ASTContext.h revision 6bcf27bb9a4b5c3f79cb44c0e4654a6d7619ad89
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/ExternalASTSource.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/TemplateName.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/AddressSpaces.h"
29#include "clang/Basic/IdentifierTable.h"
30#include "clang/Basic/LangOptions.h"
31#include "clang/Basic/OperatorKinds.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/VersionTuple.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/IntrusiveRefCntPtr.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/TinyPtrVector.h"
39#include "llvm/Support/Allocator.h"
40#include <memory>
41#include <vector>
42
43namespace llvm {
44  struct fltSemantics;
45}
46
47namespace clang {
48  class FileManager;
49  class AtomicExpr;
50  class ASTRecordLayout;
51  class BlockExpr;
52  class CharUnits;
53  class DiagnosticsEngine;
54  class Expr;
55  class ASTMutationListener;
56  class IdentifierTable;
57  class MaterializeTemporaryExpr;
58  class SelectorTable;
59  class TargetInfo;
60  class CXXABI;
61  class MangleNumberingContext;
62  // Decls
63  class MangleContext;
64  class ObjCIvarDecl;
65  class ObjCPropertyDecl;
66  class UnresolvedSetIterator;
67  class UsingDecl;
68  class UsingShadowDecl;
69  class VTableContextBase;
70
71  namespace Builtin { class Context; }
72
73  namespace comments {
74    class FullComment;
75  }
76
77/// \brief Holds long-lived AST nodes (such as types and decls) that can be
78/// referred to throughout the semantic analysis of a file.
79class ASTContext : public RefCountedBase<ASTContext> {
80  ASTContext &this_() { return *this; }
81
82  mutable SmallVector<Type *, 0> Types;
83  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
84  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
85  mutable llvm::FoldingSet<PointerType> PointerTypes;
86  mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
87  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
88  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
89  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
90  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
91  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
92  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
93  mutable std::vector<VariableArrayType*> VariableArrayTypes;
94  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
95  mutable llvm::FoldingSet<DependentSizedExtVectorType>
96    DependentSizedExtVectorTypes;
97  mutable llvm::FoldingSet<VectorType> VectorTypes;
98  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
99  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
100    FunctionProtoTypes;
101  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
102  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
103  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
104  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
105    SubstTemplateTypeParmTypes;
106  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
107    SubstTemplateTypeParmPackTypes;
108  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
109    TemplateSpecializationTypes;
110  mutable llvm::FoldingSet<ParenType> ParenTypes;
111  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
112  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
113  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
114                                     ASTContext&>
115    DependentTemplateSpecializationTypes;
116  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
117  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
118  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
119  mutable llvm::FoldingSet<AutoType> AutoTypes;
120  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
121  llvm::FoldingSet<AttributedType> AttributedTypes;
122
123  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
124  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
125  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
126    SubstTemplateTemplateParms;
127  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
128                                     ASTContext&>
129    SubstTemplateTemplateParmPacks;
130
131  /// \brief The set of nested name specifiers.
132  ///
133  /// This set is managed by the NestedNameSpecifier class.
134  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
135  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
136  friend class NestedNameSpecifier;
137
138  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
139  ///
140  /// This is lazily created.  This is intentionally not serialized.
141  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
142    ASTRecordLayouts;
143  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
144    ObjCLayouts;
145
146  /// \brief A cache from types to size and alignment information.
147  typedef llvm::DenseMap<const Type*,
148                         std::pair<uint64_t, unsigned> > TypeInfoMap;
149  mutable TypeInfoMap MemoizedTypeInfo;
150
151  /// \brief A cache mapping from CXXRecordDecls to key functions.
152  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
153
154  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
155  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
156
157  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
158  /// interface.
159  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
160
161  /// \brief Mapping from __block VarDecls to their copy initialization expr.
162  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
163
164  /// \brief Mapping from class scope functions specialization to their
165  /// template patterns.
166  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
167    ClassScopeSpecializationPattern;
168
169  /// \brief Mapping from materialized temporaries with static storage duration
170  /// that appear in constant initializers to their evaluated values.
171  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
172    MaterializedTemporaryValues;
173
174  /// \brief Representation of a "canonical" template template parameter that
175  /// is used in canonical template names.
176  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
177    TemplateTemplateParmDecl *Parm;
178
179  public:
180    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
181      : Parm(Parm) { }
182
183    TemplateTemplateParmDecl *getParam() const { return Parm; }
184
185    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
186
187    static void Profile(llvm::FoldingSetNodeID &ID,
188                        TemplateTemplateParmDecl *Parm);
189  };
190  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
191    CanonTemplateTemplateParms;
192
193  TemplateTemplateParmDecl *
194    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
195
196  /// \brief The typedef for the __int128_t type.
197  mutable TypedefDecl *Int128Decl;
198
199  /// \brief The typedef for the __uint128_t type.
200  mutable TypedefDecl *UInt128Decl;
201
202  /// \brief The typedef for the __float128 stub type.
203  mutable TypeDecl *Float128StubDecl;
204
205  /// \brief The typedef for the target specific predefined
206  /// __builtin_va_list type.
207  mutable TypedefDecl *BuiltinVaListDecl;
208
209  /// \brief The typedef for the predefined \c id type.
210  mutable TypedefDecl *ObjCIdDecl;
211
212  /// \brief The typedef for the predefined \c SEL type.
213  mutable TypedefDecl *ObjCSelDecl;
214
215  /// \brief The typedef for the predefined \c Class type.
216  mutable TypedefDecl *ObjCClassDecl;
217
218  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
219  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
220
221  /// \brief The typedef for the predefined 'BOOL' type.
222  mutable TypedefDecl *BOOLDecl;
223
224  // Typedefs which may be provided defining the structure of Objective-C
225  // pseudo-builtins
226  QualType ObjCIdRedefinitionType;
227  QualType ObjCClassRedefinitionType;
228  QualType ObjCSelRedefinitionType;
229
230  QualType ObjCConstantStringType;
231  mutable RecordDecl *CFConstantStringTypeDecl;
232
233  mutable QualType ObjCSuperType;
234
235  QualType ObjCNSStringType;
236
237  /// \brief The typedef declaration for the Objective-C "instancetype" type.
238  TypedefDecl *ObjCInstanceTypeDecl;
239
240  /// \brief The type for the C FILE type.
241  TypeDecl *FILEDecl;
242
243  /// \brief The type for the C jmp_buf type.
244  TypeDecl *jmp_bufDecl;
245
246  /// \brief The type for the C sigjmp_buf type.
247  TypeDecl *sigjmp_bufDecl;
248
249  /// \brief The type for the C ucontext_t type.
250  TypeDecl *ucontext_tDecl;
251
252  /// \brief Type for the Block descriptor for Blocks CodeGen.
253  ///
254  /// Since this is only used for generation of debug info, it is not
255  /// serialized.
256  mutable RecordDecl *BlockDescriptorType;
257
258  /// \brief Type for the Block descriptor for Blocks CodeGen.
259  ///
260  /// Since this is only used for generation of debug info, it is not
261  /// serialized.
262  mutable RecordDecl *BlockDescriptorExtendedType;
263
264  /// \brief Declaration for the CUDA cudaConfigureCall function.
265  FunctionDecl *cudaConfigureCallDecl;
266
267  TypeSourceInfo NullTypeSourceInfo;
268
269  /// \brief Keeps track of all declaration attributes.
270  ///
271  /// Since so few decls have attrs, we keep them in a hash map instead of
272  /// wasting space in the Decl class.
273  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
274
275  /// \brief A mapping from non-redeclarable declarations in modules that were
276  /// merged with other declarations to the canonical declaration that they were
277  /// merged into.
278  llvm::DenseMap<Decl*, Decl*> MergedDecls;
279
280public:
281  /// \brief A type synonym for the TemplateOrInstantiation mapping.
282  typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
283  TemplateOrSpecializationInfo;
284
285private:
286
287  /// \brief A mapping to contain the template or declaration that
288  /// a variable declaration describes or was instantiated from,
289  /// respectively.
290  ///
291  /// For non-templates, this value will be NULL. For variable
292  /// declarations that describe a variable template, this will be a
293  /// pointer to a VarTemplateDecl. For static data members
294  /// of class template specializations, this will be the
295  /// MemberSpecializationInfo referring to the member variable that was
296  /// instantiated or specialized. Thus, the mapping will keep track of
297  /// the static data member templates from which static data members of
298  /// class template specializations were instantiated.
299  ///
300  /// Given the following example:
301  ///
302  /// \code
303  /// template<typename T>
304  /// struct X {
305  ///   static T value;
306  /// };
307  ///
308  /// template<typename T>
309  ///   T X<T>::value = T(17);
310  ///
311  /// int *x = &X<int>::value;
312  /// \endcode
313  ///
314  /// This mapping will contain an entry that maps from the VarDecl for
315  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
316  /// class template X) and will be marked TSK_ImplicitInstantiation.
317  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
318  TemplateOrInstantiation;
319
320  /// \brief Keeps track of the declaration from which a UsingDecl was
321  /// created during instantiation.
322  ///
323  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
324  /// or an UnresolvedUsingTypenameDecl.
325  ///
326  /// For example:
327  /// \code
328  /// template<typename T>
329  /// struct A {
330  ///   void f();
331  /// };
332  ///
333  /// template<typename T>
334  /// struct B : A<T> {
335  ///   using A<T>::f;
336  /// };
337  ///
338  /// template struct B<int>;
339  /// \endcode
340  ///
341  /// This mapping will contain an entry that maps from the UsingDecl in
342  /// B<int> to the UnresolvedUsingDecl in B<T>.
343  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
344
345  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
346    InstantiatedFromUsingShadowDecl;
347
348  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
349
350  /// \brief Mapping that stores the methods overridden by a given C++
351  /// member function.
352  ///
353  /// Since most C++ member functions aren't virtual and therefore
354  /// don't override anything, we store the overridden functions in
355  /// this map on the side rather than within the CXXMethodDecl structure.
