ASTContext.h revision 07369dde9d72213bf8a48288cd8b29999af9a40c
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/MangleNumberingContext.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/TemplateName.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/AddressSpaces.h"
29#include "clang/Basic/IdentifierTable.h"
30#include "clang/Basic/LangOptions.h"
31#include "clang/Basic/OperatorKinds.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/VersionTuple.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/IntrusiveRefCntPtr.h"
37#include "llvm/ADT/OwningPtr.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/Support/Allocator.h"
41#include <vector>
42
43namespace llvm {
44  struct fltSemantics;
45}
46
47namespace clang {
48  class FileManager;
49  class AtomicExpr;
50  class ASTRecordLayout;
51  class BlockExpr;
52  class CharUnits;
53  class DiagnosticsEngine;
54  class Expr;
55  class ExternalASTSource;
56  class ASTMutationListener;
57  class IdentifierTable;
58  class MaterializeTemporaryExpr;
59  class SelectorTable;
60  class TargetInfo;
61  class CXXABI;
62  // Decls
63  class MangleContext;
64  class ObjCIvarDecl;
65  class ObjCPropertyDecl;
66  class UnresolvedSetIterator;
67  class UsingDecl;
68  class UsingShadowDecl;
69
70  namespace Builtin { class Context; }
71
72  namespace comments {
73    class FullComment;
74  }
75
76/// \brief Holds long-lived AST nodes (such as types and decls) that can be
77/// referred to throughout the semantic analysis of a file.
78class ASTContext : public RefCountedBase<ASTContext> {
79  ASTContext &this_() { return *this; }
80
81  mutable SmallVector<Type *, 0> Types;
82  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
84  mutable llvm::FoldingSet<PointerType> PointerTypes;
85  mutable llvm::FoldingSet<DecayedType> DecayedTypes;
86  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92  mutable std::vector<VariableArrayType*> VariableArrayTypes;
93  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94  mutable llvm::FoldingSet<DependentSizedExtVectorType>
95    DependentSizedExtVectorTypes;
96  mutable llvm::FoldingSet<VectorType> VectorTypes;
97  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
98  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
99    FunctionProtoTypes;
100  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
101  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
102  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
103  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
104    SubstTemplateTypeParmTypes;
105  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
106    SubstTemplateTypeParmPackTypes;
107  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
108    TemplateSpecializationTypes;
109  mutable llvm::FoldingSet<ParenType> ParenTypes;
110  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
111  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
112  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
113                                     ASTContext&>
114    DependentTemplateSpecializationTypes;
115  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
116  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
117  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
118  mutable llvm::FoldingSet<AutoType> AutoTypes;
119  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
120  llvm::FoldingSet<AttributedType> AttributedTypes;
121
122  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
123  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
124  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
125    SubstTemplateTemplateParms;
126  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
127                                     ASTContext&>
128    SubstTemplateTemplateParmPacks;
129
130  /// \brief The set of nested name specifiers.
131  ///
132  /// This set is managed by the NestedNameSpecifier class.
133  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
134  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
135  friend class NestedNameSpecifier;
136
137  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
138  ///
139  /// This is lazily created.  This is intentionally not serialized.
140  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
141    ASTRecordLayouts;
142  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
143    ObjCLayouts;
144
145  /// \brief A cache from types to size and alignment information.
146  typedef llvm::DenseMap<const Type*,
147                         std::pair<uint64_t, unsigned> > TypeInfoMap;
148  mutable TypeInfoMap MemoizedTypeInfo;
149
150  /// \brief A cache mapping from CXXRecordDecls to key functions.
151  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
152
153  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
154  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
155
156  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
157  /// interface.
158  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
159
160  /// \brief Mapping from __block VarDecls to their copy initialization expr.
161  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
162
163  /// \brief Mapping from class scope functions specialization to their
164  /// template patterns.
165  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
166    ClassScopeSpecializationPattern;
167
168  /// \brief Mapping from materialized temporaries with static storage duration
169  /// that appear in constant initializers to their evaluated values.
170  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
171    MaterializedTemporaryValues;
172
173  /// \brief Representation of a "canonical" template template parameter that
174  /// is used in canonical template names.
175  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176    TemplateTemplateParmDecl *Parm;
177
178  public:
179    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180      : Parm(Parm) { }
181
182    TemplateTemplateParmDecl *getParam() const { return Parm; }
183
184    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185
186    static void Profile(llvm::FoldingSetNodeID &ID,
187                        TemplateTemplateParmDecl *Parm);
188  };
189  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190    CanonTemplateTemplateParms;
191
192  TemplateTemplateParmDecl *
193    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194
195  /// \brief The typedef for the __int128_t type.
196  mutable TypedefDecl *Int128Decl;
197
198  /// \brief The typedef for the __uint128_t type.
199  mutable TypedefDecl *UInt128Decl;
200
201  /// \brief The typedef for the __float128 stub type.
202  mutable TypeDecl *Float128StubDecl;
203
204  /// \brief The typedef for the target specific predefined
205  /// __builtin_va_list type.
206  mutable TypedefDecl *BuiltinVaListDecl;
207
208  /// \brief The typedef for the predefined \c id type.
209  mutable TypedefDecl *ObjCIdDecl;
210
211  /// \brief The typedef for the predefined \c SEL type.
212  mutable TypedefDecl *ObjCSelDecl;
213
214  /// \brief The typedef for the predefined \c Class type.
215  mutable TypedefDecl *ObjCClassDecl;
216
217  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
218  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
219
220  /// \brief The typedef for the predefined 'BOOL' type.
221  mutable TypedefDecl *BOOLDecl;
222
223  // Typedefs which may be provided defining the structure of Objective-C
224  // pseudo-builtins
225  QualType ObjCIdRedefinitionType;
226  QualType ObjCClassRedefinitionType;
227  QualType ObjCSelRedefinitionType;
228
229  QualType ObjCConstantStringType;
230  mutable RecordDecl *CFConstantStringTypeDecl;
231
232  mutable QualType ObjCSuperType;
233
234  QualType ObjCNSStringType;
235
236  /// \brief The typedef declaration for the Objective-C "instancetype" type.
237  TypedefDecl *ObjCInstanceTypeDecl;
238
239  /// \brief The type for the C FILE type.
240  TypeDecl *FILEDecl;
241
242  /// \brief The type for the C jmp_buf type.
243  TypeDecl *jmp_bufDecl;
244
245  /// \brief The type for the C sigjmp_buf type.
246  TypeDecl *sigjmp_bufDecl;
247
248  /// \brief The type for the C ucontext_t type.
249  TypeDecl *ucontext_tDecl;
250
251  /// \brief Type for the Block descriptor for Blocks CodeGen.
252  ///
253  /// Since this is only used for generation of debug info, it is not
254  /// serialized.
255  mutable RecordDecl *BlockDescriptorType;
256
257  /// \brief Type for the Block descriptor for Blocks CodeGen.
258  ///
259  /// Since this is only used for generation of debug info, it is not
260  /// serialized.
261  mutable RecordDecl *BlockDescriptorExtendedType;
262
263  /// \brief Declaration for the CUDA cudaConfigureCall function.
264  FunctionDecl *cudaConfigureCallDecl;
265
266  TypeSourceInfo NullTypeSourceInfo;
267
268  /// \brief Keeps track of all declaration attributes.
269  ///
270  /// Since so few decls have attrs, we keep them in a hash map instead of
271  /// wasting space in the Decl class.
272  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
273
274  /// \brief Keeps track of the static data member templates from which
275  /// static data members of class template specializations were instantiated.
