ASTContext.h revision 33500955d731c73717af52088b7fc0e7a85681e7
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Attr.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/CanonicalType.h"
28#include "clang/AST/UsuallyTinyPtrVector.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/Support/Allocator.h"
34#include <vector>
35
36namespace llvm {
37  struct fltSemantics;
38  class raw_ostream;
39}
40
41namespace clang {
42  class FileManager;
43  class ASTRecordLayout;
44  class BlockExpr;
45  class CharUnits;
46  class Diagnostic;
47  class Expr;
48  class ExternalASTSource;
49  class IdentifierTable;
50  class SelectorTable;
51  class SourceManager;
52  class TargetInfo;
53  // Decls
54  class DeclContext;
55  class CXXMethodDecl;
56  class CXXRecordDecl;
57  class Decl;
58  class FieldDecl;
59  class ObjCIvarDecl;
60  class ObjCIvarRefExpr;
61  class ObjCPropertyDecl;
62  class RecordDecl;
63  class StoredDeclsMap;
64  class TagDecl;
65  class TemplateTypeParmDecl;
66  class TranslationUnitDecl;
67  class TypeDecl;
68  class TypedefDecl;
69  class UsingDecl;
70  class UsingShadowDecl;
71  class UnresolvedSetIterator;
72
73  namespace Builtin { class Context; }
74
75/// ASTContext - This class holds long-lived AST nodes (such as types and
76/// decls) that can be referred to throughout the semantic analysis of a file.
77class ASTContext {
78  std::vector<Type*> Types;
79  llvm::FoldingSet<ExtQuals> ExtQualNodes;
80  llvm::FoldingSet<ComplexType> ComplexTypes;
81  llvm::FoldingSet<PointerType> PointerTypes;
82  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
83  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
84  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
85  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
86  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
87  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
88  std::vector<VariableArrayType*> VariableArrayTypes;
89  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
90  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
91  llvm::FoldingSet<VectorType> VectorTypes;
92  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
93  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
94  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
95  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
96  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
97  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
98  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
99  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
100  llvm::FoldingSet<DependentNameType> DependentNameTypes;
101  llvm::FoldingSet<DependentTemplateSpecializationType>
102    DependentTemplateSpecializationTypes;
103  llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
104  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
105
106  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
107  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
108
109  /// \brief The set of nested name specifiers.
110  ///
111  /// This set is managed by the NestedNameSpecifier class.
112  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
113  NestedNameSpecifier *GlobalNestedNameSpecifier;
114  friend class NestedNameSpecifier;
115
116  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
117  ///  This is lazily created.  This is intentionally not serialized.
118  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
119  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
120
121  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
122  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
123
124  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
125  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
126
127  /// BuiltinVaListType - built-in va list type.
128  /// This is initially null and set by Sema::LazilyCreateBuiltin when
129  /// a builtin that takes a valist is encountered.
130  QualType BuiltinVaListType;
131
132  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
133  QualType ObjCIdTypedefType;
134
135  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
136  QualType ObjCSelTypedefType;
137
138  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
139  QualType ObjCProtoType;
140  const RecordType *ProtoStructType;
141
142  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
143  QualType ObjCClassTypedefType;
144
145  QualType ObjCConstantStringType;
146  RecordDecl *CFConstantStringTypeDecl;
147
148  RecordDecl *NSConstantStringTypeDecl;
149
150  RecordDecl *ObjCFastEnumerationStateTypeDecl;
151
152  /// \brief The type for the C FILE type.
153  TypeDecl *FILEDecl;
154
155  /// \brief The type for the C jmp_buf type.
156  TypeDecl *jmp_bufDecl;
157
158  /// \brief The type for the C sigjmp_buf type.
159  TypeDecl *sigjmp_bufDecl;
160
161  /// \brief Type for the Block descriptor for Blocks CodeGen.
162  RecordDecl *BlockDescriptorType;
163
164  /// \brief Type for the Block descriptor for Blocks CodeGen.
165  RecordDecl *BlockDescriptorExtendedType;
166
167  TypeSourceInfo NullTypeSourceInfo;
168
169  /// \brief Keeps track of all declaration attributes.
170  ///
171  /// Since so few decls have attrs, we keep them in a hash map instead of
172  /// wasting space in the Decl class.
173  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
174
175  /// \brief Keeps track of the static data member templates from which
176  /// static data members of class template specializations were instantiated.
177  ///
178  /// This data structure stores the mapping from instantiations of static
179  /// data members to the static data member representations within the
180  /// class template from which they were instantiated along with the kind
181  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
182  ///
183  /// Given the following example:
184  ///
185  /// \code
186  /// template<typename T>
187  /// struct X {
188  ///   static T value;
189  /// };
190  ///
191  /// template<typename T>
192  ///   T X<T>::value = T(17);
193  ///
194  /// int *x = &X<int>::value;
195  /// \endcode
196  ///
197  /// This mapping will contain an entry that maps from the VarDecl for
198  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
199  /// class template X) and will be marked TSK_ImplicitInstantiation.
200  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
201    InstantiatedFromStaticDataMember;
202
203  /// \brief Keeps track of the declaration from which a UsingDecl was
204  /// created during instantiation.  The source declaration is always
205  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
206  /// UnresolvedUsingTypenameDecl.
207  ///
208  /// For example:
209  /// \code
210  /// template<typename T>
211  /// struct A {
212  ///   void f();
213  /// };
214  ///
215  /// template<typename T>
216  /// struct B : A<T> {
217  ///   using A<T>::f;
218  /// };
219  ///
220  /// template struct B<int>;
221  /// \endcode
222  ///
223  /// This mapping will contain an entry that maps from the UsingDecl in
224  /// B<int> to the UnresolvedUsingDecl in B<T>.