356  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
357  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
358
359  /// \brief Mapping from each declaration context to its corresponding
360  /// mangling numbering context (used for constructs like lambdas which
361  /// need to be consistently numbered for the mangler).
362  llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
363      MangleNumberingContexts;
364
365  /// \brief Side-table of mangling numbers for declarations which rarely
366  /// need them (like static local vars).
367  llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
368  llvm::DenseMap<const VarDecl *, unsigned> StaticLocalNumbers;
369
370  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
371  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
372  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
373  ParameterIndexTable ParamIndices;
374
375  ImportDecl *FirstLocalImport;
376  ImportDecl *LastLocalImport;
377
378  TranslationUnitDecl *TUDecl;
379
380  /// \brief The associated SourceManager object.a
381  SourceManager &SourceMgr;
382
383  /// \brief The language options used to create the AST associated with
384  ///  this ASTContext object.
385  LangOptions &LangOpts;
386
387  /// \brief The allocator used to create AST objects.
388  ///
389  /// AST objects are never destructed; rather, all memory associated with the
390  /// AST objects will be released when the ASTContext itself is destroyed.
391  mutable llvm::BumpPtrAllocator BumpAlloc;
392
393  /// \brief Allocator for partial diagnostics.
394  PartialDiagnostic::StorageAllocator DiagAllocator;
395
396  /// \brief The current C++ ABI.
397  std::unique_ptr<CXXABI> ABI;
398  CXXABI *createCXXABI(const TargetInfo &T);
399
400  /// \brief The logical -> physical address space map.
401  const LangAS::Map *AddrSpaceMap;
402
403  /// \brief Address space map mangling must be used with language specific
404  /// address spaces (e.g. OpenCL/CUDA)
405  bool AddrSpaceMapMangling;
406
407  friend class ASTDeclReader;
408  friend class ASTReader;
409  friend class ASTWriter;
410  friend class CXXRecordDecl;
411
412  const TargetInfo *Target;
413  clang::PrintingPolicy PrintingPolicy;
414
415public:
416  IdentifierTable &Idents;
417  SelectorTable &Selectors;
418  Builtin::Context &BuiltinInfo;
419  mutable DeclarationNameTable DeclarationNames;
420  IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
421  ASTMutationListener *Listener;
422
423  /// \brief Contains parents of a node.
424  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
425
426  /// \brief Maps from a node to its parents.
427  typedef llvm::DenseMap<const void *,
428                         llvm::PointerUnion<ast_type_traits::DynTypedNode *,
429                                            ParentVector *>> ParentMap;
430
431  /// \brief Returns the parents of the given node.
432  ///
433  /// Note that this will lazily compute the parents of all nodes
434  /// and store them for later retrieval. Thus, the first call is O(n)
435  /// in the number of AST nodes.
436  ///
437  /// Caveats and FIXMEs:
438  /// Calculating the parent map over all AST nodes will need to load the
439  /// full AST. This can be undesirable in the case where the full AST is
440  /// expensive to create (for example, when using precompiled header
441  /// preambles). Thus, there are good opportunities for optimization here.
442  /// One idea is to walk the given node downwards, looking for references
443  /// to declaration contexts - once a declaration context is found, compute
444  /// the parent map for the declaration context; if that can satisfy the
445  /// request, loading the whole AST can be avoided. Note that this is made
446  /// more complex by statements in templates having multiple parents - those
447  /// problems can be solved by building closure over the templated parts of
448  /// the AST, which also avoids touching large parts of the AST.
449  /// Additionally, we will want to add an interface to already give a hint
450  /// where to search for the parents, for example when looking at a statement
451  /// inside a certain function.
452  ///
453  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
454  /// NestedNameSpecifier or NestedNameSpecifierLoc.
455  template <typename NodeT>
456  ParentVector getParents(const NodeT &Node) {
457    return getParents(ast_type_traits::DynTypedNode::create(Node));
458  }
459
460  ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
461
462  const clang::PrintingPolicy &getPrintingPolicy() const {
463    return PrintingPolicy;
464  }
465
466  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
467    PrintingPolicy = Policy;
468  }
469
470  SourceManager& getSourceManager() { return SourceMgr; }
471  const SourceManager& getSourceManager() const { return SourceMgr; }
472
473  llvm::BumpPtrAllocator &getAllocator() const {
474    return BumpAlloc;
475  }
476
477  void *Allocate(size_t Size, unsigned Align = 8) const {
478    return BumpAlloc.Allocate(Size, Align);
479  }
480  void Deallocate(void *Ptr) const { }
481
482  /// Return the total amount of physical memory allocated for representing
483  /// AST nodes and type information.
484  size_t getASTAllocatedMemory() const {
485    return BumpAlloc.getTotalMemory();
486  }
487  /// Return the total memory used for various side tables.
488  size_t getSideTableAllocatedMemory() const;
489
490  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
491    return DiagAllocator;
492  }
493
494  const TargetInfo &getTargetInfo() const { return *Target; }
495
496  /// getIntTypeForBitwidth -
497  /// sets integer QualTy according to specified details:
498  /// bitwidth, signed/unsigned.
499  /// Returns empty type if there is no appropriate target types.
500  QualType getIntTypeForBitwidth(unsigned DestWidth,
501                                 unsigned Signed) const;
502  /// getRealTypeForBitwidth -
503  /// sets floating point QualTy according to specified bitwidth.
504  /// Returns empty type if there is no appropriate target types.
505  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
506
507  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
508
509  const LangOptions& getLangOpts() const { return LangOpts; }
510
511  DiagnosticsEngine &getDiagnostics() const;
512
513  FullSourceLoc getFullLoc(SourceLocation Loc) const {
514    return FullSourceLoc(Loc,SourceMgr);
515  }
516
517  /// \brief All comments in this translation unit.
518  RawCommentList Comments;
519
520  /// \brief True if comments are already loaded from ExternalASTSource.
521  mutable bool CommentsLoaded;
522
523  class RawCommentAndCacheFlags {
524  public:
525    enum Kind {
526      /// We searched for a comment attached to the particular declaration, but
527      /// didn't find any.
528      ///
529      /// getRaw() == 0.
530      NoCommentInDecl = 0,
531
532      /// We have found a comment attached to this particular declaration.
533      ///
534      /// getRaw() != 0.
535      FromDecl,
536
537      /// This declaration does not have an attached comment, and we have
538      /// searched the redeclaration chain.
539      ///
540      /// If getRaw() == 0, the whole redeclaration chain does not have any
541      /// comments.
542      ///
543      /// If getRaw() != 0, it is a comment propagated from other
544      /// redeclaration.
545      FromRedecl
546    };
547
548    Kind getKind() const LLVM_READONLY {
549      return Data.getInt();
550    }
551
552    void setKind(Kind K) {
553      Data.setInt(K);
554    }
555
556    const RawComment *getRaw() const LLVM_READONLY {
557      return Data.getPointer();
558    }
559
560    void setRaw(const RawComment *RC) {
561      Data.setPointer(RC);
562    }
563
564    const Decl *getOriginalDecl() const LLVM_READONLY {
565      return OriginalDecl;
566    }
567
568    void setOriginalDecl(const Decl *Orig) {
569      OriginalDecl = Orig;
570    }
571
572  private:
573    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
574    const Decl *OriginalDecl;
575  };
576
577  /// \brief Mapping from declarations to comments attached to any
578  /// redeclaration.
579  ///
580  /// Raw comments are owned by Comments list.  This mapping is populated
581  /// lazily.
582  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
583
584  /// \brief Mapping from declarations to parsed comments attached to any
585  /// redeclaration.
586  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
587
588  /// \brief Return the documentation comment attached to a given declaration,
589  /// without looking into cache.
590  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
591
592public:
593  RawCommentList &getRawCommentList() {
594    return Comments;
595  }
596
597  void addComment(const RawComment &RC) {
598    assert(LangOpts.RetainCommentsFromSystemHeaders ||
599           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
600    Comments.addComment(RC, BumpAlloc);
601  }
602
603  /// \brief Return the documentation comment attached to a given declaration.
604  /// Returns NULL if no comment is attached.
605  ///
606  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
607  /// the comment, if the comment we found comes from a redeclaration.
608  const RawComment *
609  getRawCommentForAnyRedecl(const Decl *D,
610                            const Decl **OriginalDecl = nullptr) const;
611
612  /// Return parsed documentation comment attached to a given declaration.
613  /// Returns NULL if no comment is attached.
614  ///
615  /// \param PP the Preprocessor used with this TU.  Could be NULL if
616  /// preprocessor is not available.
617  comments::FullComment *getCommentForDecl(const Decl *D,
618                                           const Preprocessor *PP) const;
619
620  /// Return parsed documentation comment attached to a given declaration.
621  /// Returns NULL if no comment is attached. Does not look at any
622  /// redeclarations of the declaration.
623  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
624
625  comments::FullComment *cloneFullComment(comments::FullComment *FC,
626                                         const Decl *D) const;
627
628private:
629  mutable comments::CommandTraits CommentCommandTraits;
630
631  /// \brief Iterator that visits import declarations.
632  class import_iterator {
633    ImportDecl *Import;
634
635  public:
636    typedef ImportDecl               *value_type;
637    typedef ImportDecl               *reference;
638    typedef ImportDecl               *pointer;
639    typedef int                       difference_type;
640    typedef std::forward_iterator_tag iterator_category;
641
642    import_iterator() : Import() {}
643    explicit import_iterator(ImportDecl *Import) : Import(Import) {}
644
645    reference operator*() const { return Import; }
646    pointer operator->() const { return Import; }
647
648    import_iterator &operator++() {
649      Import = ASTContext::getNextLocalImport(Import);
650      return *this;
651    }
652
653    import_iterator operator++(int) {
654      import_iterator Other(*this);
655      ++(*this);
656      return Other;
657    }
658
659    friend bool operator==(import_iterator X, import_iterator Y) {
660      return X.Import == Y.Import;
661    }
662
663    friend bool operator!=(import_iterator X, import_iterator Y) {
664      return X.Import != Y.Import;
665    }
666  };
667
668public:
669  comments::CommandTraits &getCommentCommandTraits() const {
670    return CommentCommandTraits;
671  }
672
673  /// \brief Retrieve the attributes for the given declaration.