276  ///
277  /// This data structure stores the mapping from instantiations of static
278  /// data members to the static data member representations within the
279  /// class template from which they were instantiated along with the kind
280  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
281  ///
282  /// Given the following example:
283  ///
284  /// \code
285  /// template<typename T>
286  /// struct X {
287  ///   static T value;
288  /// };
289  ///
290  /// template<typename T>
291  ///   T X<T>::value = T(17);
292  ///
293  /// int *x = &X<int>::value;
294  /// \endcode
295  ///
296  /// This mapping will contain an entry that maps from the VarDecl for
297  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
298  /// class template X) and will be marked TSK_ImplicitInstantiation.
299  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
300    InstantiatedFromStaticDataMember;
301
302  /// \brief Keeps track of the declaration from which a UsingDecl was
303  /// created during instantiation.
304  ///
305  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
306  /// or an UnresolvedUsingTypenameDecl.
307  ///
308  /// For example:
309  /// \code
310  /// template<typename T>
311  /// struct A {
312  ///   void f();
313  /// };
314  ///
315  /// template<typename T>
316  /// struct B : A<T> {
317  ///   using A<T>::f;
318  /// };
319  ///
320  /// template struct B<int>;
321  /// \endcode
322  ///
323  /// This mapping will contain an entry that maps from the UsingDecl in
324  /// B<int> to the UnresolvedUsingDecl in B<T>.
325  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
326
327  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
328    InstantiatedFromUsingShadowDecl;
329
330  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
331
332  /// \brief Mapping that stores the methods overridden by a given C++
333  /// member function.
334  ///
335  /// Since most C++ member functions aren't virtual and therefore
336  /// don't override anything, we store the overridden functions in
337  /// this map on the side rather than within the CXXMethodDecl structure.
338  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
339  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
340
341  /// \brief Mapping from each declaration context to its corresponding
342  /// mangling numbering context (used for constructs like lambdas which
343  /// need to be consistently numbered for the mangler).
344  llvm::DenseMap<const DeclContext *, MangleNumberingContext>
345      MangleNumberingContexts;
346
347  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
348  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
349
350  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
351  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
352  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
353  ParameterIndexTable ParamIndices;
354
355  ImportDecl *FirstLocalImport;
356  ImportDecl *LastLocalImport;
357
358  TranslationUnitDecl *TUDecl;
359
360  /// \brief The associated SourceManager object.a
361  SourceManager &SourceMgr;
362
363  /// \brief The language options used to create the AST associated with
364  ///  this ASTContext object.
365  LangOptions &LangOpts;
366
367  /// \brief The allocator used to create AST objects.
368  ///
369  /// AST objects are never destructed; rather, all memory associated with the
370  /// AST objects will be released when the ASTContext itself is destroyed.
371  mutable llvm::BumpPtrAllocator BumpAlloc;
372
373  /// \brief Allocator for partial diagnostics.
374  PartialDiagnostic::StorageAllocator DiagAllocator;
375
376  /// \brief The current C++ ABI.
377  OwningPtr<CXXABI> ABI;
378  CXXABI *createCXXABI(const TargetInfo &T);
379
380  /// \brief The logical -> physical address space map.
381  const LangAS::Map *AddrSpaceMap;
382
383  friend class ASTDeclReader;
384  friend class ASTReader;
385  friend class ASTWriter;
386  friend class CXXRecordDecl;
387
388  const TargetInfo *Target;
389  clang::PrintingPolicy PrintingPolicy;
390
391public:
392  IdentifierTable &Idents;
393  SelectorTable &Selectors;
394  Builtin::Context &BuiltinInfo;
395  mutable DeclarationNameTable DeclarationNames;
396  OwningPtr<ExternalASTSource> ExternalSource;
397  ASTMutationListener *Listener;
398
399  /// \brief Contains parents of a node.
400  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
401
402  /// \brief Maps from a node to its parents.
403  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
404
405  /// \brief Returns the parents of the given node.
406  ///
407  /// Note that this will lazily compute the parents of all nodes
408  /// and store them for later retrieval. Thus, the first call is O(n)
409  /// in the number of AST nodes.
410  ///
411  /// Caveats and FIXMEs:
412  /// Calculating the parent map over all AST nodes will need to load the
413  /// full AST. This can be undesirable in the case where the full AST is
414  /// expensive to create (for example, when using precompiled header
415  /// preambles). Thus, there are good opportunities for optimization here.
416  /// One idea is to walk the given node downwards, looking for references
417  /// to declaration contexts - once a declaration context is found, compute
418  /// the parent map for the declaration context; if that can satisfy the
419  /// request, loading the whole AST can be avoided. Note that this is made
420  /// more complex by statements in templates having multiple parents - those
421  /// problems can be solved by building closure over the templated parts of
422  /// the AST, which also avoids touching large parts of the AST.
423  /// Additionally, we will want to add an interface to already give a hint
424  /// where to search for the parents, for example when looking at a statement
425  /// inside a certain function.
426  ///
427  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
428  /// NestedNameSpecifier or NestedNameSpecifierLoc.
429  template <typename NodeT>
430  ParentVector getParents(const NodeT &Node) {
431    return getParents(ast_type_traits::DynTypedNode::create(Node));
432  }
433
434  ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
435
436  const clang::PrintingPolicy &getPrintingPolicy() const {
437    return PrintingPolicy;
438  }
439
440  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
441    PrintingPolicy = Policy;
442  }
443
444  SourceManager& getSourceManager() { return SourceMgr; }
445  const SourceManager& getSourceManager() const { return SourceMgr; }
446
447  llvm::BumpPtrAllocator &getAllocator() const {
448    return BumpAlloc;
449  }
450
451  void *Allocate(size_t Size, unsigned Align = 8) const {
452    return BumpAlloc.Allocate(Size, Align);
453  }
454  void Deallocate(void *Ptr) const { }
455
456  /// Return the total amount of physical memory allocated for representing
457  /// AST nodes and type information.
458  size_t getASTAllocatedMemory() const {
459    return BumpAlloc.getTotalMemory();
460  }
461  /// Return the total memory used for various side tables.
462  size_t getSideTableAllocatedMemory() const;
463
464  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
465    return DiagAllocator;
466  }
467
468  const TargetInfo &getTargetInfo() const { return *Target; }
469
470  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
471
472  const LangOptions& getLangOpts() const { return LangOpts; }
473
474  DiagnosticsEngine &getDiagnostics() const;
475
476  FullSourceLoc getFullLoc(SourceLocation Loc) const {
477    return FullSourceLoc(Loc,SourceMgr);
478  }
479
480  /// \brief All comments in this translation unit.
481  RawCommentList Comments;
482
483  /// \brief True if comments are already loaded from ExternalASTSource.
484  mutable bool CommentsLoaded;
485
486  class RawCommentAndCacheFlags {
487  public:
488    enum Kind {
489      /// We searched for a comment attached to the particular declaration, but
490      /// didn't find any.
491      ///
492      /// getRaw() == 0.
493      NoCommentInDecl = 0,
494
495      /// We have found a comment attached to this particular declaration.
496      ///
497      /// getRaw() != 0.
498      FromDecl,
499
500      /// This declaration does not have an attached comment, and we have
501      /// searched the redeclaration chain.
502      ///
503      /// If getRaw() == 0, the whole redeclaration chain does not have any
504      /// comments.
505      ///
506      /// If getRaw() != 0, it is a comment propagated from other
507      /// redeclaration.
508      FromRedecl
509    };
510
511    Kind getKind() const LLVM_READONLY {
512      return Data.getInt();
513    }
514
515    void setKind(Kind K) {
516      Data.setInt(K);
517    }
518
519    const RawComment *getRaw() const LLVM_READONLY {
520      return Data.getPointer();
521    }
522
523    void setRaw(const RawComment *RC) {
524      Data.setPointer(RC);
525    }
526
527    const Decl *getOriginalDecl() const LLVM_READONLY {
528      return OriginalDecl;
529    }
530
531    void setOriginalDecl(const Decl *Orig) {
532      OriginalDecl = Orig;
533    }
534
535  private:
536    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
537    const Decl *OriginalDecl;
538  };
539
540  /// \brief Mapping from declarations to comments attached to any
541  /// redeclaration.