225  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
226
227  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
228    InstantiatedFromUsingShadowDecl;
229
230  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
231
232  /// \brief Mapping that stores the methods overridden by a given C++
233  /// member function.
234  ///
235  /// Since most C++ member functions aren't virtual and therefore
236  /// don't override anything, we store the overridden functions in
237  /// this map on the side rather than within the CXXMethodDecl structure.
238  typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
239  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
240
241  TranslationUnitDecl *TUDecl;
242
243  /// SourceMgr - The associated SourceManager object.
244  SourceManager &SourceMgr;
245
246  /// LangOpts - The language options used to create the AST associated with
247  ///  this ASTContext object.
248  LangOptions LangOpts;
249
250  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
251  bool FreeMemory;
252  llvm::MallocAllocator MallocAlloc;
253  llvm::BumpPtrAllocator BumpAlloc;
254
255  /// \brief Allocator for partial diagnostics.
256  PartialDiagnostic::StorageAllocator DiagAllocator;
257
258public:
259  const TargetInfo &Target;
260  IdentifierTable &Idents;
261  SelectorTable &Selectors;
262  Builtin::Context &BuiltinInfo;
263  DeclarationNameTable DeclarationNames;
264  llvm::OwningPtr<ExternalASTSource> ExternalSource;
265  clang::PrintingPolicy PrintingPolicy;
266
267  // Typedefs which may be provided defining the structure of Objective-C
268  // pseudo-builtins
269  QualType ObjCIdRedefinitionType;
270  QualType ObjCClassRedefinitionType;
271  QualType ObjCSelRedefinitionType;
272
273  SourceManager& getSourceManager() { return SourceMgr; }
274  const SourceManager& getSourceManager() const { return SourceMgr; }
275  void *Allocate(unsigned Size, unsigned Align = 8) {
276    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
277                        BumpAlloc.Allocate(Size, Align);
278  }
279  void Deallocate(void *Ptr) {
280    if (FreeMemory)
281      MallocAlloc.Deallocate(Ptr);
282  }
283
284  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
285    return DiagAllocator;
286  }
287
288  const LangOptions& getLangOptions() const { return LangOpts; }
289
290  FullSourceLoc getFullLoc(SourceLocation Loc) const {
291    return FullSourceLoc(Loc,SourceMgr);
292  }
293
294  /// \brief Retrieve the attributes for the given declaration.
295  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
296
297  /// \brief Erase the attributes corresponding to the given declaration.
298  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
299
300  /// \brief If this variable is an instantiated static data member of a
301  /// class template specialization, returns the templated static data member
302  /// from which it was instantiated.
303  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
304                                                           const VarDecl *Var);
305
306  /// \brief Note that the static data member \p Inst is an instantiation of
307  /// the static data member template \p Tmpl of a class template.
308  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
309                                           TemplateSpecializationKind TSK);
310
311  /// \brief If the given using decl is an instantiation of a
312  /// (possibly unresolved) using decl from a template instantiation,
313  /// return it.
314  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
315
316  /// \brief Remember that the using decl \p Inst is an instantiation
317  /// of the using decl \p Pattern of a class template.
318  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
319
320  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
321                                          UsingShadowDecl *Pattern);
322  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
323
324  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
325
326  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
327
328  // Access to the set of methods overridden by the given C++ method.
329  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
330  overridden_cxx_method_iterator
331  overridden_methods_begin(const CXXMethodDecl *Method) const;
332
333  overridden_cxx_method_iterator
334  overridden_methods_end(const CXXMethodDecl *Method) const;
335
336  /// \brief Note that the given C++ \p Method overrides the given \p
337  /// Overridden method.
338  void addOverriddenMethod(const CXXMethodDecl *Method,
339                           const CXXMethodDecl *Overridden);
340
341  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
342
343
344  // Builtin Types.
345  CanQualType VoidTy;
346  CanQualType BoolTy;
347  CanQualType CharTy;
348  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
349  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
350  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
351  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
352  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
353  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
354  CanQualType FloatTy, DoubleTy, LongDoubleTy;
355  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
356  CanQualType VoidPtrTy, NullPtrTy;
357  CanQualType OverloadTy;
358  CanQualType DependentTy;
359  CanQualType UndeducedAutoTy;
360  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
361
362  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
363             IdentifierTable &idents, SelectorTable &sels,
364             Builtin::Context &builtins,
365             bool FreeMemory = true, unsigned size_reserve=0);
366
367  ~ASTContext();
368
369  /// \brief Attach an external AST source to the AST context.
370  ///
371  /// The external AST source provides the ability to load parts of
372  /// the abstract syntax tree as needed from some external storage,
373  /// e.g., a precompiled header.
374  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
375
376  /// \brief Retrieve a pointer to the external AST source associated
377  /// with this AST context, if any.
378  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
379
380  void PrintStats() const;
381  const std::vector<Type*>& getTypes() const { return Types; }
382
383  //===--------------------------------------------------------------------===//
384  //                           Type Constructors
385  //===--------------------------------------------------------------------===//
386
387private:
388  /// getExtQualType - Return a type with extended qualifiers.
389  QualType getExtQualType(const Type *Base, Qualifiers Quals);
390
391  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
392
393public:
394  /// getAddSpaceQualType - Return the uniqued reference to the type for an
395  /// address space qualified type with the specified type and address space.
396  /// The resulting type has a union of the qualifiers from T and the address
397  /// space. If T already has an address space specifier, it is silently
398  /// replaced.
399  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
400
401  /// getObjCGCQualType - Returns the uniqued reference to the type for an
402  /// objc gc qualified type. The retulting type has a union of the qualifiers
403  /// from T and the gc attribute.
404  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
405
406  /// getRestrictType - Returns the uniqued reference to the type for a
407  /// 'restrict' qualified type.  The resulting type has a union of the
408  /// qualifiers from T and 'restrict'.