674  AttrVec& getDeclAttrs(const Decl *D);
675
676  /// \brief Erase the attributes corresponding to the given declaration.
677  void eraseDeclAttrs(const Decl *D);
678
679  /// \brief If this variable is an instantiated static data member of a
680  /// class template specialization, returns the templated static data member
681  /// from which it was instantiated.
682  // FIXME: Remove ?
683  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
684                                                           const VarDecl *Var);
685
686  TemplateOrSpecializationInfo
687  getTemplateOrSpecializationInfo(const VarDecl *Var);
688
689  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
690
691  void setClassScopeSpecializationPattern(FunctionDecl *FD,
692                                          FunctionDecl *Pattern);
693
694  /// \brief Note that the static data member \p Inst is an instantiation of
695  /// the static data member template \p Tmpl of a class template.
696  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
697                                           TemplateSpecializationKind TSK,
698                        SourceLocation PointOfInstantiation = SourceLocation());
699
700  void setTemplateOrSpecializationInfo(VarDecl *Inst,
701                                       TemplateOrSpecializationInfo TSI);
702
703  /// \brief If the given using decl \p Inst is an instantiation of a
704  /// (possibly unresolved) using decl from a template instantiation,
705  /// return it.
706  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
707
708  /// \brief Remember that the using decl \p Inst is an instantiation
709  /// of the using decl \p Pattern of a class template.
710  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
711
712  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
713                                          UsingShadowDecl *Pattern);
714  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
715
716  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
717
718  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
719
720  // Access to the set of methods overridden by the given C++ method.
721  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
722  overridden_cxx_method_iterator
723  overridden_methods_begin(const CXXMethodDecl *Method) const;
724
725  overridden_cxx_method_iterator
726  overridden_methods_end(const CXXMethodDecl *Method) const;
727
728  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
729
730  /// \brief Note that the given C++ \p Method overrides the given \p
731  /// Overridden method.
732  void addOverriddenMethod(const CXXMethodDecl *Method,
733                           const CXXMethodDecl *Overridden);
734
735  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
736  ///
737  /// An ObjC method is considered to override any method in the class's
738  /// base classes, its protocols, or its categories' protocols, that has
739  /// the same selector and is of the same kind (class or instance).
740  /// A method in an implementation is not considered as overriding the same
741  /// method in the interface or its categories.
742  void getOverriddenMethods(
743                        const NamedDecl *Method,
744                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
745
746  /// \brief Notify the AST context that a new import declaration has been
747  /// parsed or implicitly created within this translation unit.
748  void addedLocalImportDecl(ImportDecl *Import);
749
750  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
751    return Import->NextLocalImport;
752  }
753
754  typedef llvm::iterator_range<import_iterator> import_range;
755  import_range local_imports() const {
756    return import_range(import_iterator(FirstLocalImport), import_iterator());
757  }
758
759  Decl *getPrimaryMergedDecl(Decl *D) {
760    Decl *Result = MergedDecls.lookup(D);
761    return Result ? Result : D;
762  }
763  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
764    MergedDecls[D] = Primary;
765  }
766
767  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
768
769
770  // Builtin Types.
771  CanQualType VoidTy;
772  CanQualType BoolTy;
773  CanQualType CharTy;
774  CanQualType WCharTy;  // [C++ 3.9.1p5].
775  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
776  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
777  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
778  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
779  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
780  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
781  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
782  CanQualType FloatTy, DoubleTy, LongDoubleTy;
783  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
784  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
785  CanQualType VoidPtrTy, NullPtrTy;
786  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
787  CanQualType BuiltinFnTy;
788  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
789  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
790  CanQualType ObjCBuiltinBoolTy;
791  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
792  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
793  CanQualType OCLImage3dTy;
794  CanQualType OCLSamplerTy, OCLEventTy;
795
796  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
797  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
798  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
799
800  // Type used to help define __builtin_va_list for some targets.
801  // The type is built when constructing 'BuiltinVaListDecl'.
802  mutable QualType VaListTagTy;
803
804  ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
805             SelectorTable &sels, Builtin::Context &builtins);
806
807  ~ASTContext();
808
809  /// \brief Attach an external AST source to the AST context.
810  ///
811  /// The external AST source provides the ability to load parts of
812  /// the abstract syntax tree as needed from some external storage,
813  /// e.g., a precompiled header.
814  void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
815
816  /// \brief Retrieve a pointer to the external AST source associated
817  /// with this AST context, if any.
818  ExternalASTSource *getExternalSource() const {
819    return ExternalSource.getPtr();
820  }
821
822  /// \brief Attach an AST mutation listener to the AST context.
823  ///
824  /// The AST mutation listener provides the ability to track modifications to
825  /// the abstract syntax tree entities committed after they were initially
826  /// created.
827  void setASTMutationListener(ASTMutationListener *Listener) {
828    this->Listener = Listener;
829  }
830
831  /// \brief Retrieve a pointer to the AST mutation listener associated
832  /// with this AST context, if any.
833  ASTMutationListener *getASTMutationListener() const { return Listener; }
834
835  void PrintStats() const;
836  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
837
838  /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
839  /// declaration.
840  RecordDecl *buildImplicitRecord(StringRef Name,
841                                  RecordDecl::TagKind TK = TTK_Struct) const;
842
843  /// \brief Create a new implicit TU-level typedef declaration.
844  TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
845
846  /// \brief Retrieve the declaration for the 128-bit signed integer type.
847  TypedefDecl *getInt128Decl() const;
848
849  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
850  TypedefDecl *getUInt128Decl() const;
851
852  /// \brief Retrieve the declaration for a 128-bit float stub type.
853  TypeDecl *getFloat128StubType() const;
854
855  //===--------------------------------------------------------------------===//
856  //                           Type Constructors
857  //===--------------------------------------------------------------------===//
858
859private:
860  /// \brief Return a type with extended qualifiers.
861  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
862
863  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
864
865public:
866  /// \brief Return the uniqued reference to the type for an address space
867  /// qualified type with the specified type and address space.
868  ///
869  /// The resulting type has a union of the qualifiers from T and the address
870  /// space. If T already has an address space specifier, it is silently
871  /// replaced.
872  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
873
874  /// \brief Return the uniqued reference to the type for an Objective-C
875  /// gc-qualified type.
876  ///
877  /// The retulting type has a union of the qualifiers from T and the gc
878  /// attribute.
879  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
880
881  /// \brief Return the uniqued reference to the type for a \c restrict
882  /// qualified type.
883  ///
884  /// The resulting type has a union of the qualifiers from \p T and
885  /// \c restrict.
886  QualType getRestrictType(QualType T) const {
887    return T.withFastQualifiers(Qualifiers::Restrict);
888  }
889
890  /// \brief Return the uniqued reference to the type for a \c volatile
891  /// qualified type.
892  ///
893  /// The resulting type has a union of the qualifiers from \p T and
894  /// \c volatile.
895  QualType getVolatileType(QualType T) const {
896    return T.withFastQualifiers(Qualifiers::Volatile);
897  }
898
899  /// \brief Return the uniqued reference to the type for a \c const
900  /// qualified type.
901  ///
902  /// The resulting type has a union of the qualifiers from \p T and \c const.
903  ///
904  /// It can be reasonably expected that this will always be equivalent to
905  /// calling T.withConst().
906  QualType getConstType(QualType T) const { return T.withConst(); }
907
908  /// \brief Change the ExtInfo on a function type.
909  const FunctionType *adjustFunctionType(const FunctionType *Fn,
910                                         FunctionType::ExtInfo EInfo);
911
912  /// \brief Change the result type of a function type once it is deduced.
913  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
914
915  /// \brief Return the uniqued reference to the type for a complex
916  /// number with the specified element type.
917  QualType getComplexType(QualType T) const;
918  CanQualType getComplexType(CanQualType T) const {
919    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
920  }
921
922  /// \brief Return the uniqued reference to the type for a pointer to
923  /// the specified type.
924  QualType getPointerType(QualType T) const;
925  CanQualType getPointerType(CanQualType T) const {
926    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
927  }
928
929  /// \brief Return the uniqued reference to a type adjusted from the original
930  /// type to a new type.
931  QualType getAdjustedType(QualType Orig, QualType New) const;
932  CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
933    return CanQualType::CreateUnsafe(
934        getAdjustedType((QualType)Orig, (QualType)New));
935  }
936
937  /// \brief Return the uniqued reference to the decayed version of the given
938  /// type.  Can only be called on array and function types which decay to
939  /// pointer types.
940  QualType getDecayedType(QualType T) const;
941  CanQualType getDecayedType(CanQualType T) const {
942    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
943  }
944
945  /// \brief Return the uniqued reference to the atomic type for the specified
946  /// type.
947  QualType getAtomicType(QualType T) const;
948
949  /// \brief Return the uniqued reference to the type for a block of the
950  /// specified type.
951  QualType getBlockPointerType(QualType T) const;
952
953  /// Gets the struct used to keep track of the descriptor for pointer to
954  /// blocks.
955  QualType getBlockDescriptorType() const;
956
957  /// Gets the struct used to keep track of the extended descriptor for
958  /// pointer to blocks.
959  QualType getBlockDescriptorExtendedType() const;
960
961  void setcudaConfigureCallDecl(FunctionDecl *FD) {
962    cudaConfigureCallDecl = FD;
963  }
964  FunctionDecl *getcudaConfigureCallDecl() {
965    return cudaConfigureCallDecl;
966  }
967
968  /// Returns true iff we need copy/dispose helpers for the given type.