542  ///
543  /// Raw comments are owned by Comments list.  This mapping is populated
544  /// lazily.
545  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
546
547  /// \brief Mapping from declarations to parsed comments attached to any
548  /// redeclaration.
549  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
550
551  /// \brief Return the documentation comment attached to a given declaration,
552  /// without looking into cache.
553  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
554
555public:
556  RawCommentList &getRawCommentList() {
557    return Comments;
558  }
559
560  void addComment(const RawComment &RC) {
561    assert(LangOpts.RetainCommentsFromSystemHeaders ||
562           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
563    Comments.addComment(RC, BumpAlloc);
564  }
565
566  /// \brief Return the documentation comment attached to a given declaration.
567  /// Returns NULL if no comment is attached.
568  ///
569  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
570  /// the comment, if the comment we found comes from a redeclaration.
571  const RawComment *getRawCommentForAnyRedecl(
572                                      const Decl *D,
573                                      const Decl **OriginalDecl = NULL) const;
574
575  /// Return parsed documentation comment attached to a given declaration.
576  /// Returns NULL if no comment is attached.
577  ///
578  /// \param PP the Preprocessor used with this TU.  Could be NULL if
579  /// preprocessor is not available.
580  comments::FullComment *getCommentForDecl(const Decl *D,
581                                           const Preprocessor *PP) const;
582
583  /// Return parsed documentation comment attached to a given declaration.
584  /// Returns NULL if no comment is attached. Does not look at any
585  /// redeclarations of the declaration.
586  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
587
588  comments::FullComment *cloneFullComment(comments::FullComment *FC,
589                                         const Decl *D) const;
590
591private:
592  mutable comments::CommandTraits CommentCommandTraits;
593
594public:
595  comments::CommandTraits &getCommentCommandTraits() const {
596    return CommentCommandTraits;
597  }
598
599  /// \brief Retrieve the attributes for the given declaration.
600  AttrVec& getDeclAttrs(const Decl *D);
601
602  /// \brief Erase the attributes corresponding to the given declaration.
603  void eraseDeclAttrs(const Decl *D);
604
605  /// \brief If this variable is an instantiated static data member of a
606  /// class template specialization, returns the templated static data member
607  /// from which it was instantiated.
608  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
609                                                           const VarDecl *Var);
610
611  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
612
613  void setClassScopeSpecializationPattern(FunctionDecl *FD,
614                                          FunctionDecl *Pattern);
615
616  /// \brief Note that the static data member \p Inst is an instantiation of
617  /// the static data member template \p Tmpl of a class template.
618  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
619                                           TemplateSpecializationKind TSK,
620                        SourceLocation PointOfInstantiation = SourceLocation());
621
622  /// \brief If the given using decl \p Inst is an instantiation of a
623  /// (possibly unresolved) using decl from a template instantiation,
624  /// return it.
625  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
626
627  /// \brief Remember that the using decl \p Inst is an instantiation
628  /// of the using decl \p Pattern of a class template.
629  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
630
631  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
632                                          UsingShadowDecl *Pattern);
633  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
634
635  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
636
637  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
638
639  // Access to the set of methods overridden by the given C++ method.
640  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
641  overridden_cxx_method_iterator
642  overridden_methods_begin(const CXXMethodDecl *Method) const;
643
644  overridden_cxx_method_iterator
645  overridden_methods_end(const CXXMethodDecl *Method) const;
646
647  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
648
649  /// \brief Note that the given C++ \p Method overrides the given \p
650  /// Overridden method.
651  void addOverriddenMethod(const CXXMethodDecl *Method,
652                           const CXXMethodDecl *Overridden);
653
654  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
655  ///
656  /// An ObjC method is considered to override any method in the class's
657  /// base classes, its protocols, or its categories' protocols, that has
658  /// the same selector and is of the same kind (class or instance).
659  /// A method in an implementation is not considered as overriding the same
660  /// method in the interface or its categories.
661  void getOverriddenMethods(
662                        const NamedDecl *Method,
663                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
664
665  /// \brief Notify the AST context that a new import declaration has been
666  /// parsed or implicitly created within this translation unit.
667  void addedLocalImportDecl(ImportDecl *Import);
668
669  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
670    return Import->NextLocalImport;
671  }
672
673  /// \brief Iterator that visits import declarations.
674  class import_iterator {
675    ImportDecl *Import;
676
677  public:
678    typedef ImportDecl               *value_type;
679    typedef ImportDecl               *reference;
680    typedef ImportDecl               *pointer;
681    typedef int                       difference_type;
682    typedef std::forward_iterator_tag iterator_category;
683
684    import_iterator() : Import() { }
685    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
686
687    reference operator*() const { return Import; }
688    pointer operator->() const { return Import; }
689
690    import_iterator &operator++() {
691      Import = ASTContext::getNextLocalImport(Import);
692      return *this;
693    }
694
695    import_iterator operator++(int) {
696      import_iterator Other(*this);
697      ++(*this);
698      return Other;
699    }
700
701    friend bool operator==(import_iterator X, import_iterator Y) {
702      return X.Import == Y.Import;
703    }
704
705    friend bool operator!=(import_iterator X, import_iterator Y) {
706      return X.Import != Y.Import;
707    }
708  };
709
710  import_iterator local_import_begin() const {
711    return import_iterator(FirstLocalImport);
712  }
713  import_iterator local_import_end() const { return import_iterator(); }
714
715  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
716
717
718  // Builtin Types.
719  CanQualType VoidTy;
720  CanQualType BoolTy;
721  CanQualType CharTy;
722  CanQualType WCharTy;  // [C++ 3.9.1p5].
723  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
724  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
725  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
726  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
727  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
728  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
729  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
730  CanQualType FloatTy, DoubleTy, LongDoubleTy;
731  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
732  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
733  CanQualType VoidPtrTy, NullPtrTy;
734  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
735  CanQualType BuiltinFnTy;
736  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
737  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
738  CanQualType ObjCBuiltinBoolTy;
739  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
740  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
741  CanQualType OCLImage3dTy;
742  CanQualType OCLSamplerTy, OCLEventTy;
743
744  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
745  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
746  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
747
748  // Type used to help define __builtin_va_list for some targets.
749  // The type is built when constructing 'BuiltinVaListDecl'.
750  mutable QualType VaListTagTy;
751
752  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
753             IdentifierTable &idents, SelectorTable &sels,
754             Builtin::Context &builtins,
755             unsigned size_reserve,
756             bool DelayInitialization = false);
757
758  ~ASTContext();
759
760  /// \brief Attach an external AST source to the AST context.
761  ///
762  /// The external AST source provides the ability to load parts of
763  /// the abstract syntax tree as needed from some external storage,
764  /// e.g., a precompiled header.
765  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
766
767  /// \brief Retrieve a pointer to the external AST source associated
768  /// with this AST context, if any.
769  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
770
771  /// \brief Attach an AST mutation listener to the AST context.
772  ///
773  /// The AST mutation listener provides the ability to track modifications to
774  /// the abstract syntax tree entities committed after they were initially
775  /// created.
776  void setASTMutationListener(ASTMutationListener *Listener) {
777    this->Listener = Listener;
778  }
779
780  /// \brief Retrieve a pointer to the AST mutation listener associated
781  /// with this AST context, if any.
782  ASTMutationListener *getASTMutationListener() const { return Listener; }
783
784  void PrintStats() const;
785  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
786
787  /// \brief Retrieve the declaration for the 128-bit signed integer type.