409  QualType getRestrictType(QualType T) {
410    return T.withFastQualifiers(Qualifiers::Restrict);
411  }
412
413  /// getVolatileType - Returns the uniqued reference to the type for a
414  /// 'volatile' qualified type.  The resulting type has a union of the
415  /// qualifiers from T and 'volatile'.
416  QualType getVolatileType(QualType T);
417
418  /// getConstType - Returns the uniqued reference to the type for a
419  /// 'const' qualified type.  The resulting type has a union of the
420  /// qualifiers from T and 'const'.
421  ///
422  /// It can be reasonably expected that this will always be
423  /// equivalent to calling T.withConst().
424  QualType getConstType(QualType T) { return T.withConst(); }
425
426  /// getNoReturnType - Add or remove the noreturn attribute to the given type
427  /// which must be a FunctionType or a pointer to an allowable type or a
428  /// BlockPointer.
429  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
430
431  /// getCallConvType - Adds the specified calling convention attribute to
432  /// the given type, which must be a FunctionType or a pointer to an
433  /// allowable type.
434  QualType getCallConvType(QualType T, CallingConv CallConv);
435
436  /// getRegParmType - Sets the specified regparm attribute to
437  /// the given type, which must be a FunctionType or a pointer to an
438  /// allowable type.
439  QualType getRegParmType(QualType T, unsigned RegParm);
440
441  /// getComplexType - Return the uniqued reference to the type for a complex
442  /// number with the specified element type.
443  QualType getComplexType(QualType T);
444  CanQualType getComplexType(CanQualType T) {
445    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
446  }
447
448  /// getPointerType - Return the uniqued reference to the type for a pointer to
449  /// the specified type.
450  QualType getPointerType(QualType T);
451  CanQualType getPointerType(CanQualType T) {
452    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
453  }
454
455  /// getBlockPointerType - Return the uniqued reference to the type for a block
456  /// of the specified type.
457  QualType getBlockPointerType(QualType T);
458
459  /// This gets the struct used to keep track of the descriptor for pointer to
460  /// blocks.
461  QualType getBlockDescriptorType();
462
463  // Set the type for a Block descriptor type.
464  void setBlockDescriptorType(QualType T);
465  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
466  QualType getRawBlockdescriptorType() {
467    if (BlockDescriptorType)
468      return getTagDeclType(BlockDescriptorType);
469    return QualType();
470  }
471
472  /// This gets the struct used to keep track of the extended descriptor for
473  /// pointer to blocks.
474  QualType getBlockDescriptorExtendedType();
475
476  // Set the type for a Block descriptor extended type.
477  void setBlockDescriptorExtendedType(QualType T);
478  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
479  /// built.
480  QualType getRawBlockdescriptorExtendedType() {
481    if (BlockDescriptorExtendedType)
482      return getTagDeclType(BlockDescriptorExtendedType);
483    return QualType();
484  }
485
486  /// This gets the struct used to keep track of pointer to blocks, complete
487  /// with captured variables.
488  QualType getBlockParmType(bool BlockHasCopyDispose,
489                            llvm::SmallVectorImpl<const Expr *> &Layout);
490
491  /// This builds the struct used for __block variables.
492  QualType BuildByRefType(const char *DeclName, QualType Ty);
493
494  /// Returns true iff we need copy/dispose helpers for the given type.
495  bool BlockRequiresCopying(QualType Ty);
496
497  /// getLValueReferenceType - Return the uniqued reference to the type for an
498  /// lvalue reference to the specified type.
499  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
500
501  /// getRValueReferenceType - Return the uniqued reference to the type for an
502  /// rvalue reference to the specified type.
503  QualType getRValueReferenceType(QualType T);
504
505  /// getMemberPointerType - Return the uniqued reference to the type for a
506  /// member pointer to the specified type in the specified class. The class
507  /// is a Type because it could be a dependent name.
508  QualType getMemberPointerType(QualType T, const Type *Cls);
509
510  /// getVariableArrayType - Returns a non-unique reference to the type for a
511  /// variable array of the specified element type.
512  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
513                                ArrayType::ArraySizeModifier ASM,
514                                unsigned EltTypeQuals,
515                                SourceRange Brackets);
516
517  /// getDependentSizedArrayType - Returns a non-unique reference to
518  /// the type for a dependently-sized array of the specified element
519  /// type. FIXME: We will need these to be uniqued, or at least
520  /// comparable, at some point.
521  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
522                                      ArrayType::ArraySizeModifier ASM,
523                                      unsigned EltTypeQuals,
524                                      SourceRange Brackets);
525
526  /// getIncompleteArrayType - Returns a unique reference to the type for a
527  /// incomplete array of the specified element type.
528  QualType getIncompleteArrayType(QualType EltTy,
529                                  ArrayType::ArraySizeModifier ASM,
530                                  unsigned EltTypeQuals);
531
532  /// getConstantArrayType - Return the unique reference to the type for a
533  /// constant array of the specified element type.
534  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
535                                ArrayType::ArraySizeModifier ASM,
536                                unsigned EltTypeQuals);
537
538  /// getVectorType - Return the unique reference to a vector type of
539  /// the specified element type and size. VectorType must be a built-in type.
540  QualType getVectorType(QualType VectorType, unsigned NumElts,
541                         bool AltiVec, bool IsPixel);
542
543  /// getExtVectorType - Return the unique reference to an extended vector type
544  /// of the specified element type and size.  VectorType must be a built-in
545  /// type.
546  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
547
548  /// getDependentSizedExtVectorType - Returns a non-unique reference to
549  /// the type for a dependently-sized vector of the specified element
550  /// type. FIXME: We will need these to be uniqued, or at least
551  /// comparable, at some point.