969  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
970
971
972  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
973  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
974  /// has extended lifetime.
975  bool getByrefLifetime(QualType Ty,
976                        Qualifiers::ObjCLifetime &Lifetime,
977                        bool &HasByrefExtendedLayout) const;
978
979  /// \brief Return the uniqued reference to the type for an lvalue reference
980  /// to the specified type.
981  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
982    const;
983
984  /// \brief Return the uniqued reference to the type for an rvalue reference
985  /// to the specified type.
986  QualType getRValueReferenceType(QualType T) const;
987
988  /// \brief Return the uniqued reference to the type for a member pointer to
989  /// the specified type in the specified class.
990  ///
991  /// The class \p Cls is a \c Type because it could be a dependent name.
992  QualType getMemberPointerType(QualType T, const Type *Cls) const;
993
994  /// \brief Return a non-unique reference to the type for a variable array of
995  /// the specified element type.
996  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
997                                ArrayType::ArraySizeModifier ASM,
998                                unsigned IndexTypeQuals,
999                                SourceRange Brackets) const;
1000
1001  /// \brief Return a non-unique reference to the type for a dependently-sized
1002  /// array of the specified element type.
1003  ///
1004  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1005  /// point.
1006  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1007                                      ArrayType::ArraySizeModifier ASM,
1008                                      unsigned IndexTypeQuals,
1009                                      SourceRange Brackets) const;
1010
1011  /// \brief Return a unique reference to the type for an incomplete array of
1012  /// the specified element type.
1013  QualType getIncompleteArrayType(QualType EltTy,
1014                                  ArrayType::ArraySizeModifier ASM,
1015                                  unsigned IndexTypeQuals) const;
1016
1017  /// \brief Return the unique reference to the type for a constant array of
1018  /// the specified element type.
1019  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1020                                ArrayType::ArraySizeModifier ASM,
1021                                unsigned IndexTypeQuals) const;
1022
1023  /// \brief Returns a vla type where known sizes are replaced with [*].
1024  QualType getVariableArrayDecayedType(QualType Ty) const;
1025
1026  /// \brief Return the unique reference to a vector type of the specified
1027  /// element type and size.
1028  ///
1029  /// \pre \p VectorType must be a built-in type.
1030  QualType getVectorType(QualType VectorType, unsigned NumElts,
1031                         VectorType::VectorKind VecKind) const;
1032
1033  /// \brief Return the unique reference to an extended vector type
1034  /// of the specified element type and size.
1035  ///
1036  /// \pre \p VectorType must be a built-in type.
1037  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1038
1039  /// \pre Return a non-unique reference to the type for a dependently-sized
1040  /// vector of the specified element type.
1041  ///
1042  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1043  /// point.
1044  QualType getDependentSizedExtVectorType(QualType VectorType,
1045                                          Expr *SizeExpr,
1046                                          SourceLocation AttrLoc) const;
1047
1048  /// \brief Return a K&R style C function type like 'int()'.
1049  QualType getFunctionNoProtoType(QualType ResultTy,
1050                                  const FunctionType::ExtInfo &Info) const;
1051
1052  QualType getFunctionNoProtoType(QualType ResultTy) const {
1053    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1054  }
1055
1056  /// \brief Return a normal function type with a typed argument list.
1057  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1058                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1059
1060  /// \brief Return the unique reference to the type for the specified type
1061  /// declaration.
1062  QualType getTypeDeclType(const TypeDecl *Decl,
1063                           const TypeDecl *PrevDecl = nullptr) const {
1064    assert(Decl && "Passed null for Decl param");
1065    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1066
1067    if (PrevDecl) {
1068      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1069      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1070      return QualType(PrevDecl->TypeForDecl, 0);
1071    }
1072
1073    return getTypeDeclTypeSlow(Decl);
1074  }
1075
1076  /// \brief Return the unique reference to the type for the specified
1077  /// typedef-name decl.
1078  QualType getTypedefType(const TypedefNameDecl *Decl,
1079                          QualType Canon = QualType()) const;
1080
1081  QualType getRecordType(const RecordDecl *Decl) const;
1082
1083  QualType getEnumType(const EnumDecl *Decl) const;
1084
1085  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1086
1087  QualType getAttributedType(AttributedType::Kind attrKind,
1088                             QualType modifiedType,
1089                             QualType equivalentType);
1090
1091  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1092                                        QualType Replacement) const;
1093  QualType getSubstTemplateTypeParmPackType(
1094                                          const TemplateTypeParmType *Replaced,
1095                                            const TemplateArgument &ArgPack);
1096
1097  QualType
1098  getTemplateTypeParmType(unsigned Depth, unsigned Index,
1099                          bool ParameterPack,
1100                          TemplateTypeParmDecl *ParmDecl = nullptr) const;
1101
1102  QualType getTemplateSpecializationType(TemplateName T,
1103                                         const TemplateArgument *Args,
1104                                         unsigned NumArgs,
1105                                         QualType Canon = QualType()) const;
1106
1107  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1108                                                  const TemplateArgument *Args,
1109                                                  unsigned NumArgs) const;
1110
1111  QualType getTemplateSpecializationType(TemplateName T,
1112                                         const TemplateArgumentListInfo &Args,
1113                                         QualType Canon = QualType()) const;
1114
1115  TypeSourceInfo *
1116  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1117                                    const TemplateArgumentListInfo &Args,
1118                                    QualType Canon = QualType()) const;
1119
1120  QualType getParenType(QualType NamedType) const;
1121
1122  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1123                             NestedNameSpecifier *NNS,
1124                             QualType NamedType) const;
1125  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1126                                NestedNameSpecifier *NNS,
1127                                const IdentifierInfo *Name,
1128                                QualType Canon = QualType()) const;
1129
1130  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1131                                                  NestedNameSpecifier *NNS,
1132                                                  const IdentifierInfo *Name,
1133                                    const TemplateArgumentListInfo &Args) const;
1134  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1135                                                  NestedNameSpecifier *NNS,
1136                                                  const IdentifierInfo *Name,
1137                                                  unsigned NumArgs,
1138                                            const TemplateArgument *Args) const;
1139
1140  QualType getPackExpansionType(QualType Pattern,
1141                                Optional<unsigned> NumExpansions);
1142
1143  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1144                                ObjCInterfaceDecl *PrevDecl = nullptr) const;
1145
1146  QualType getObjCObjectType(QualType Base,
1147                             ObjCProtocolDecl * const *Protocols,
1148                             unsigned NumProtocols) const;
1149
1150  bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1151  /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1152  /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1153  /// of protocols.
1154  bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1155                                            ObjCInterfaceDecl *IDecl);
1156
1157  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1158  QualType getObjCObjectPointerType(QualType OIT) const;
1159
1160  /// \brief GCC extension.
1161  QualType getTypeOfExprType(Expr *e) const;
1162  QualType getTypeOfType(QualType t) const;
1163
1164  /// \brief C++11 decltype.
1165  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1166
1167  /// \brief Unary type transforms
1168  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1169                                 UnaryTransformType::UTTKind UKind) const;
1170
1171  /// \brief C++11 deduced auto type.
1172  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1173                       bool IsDependent) const;
1174
1175  /// \brief C++11 deduction pattern for 'auto' type.
1176  QualType getAutoDeductType() const;
1177
1178  /// \brief C++11 deduction pattern for 'auto &&' type.
1179  QualType getAutoRRefDeductType() const;
1180
1181  /// \brief Return the unique reference to the type for the specified TagDecl
1182  /// (struct/union/class/enum) decl.
1183  QualType getTagDeclType(const TagDecl *Decl) const;
1184
1185  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1186  /// <stddef.h>.
1187  ///
1188  /// The sizeof operator requires this (C99 6.5.3.4p4).
1189  CanQualType getSizeType() const;
1190
1191  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1192  /// <stdint.h>.
1193  CanQualType getIntMaxType() const;
1194
1195  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1196  /// <stdint.h>.
1197  CanQualType getUIntMaxType() const;
1198
1199  /// \brief Return the unique wchar_t type available in C++ (and available as
1200  /// __wchar_t as a Microsoft extension).
1201  QualType getWCharType() const { return WCharTy; }
1202
1203  /// \brief Return the type of wide characters. In C++, this returns the
1204  /// unique wchar_t type. In C99, this returns a type compatible with the type
1205  /// defined in <stddef.h> as defined by the target.
1206  QualType getWideCharType() const { return WideCharTy; }
1207
1208  /// \brief Return the type of "signed wchar_t".
1209  ///
1210  /// Used when in C++, as a GCC extension.
1211  QualType getSignedWCharType() const;
1212
1213  /// \brief Return the type of "unsigned wchar_t".
1214  ///
1215  /// Used when in C++, as a GCC extension.
1216  QualType getUnsignedWCharType() const;
1217
1218  /// \brief In C99, this returns a type compatible with the type
1219  /// defined in <stddef.h> as defined by the target.
1220  QualType getWIntType() const { return WIntTy; }
1221
1222  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1223  /// as defined by the target.
1224  QualType getIntPtrType() const;
1225
1226  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1227  /// as defined by the target.
1228  QualType getUIntPtrType() const;
1229
1230  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1231  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1232  QualType getPointerDiffType() const;
1233
1234  /// \brief Return the unique type for "pid_t" defined in
1235  /// <sys/types.h>. We need this to compute the correct type for vfork().
1236  QualType getProcessIDType() const;
1237
1238  /// \brief Return the C structure type used to represent constant CFStrings.
1239  QualType getCFConstantStringType() const;
1240
1241  /// \brief Returns the C struct type for objc_super
1242  QualType getObjCSuperType() const;
1243  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1244
1245  /// Get the structure type used to representation CFStrings, or NULL
1246  /// if it hasn't yet been built.
1247  QualType getRawCFConstantStringType() const {
1248    if (CFConstantStringTypeDecl)
1249      return getTagDeclType(CFConstantStringTypeDecl);
1250    return QualType();
1251  }
1252  void setCFConstantStringType(QualType T);
1253
1254  // This setter/getter represents the ObjC type for an NSConstantString.