788  TypedefDecl *getInt128Decl() const;
789
790  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
791  TypedefDecl *getUInt128Decl() const;
792
793  /// \brief Retrieve the declaration for a 128-bit float stub type.
794  TypeDecl *getFloat128StubType() const;
795
796  //===--------------------------------------------------------------------===//
797  //                           Type Constructors
798  //===--------------------------------------------------------------------===//
799
800private:
801  /// \brief Return a type with extended qualifiers.
802  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
803
804  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
805
806public:
807  /// \brief Return the uniqued reference to the type for an address space
808  /// qualified type with the specified type and address space.
809  ///
810  /// The resulting type has a union of the qualifiers from T and the address
811  /// space. If T already has an address space specifier, it is silently
812  /// replaced.
813  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
814
815  /// \brief Return the uniqued reference to the type for an Objective-C
816  /// gc-qualified type.
817  ///
818  /// The retulting type has a union of the qualifiers from T and the gc
819  /// attribute.
820  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
821
822  /// \brief Return the uniqued reference to the type for a \c restrict
823  /// qualified type.
824  ///
825  /// The resulting type has a union of the qualifiers from \p T and
826  /// \c restrict.
827  QualType getRestrictType(QualType T) const {
828    return T.withFastQualifiers(Qualifiers::Restrict);
829  }
830
831  /// \brief Return the uniqued reference to the type for a \c volatile
832  /// qualified type.
833  ///
834  /// The resulting type has a union of the qualifiers from \p T and
835  /// \c volatile.
836  QualType getVolatileType(QualType T) const {
837    return T.withFastQualifiers(Qualifiers::Volatile);
838  }
839
840  /// \brief Return the uniqued reference to the type for a \c const
841  /// qualified type.
842  ///
843  /// The resulting type has a union of the qualifiers from \p T and \c const.
844  ///
845  /// It can be reasonably expected that this will always be equivalent to
846  /// calling T.withConst().
847  QualType getConstType(QualType T) const { return T.withConst(); }
848
849  /// \brief Change the ExtInfo on a function type.
850  const FunctionType *adjustFunctionType(const FunctionType *Fn,
851                                         FunctionType::ExtInfo EInfo);
852
853  /// \brief Change the result type of a function type once it is deduced.
854  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
855
856  /// \brief Return the uniqued reference to the type for a complex
857  /// number with the specified element type.
858  QualType getComplexType(QualType T) const;
859  CanQualType getComplexType(CanQualType T) const {
860    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
861  }
862
863  /// \brief Return the uniqued reference to the type for a pointer to
864  /// the specified type.
865  QualType getPointerType(QualType T) const;
866  CanQualType getPointerType(CanQualType T) const {
867    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
868  }
869
870  /// \brief Return the uniqued reference to the decayed version of the given
871  /// type.  Can only be called on array and function types which decay to
872  /// pointer types.
873  QualType getDecayedType(QualType T) const;
874  CanQualType getDecayedType(CanQualType T) const {
875    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
876  }
877
878  /// \brief Return the uniqued reference to the atomic type for the specified
879  /// type.
880  QualType getAtomicType(QualType T) const;
881
882  /// \brief Return the uniqued reference to the type for a block of the
883  /// specified type.
884  QualType getBlockPointerType(QualType T) const;
885
886  /// Gets the struct used to keep track of the descriptor for pointer to
887  /// blocks.
888  QualType getBlockDescriptorType() const;
889
890  /// Gets the struct used to keep track of the extended descriptor for
891  /// pointer to blocks.
892  QualType getBlockDescriptorExtendedType() const;
893
894  void setcudaConfigureCallDecl(FunctionDecl *FD) {
895    cudaConfigureCallDecl = FD;
896  }
897  FunctionDecl *getcudaConfigureCallDecl() {
898    return cudaConfigureCallDecl;
899  }
900
901  /// Returns true iff we need copy/dispose helpers for the given type.
902  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
903
904
905  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
906  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
907  /// has extended lifetime.
908  bool getByrefLifetime(QualType Ty,
909                        Qualifiers::ObjCLifetime &Lifetime,
910                        bool &HasByrefExtendedLayout) const;
911
912  /// \brief Return the uniqued reference to the type for an lvalue reference
913  /// to the specified type.
914  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
915    const;
916
917  /// \brief Return the uniqued reference to the type for an rvalue reference
918  /// to the specified type.
919  QualType getRValueReferenceType(QualType T) const;
920
921  /// \brief Return the uniqued reference to the type for a member pointer to
922  /// the specified type in the specified class.
923  ///
924  /// The class \p Cls is a \c Type because it could be a dependent name.
925  QualType getMemberPointerType(QualType T, const Type *Cls) const;
926
927  /// \brief Return a non-unique reference to the type for a variable array of
928  /// the specified element type.
929  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
930                                ArrayType::ArraySizeModifier ASM,
931                                unsigned IndexTypeQuals,
932                                SourceRange Brackets) const;
933
934  /// \brief Return a non-unique reference to the type for a dependently-sized
935  /// array of the specified element type.
936  ///
937  /// FIXME: We will need these to be uniqued, or at least comparable, at some
938  /// point.
939  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
940                                      ArrayType::ArraySizeModifier ASM,
941                                      unsigned IndexTypeQuals,
942                                      SourceRange Brackets) const;
943
944  /// \brief Return a unique reference to the type for an incomplete array of
945  /// the specified element type.
946  QualType getIncompleteArrayType(QualType EltTy,
947                                  ArrayType::ArraySizeModifier ASM,
948                                  unsigned IndexTypeQuals) const;
949
950  /// \brief Return the unique reference to the type for a constant array of
951  /// the specified element type.
952  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
953                                ArrayType::ArraySizeModifier ASM,
954                                unsigned IndexTypeQuals) const;
955
956  /// \brief Returns a vla type where known sizes are replaced with [*].
957  QualType getVariableArrayDecayedType(QualType Ty) const;
958
959  /// \brief Return the unique reference to a vector type of the specified
960  /// element type and size.
961  ///
962  /// \pre \p VectorType must be a built-in type.
963  QualType getVectorType(QualType VectorType, unsigned NumElts,
964                         VectorType::VectorKind VecKind) const;
965
966  /// \brief Return the unique reference to an extended vector type
967  /// of the specified element type and size.
968  ///
969  /// \pre \p VectorType must be a built-in type.
970  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
971
972  /// \pre Return a non-unique reference to the type for a dependently-sized
973  /// vector of the specified element type.
974  ///
975  /// FIXME: We will need these to be uniqued, or at least comparable, at some
976  /// point.
977  QualType getDependentSizedExtVectorType(QualType VectorType,
978                                          Expr *SizeExpr,
979                                          SourceLocation AttrLoc) const;
980
981  /// \brief Return a K&R style C function type like 'int()'.
982  QualType getFunctionNoProtoType(QualType ResultTy,
983                                  const FunctionType::ExtInfo &Info) const;
984
985  QualType getFunctionNoProtoType(QualType ResultTy) const {
986    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
987  }
988
989  /// \brief Return a normal function type with a typed argument list.
990  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
991                           const FunctionProtoType::ExtProtoInfo &EPI) const;
992
993  /// \brief Return the unique reference to the type for the specified type
994  /// declaration.
995  QualType getTypeDeclType(const TypeDecl *Decl,
996                           const TypeDecl *PrevDecl = 0) const {
997    assert(Decl && "Passed null for Decl param");
998    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
999
1000    if (PrevDecl) {
1001      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1002      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1003      return QualType(PrevDecl->TypeForDecl, 0);
1004    }
1005
1006    return getTypeDeclTypeSlow(Decl);
1007  }
1008
1009  /// \brief Return the unique reference to the type for the specified
1010  /// typedef-name decl.