552  QualType getDependentSizedExtVectorType(QualType VectorType,
553                                          Expr *SizeExpr,
554                                          SourceLocation AttrLoc);
555
556  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
557  ///
558  QualType getFunctionNoProtoType(QualType ResultTy,
559                                  const FunctionType::ExtInfo &Info);
560
561  QualType getFunctionNoProtoType(QualType ResultTy) {
562    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
563  }
564
565  /// getFunctionType - Return a normal function type with a typed argument
566  /// list.  isVariadic indicates whether the argument list includes '...'.
567  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
568                           unsigned NumArgs, bool isVariadic,
569                           unsigned TypeQuals, bool hasExceptionSpec,
570                           bool hasAnyExceptionSpec,
571                           unsigned NumExs, const QualType *ExArray,
572                           const FunctionType::ExtInfo &Info);
573
574  /// getTypeDeclType - Return the unique reference to the type for
575  /// the specified type declaration.
576  QualType getTypeDeclType(const TypeDecl *Decl,
577                           const TypeDecl *PrevDecl = 0) {
578    assert(Decl && "Passed null for Decl param");
579    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
580
581    if (PrevDecl) {
582      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
583      Decl->TypeForDecl = PrevDecl->TypeForDecl;
584      return QualType(PrevDecl->TypeForDecl, 0);
585    }
586
587    return getTypeDeclTypeSlow(Decl);
588  }
589
590  /// getTypedefType - Return the unique reference to the type for the
591  /// specified typename decl.
592  QualType getTypedefType(const TypedefDecl *Decl);
593
594  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
595
596  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
597                                        QualType Replacement);
598
599  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
600                                   bool ParameterPack,
601                                   IdentifierInfo *Name = 0);
602
603  QualType getTemplateSpecializationType(TemplateName T,
604                                         const TemplateArgument *Args,
605                                         unsigned NumArgs,
606                                         QualType Canon = QualType(),
607                                         bool IsCurrentInstantiation = false);
608
609  QualType getTemplateSpecializationType(TemplateName T,
610                                         const TemplateArgumentListInfo &Args,
611                                         QualType Canon = QualType(),
612                                         bool IsCurrentInstantiation = false);
613
614  TypeSourceInfo *
615  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
616                                    const TemplateArgumentListInfo &Args,
617                                    QualType Canon = QualType());
618
619  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
620                             NestedNameSpecifier *NNS,
621                             QualType NamedType);
622  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
623                                NestedNameSpecifier *NNS,
624                                const IdentifierInfo *Name,
625                                QualType Canon = QualType());
626
627  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
628                                                  NestedNameSpecifier *NNS,
629                                                  const IdentifierInfo *Name,
630                                          const TemplateArgumentListInfo &Args);
631  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
632                                                  NestedNameSpecifier *NNS,
633                                                  const IdentifierInfo *Name,
634                                                  unsigned NumArgs,
635                                                  const TemplateArgument *Args);
636
637  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
638
639  QualType getObjCObjectType(QualType Base,
640                             ObjCProtocolDecl * const *Protocols,
641                             unsigned NumProtocols);
642
643  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
644  /// for the given ObjCObjectType.
645  QualType getObjCObjectPointerType(QualType OIT);
646
647  /// getTypeOfType - GCC extension.
648  QualType getTypeOfExprType(Expr *e);
649  QualType getTypeOfType(QualType t);
650
651  /// getDecltypeType - C++0x decltype.
652  QualType getDecltypeType(Expr *e);
653
654  /// getTagDeclType - Return the unique reference to the type for the
655  /// specified TagDecl (struct/union/class/enum) decl.
656  QualType getTagDeclType(const TagDecl *Decl);
657
658  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
659  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
660  CanQualType getSizeType() const;
661
662  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
663  /// returns a type compatible with the type defined in <stddef.h> as defined
664  /// by the target.
665  QualType getWCharType() const { return WCharTy; }
666
667  /// getSignedWCharType - Return the type of "signed wchar_t".
668  /// Used when in C++, as a GCC extension.
669  QualType getSignedWCharType() const;
670
671  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
672  /// Used when in C++, as a GCC extension.
673  QualType getUnsignedWCharType() const;
674
675  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
676  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
677  QualType getPointerDiffType() const;
678
679  // getCFConstantStringType - Return the C structure type used to represent
680  // constant CFStrings.
681  QualType getCFConstantStringType();
682
683  // getNSConstantStringType - Return the C structure type used to represent
684  // constant NSStrings.
685  QualType getNSConstantStringType();
686  /// Get the structure type used to representation NSStrings, or NULL
687  /// if it hasn't yet been built.
688  QualType getRawNSConstantStringType() {
689    if (NSConstantStringTypeDecl)
690      return getTagDeclType(NSConstantStringTypeDecl);
691    return QualType();
692  }
693  void setNSConstantStringType(QualType T);
694
695
696  /// Get the structure type used to representation CFStrings, or NULL
697  /// if it hasn't yet been built.
698  QualType getRawCFConstantStringType() {
699    if (CFConstantStringTypeDecl)
700      return getTagDeclType(CFConstantStringTypeDecl);
701    return QualType();
702  }
703  void setCFConstantStringType(QualType T);
704
705  // This setter/getter represents the ObjC type for an NSConstantString.
706  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
707  QualType getObjCConstantStringInterface() const {
708    return ObjCConstantStringType;
709  }
710
711  //// This gets the struct used to keep track of fast enumerations.
712  QualType getObjCFastEnumerationStateType();
713
714  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
715  /// been built.
716  QualType getRawObjCFastEnumerationStateType() {
717    if (ObjCFastEnumerationStateTypeDecl)
718      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
719    return QualType();
720  }
721
722  void setObjCFastEnumerationStateType(QualType T);
723
724  /// \brief Set the type for the C FILE type.