1255  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1256  QualType getObjCConstantStringInterface() const {
1257    return ObjCConstantStringType;
1258  }
1259
1260  QualType getObjCNSStringType() const {
1261    return ObjCNSStringType;
1262  }
1263
1264  void setObjCNSStringType(QualType T) {
1265    ObjCNSStringType = T;
1266  }
1267
1268  /// \brief Retrieve the type that \c id has been defined to, which may be
1269  /// different from the built-in \c id if \c id has been typedef'd.
1270  QualType getObjCIdRedefinitionType() const {
1271    if (ObjCIdRedefinitionType.isNull())
1272      return getObjCIdType();
1273    return ObjCIdRedefinitionType;
1274  }
1275
1276  /// \brief Set the user-written type that redefines \c id.
1277  void setObjCIdRedefinitionType(QualType RedefType) {
1278    ObjCIdRedefinitionType = RedefType;
1279  }
1280
1281  /// \brief Retrieve the type that \c Class has been defined to, which may be
1282  /// different from the built-in \c Class if \c Class has been typedef'd.
1283  QualType getObjCClassRedefinitionType() const {
1284    if (ObjCClassRedefinitionType.isNull())
1285      return getObjCClassType();
1286    return ObjCClassRedefinitionType;
1287  }
1288
1289  /// \brief Set the user-written type that redefines 'SEL'.
1290  void setObjCClassRedefinitionType(QualType RedefType) {
1291    ObjCClassRedefinitionType = RedefType;
1292  }
1293
1294  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1295  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1296  QualType getObjCSelRedefinitionType() const {
1297    if (ObjCSelRedefinitionType.isNull())
1298      return getObjCSelType();
1299    return ObjCSelRedefinitionType;
1300  }
1301
1302
1303  /// \brief Set the user-written type that redefines 'SEL'.
1304  void setObjCSelRedefinitionType(QualType RedefType) {
1305    ObjCSelRedefinitionType = RedefType;
1306  }
1307
1308  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1309  /// otherwise, returns a NULL type;
1310  QualType getObjCInstanceType() {
1311    return getTypeDeclType(getObjCInstanceTypeDecl());
1312  }
1313
1314  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1315  /// "instancetype" type.
1316  TypedefDecl *getObjCInstanceTypeDecl();
1317
1318  /// \brief Set the type for the C FILE type.
1319  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1320
1321  /// \brief Retrieve the C FILE type.
1322  QualType getFILEType() const {
1323    if (FILEDecl)
1324      return getTypeDeclType(FILEDecl);
1325    return QualType();
1326  }
1327
1328  /// \brief Set the type for the C jmp_buf type.
1329  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1330    this->jmp_bufDecl = jmp_bufDecl;
1331  }
1332
1333  /// \brief Retrieve the C jmp_buf type.
1334  QualType getjmp_bufType() const {
1335    if (jmp_bufDecl)
1336      return getTypeDeclType(jmp_bufDecl);
1337    return QualType();
1338  }
1339
1340  /// \brief Set the type for the C sigjmp_buf type.
1341  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1342    this->sigjmp_bufDecl = sigjmp_bufDecl;
1343  }
1344
1345  /// \brief Retrieve the C sigjmp_buf type.
1346  QualType getsigjmp_bufType() const {
1347    if (sigjmp_bufDecl)
1348      return getTypeDeclType(sigjmp_bufDecl);
1349    return QualType();
1350  }
1351
1352  /// \brief Set the type for the C ucontext_t type.
1353  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1354    this->ucontext_tDecl = ucontext_tDecl;
1355  }
1356
1357  /// \brief Retrieve the C ucontext_t type.
1358  QualType getucontext_tType() const {
1359    if (ucontext_tDecl)
1360      return getTypeDeclType(ucontext_tDecl);
1361    return QualType();
1362  }
1363
1364  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1365  QualType getLogicalOperationType() const {
1366    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1367  }
1368
1369  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1370  /// \p S.
1371  ///
1372  /// If \p Field is specified then record field names are also encoded.
1373  void getObjCEncodingForType(QualType T, std::string &S,
1374                              const FieldDecl *Field=nullptr) const;
1375
1376  void getLegacyIntegralTypeEncoding(QualType &t) const;
1377
1378  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1379  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1380                                       std::string &S) const;
1381
1382  /// \brief Emit the encoded type for the function \p Decl into \p S.
1383  ///
1384  /// This is in the same format as Objective-C method encodings.
1385  ///
1386  /// \returns true if an error occurred (e.g., because one of the parameter
1387  /// types is incomplete), false otherwise.
1388  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1389
1390  /// \brief Emit the encoded type for the method declaration \p Decl into
1391  /// \p S.
1392  ///
1393  /// \returns true if an error occurred (e.g., because one of the parameter
1394  /// types is incomplete), false otherwise.
1395  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1396                                    bool Extended = false)
1397    const;
1398
1399  /// \brief Return the encoded type for this block declaration.
1400  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1401
1402  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1403  /// this method declaration. If non-NULL, Container must be either
1404  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1405  /// only be NULL when getting encodings for protocol properties.
1406  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1407                                      const Decl *Container,
1408                                      std::string &S) const;
1409
1410  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1411                                      ObjCProtocolDecl *rProto) const;
1412
1413  ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1414                                                  const ObjCPropertyDecl *PD,
1415                                                  const Decl *Container) const;
1416
1417  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1418  /// in characters.
1419  CharUnits getObjCEncodingTypeSize(QualType T) const;
1420
1421  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1422  /// in Objective-C.
1423  TypedefDecl *getObjCIdDecl() const;
1424
1425  /// \brief Represents the Objective-CC \c id type.
1426  ///
1427  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1428  /// pointer type, a pointer to a struct.
1429  QualType getObjCIdType() const {
1430    return getTypeDeclType(getObjCIdDecl());
1431  }
1432
1433  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1434  /// in Objective-C.
1435  TypedefDecl *getObjCSelDecl() const;
1436
1437  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1438  /// 'SEL' type.
1439  QualType getObjCSelType() const {
1440    return getTypeDeclType(getObjCSelDecl());
1441  }
1442
1443  /// \brief Retrieve the typedef declaration corresponding to the predefined
1444  /// Objective-C 'Class' type.
1445  TypedefDecl *getObjCClassDecl() const;
1446
1447  /// \brief Represents the Objective-C \c Class type.
1448  ///
1449  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1450  /// pointer type, a pointer to a struct.
1451  QualType getObjCClassType() const {
1452    return getTypeDeclType(getObjCClassDecl());
1453  }
1454
1455  /// \brief Retrieve the Objective-C class declaration corresponding to
1456  /// the predefined \c Protocol class.
1457  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1458
1459  /// \brief Retrieve declaration of 'BOOL' typedef
1460  TypedefDecl *getBOOLDecl() const {
1461    return BOOLDecl;
1462  }
1463
1464  /// \brief Save declaration of 'BOOL' typedef
1465  void setBOOLDecl(TypedefDecl *TD) {
1466    BOOLDecl = TD;
1467  }
1468
1469  /// \brief type of 'BOOL' type.
1470  QualType getBOOLType() const {
1471    return getTypeDeclType(getBOOLDecl());
1472  }
1473
1474  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1475  QualType getObjCProtoType() const {
1476    return getObjCInterfaceType(getObjCProtocolDecl());
1477  }
1478
1479  /// \brief Retrieve the C type declaration corresponding to the predefined
1480  /// \c __builtin_va_list type.
1481  TypedefDecl *getBuiltinVaListDecl() const;
1482
1483  /// \brief Retrieve the type of the \c __builtin_va_list type.
1484  QualType getBuiltinVaListType() const {
1485    return getTypeDeclType(getBuiltinVaListDecl());
1486  }
1487
1488  /// \brief Retrieve the C type declaration corresponding to the predefined
1489  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1490  /// for some targets.
1491  QualType getVaListTagType() const;
1492
1493  /// \brief Return a type with additional \c const, \c volatile, or
1494  /// \c restrict qualifiers.
1495  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1496    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1497  }
1498
1499  /// \brief Un-split a SplitQualType.
1500  QualType getQualifiedType(SplitQualType split) const {
1501    return getQualifiedType(split.Ty, split.Quals);
1502  }
1503
1504  /// \brief Return a type with additional qualifiers.
1505  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1506    if (!Qs.hasNonFastQualifiers())
1507      return T.withFastQualifiers(Qs.getFastQualifiers());
1508    QualifierCollector Qc(Qs);
1509    const Type *Ptr = Qc.strip(T);
1510    return getExtQualType(Ptr, Qc);
1511  }
1512
1513  /// \brief Return a type with additional qualifiers.
1514  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1515    if (!Qs.hasNonFastQualifiers())
1516      return QualType(T, Qs.getFastQualifiers());
1517    return getExtQualType(T, Qs);
1518  }
1519
1520  /// \brief Return a type with the given lifetime qualifier.
1521  ///
1522  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1523  QualType getLifetimeQualifiedType(QualType type,
1524                                    Qualifiers::ObjCLifetime lifetime) {
1525    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1526    assert(lifetime != Qualifiers::OCL_None);
1527
1528    Qualifiers qs;
1529    qs.addObjCLifetime(lifetime);
1530    return getQualifiedType(type, qs);
1531  }
1532
1533  /// getUnqualifiedObjCPointerType - Returns version of
1534  /// Objective-C pointer type with lifetime qualifier removed.
