes, Alignment);
951}
952
953/// @brief Placement delete[] companion to the new[] above.
954///
955/// This operator is just a companion to the new[] above. There is no way of
956/// invoking it directly; see the new[] operator for more details. This operator
957/// is called implicitly by the compiler if a placement new[] expression using
958/// the ASTContext throws in the object constructor.
959inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
960  C.Deallocate(Ptr);
961}
962
963#endif
964