725  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
726
727  /// \brief Retrieve the C FILE type.
728  QualType getFILEType() {
729    if (FILEDecl)
730      return getTypeDeclType(FILEDecl);
731    return QualType();
732  }
733
734  /// \brief Set the type for the C jmp_buf type.
735  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
736    this->jmp_bufDecl = jmp_bufDecl;
737  }
738
739  /// \brief Retrieve the C jmp_buf type.
740  QualType getjmp_bufType() {
741    if (jmp_bufDecl)
742      return getTypeDeclType(jmp_bufDecl);
743    return QualType();
744  }
745
746  /// \brief Set the type for the C sigjmp_buf type.
747  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
748    this->sigjmp_bufDecl = sigjmp_bufDecl;
749  }
750
751  /// \brief Retrieve the C sigjmp_buf type.
752  QualType getsigjmp_bufType() {
753    if (sigjmp_bufDecl)
754      return getTypeDeclType(sigjmp_bufDecl);
755    return QualType();
756  }
757
758  /// getObjCEncodingForType - Emit the ObjC type encoding for the
759  /// given type into \arg S. If \arg NameFields is specified then
760  /// record field names are also encoded.
761  void getObjCEncodingForType(QualType t, std::string &S,
762                              const FieldDecl *Field=0);
763
764  void getLegacyIntegralTypeEncoding(QualType &t) const;
765
766  // Put the string version of type qualifiers into S.
767  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
768                                       std::string &S) const;
769
770  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
771  /// declaration.
772  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
773
774  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
775  /// declaration.
776  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
777
778  /// getObjCEncodingForPropertyDecl - Return the encoded type for
779  /// this method declaration. If non-NULL, Container must be either
780  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
781  /// only be NULL when getting encodings for protocol properties.
782  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
783                                      const Decl *Container,
784                                      std::string &S);
785
786  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
787                                      ObjCProtocolDecl *rProto);
788
789  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
790  /// purpose in characters.
791  CharUnits getObjCEncodingTypeSize(QualType t);
792
793  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
794  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
795  QualType getObjCIdType() const { return ObjCIdTypedefType; }
796  void setObjCIdType(QualType T);
797
798  void setObjCSelType(QualType T);
799  QualType getObjCSelType() const { return ObjCSelTypedefType; }
800
801  void setObjCProtoType(QualType QT);
802  QualType getObjCProtoType() const { return ObjCProtoType; }
803
804  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
805  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
806  /// struct.
807  QualType getObjCClassType() const { return ObjCClassTypedefType; }
808  void setObjCClassType(QualType T);
809
810  void setBuiltinVaListType(QualType T);
811  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
812
813  /// getCVRQualifiedType - Returns a type with additional const,
814  /// volatile, or restrict qualifiers.
815  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
816    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
817  }
818
819  /// getQualifiedType - Returns a type with additional qualifiers.
820  QualType getQualifiedType(QualType T, Qualifiers Qs) {
821    if (!Qs.hasNonFastQualifiers())
822      return T.withFastQualifiers(Qs.getFastQualifiers());
823    QualifierCollector Qc(Qs);
824    const Type *Ptr = Qc.strip(T);
825    return getExtQualType(Ptr, Qc);
826  }
827
828  /// getQualifiedType - Returns a type with additional qualifiers.
829  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
830    if (!Qs.hasNonFastQualifiers())
831      return QualType(T, Qs.getFastQualifiers());
832    return getExtQualType(T, Qs);
833  }
834
835  DeclarationName getNameForTemplate(TemplateName Name);
836
837  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
838                                         UnresolvedSetIterator End);
839
840  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
841                                        bool TemplateKeyword,
842                                        TemplateDecl *Template);
843
844  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
845                                        const IdentifierInfo *Name);
846  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
847                                        OverloadedOperatorKind Operator);
848
849  enum GetBuiltinTypeError {
850    GE_None,              //< No error
851    GE_Missing_stdio,     //< Missing a type from <stdio.h>
852    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
853  };
854
855  /// GetBuiltinType - Return the type for the specified builtin.
856  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
857
858private:
859  CanQualType getFromTargetType(unsigned Type) const;
860
861  //===--------------------------------------------------------------------===//
862  //                         Type Predicates.
863  //===--------------------------------------------------------------------===//
864
865public:
866  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
867  /// garbage collection attribute.
868  ///
869  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
870
871  /// isObjCNSObjectType - Return true if this is an NSObject object with
872  /// its NSObject attribute set.
873  bool isObjCNSObjectType(QualType Ty) const;
874
875  //===--------------------------------------------------------------------===//
876  //                         Type Sizing and Analysis
877  //===--------------------------------------------------------------------===//
878
879  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
880  /// scalar floating point type.
881  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
882
883  /// getTypeInfo - Get the size and alignment of the specified complete type in
884  /// bits.
885  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
886  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
887    return getTypeInfo(T.getTypePtr());
888  }
889
890  /// getTypeSize - Return the size of the specified type, in bits.  This method
891  /// does not work on incomplete types.
892  uint64_t getTypeSize(QualType T) {
893    return getTypeInfo(T).first;
894  }
895  uint64_t getTypeSize(const Type *T) {
896    return getTypeInfo(T).first;
897  }
898
899  /// getCharWidth - Return the size of the character type, in bits
900  uint64_t getCharWidth() {
901    return getTypeSize(CharTy);
902  }
903
904  /// getTypeSizeInChars - Return the size of the specified type, in characters.
905  /// This method does not work on incomplete types.
906  CharUnits getTypeSizeInChars(QualType T);
907  CharUnits getTypeSizeInChars(const Type *T);
908
909  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
910  /// This method does not work on incomplete types.