1535  QualType getUnqualifiedObjCPointerType(QualType type) const {
1536    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1537        !type.getQualifiers().hasObjCLifetime())
1538      return type;
1539    Qualifiers Qs = type.getQualifiers();
1540    Qs.removeObjCLifetime();
1541    return getQualifiedType(type.getUnqualifiedType(), Qs);
1542  }
1543
1544  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1545                                         SourceLocation NameLoc) const;
1546
1547  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1548                                         UnresolvedSetIterator End) const;
1549
1550  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1551                                        bool TemplateKeyword,
1552                                        TemplateDecl *Template) const;
1553
1554  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1555                                        const IdentifierInfo *Name) const;
1556  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1557                                        OverloadedOperatorKind Operator) const;
1558  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1559                                            TemplateName replacement) const;
1560  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1561                                        const TemplateArgument &ArgPack) const;
1562
1563  enum GetBuiltinTypeError {
1564    GE_None,              ///< No error
1565    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1566    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1567    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1568  };
1569
1570  /// \brief Return the type for the specified builtin.
1571  ///
1572  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1573  /// arguments to the builtin that are required to be integer constant
1574  /// expressions.
1575  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1576                          unsigned *IntegerConstantArgs = nullptr) const;
1577
1578private:
1579  CanQualType getFromTargetType(unsigned Type) const;
1580  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1581
1582  //===--------------------------------------------------------------------===//
1583  //                         Type Predicates.
1584  //===--------------------------------------------------------------------===//
1585
1586public:
1587  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1588  /// collection attributes.
1589  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1590
1591  /// \brief Return true if the given vector types are of the same unqualified
1592  /// type or if they are equivalent to the same GCC vector type.
1593  ///
1594  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1595  /// types.
1596  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1597
1598  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1599  /// attribute set.
1600  static bool isObjCNSObjectType(QualType Ty) {
1601    return Ty->isObjCNSObjectType();
1602  }
1603
1604  //===--------------------------------------------------------------------===//
1605  //                         Type Sizing and Analysis
1606  //===--------------------------------------------------------------------===//
1607
1608  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1609  /// point type.
1610  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1611
1612  /// \brief Get the size and alignment of the specified complete type in bits.
1613  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1614  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1615    return getTypeInfo(T.getTypePtr());
1616  }
1617
1618  /// \brief Return the size of the specified (complete) type \p T, in bits.
1619  uint64_t getTypeSize(QualType T) const {
1620    return getTypeInfo(T).first;
1621  }
1622  uint64_t getTypeSize(const Type *T) const {
1623    return getTypeInfo(T).first;
1624  }
1625
1626  /// \brief Return the size of the character type, in bits.
1627  uint64_t getCharWidth() const {
1628    return getTypeSize(CharTy);
1629  }
1630
1631  /// \brief Convert a size in bits to a size in characters.
1632  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1633
1634  /// \brief Convert a size in characters to a size in bits.
1635  int64_t toBits(CharUnits CharSize) const;
1636
1637  /// \brief Return the size of the specified (complete) type \p T, in
1638  /// characters.
1639  CharUnits getTypeSizeInChars(QualType T) const;
1640  CharUnits getTypeSizeInChars(const Type *T) const;
1641
1642  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1643  /// bits.
1644  unsigned getTypeAlign(QualType T) const {
1645    return getTypeInfo(T).second;
1646  }
1647  unsigned getTypeAlign(const Type *T) const {
1648    return getTypeInfo(T).second;
1649  }
1650
1651  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1652  /// characters.
1653  CharUnits getTypeAlignInChars(QualType T) const;
1654  CharUnits getTypeAlignInChars(const Type *T) const;
1655
1656  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1657  // type is a record, its data size is returned.
1658  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1659
1660  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1661  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1662
1663  /// \brief Return the "preferred" alignment of the specified type \p T for
1664  /// the current target, in bits.
1665  ///
1666  /// This can be different than the ABI alignment in cases where it is
1667  /// beneficial for performance to overalign a data type.
1668  unsigned getPreferredTypeAlign(const Type *T) const;
1669
1670  /// \brief Return the alignment in bits that should be given to a
1671  /// global variable with type \p T.
1672  unsigned getAlignOfGlobalVar(QualType T) const;
1673
1674  /// \brief Return the alignment in characters that should be given to a
1675  /// global variable with type \p T.
1676  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1677
1678  /// \brief Return a conservative estimate of the alignment of the specified
1679  /// decl \p D.
1680  ///
1681  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1682  /// alignment.
1683  ///
1684  /// If \p ForAlignof, references are treated like their underlying type
1685  /// and  large arrays don't get any special treatment. If not \p ForAlignof
1686  /// it computes the value expected by CodeGen: references are treated like
1687  /// pointers and large arrays get extra alignment.
1688  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
1689
1690  /// \brief Get or compute information about the layout of the specified
1691  /// record (struct/union/class) \p D, which indicates its size and field
1692  /// position information.
1693  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1694  const ASTRecordLayout *BuildMicrosoftASTRecordLayout(const RecordDecl *D) const;
1695
1696  /// \brief Get or compute information about the layout of the specified
1697  /// Objective-C interface.
1698  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1699    const;
1700
1701  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1702                        bool Simple = false) const;
1703
1704  /// \brief Get or compute information about the layout of the specified
1705  /// Objective-C implementation.
1706  ///
1707  /// This may differ from the interface if synthesized ivars are present.
1708  const ASTRecordLayout &
1709  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1710
1711  /// \brief Get our current best idea for the key function of the
1712  /// given record decl, or NULL if there isn't one.
1713  ///
1714  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1715  ///   ...the first non-pure virtual function that is not inline at the
1716  ///   point of class definition.
1717  ///
1718  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1719  /// virtual functions that are defined 'inline', which means that
1720  /// the result of this computation can change.
1721  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1722
1723  /// \brief Observe that the given method cannot be a key function.
1724  /// Checks the key-function cache for the method's class and clears it
1725  /// if matches the given declaration.
1726  ///
1727  /// This is used in ABIs where out-of-line definitions marked
1728  /// inline are not considered to be key functions.
1729  ///
1730  /// \param method should be the declaration from the class definition
1731  void setNonKeyFunction(const CXXMethodDecl *method);
1732
1733  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1734  uint64_t getFieldOffset(const ValueDecl *FD) const;
1735
1736  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1737
1738  VTableContextBase *getVTableContext();
1739
1740  MangleContext *createMangleContext();
1741
1742  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1743                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1744
1745  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1746  void CollectInheritedProtocols(const Decl *CDecl,
1747                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1748
1749  //===--------------------------------------------------------------------===//
1750  //                            Type Operators
1751  //===--------------------------------------------------------------------===//
1752
1753  /// \brief Return the canonical (structural) type corresponding to the
1754  /// specified potentially non-canonical type \p T.
1755  ///
1756  /// The non-canonical version of a type may have many "decorated" versions of
1757  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1758  /// returned type is guaranteed to be free of any of these, allowing two
1759  /// canonical types to be compared for exact equality with a simple pointer
1760  /// comparison.
1761  CanQualType getCanonicalType(QualType T) const {
1762    return CanQualType::CreateUnsafe(T.getCanonicalType());
1763  }
1764
1765  const Type *getCanonicalType(const Type *T) const {
1766    return T->getCanonicalTypeInternal().getTypePtr();
1767  }
1768
1769  /// \brief Return the canonical parameter type corresponding to the specific
1770  /// potentially non-canonical one.
1771  ///
1772  /// Qualifiers are stripped off, functions are turned into function
1773  /// pointers, and arrays decay one level into pointers.
1774  CanQualType getCanonicalParamType(QualType T) const;
1775
1776  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1777  bool hasSameType(QualType T1, QualType T2) const {
1778    return getCanonicalType(T1) == getCanonicalType(T2);
1779  }
1780
1781  bool hasSameType(const Type *T1, const Type *T2) const {
1782    return getCanonicalType(T1) == getCanonicalType(T2);
1783  }
1784
1785  /// \brief Return this type as a completely-unqualified array type,
1786  /// capturing the qualifiers in \p Quals.
1787  ///
1788  /// This will remove the minimal amount of sugaring from the types, similar
1789  /// to the behavior of QualType::getUnqualifiedType().
1790  ///
1791  /// \param T is the qualified type, which may be an ArrayType
1792  ///
1793  /// \param Quals will receive the full set of qualifiers that were
1794  /// applied to the array.
1795  ///
1796  /// \returns if this is an array type, the completely unqualified array type
1797  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1798  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1799
1800  /// \brief Determine whether the given types are equivalent after
1801  /// cvr-qualifiers have been removed.
1802  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1803    return getCanonicalType(T1).getTypePtr() ==
1804           getCanonicalType(T2).getTypePtr();
1805  }
1806
1807  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
1808                           const ObjCMethodDecl *MethodImp);
1809
1810  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1811
1812  /// \brief Retrieves the "canonical" nested name specifier for a
1813  /// given nested name specifier.
1814  ///
1815  /// The canonical nested name specifier is a nested name specifier
1816  /// that uniquely identifies a type or namespace within the type
1817  /// system. For example, given:
1818  ///
1819  /// \code
1820  /// namespace N {
1821  ///   struct S {
1822  ///     template<typename T> struct X { typename T* type; };
1823  ///   };
1824  /// }
1825  ///
1826  /// template<typename T> struct Y {
1827  ///   typename N::S::X<T>::type member;
1828  /// };
1829  /// \endcode
1830  ///
1831  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1832  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1833  /// by declarations in the type system and the canonical type for
1834  /// the template type parameter 'T' is template-param-0-0.
1835  NestedNameSpecifier *
1836  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1837
1838  /// \brief Retrieves the default calling convention for the current target.
1839  CallingConv getDefaultCallingConvention(bool isVariadic,
1840                                          bool IsCXXMethod) const;
1841
1842  /// \brief Retrieves the "canonical" template name that refers to a
1843  /// given template.
1844  ///
1845  /// The canonical template name is the simplest expression that can
1846  /// be used to refer to a given template. For most templates, this
1847  /// expression is just the template declaration itself. For example,
1848  /// the template std::vector can be referred to via a variety of
1849  /// names---std::vector, \::std::vector, vector (if vector is in
1850  /// scope), etc.---but all of these names map down to the same
1851  /// TemplateDecl, which is used to form the canonical template name.