1011  QualType getTypedefType(const TypedefNameDecl *Decl,
1012                          QualType Canon = QualType()) const;
1013
1014  QualType getRecordType(const RecordDecl *Decl) const;
1015
1016  QualType getEnumType(const EnumDecl *Decl) const;
1017
1018  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1019
1020  QualType getAttributedType(AttributedType::Kind attrKind,
1021                             QualType modifiedType,
1022                             QualType equivalentType);
1023
1024  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1025                                        QualType Replacement) const;
1026  QualType getSubstTemplateTypeParmPackType(
1027                                          const TemplateTypeParmType *Replaced,
1028                                            const TemplateArgument &ArgPack);
1029
1030  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1031                                   bool ParameterPack,
1032                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1033
1034  QualType getTemplateSpecializationType(TemplateName T,
1035                                         const TemplateArgument *Args,
1036                                         unsigned NumArgs,
1037                                         QualType Canon = QualType()) const;
1038
1039  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1040                                                  const TemplateArgument *Args,
1041                                                  unsigned NumArgs) const;
1042
1043  QualType getTemplateSpecializationType(TemplateName T,
1044                                         const TemplateArgumentListInfo &Args,
1045                                         QualType Canon = QualType()) const;
1046
1047  TypeSourceInfo *
1048  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1049                                    const TemplateArgumentListInfo &Args,
1050                                    QualType Canon = QualType()) const;
1051
1052  QualType getParenType(QualType NamedType) const;
1053
1054  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1055                             NestedNameSpecifier *NNS,
1056                             QualType NamedType) const;
1057  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1058                                NestedNameSpecifier *NNS,
1059                                const IdentifierInfo *Name,
1060                                QualType Canon = QualType()) const;
1061
1062  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1063                                                  NestedNameSpecifier *NNS,
1064                                                  const IdentifierInfo *Name,
1065                                    const TemplateArgumentListInfo &Args) const;
1066  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1067                                                  NestedNameSpecifier *NNS,
1068                                                  const IdentifierInfo *Name,
1069                                                  unsigned NumArgs,
1070                                            const TemplateArgument *Args) const;
1071
1072  QualType getPackExpansionType(QualType Pattern,
1073                                Optional<unsigned> NumExpansions);
1074
1075  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1076                                ObjCInterfaceDecl *PrevDecl = 0) const;
1077
1078  QualType getObjCObjectType(QualType Base,
1079                             ObjCProtocolDecl * const *Protocols,
1080                             unsigned NumProtocols) const;
1081
1082  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1083  QualType getObjCObjectPointerType(QualType OIT) const;
1084
1085  /// \brief GCC extension.
1086  QualType getTypeOfExprType(Expr *e) const;
1087  QualType getTypeOfType(QualType t) const;
1088
1089  /// \brief C++11 decltype.
1090  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1091
1092  /// \brief Unary type transforms
1093  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1094                                 UnaryTransformType::UTTKind UKind) const;
1095
1096  /// \brief C++11 deduced auto type.
1097  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1098                       bool IsDependent = false) const;
1099
1100  /// \brief C++11 deduction pattern for 'auto' type.
1101  QualType getAutoDeductType() const;
1102
1103  /// \brief C++11 deduction pattern for 'auto &&' type.
1104  QualType getAutoRRefDeductType() const;
1105
1106  /// \brief Return the unique reference to the type for the specified TagDecl
1107  /// (struct/union/class/enum) decl.
1108  QualType getTagDeclType(const TagDecl *Decl) const;
1109
1110  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1111  /// <stddef.h>.
1112  ///
1113  /// The sizeof operator requires this (C99 6.5.3.4p4).
1114  CanQualType getSizeType() const;
1115
1116  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1117  /// <stdint.h>.
1118  CanQualType getIntMaxType() const;
1119
1120  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1121  /// <stdint.h>.
1122  CanQualType getUIntMaxType() const;
1123
1124  /// \brief Return the unique wchar_t type available in C++ (and available as
1125  /// __wchar_t as a Microsoft extension).
1126  QualType getWCharType() const { return WCharTy; }
1127
1128  /// \brief Return the type of wide characters. In C++, this returns the
1129  /// unique wchar_t type. In C99, this returns a type compatible with the type
1130  /// defined in <stddef.h> as defined by the target.
1131  QualType getWideCharType() const { return WideCharTy; }
1132
1133  /// \brief Return the type of "signed wchar_t".
1134  ///
1135  /// Used when in C++, as a GCC extension.
1136  QualType getSignedWCharType() const;
1137
1138  /// \brief Return the type of "unsigned wchar_t".
1139  ///
1140  /// Used when in C++, as a GCC extension.
1141  QualType getUnsignedWCharType() const;
1142
1143  /// \brief In C99, this returns a type compatible with the type
1144  /// defined in <stddef.h> as defined by the target.
1145  QualType getWIntType() const { return WIntTy; }
1146
1147  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1148  /// as defined by the target.
1149  QualType getIntPtrType() const;
1150
1151  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1152  /// as defined by the target.
1153  QualType getUIntPtrType() const;
1154
1155  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1156  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1157  QualType getPointerDiffType() const;
1158
1159  /// \brief Return the unique type for "pid_t" defined in
1160  /// <sys/types.h>. We need this to compute the correct type for vfork().
1161  QualType getProcessIDType() const;
1162
1163  /// \brief Return the C structure type used to represent constant CFStrings.
1164  QualType getCFConstantStringType() const;
1165
1166  /// \brief Returns the C struct type for objc_super
1167  QualType getObjCSuperType() const;
1168  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1169
1170  /// Get the structure type used to representation CFStrings, or NULL
1171  /// if it hasn't yet been built.
1172  QualType getRawCFConstantStringType() const {
1173    if (CFConstantStringTypeDecl)
1174      return getTagDeclType(CFConstantStringTypeDecl);
1175    return QualType();
1176  }
1177  void setCFConstantStringType(QualType T);
1178
1179  // This setter/getter represents the ObjC type for an NSConstantString.
1180  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1181  QualType getObjCConstantStringInterface() const {
1182    return ObjCConstantStringType;
1183  }
1184
1185  QualType getObjCNSStringType() const {
1186    return ObjCNSStringType;
1187  }
1188
1189  void setObjCNSStringType(QualType T) {
1190    ObjCNSStringType = T;
1191  }
1192
1193  /// \brief Retrieve the type that \c id has been defined to, which may be
1194  /// different from the built-in \c id if \c id has been typedef'd.
1195  QualType getObjCIdRedefinitionType() const {
1196    if (ObjCIdRedefinitionType.isNull())
1197      return getObjCIdType();
1198    return ObjCIdRedefinitionType;
1199  }
1200
1201  /// \brief Set the user-written type that redefines \c id.
1202  void setObjCIdRedefinitionType(QualType RedefType) {
1203    ObjCIdRedefinitionType = RedefType;
1204  }
1205
1206  /// \brief Retrieve the type that \c Class has been defined to, which may be
1207  /// different from the built-in \c Class if \c Class has been typedef'd.
1208  QualType getObjCClassRedefinitionType() const {
1209    if (ObjCClassRedefinitionType.isNull())
1210      return getObjCClassType();
1211    return ObjCClassRedefinitionType;
1212  }
1213
1214  /// \brief Set the user-written type that redefines 'SEL'.
1215  void setObjCClassRedefinitionType(QualType RedefType) {
1216    ObjCClassRedefinitionType = RedefType;
1217  }
1218
1219  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1220  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1221  QualType getObjCSelRedefinitionType() const {
1222    if (ObjCSelRedefinitionType.isNull())
1223      return getObjCSelType();
1224    return ObjCSelRedefinitionType;
1225  }
1226
1227
1228  /// \brief Set the user-written type that redefines 'SEL'.