911  unsigned getTypeAlign(QualType T) {
912    return getTypeInfo(T).second;
913  }
914  unsigned getTypeAlign(const Type *T) {
915    return getTypeInfo(T).second;
916  }
917
918  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
919  /// characters. This method does not work on incomplete types.
920  CharUnits getTypeAlignInChars(QualType T);
921  CharUnits getTypeAlignInChars(const Type *T);
922
923  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T);
924  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T);
925
926  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
927  /// type for the current target in bits.  This can be different than the ABI
928  /// alignment in cases where it is beneficial for performance to overalign
929  /// a data type.
930  unsigned getPreferredTypeAlign(const Type *T);
931
932  /// getDeclAlign - Return a conservative estimate of the alignment of
933  /// the specified decl.  Note that bitfields do not have a valid alignment, so
934  /// this method will assert on them.
935  /// If @p RefAsPointee, references are treated like their underlying type
936  /// (for alignof), else they're treated like pointers (for CodeGen).
937  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
938
939  /// getASTRecordLayout - Get or compute information about the layout of the
940  /// specified record (struct/union/class), which indicates its size and field
941  /// position information.
942  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
943
944  /// getASTObjCInterfaceLayout - Get or compute information about the
945  /// layout of the specified Objective-C interface.
946  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
947
948  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
949
950  /// getASTObjCImplementationLayout - Get or compute information about
951  /// the layout of the specified Objective-C implementation. This may
952  /// differ from the interface if synthesized ivars are present.
953  const ASTRecordLayout &
954  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
955
956  /// getKeyFunction - Get the key function for the given record decl.
957  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
958  ///
959  /// ...the first non-pure virtual function that is not inline at the point
960  /// of class definition.
961  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
962
963  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
964                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
965
966  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
967                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
968  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
969                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
970  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
971  void CollectInheritedProtocols(const Decl *CDecl,
972                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
973
974  //===--------------------------------------------------------------------===//
975  //                            Type Operators
976  //===--------------------------------------------------------------------===//
977
978  /// getCanonicalType - Return the canonical (structural) type corresponding to
979  /// the specified potentially non-canonical type.  The non-canonical version
980  /// of a type may have many "decorated" versions of types.  Decorators can
981  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
982  /// to be free of any of these, allowing two canonical types to be compared
983  /// for exact equality with a simple pointer comparison.
984  CanQualType getCanonicalType(QualType T);
985  const Type *getCanonicalType(const Type *T) {
986    return T->getCanonicalTypeInternal().getTypePtr();
987  }
988
989  /// getCanonicalParamType - Return the canonical parameter type
990  /// corresponding to the specific potentially non-canonical one.
991  /// Qualifiers are stripped off, functions are turned into function
992  /// pointers, and arrays decay one level into pointers.
993  CanQualType getCanonicalParamType(QualType T);
994
995  /// \brief Determine whether the given types are equivalent.
996  bool hasSameType(QualType T1, QualType T2) {
997    return getCanonicalType(T1) == getCanonicalType(T2);
998  }
999
1000  /// \brief Returns this type as a completely-unqualified array type,
1001  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1002  /// sugaring from the types, similar to the behavior of
1003  /// QualType::getUnqualifiedType().
1004  ///
1005  /// \param T is the qualified type, which may be an ArrayType
1006  ///
1007  /// \param Quals will receive the full set of qualifiers that were
1008  /// applied to the array.
1009  ///
1010  /// \returns if this is an array type, the completely unqualified array type
1011  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1012  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1013
1014  /// \brief Determine whether the given types are equivalent after
1015  /// cvr-qualifiers have been removed.
1016  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1017    CanQualType CT1 = getCanonicalType(T1);
1018    CanQualType CT2 = getCanonicalType(T2);
1019
1020    Qualifiers Quals;
1021    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1022    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1023    return UnqualT1 == UnqualT2;
1024  }
1025
1026  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1027
1028  /// \brief Retrieves the "canonical" declaration of
1029
1030  /// \brief Retrieves the "canonical" nested name specifier for a
1031  /// given nested name specifier.
1032  ///
1033  /// The canonical nested name specifier is a nested name specifier
1034  /// that uniquely identifies a type or namespace within the type
1035  /// system. For example, given:
1036  ///
1037  /// \code
1038  /// namespace N {
1039  ///   struct S {
1040  ///     template<typename T> struct X { typename T* type; };
1041  ///   };
1042  /// }
1043  ///
1044  /// template<typename T> struct Y {
1045  ///   typename N::S::X<T>::type member;
1046  /// };
1047  /// \endcode
1048  ///
1049  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1050  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1051  /// by declarations in the type system and the canonical type for
1052  /// the template type parameter 'T' is template-param-0-0.
1053  NestedNameSpecifier *
1054  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1055
1056  /// \brief Retrieves the canonical representation of the given
1057  /// calling convention.
1058  CallingConv getCanonicalCallConv(CallingConv CC) {
1059    if (CC == CC_C)
1060      return CC_Default;
1061    return CC;
1062  }
1063
1064  /// \brief Determines whether two calling conventions name the same
1065  /// calling convention.
1066  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1067    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1068  }
1069
1070  /// \brief Retrieves the "canonical" template name that refers to a
1071  /// given template.
1072  ///
1073  /// The canonical template name is the simplest expression that can
1074  /// be used to refer to a given template. For most templates, this
1075  /// expression is just the template declaration itself. For example,
1076  /// the template std::vector can be referred to via a variety of
1077  /// names---std::vector, ::std::vector, vector (if vector is in
1078  /// scope), etc.---but all of these names map down to the same
1079  /// TemplateDecl, which is used to form the canonical template name.
1080  ///
1081  /// Dependent template names are more interesting. Here, the
1082  /// template name could be something like T::template apply or
1083  /// std::allocator<T>::template rebind, where the nested name
1084  /// specifier itself is dependent. In this case, the canonical
1085  /// template name uses the shortest form of the dependent
1086  /// nested-name-specifier, which itself contains all canonical
1087  /// types, values, and templates.