1852  ///
1853  /// Dependent template names are more interesting. Here, the
1854  /// template name could be something like T::template apply or
1855  /// std::allocator<T>::template rebind, where the nested name
1856  /// specifier itself is dependent. In this case, the canonical
1857  /// template name uses the shortest form of the dependent
1858  /// nested-name-specifier, which itself contains all canonical
1859  /// types, values, and templates.
1860  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1861
1862  /// \brief Determine whether the given template names refer to the same
1863  /// template.
1864  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1865
1866  /// \brief Retrieve the "canonical" template argument.
1867  ///
1868  /// The canonical template argument is the simplest template argument
1869  /// (which may be a type, value, expression, or declaration) that
1870  /// expresses the value of the argument.
1871  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1872    const;
1873
1874  /// Type Query functions.  If the type is an instance of the specified class,
1875  /// return the Type pointer for the underlying maximally pretty type.  This
1876  /// is a member of ASTContext because this may need to do some amount of
1877  /// canonicalization, e.g. to move type qualifiers into the element type.
1878  const ArrayType *getAsArrayType(QualType T) const;
1879  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1880    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1881  }
1882  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1883    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1884  }
1885  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1886    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1887  }
1888  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1889    const {
1890    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1891  }
1892
1893  /// \brief Return the innermost element type of an array type.
1894  ///
1895  /// For example, will return "int" for int[m][n]
1896  QualType getBaseElementType(const ArrayType *VAT) const;
1897
1898  /// \brief Return the innermost element type of a type (which needn't
1899  /// actually be an array type).
1900  QualType getBaseElementType(QualType QT) const;
1901
1902  /// \brief Return number of constant array elements.
1903  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1904
1905  /// \brief Perform adjustment on the parameter type of a function.
1906  ///
1907  /// This routine adjusts the given parameter type @p T to the actual
1908  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1909  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1910  QualType getAdjustedParameterType(QualType T) const;
1911
1912  /// \brief Retrieve the parameter type as adjusted for use in the signature
1913  /// of a function, decaying array and function types and removing top-level
1914  /// cv-qualifiers.
1915  QualType getSignatureParameterType(QualType T) const;
1916
1917  /// \brief Return the properly qualified result of decaying the specified
1918  /// array type to a pointer.
1919  ///
1920  /// This operation is non-trivial when handling typedefs etc.  The canonical
1921  /// type of \p T must be an array type, this returns a pointer to a properly
1922  /// qualified element of the array.
1923  ///
1924  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1925  QualType getArrayDecayedType(QualType T) const;
1926
1927  /// \brief Return the type that \p PromotableType will promote to: C99
1928  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1929  QualType getPromotedIntegerType(QualType PromotableType) const;
1930
1931  /// \brief Recurses in pointer/array types until it finds an Objective-C
1932  /// retainable type and returns its ownership.
1933  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1934
1935  /// \brief Whether this is a promotable bitfield reference according
1936  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1937  ///
1938  /// \returns the type this bit-field will promote to, or NULL if no
1939  /// promotion occurs.
1940  QualType isPromotableBitField(Expr *E) const;
1941
1942  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1943  ///
1944  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1945  /// \p LHS < \p RHS, return -1.
1946  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1947
1948  /// \brief Compare the rank of the two specified floating point types,
1949  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1950  ///
1951  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1952  /// \p LHS < \p RHS, return -1.
1953  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1954
1955  /// \brief Return a real floating point or a complex type (based on
1956  /// \p typeDomain/\p typeSize).
1957  ///
1958  /// \param typeDomain a real floating point or complex type.
1959  /// \param typeSize a real floating point or complex type.
1960  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1961                                             QualType typeDomain) const;
1962
1963  unsigned getTargetAddressSpace(QualType T) const {
1964    return getTargetAddressSpace(T.getQualifiers());
1965  }
1966
1967  unsigned getTargetAddressSpace(Qualifiers Q) const {
1968    return getTargetAddressSpace(Q.getAddressSpace());
1969  }
1970
1971  unsigned getTargetAddressSpace(unsigned AS) const {
1972    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1973      return AS;
1974    else
1975      return (*AddrSpaceMap)[AS - LangAS::Offset];
1976  }
1977
1978  bool addressSpaceMapManglingFor(unsigned AS) const {
1979    return AddrSpaceMapMangling ||
1980           AS < LangAS::Offset ||
1981           AS >= LangAS::Offset + LangAS::Count;
1982  }
1983
1984private:
1985  // Helper for integer ordering
1986  unsigned getIntegerRank(const Type *T) const;
1987
1988public:
1989
1990  //===--------------------------------------------------------------------===//
1991  //                    Type Compatibility Predicates
1992  //===--------------------------------------------------------------------===//
1993
1994  /// Compatibility predicates used to check assignment expressions.
1995  bool typesAreCompatible(QualType T1, QualType T2,
1996                          bool CompareUnqualified = false); // C99 6.2.7p1
1997
1998  bool propertyTypesAreCompatible(QualType, QualType);
1999  bool typesAreBlockPointerCompatible(QualType, QualType);
2000
2001  bool isObjCIdType(QualType T) const {
2002    return T == getObjCIdType();
2003  }
2004  bool isObjCClassType(QualType T) const {
2005    return T == getObjCClassType();
2006  }
2007  bool isObjCSelType(QualType T) const {
2008    return T == getObjCSelType();
2009  }
2010  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
2011                                         bool ForCompare);
2012
2013  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
2014
2015  // Check the safety of assignment from LHS to RHS
2016  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2017                               const ObjCObjectPointerType *RHSOPT);
2018  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2019                               const ObjCObjectType *RHS);
2020  bool canAssignObjCInterfacesInBlockPointer(
2021                                          const ObjCObjectPointerType *LHSOPT,
2022                                          const ObjCObjectPointerType *RHSOPT,
2023                                          bool BlockReturnType);
2024  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2025  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2026                                   const ObjCObjectPointerType *RHSOPT);
2027  bool canBindObjCObjectType(QualType To, QualType From);
2028
2029  // Functions for calculating composite types
2030  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2031                      bool Unqualified = false, bool BlockReturnType = false);
2032  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2033                              bool Unqualified = false);
2034  QualType mergeFunctionParameterTypes(QualType, QualType,
2035                                       bool OfBlockPointer = false,
2036                                       bool Unqualified = false);
2037  QualType mergeTransparentUnionType(QualType, QualType,
2038                                     bool OfBlockPointer=false,
2039                                     bool Unqualified = false);
2040
2041  QualType mergeObjCGCQualifiers(QualType, QualType);
2042
2043  bool FunctionTypesMatchOnNSConsumedAttrs(
2044         const FunctionProtoType *FromFunctionType,
2045         const FunctionProtoType *ToFunctionType);
2046
2047  void ResetObjCLayout(const ObjCContainerDecl *CD) {
2048    ObjCLayouts[CD] = nullptr;
2049  }
2050
2051  //===--------------------------------------------------------------------===//
2052  //                    Integer Predicates
2053  //===--------------------------------------------------------------------===//
2054
2055  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2056  // of bits in an integer type excluding any padding bits.
2057  unsigned getIntWidth(QualType T) const;
2058
2059  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2060  // unsigned integer type.  This method takes a signed type, and returns the
2061  // corresponding unsigned integer type.
2062  QualType getCorrespondingUnsignedType(QualType T) const;
2063
2064  //===--------------------------------------------------------------------===//
2065  //                    Type Iterators.
2066  //===--------------------------------------------------------------------===//
2067  typedef llvm::iterator_range<SmallVectorImpl<Type *>::const_iterator>
2068    type_const_range;
2069
2070  type_const_range types() const {
2071    return type_const_range(Types.begin(), Types.end());
2072  }
2073
2074  //===--------------------------------------------------------------------===//
2075  //                    Integer Values
2076  //===--------------------------------------------------------------------===//
2077
2078  /// \brief Make an APSInt of the appropriate width and signedness for the
2079  /// given \p Value and integer \p Type.
2080  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2081    llvm::APSInt Res(getIntWidth(Type),
2082                     !Type->isSignedIntegerOrEnumerationType());
2083    Res = Value;
2084    return Res;
2085  }
2086
2087  bool isSentinelNullExpr(const Expr *E);
2088
2089  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2090  /// none exists.
2091  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2092  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2093  /// none exists.
2094  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2095
2096  /// \brief Return true if there is at least one \@implementation in the TU.
2097  bool AnyObjCImplementation() {
2098    return !ObjCImpls.empty();
2099  }
2100
2101  /// \brief Set the implementation of ObjCInterfaceDecl.
2102  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2103                             ObjCImplementationDecl *ImplD);
2104  /// \brief Set the implementation of ObjCCategoryDecl.
2105  void setObjCImplementation(ObjCCategoryDecl *CatD,
2106                             ObjCCategoryImplDecl *ImplD);
2107
2108  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2109  /// interface, or null if none exists.
2110  const ObjCMethodDecl *getObjCMethodRedeclaration(
2111                                               const ObjCMethodDecl *MD) const {
2112    return ObjCMethodRedecls.lookup(MD);
2113  }
2114
2115  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2116                                  const ObjCMethodDecl *Redecl) {
2117    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2118    ObjCMethodRedecls[MD] = Redecl;
2119  }
2120
2121  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2122  /// an Objective-C method/property/ivar etc. that is part of an interface,
2123  /// otherwise returns null.
2124  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2125
2126  /// \brief Set the copy inialization expression of a block var decl.
2127  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2128  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2129  /// NULL if none exists.
2130  Expr *getBlockVarCopyInits(const VarDecl* VD);
2131
2132  /// \brief Allocate an uninitialized TypeSourceInfo.
2133  ///
2134  /// The caller should initialize the memory held by TypeSourceInfo using
2135  /// the TypeLoc wrappers.
2136  ///
2137  /// \param T the type that will be the basis for type source info. This type
2138  /// should refer to how the declarator was written in source code, not to
2139  /// what type semantic analysis resolved the declarator to.