1229  void setObjCSelRedefinitionType(QualType RedefType) {
1230    ObjCSelRedefinitionType = RedefType;
1231  }
1232
1233  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1234  /// otherwise, returns a NULL type;
1235  QualType getObjCInstanceType() {
1236    return getTypeDeclType(getObjCInstanceTypeDecl());
1237  }
1238
1239  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1240  /// "instancetype" type.
1241  TypedefDecl *getObjCInstanceTypeDecl();
1242
1243  /// \brief Set the type for the C FILE type.
1244  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1245
1246  /// \brief Retrieve the C FILE type.
1247  QualType getFILEType() const {
1248    if (FILEDecl)
1249      return getTypeDeclType(FILEDecl);
1250    return QualType();
1251  }
1252
1253  /// \brief Set the type for the C jmp_buf type.
1254  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1255    this->jmp_bufDecl = jmp_bufDecl;
1256  }
1257
1258  /// \brief Retrieve the C jmp_buf type.
1259  QualType getjmp_bufType() const {
1260    if (jmp_bufDecl)
1261      return getTypeDeclType(jmp_bufDecl);
1262    return QualType();
1263  }
1264
1265  /// \brief Set the type for the C sigjmp_buf type.
1266  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1267    this->sigjmp_bufDecl = sigjmp_bufDecl;
1268  }
1269
1270  /// \brief Retrieve the C sigjmp_buf type.
1271  QualType getsigjmp_bufType() const {
1272    if (sigjmp_bufDecl)
1273      return getTypeDeclType(sigjmp_bufDecl);
1274    return QualType();
1275  }
1276
1277  /// \brief Set the type for the C ucontext_t type.
1278  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1279    this->ucontext_tDecl = ucontext_tDecl;
1280  }
1281
1282  /// \brief Retrieve the C ucontext_t type.
1283  QualType getucontext_tType() const {
1284    if (ucontext_tDecl)
1285      return getTypeDeclType(ucontext_tDecl);
1286    return QualType();
1287  }
1288
1289  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1290  QualType getLogicalOperationType() const {
1291    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1292  }
1293
1294  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1295  /// \p S.
1296  ///
1297  /// If \p Field is specified then record field names are also encoded.
1298  void getObjCEncodingForType(QualType T, std::string &S,
1299                              const FieldDecl *Field=0) const;
1300
1301  void getLegacyIntegralTypeEncoding(QualType &t) const;
1302
1303  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1304  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1305                                       std::string &S) const;
1306
1307  /// \brief Emit the encoded type for the function \p Decl into \p S.
1308  ///
1309  /// This is in the same format as Objective-C method encodings.
1310  ///
1311  /// \returns true if an error occurred (e.g., because one of the parameter
1312  /// types is incomplete), false otherwise.
1313  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1314
1315  /// \brief Emit the encoded type for the method declaration \p Decl into
1316  /// \p S.
1317  ///
1318  /// \returns true if an error occurred (e.g., because one of the parameter
1319  /// types is incomplete), false otherwise.
1320  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1321                                    bool Extended = false)
1322    const;
1323
1324  /// \brief Return the encoded type for this block declaration.
1325  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1326
1327  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1328  /// this method declaration. If non-NULL, Container must be either
1329  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1330  /// only be NULL when getting encodings for protocol properties.
1331  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1332                                      const Decl *Container,
1333                                      std::string &S) const;
1334
1335  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1336                                      ObjCProtocolDecl *rProto) const;
1337
1338  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1339  /// in characters.
1340  CharUnits getObjCEncodingTypeSize(QualType T) const;
1341
1342  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1343  /// in Objective-C.
1344  TypedefDecl *getObjCIdDecl() const;
1345
1346  /// \brief Represents the Objective-CC \c id type.
1347  ///
1348  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1349  /// pointer type, a pointer to a struct.
1350  QualType getObjCIdType() const {
1351    return getTypeDeclType(getObjCIdDecl());
1352  }
1353
1354  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1355  /// in Objective-C.
1356  TypedefDecl *getObjCSelDecl() const;
1357
1358  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1359  /// 'SEL' type.
1360  QualType getObjCSelType() const {
1361    return getTypeDeclType(getObjCSelDecl());
1362  }
1363
1364  /// \brief Retrieve the typedef declaration corresponding to the predefined
1365  /// Objective-C 'Class' type.
1366  TypedefDecl *getObjCClassDecl() const;
1367
1368  /// \brief Represents the Objective-C \c Class type.
1369  ///
1370  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1371  /// pointer type, a pointer to a struct.
1372  QualType getObjCClassType() const {
1373    return getTypeDeclType(getObjCClassDecl());
1374  }
1375
1376  /// \brief Retrieve the Objective-C class declaration corresponding to
1377  /// the predefined \c Protocol class.
1378  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1379
1380  /// \brief Retrieve declaration of 'BOOL' typedef
1381  TypedefDecl *getBOOLDecl() const {
1382    return BOOLDecl;
1383  }
1384
1385  /// \brief Save declaration of 'BOOL' typedef
1386  void setBOOLDecl(TypedefDecl *TD) {
1387    BOOLDecl = TD;
1388  }
1389
1390  /// \brief type of 'BOOL' type.
1391  QualType getBOOLType() const {
1392    return getTypeDeclType(getBOOLDecl());
1393  }
1394
1395  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1396  QualType getObjCProtoType() const {
1397    return getObjCInterfaceType(getObjCProtocolDecl());
1398  }
1399
1400  /// \brief Retrieve the C type declaration corresponding to the predefined
1401  /// \c __builtin_va_list type.
1402  TypedefDecl *getBuiltinVaListDecl() const;
1403
1404  /// \brief Retrieve the type of the \c __builtin_va_list type.
1405  QualType getBuiltinVaListType() const {
1406    return getTypeDeclType(getBuiltinVaListDecl());
1407  }
1408
1409  /// \brief Retrieve the C type declaration corresponding to the predefined
1410  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1411  /// for some targets.
1412  QualType getVaListTagType() const;
1413
1414  /// \brief Return a type with additional \c const, \c volatile, or
1415  /// \c restrict qualifiers.
1416  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1417    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1418  }
1419
1420  /// \brief Un-split a SplitQualType.
1421  QualType getQualifiedType(SplitQualType split) const {
1422    return getQualifiedType(split.Ty, split.Quals);
1423  }
1424
1425  /// \brief Return a type with additional qualifiers.
1426  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1427    if (!Qs.hasNonFastQualifiers())
1428      return T.withFastQualifiers(Qs.getFastQualifiers());
1429    QualifierCollector Qc(Qs);
1430    const Type *Ptr = Qc.strip(T);
1431    return getExtQualType(Ptr, Qc);
1432  }
1433
1434  /// \brief Return a type with additional qualifiers.
1435  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1436    if (!Qs.hasNonFastQualifiers())
1437      return QualType(T, Qs.getFastQualifiers());
1438    return getExtQualType(T, Qs);
1439  }
1440
1441  /// \brief Return a type with the given lifetime qualifier.
1442  ///
1443  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1444  QualType getLifetimeQualifiedType(QualType type,
1445                                    Qualifiers::ObjCLifetime lifetime) {
1446    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1447    assert(lifetime != Qualifiers::OCL_None);
1448
1449    Qualifiers qs;
1450    qs.addObjCLifetime(lifetime);
1451    return getQualifiedType(type, qs);
1452  }
1453
1454  /// getUnqualifiedObjCPointerType - Returns version of
1455  /// Objective-C pointer type with lifetime qualifier removed.