1088  TemplateName getCanonicalTemplateName(TemplateName Name);
1089
1090  /// \brief Determine whether the given template names refer to the same
1091  /// template.
1092  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1093
1094  /// \brief Retrieve the "canonical" template argument.
1095  ///
1096  /// The canonical template argument is the simplest template argument
1097  /// (which may be a type, value, expression, or declaration) that
1098  /// expresses the value of the argument.
1099  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1100
1101  /// Type Query functions.  If the type is an instance of the specified class,
1102  /// return the Type pointer for the underlying maximally pretty type.  This
1103  /// is a member of ASTContext because this may need to do some amount of
1104  /// canonicalization, e.g. to move type qualifiers into the element type.
1105  const ArrayType *getAsArrayType(QualType T);
1106  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1107    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1108  }
1109  const VariableArrayType *getAsVariableArrayType(QualType T) {
1110    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1111  }
1112  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1113    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1114  }
1115  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1116    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1117  }
1118
1119  /// getBaseElementType - Returns the innermost element type of an array type.
1120  /// For example, will return "int" for int[m][n]
1121  QualType getBaseElementType(const ArrayType *VAT);
1122
1123  /// getBaseElementType - Returns the innermost element type of a type
1124  /// (which needn't actually be an array type).
1125  QualType getBaseElementType(QualType QT);
1126
1127  /// getConstantArrayElementCount - Returns number of constant array elements.
1128  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1129
1130  /// getArrayDecayedType - Return the properly qualified result of decaying the
1131  /// specified array type to a pointer.  This operation is non-trivial when
1132  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1133  /// this returns a pointer to a properly qualified element of the array.
1134  ///
1135  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1136  QualType getArrayDecayedType(QualType T);
1137
1138  /// getPromotedIntegerType - Returns the type that Promotable will
1139  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1140  /// integer type.
1141  QualType getPromotedIntegerType(QualType PromotableType);
1142
1143  /// \brief Whether this is a promotable bitfield reference according
1144  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1145  ///
1146  /// \returns the type this bit-field will promote to, or NULL if no
1147  /// promotion occurs.
1148  QualType isPromotableBitField(Expr *E);
1149
1150  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1151  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1152  /// LHS < RHS, return -1.
1153  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1154
1155  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1156  /// point types, ignoring the domain of the type (i.e. 'double' ==
1157  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1158  /// LHS < RHS, return -1.
1159  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1160
1161  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1162  /// point or a complex type (based on typeDomain/typeSize).
1163  /// 'typeDomain' is a real floating point or complex type.
1164  /// 'typeSize' is a real floating point or complex type.
1165  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1166                                             QualType typeDomain) const;
1167
1168private:
1169  // Helper for integer ordering
1170  unsigned getIntegerRank(Type* T);
1171
1172public:
1173
1174  //===--------------------------------------------------------------------===//
1175  //                    Type Compatibility Predicates
1176  //===--------------------------------------------------------------------===//
1177
1178  /// Compatibility predicates used to check assignment expressions.
1179  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1180
1181  bool typesAreBlockPointerCompatible(QualType, QualType);
1182
1183  bool isObjCIdType(QualType T) const {
1184    return T == ObjCIdTypedefType;
1185  }
1186  bool isObjCClassType(QualType T) const {
1187    return T == ObjCClassTypedefType;
1188  }
1189  bool isObjCSelType(QualType T) const {
1190    return T == ObjCSelTypedefType;
1191  }
1192  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1193  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1194                                         bool ForCompare);
1195
1196  // Check the safety of assignment from LHS to RHS
1197  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1198                               const ObjCObjectPointerType *RHSOPT);
1199  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1200                               const ObjCObjectType *RHS);
1201  bool canAssignObjCInterfacesInBlockPointer(
1202                                          const ObjCObjectPointerType *LHSOPT,
1203                                          const ObjCObjectPointerType *RHSOPT);
1204  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1205  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1206                                   const ObjCObjectPointerType *RHSOPT);
1207
1208  // Functions for calculating composite types
1209  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1210  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1211
1212  QualType mergeObjCGCQualifiers(QualType, QualType);
1213
1214  /// UsualArithmeticConversionsType - handles the various conversions
1215  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1216  /// and returns the result type of that conversion.
1217  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1218
1219  //===--------------------------------------------------------------------===//
1220  //                    Integer Predicates
1221  //===--------------------------------------------------------------------===//
1222
1223  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1224  // of bits in an integer type excluding any padding bits.
1225  unsigned getIntWidth(QualType T);
1226
1227  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1228  // unsigned integer type.  This method takes a signed type, and returns the
1229  // corresponding unsigned integer type.
1230  QualType getCorrespondingUnsignedType(QualType T);
1231
1232  //===--------------------------------------------------------------------===//
1233  //                    Type Iterators.
1234  //===--------------------------------------------------------------------===//
1235
1236  typedef std::vector<Type*>::iterator       type_iterator;
1237  typedef std::vector<Type*>::const_iterator const_type_iterator;
1238
1239  type_iterator types_begin() { return Types.begin(); }
1240  type_iterator types_end() { return Types.end(); }
1241  const_type_iterator types_begin() const { return Types.begin(); }
1242  const_type_iterator types_end() const { return Types.end(); }
1243
1244  //===--------------------------------------------------------------------===//
1245  //                    Integer Values
1246  //===--------------------------------------------------------------------===//
1247
1248  /// MakeIntValue - Make an APSInt of the appropriate width and
1249  /// signedness for the given \arg Value and integer \arg Type.
1250  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1251    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1252    Res = Value;
1253    return Res;
1254  }
1255
1256  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1257  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1258  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1259  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1260
1261  /// \brief Set the implementation of ObjCInterfaceDecl.