2140  ///
2141  /// \param Size the size of the type info to create, or 0 if the size
2142  /// should be calculated based on the type.
2143  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2144
2145  /// \brief Allocate a TypeSourceInfo where all locations have been
2146  /// initialized to a given location, which defaults to the empty
2147  /// location.
2148  TypeSourceInfo *
2149  getTrivialTypeSourceInfo(QualType T,
2150                           SourceLocation Loc = SourceLocation()) const;
2151
2152  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2153
2154  /// \brief Add a deallocation callback that will be invoked when the
2155  /// ASTContext is destroyed.
2156  ///
2157  /// \param Callback A callback function that will be invoked on destruction.
2158  ///
2159  /// \param Data Pointer data that will be provided to the callback function
2160  /// when it is called.
2161  void AddDeallocation(void (*Callback)(void*), void *Data);
2162
2163  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2164  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2165
2166  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2167  /// lazily, only when used; this is only relevant for function or file scoped
2168  /// var definitions.
2169  ///
2170  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2171  /// it is not used.
2172  bool DeclMustBeEmitted(const Decl *D);
2173
2174  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2175  unsigned getManglingNumber(const NamedDecl *ND) const;
2176
2177  void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2178  unsigned getStaticLocalNumber(const VarDecl *VD) const;
2179
2180  /// \brief Retrieve the context for computing mangling numbers in the given
2181  /// DeclContext.
2182  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2183
2184  MangleNumberingContext *createMangleNumberingContext() const;
2185
2186  /// \brief Used by ParmVarDecl to store on the side the
2187  /// index of the parameter when it exceeds the size of the normal bitfield.
2188  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2189
2190  /// \brief Used by ParmVarDecl to retrieve on the side the
2191  /// index of the parameter when it exceeds the size of the normal bitfield.
2192  unsigned getParameterIndex(const ParmVarDecl *D) const;
2193
2194  /// \brief Get the storage for the constant value of a materialized temporary
2195  /// of static storage duration.
2196  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2197                                         bool MayCreate);
2198
2199  //===--------------------------------------------------------------------===//
2200  //                    Statistics
2201  //===--------------------------------------------------------------------===//
2202
2203  /// \brief The number of implicitly-declared default constructors.
2204  static unsigned NumImplicitDefaultConstructors;
2205
2206  /// \brief The number of implicitly-declared default constructors for
2207  /// which declarations were built.
2208  static unsigned NumImplicitDefaultConstructorsDeclared;
2209
2210  /// \brief The number of implicitly-declared copy constructors.
2211  static unsigned NumImplicitCopyConstructors;
2212
2213  /// \brief The number of implicitly-declared copy constructors for
2214  /// which declarations were built.
2215  static unsigned NumImplicitCopyConstructorsDeclared;
2216
2217  /// \brief The number of implicitly-declared move constructors.
2218  static unsigned NumImplicitMoveConstructors;
2219
2220  /// \brief The number of implicitly-declared move constructors for
2221  /// which declarations were built.
2222  static unsigned NumImplicitMoveConstructorsDeclared;
2223
2224  /// \brief The number of implicitly-declared copy assignment operators.
2225  static unsigned NumImplicitCopyAssignmentOperators;
2226
2227  /// \brief The number of implicitly-declared copy assignment operators for
2228  /// which declarations were built.
2229  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2230
2231  /// \brief The number of implicitly-declared move assignment operators.
2232  static unsigned NumImplicitMoveAssignmentOperators;
2233
2234  /// \brief The number of implicitly-declared move assignment operators for
2235  /// which declarations were built.
2236  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2237
2238  /// \brief The number of implicitly-declared destructors.
2239  static unsigned NumImplicitDestructors;
2240
2241  /// \brief The number of implicitly-declared destructors for which
2242  /// declarations were built.
2243  static unsigned NumImplicitDestructorsDeclared;
2244
2245private:
2246  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2247  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2248
2249public:
2250  /// \brief Initialize built-in types.
2251  ///
2252  /// This routine may only be invoked once for a given ASTContext object.
2253  /// It is normally invoked after ASTContext construction.
2254  ///
2255  /// \param Target The target
2256  void InitBuiltinTypes(const TargetInfo &Target);
2257
2258private:
2259  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2260
2261  // Return the Objective-C type encoding for a given type.
2262  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2263                                  bool ExpandPointedToStructures,
2264                                  bool ExpandStructures,
2265                                  const FieldDecl *Field,
2266                                  bool OutermostType = false,
2267                                  bool EncodingProperty = false,
2268                                  bool StructField = false,
2269                                  bool EncodeBlockParameters = false,
2270                                  bool EncodeClassNames = false,
2271                                  bool EncodePointerToObjCTypedef = false) const;
2272
2273  // Adds the encoding of the structure's members.
2274  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2275                                       const FieldDecl *Field,
2276                                       bool includeVBases = true) const;
2277public:
2278  // Adds the encoding of a method parameter or return type.
2279  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2280                                         QualType T, std::string& S,
2281                                         bool Extended) const;
2282
2283private:
2284  const ASTRecordLayout &
2285  getObjCLayout(const ObjCInterfaceDecl *D,
2286                const ObjCImplementationDecl *Impl) const;
2287
2288  /// \brief A set of deallocations that should be performed when the
2289  /// ASTContext is destroyed.
2290  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2291    DeallocationMap;
2292  DeallocationMap Deallocations;
2293
2294  // FIXME: This currently contains the set of StoredDeclMaps used
2295  // by DeclContext objects.  This probably should not be in ASTContext,
2296  // but we include it here so that ASTContext can quickly deallocate them.
2297  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2298
2299  friend class DeclContext;
2300  friend class DeclarationNameTable;
2301  void ReleaseDeclContextMaps();
2302  void ReleaseParentMapEntries();
2303
2304  std::unique_ptr<ParentMap> AllParents;
2305
2306  std::unique_ptr<VTableContextBase> VTContext;
2307};
2308
2309/// \brief Utility function for constructing a nullary selector.
2310static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2311  IdentifierInfo* II = &Ctx.Idents.get(name);
2312  return Ctx.Selectors.getSelector(0, &II);
2313}
2314
2315/// \brief Utility function for constructing an unary selector.
2316static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2317  IdentifierInfo* II = &Ctx.Idents.get(name);
2318  return Ctx.Selectors.getSelector(1, &II);
2319}
2320
2321}  // end namespace clang
2322
2323// operator new and delete aren't allowed inside namespaces.
2324
2325/// @brief Placement new for using the ASTContext's allocator.
2326///
2327/// This placement form of operator new uses the ASTContext's allocator for
2328/// obtaining memory.
2329///
2330/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2331/// here need to also be made there.
2332///
2333/// We intentionally avoid using a nothrow specification here so that the calls
2334/// to this operator will not perform a null check on the result -- the
2335/// underlying allocator never returns null pointers.
2336///
2337/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2338/// @code
2339/// // Default alignment (8)
2340/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2341/// // Specific alignment
2342/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2343/// @endcode
2344/// Please note that you cannot use delete on the pointer; it must be
2345/// deallocated using an explicit destructor call followed by
2346/// @c Context.Deallocate(Ptr).
2347///
2348/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2349/// @param C The ASTContext that provides the allocator.
2350/// @param Alignment The alignment of the allocated memory (if the underlying
2351///                  allocator supports it).
2352/// @return The allocated memory. Could be NULL.
2353inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2354                          size_t Alignment) {
2355  return C.Allocate(Bytes, Alignment);
2356}
2357/// @brief Placement delete companion to the new above.
2358///
2359/// This operator is just a companion to the new above. There is no way of
2360/// invoking it directly; see the new operator for more details. This operator
2361/// is called implicitly by the compiler if a placement new expression using
2362/// the ASTContext throws in the object constructor.
2363inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2364  C.Deallocate(Ptr);
2365}
2366
2367/// This placement form of operator new[] uses the ASTContext's allocator for
2368/// obtaining memory.
2369///
2370/// We intentionally avoid using a nothrow specification here so that the calls
2371/// to this operator will not perform a null check on the result -- the
2372/// underlying allocator never returns null pointers.
2373///
2374/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2375/// @code
2376/// // Default alignment (8)
2377/// char *data = new (Context) char[10];
2378/// // Specific alignment
2379/// char *data = new (Context, 4) char[10];
2380/// @endcode
2381/// Please note that you cannot use delete on the pointer; it must be
2382/// deallocated using an explicit destructor call followed by
2383/// @c Context.Deallocate(Ptr).
2384///
2385/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2386/// @param C The ASTContext that provides the allocator.
2387/// @param Alignment The alignment of the allocated memory (if the underlying
2388///                  allocator supports it).
2389/// @return The allocated memory. Could be NULL.
2390inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2391                            size_t Alignment = 8) {
2392  return C.Allocate(Bytes, Alignment);
2393}
2394
2395/// @brief Placement delete[] companion to the new[] above.
2396///
2397/// This operator is just a companion to the new[] above. There is no way of
2398/// invoking it directly; see the new[] operator for more details. This operator
2399/// is called implicitly by the compiler if a placement new[] expression using
2400/// the ASTContext throws in the object constructor.
2401inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2402  C.Deallocate(Ptr);
2403}
2404
2405/// \brief Create the representation of a LazyGenerationalUpdatePtr.
2406template <typename Owner, typename T,
2407          void (clang::ExternalASTSource::*Update)(Owner)>
2408typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
2409    clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
2410        const clang::ASTContext &Ctx, T Value) {
2411  // Note, this is implemented here so that ExternalASTSource.h doesn't need to
2412  // include ASTContext.h. We explicitly instantiate it for all relevant types
2413  // in ASTContext.cpp.
2414  if (auto *Source = Ctx.getExternalSource())
2415    return new (Ctx) LazyData(Source, Value);
2416  return Value;
2417}
2418
2419#endif
2420