1456  QualType getUnqualifiedObjCPointerType(QualType type) const {
1457    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1458        !type.getQualifiers().hasObjCLifetime())
1459      return type;
1460    Qualifiers Qs = type.getQualifiers();
1461    Qs.removeObjCLifetime();
1462    return getQualifiedType(type.getUnqualifiedType(), Qs);
1463  }
1464
1465  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1466                                         SourceLocation NameLoc) const;
1467
1468  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1469                                         UnresolvedSetIterator End) const;
1470
1471  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1472                                        bool TemplateKeyword,
1473                                        TemplateDecl *Template) const;
1474
1475  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1476                                        const IdentifierInfo *Name) const;
1477  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1478                                        OverloadedOperatorKind Operator) const;
1479  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1480                                            TemplateName replacement) const;
1481  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1482                                        const TemplateArgument &ArgPack) const;
1483
1484  enum GetBuiltinTypeError {
1485    GE_None,              ///< No error
1486    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1487    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1488    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1489  };
1490
1491  /// \brief Return the type for the specified builtin.
1492  ///
1493  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1494  /// arguments to the builtin that are required to be integer constant
1495  /// expressions.
1496  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1497                          unsigned *IntegerConstantArgs = 0) const;
1498
1499private:
1500  CanQualType getFromTargetType(unsigned Type) const;
1501  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1502
1503  //===--------------------------------------------------------------------===//
1504  //                         Type Predicates.
1505  //===--------------------------------------------------------------------===//
1506
1507public:
1508  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1509  /// collection attributes.
1510  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1511
1512  /// \brief Return true if the given vector types are of the same unqualified
1513  /// type or if they are equivalent to the same GCC vector type.
1514  ///
1515  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1516  /// types.
1517  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1518
1519  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1520  /// attribute set.
1521  static bool isObjCNSObjectType(QualType Ty) {
1522    return Ty->isObjCNSObjectType();
1523  }
1524
1525  //===--------------------------------------------------------------------===//
1526  //                         Type Sizing and Analysis
1527  //===--------------------------------------------------------------------===//
1528
1529  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1530  /// point type.
1531  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1532
1533  /// \brief Get the size and alignment of the specified complete type in bits.
1534  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1535  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1536    return getTypeInfo(T.getTypePtr());
1537  }
1538
1539  /// \brief Return the size of the specified (complete) type \p T, in bits.
1540  uint64_t getTypeSize(QualType T) const {
1541    return getTypeInfo(T).first;
1542  }
1543  uint64_t getTypeSize(const Type *T) const {
1544    return getTypeInfo(T).first;
1545  }
1546
1547  /// \brief Return the size of the character type, in bits.
1548  uint64_t getCharWidth() const {
1549    return getTypeSize(CharTy);
1550  }
1551
1552  /// \brief Convert a size in bits to a size in characters.
1553  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1554
1555  /// \brief Convert a size in characters to a size in bits.
1556  int64_t toBits(CharUnits CharSize) const;
1557
1558  /// \brief Return the size of the specified (complete) type \p T, in
1559  /// characters.
1560  CharUnits getTypeSizeInChars(QualType T) const;
1561  CharUnits getTypeSizeInChars(const Type *T) const;
1562
1563  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1564  /// bits.
1565  unsigned getTypeAlign(QualType T) const {
1566    return getTypeInfo(T).second;
1567  }
1568  unsigned getTypeAlign(const Type *T) const {
1569    return getTypeInfo(T).second;
1570  }
1571
1572  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1573  /// characters.
1574  CharUnits getTypeAlignInChars(QualType T) const;
1575  CharUnits getTypeAlignInChars(const Type *T) const;
1576
1577  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1578  // type is a record, its data size is returned.
1579  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1580
1581  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1582  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1583
1584  /// \brief Return the "preferred" alignment of the specified type \p T for
1585  /// the current target, in bits.
1586  ///
1587  /// This can be different than the ABI alignment in cases where it is
1588  /// beneficial for performance to overalign a data type.
1589  unsigned getPreferredTypeAlign(const Type *T) const;
1590
1591  /// \brief Return the alignment in bits that should be given to a
1592  /// global variable with type \p T.
1593  unsigned getAlignOfGlobalVar(QualType T) const;
1594
1595  /// \brief Return the alignment in characters that should be given to a
1596  /// global variable with type \p T.
1597  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1598
1599  /// \brief Return a conservative estimate of the alignment of the specified
1600  /// decl \p D.
1601  ///
1602  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1603  /// alignment.
1604  ///
1605  /// If \p RefAsPointee, references are treated like their underlying type
1606  /// (for alignof), else they're treated like pointers (for CodeGen).
1607  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1608
1609  /// \brief Get or compute information about the layout of the specified
1610  /// record (struct/union/class) \p D, which indicates its size and field
1611  /// position information.
1612  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1613
1614  /// \brief Get or compute information about the layout of the specified
1615  /// Objective-C interface.
1616  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1617    const;
1618
1619  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1620                        bool Simple = false) const;
1621
1622  /// \brief Get or compute information about the layout of the specified
1623  /// Objective-C implementation.
1624  ///
1625  /// This may differ from the interface if synthesized ivars are present.
1626  const ASTRecordLayout &
1627  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1628
1629  /// \brief Get our current best idea for the key function of the
1630  /// given record decl, or NULL if there isn't one.
1631  ///
1632  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1633  ///   ...the first non-pure virtual function that is not inline at the
1634  ///   point of class definition.
1635  ///
1636  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1637  /// virtual functions that are defined 'inline', which means that
1638  /// the result of this computation can change.
1639  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1640
1641  /// \brief Observe that the given method cannot be a key function.
1642  /// Checks the key-function cache for the method's class and clears it
1643  /// if matches the given declaration.
1644  ///
1645  /// This is used in ABIs where out-of-line definitions marked
1646  /// inline are not considered to be key functions.
1647  ///
1648  /// \param method should be the declaration from the class definition
1649  void setNonKeyFunction(const CXXMethodDecl *method);
1650
1651  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1652  uint64_t getFieldOffset(const ValueDecl *FD) const;
1653
1654  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1655
1656  MangleContext *createMangleContext();
1657
1658  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1659                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1660
1661  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1662  void CollectInheritedProtocols(const Decl *CDecl,
1663                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1664
1665  //===--------------------------------------------------------------------===//
1666  //                            Type Operators
1667  //===--------------------------------------------------------------------===//
1668
1669  /// \brief Return the canonical (structural) type corresponding to the
1670  /// specified potentially non-canonical type \p T.
1671  ///
1672  /// The non-canonical version of a type may have many "decorated" versions of
1673  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1674  /// returned type is guaranteed to be free of any of these, allowing two
1675  /// canonical types to be compared for exact equality with a simple pointer
1676  /// comparison.
1677  CanQualType getCanonicalType(QualType T) const {
1678    return CanQualType::CreateUnsafe(T.getCanonicalType());
1679  }
1680
1681  const Type *getCanonicalType(const Type *T) const {
1682    return T->getCanonicalTypeInternal().getTypePtr();
1683  }
1684
1685  /// \brief Return the canonical parameter type corresponding to the specific
1686  /// potentially non-canonical one.
1687  ///
1688  /// Qualifiers are stripped off, functions are turned into function
1689  /// pointers, and arrays decay one level into pointers.
1690  CanQualType getCanonicalParamType(QualType T) const;
1691
1692  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1693  bool hasSameType(QualType T1, QualType T2) const {
1694    return getCanonicalType(T1) == getCanonicalType(T2);
1695  }
1696
1697  /// \brief Return this type as a completely-unqualified array type,
1698  /// capturing the qualifiers in \p Quals.
1699  ///
1700  /// This will remove the minimal amount of sugaring from the types, similar
1701  /// to the behavior of QualType::getUnqualifiedType().