1262  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1263                             ObjCImplementationDecl *ImplD);
1264  /// \brief Set the implementation of ObjCCategoryDecl.
1265  void setObjCImplementation(ObjCCategoryDecl *CatD,
1266                             ObjCCategoryImplDecl *ImplD);
1267
1268  /// \brief Allocate an uninitialized TypeSourceInfo.
1269  ///
1270  /// The caller should initialize the memory held by TypeSourceInfo using
1271  /// the TypeLoc wrappers.
1272  ///
1273  /// \param T the type that will be the basis for type source info. This type
1274  /// should refer to how the declarator was written in source code, not to
1275  /// what type semantic analysis resolved the declarator to.
1276  ///
1277  /// \param Size the size of the type info to create, or 0 if the size
1278  /// should be calculated based on the type.
1279  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1280
1281  /// \brief Allocate a TypeSourceInfo where all locations have been
1282  /// initialized to a given location, which defaults to the empty
1283  /// location.
1284  TypeSourceInfo *
1285  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1286
1287  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1288
1289  /// \brief Add a deallocation callback that will be invoked when the
1290  /// ASTContext is destroyed.
1291  ///
1292  /// \brief Callback A callback function that will be invoked on destruction.
1293  ///
1294  /// \brief Data Pointer data that will be provided to the callback function
1295  /// when it is called.
1296  void AddDeallocation(void (*Callback)(void*), void *Data);
1297
1298private:
1299  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1300  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1301
1302  void InitBuiltinTypes();
1303  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1304
1305  // Return the ObjC type encoding for a given type.
1306  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1307                                  bool ExpandPointedToStructures,
1308                                  bool ExpandStructures,
1309                                  const FieldDecl *Field,
1310                                  bool OutermostType = false,
1311                                  bool EncodingProperty = false);
1312
1313  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1314                                       const ObjCImplementationDecl *Impl);
1315
1316private:
1317  /// \brief A set of deallocations that should be performed when the
1318  /// ASTContext is destroyed.
1319  llvm::SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1320
1321  // FIXME: This currently contains the set of StoredDeclMaps used
1322  // by DeclContext objects.  This probably should not be in ASTContext,
1323  // but we include it here so that ASTContext can quickly deallocate them.
1324  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1325  friend class DeclContext;
1326  friend class DeclarationNameTable;
1327  void ReleaseDeclContextMaps();
1328};
1329
1330/// @brief Utility function for constructing a nullary selector.
1331static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1332  IdentifierInfo* II = &Ctx.Idents.get(name);
1333  return Ctx.Selectors.getSelector(0, &II);
1334}
1335
1336/// @brief Utility function for constructing an unary selector.
1337static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1338  IdentifierInfo* II = &Ctx.Idents.get(name);
1339  return Ctx.Selectors.getSelector(1, &II);
1340}
1341
1342}  // end namespace clang
1343
1344// operator new and delete aren't allowed inside namespaces.
1345// The throw specifications are mandated by the standard.
1346/// @brief Placement new for using the ASTContext's allocator.
1347///
1348/// This placement form of operator new uses the ASTContext's allocator for
1349/// obtaining memory. It is a non-throwing new, which means that it returns
1350/// null on error. (If that is what the allocator does. The current does, so if
1351/// this ever changes, this operator will have to be changed, too.)
1352/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1353/// @code
1354/// // Default alignment (8)
1355/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1356/// // Specific alignment
1357/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1358/// @endcode
1359/// Please note that you cannot use delete on the pointer; it must be
1360/// deallocated using an explicit destructor call followed by
1361/// @c Context.Deallocate(Ptr).
1362///
1363/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1364/// @param C The ASTContext that provides the allocator.
1365/// @param Alignment The alignment of the allocated memory (if the underlying
1366///                  allocator supports it).
1367/// @return The allocated memory. Could be NULL.
1368inline void *operator new(size_t Bytes, clang::ASTContext &C,
1369                          size_t Alignment) throw () {
1370  return C.Allocate(Bytes, Alignment);
1371}
1372/// @brief Placement delete companion to the new above.
1373///
1374/// This operator is just a companion to the new above. There is no way of
1375/// invoking it directly; see the new operator for more details. This operator
1376/// is called implicitly by the compiler if a placement new expression using
1377/// the ASTContext throws in the object constructor.
1378inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1379              throw () {
1380  C.Deallocate(Ptr);
1381}
1382
1383/// This placement form of operator new[] uses the ASTContext's allocator for
1384/// obtaining memory. It is a non-throwing new[], which means that it returns
1385/// null on error.
1386/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1387/// @code
1388/// // Default alignment (8)
1389/// char *data = new (Context) char[10];
1390/// // Specific alignment
1391/// char *data = new (Context, 4) char[10];
1392/// @endcode
1393/// Please note that you cannot use delete on the pointer; it must be
1394/// deallocated using an explicit destructor call followed by
1395/// @c Context.Deallocate(Ptr).
1396///
1397/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1398/// @param C The ASTContext that provides the allocator.
1399/// @param Alignment The alignment of the allocated memory (if the underlying
1400///                  allocator supports it).
1401/// @return The allocated memory. Could be NULL.
1402inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1403                            size_t Alignment = 8) throw () {
1404  return C.Allocate(Bytes, Alignment);
1405}
1406
1407/// @brief Placement delete[] companion to the new[] above.
1408///
1409/// This operator is just a companion to the new[] above. There is no way of
1410/// invoking it directly; see the new[] operator for more details. This operator
1411/// is called implicitly by the compiler if a placement new[] expression using
1412/// the ASTContext throws in the object constructor.
1413inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1414              throw () {
1415  C.Deallocate(Ptr);
1416}
1417
1418#endif
1419