1702  ///
1703  /// \param T is the qualified type, which may be an ArrayType
1704  ///
1705  /// \param Quals will receive the full set of qualifiers that were
1706  /// applied to the array.
1707  ///
1708  /// \returns if this is an array type, the completely unqualified array type
1709  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1710  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1711
1712  /// \brief Determine whether the given types are equivalent after
1713  /// cvr-qualifiers have been removed.
1714  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1715    return getCanonicalType(T1).getTypePtr() ==
1716           getCanonicalType(T2).getTypePtr();
1717  }
1718
1719  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1720
1721  /// \brief Retrieves the "canonical" nested name specifier for a
1722  /// given nested name specifier.
1723  ///
1724  /// The canonical nested name specifier is a nested name specifier
1725  /// that uniquely identifies a type or namespace within the type
1726  /// system. For example, given:
1727  ///
1728  /// \code
1729  /// namespace N {
1730  ///   struct S {
1731  ///     template<typename T> struct X { typename T* type; };
1732  ///   };
1733  /// }
1734  ///
1735  /// template<typename T> struct Y {
1736  ///   typename N::S::X<T>::type member;
1737  /// };
1738  /// \endcode
1739  ///
1740  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1741  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1742  /// by declarations in the type system and the canonical type for
1743  /// the template type parameter 'T' is template-param-0-0.
1744  NestedNameSpecifier *
1745  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1746
1747  /// \brief Retrieves the default calling convention to use for
1748  /// C++ instance methods.
1749  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1750
1751  /// \brief Retrieves the canonical representation of the given
1752  /// calling convention.
1753  CallingConv getCanonicalCallConv(CallingConv CC) const;
1754
1755  /// \brief Determines whether two calling conventions name the same
1756  /// calling convention.
1757  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1758    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1759  }
1760
1761  /// \brief Retrieves the "canonical" template name that refers to a
1762  /// given template.
1763  ///
1764  /// The canonical template name is the simplest expression that can
1765  /// be used to refer to a given template. For most templates, this
1766  /// expression is just the template declaration itself. For example,
1767  /// the template std::vector can be referred to via a variety of
1768  /// names---std::vector, \::std::vector, vector (if vector is in
1769  /// scope), etc.---but all of these names map down to the same
1770  /// TemplateDecl, which is used to form the canonical template name.
1771  ///
1772  /// Dependent template names are more interesting. Here, the
1773  /// template name could be something like T::template apply or
1774  /// std::allocator<T>::template rebind, where the nested name
1775  /// specifier itself is dependent. In this case, the canonical
1776  /// template name uses the shortest form of the dependent
1777  /// nested-name-specifier, which itself contains all canonical
1778  /// types, values, and templates.
1779  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1780
1781  /// \brief Determine whether the given template names refer to the same
1782  /// template.
1783  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1784
1785  /// \brief Retrieve the "canonical" template argument.
1786  ///
1787  /// The canonical template argument is the simplest template argument
1788  /// (which may be a type, value, expression, or declaration) that
1789  /// expresses the value of the argument.
1790  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1791    const;
1792
1793  /// Type Query functions.  If the type is an instance of the specified class,
1794  /// return the Type pointer for the underlying maximally pretty type.  This
1795  /// is a member of ASTContext because this may need to do some amount of
1796  /// canonicalization, e.g. to move type qualifiers into the element type.
1797  const ArrayType *getAsArrayType(QualType T) const;
1798  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1799    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1800  }
1801  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1802    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1803  }
1804  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1805    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1806  }
1807  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1808    const {
1809    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1810  }
1811
1812  /// \brief Return the innermost element type of an array type.
1813  ///
1814  /// For example, will return "int" for int[m][n]
1815  QualType getBaseElementType(const ArrayType *VAT) const;
1816
1817  /// \brief Return the innermost element type of a type (which needn't
1818  /// actually be an array type).
1819  QualType getBaseElementType(QualType QT) const;
1820
1821  /// \brief Return number of constant array elements.
1822  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1823
1824  /// \brief Perform adjustment on the parameter type of a function.
1825  ///
1826  /// This routine adjusts the given parameter type @p T to the actual
1827  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1828  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1829  QualType getAdjustedParameterType(QualType T) const;
1830
1831  /// \brief Retrieve the parameter type as adjusted for use in the signature
1832  /// of a function, decaying array and function types and removing top-level
1833  /// cv-qualifiers.
1834  QualType getSignatureParameterType(QualType T) const;
1835
1836  /// \brief Return the properly qualified result of decaying the specified
1837  /// array type to a pointer.
1838  ///
1839  /// This operation is non-trivial when handling typedefs etc.  The canonical
1840  /// type of \p T must be an array type, this returns a pointer to a properly
1841  /// qualified element of the array.
1842  ///
1843  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1844  QualType getArrayDecayedType(QualType T) const;
1845
1846  /// \brief Return the type that \p PromotableType will promote to: C99
1847  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1848  QualType getPromotedIntegerType(QualType PromotableType) const;
1849
1850  /// \brief Recurses in pointer/array types until it finds an Objective-C
1851  /// retainable type and returns its ownership.
1852  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1853
1854  /// \brief Whether this is a promotable bitfield reference according
1855  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1856  ///
1857  /// \returns the type this bit-field will promote to, or NULL if no
1858  /// promotion occurs.
1859  QualType isPromotableBitField(Expr *E) const;
1860
1861  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1862  ///
1863  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1864  /// \p LHS < \p RHS, return -1.
1865  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1866
1867  /// \brief Compare the rank of the two specified floating point types,
1868  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1869  ///
1870  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1871  /// \p LHS < \p RHS, return -1.
1872  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1873
1874  /// \brief Return a real floating point or a complex type (based on
1875  /// \p typeDomain/\p typeSize).
1876  ///
1877  /// \param typeDomain a real floating point or complex type.
1878  /// \param typeSize a real floating point or complex type.
1879  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1880                                             QualType typeDomain) const;
1881
1882  unsigned getTargetAddressSpace(QualType T) const {
1883    return getTargetAddressSpace(T.getQualifiers());
1884  }
1885
1886  unsigned getTargetAddressSpace(Qualifiers Q) const {
1887    return getTargetAddressSpace(Q.getAddressSpace());
1888  }
1889
1890  unsigned getTargetAddressSpace(unsigned AS) const {
1891    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1892      return AS;
1893    else
1894      return (*AddrSpaceMap)[AS - LangAS::Offset];
1895  }
1896
1897private:
1898  // Helper for integer ordering
1899  unsigned getIntegerRank(const Type *T) const;
1900
1901public:
1902
1903  //===--------------------------------------------------------------------===//
1904  //                    Type Compatibility Predicates
1905  //===--------------------------------------------------------------------===//
1906
1907  /// Compatibility predicates used to check assignment expressions.
1908  bool typesAreCompatible(QualType T1, QualType T2,
1909                          bool CompareUnqualified = false); // C99 6.2.7p1
1910
1911  bool propertyTypesAreCompatible(QualType, QualType);
1912  bool typesAreBlockPointerCompatible(QualType, QualType);
1913
1914  bool isObjCIdType(QualType T) const {
1915    return T == getObjCIdType();
1916  }
1917  bool isObjCClassType(QualType T) const {
1918    return T == getObjCClassType();
1919  }
1920  bool isObjCSelType(QualType T) const {
1921    return T == getObjCSelType();
1922  }
1923  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1924                                         bool ForCompare);
1925
1926  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1927
1928  // Check the safety of assignment from LHS to RHS
1929  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1930                               const ObjCObjectPointerType *RHSOPT);
1931  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1932                               const ObjCObjectType *RHS);
1933  bool canAssignObjCInterfacesInBlockPointer(
1934                                          const ObjCObjectPointerType *LHSOPT,
1935                                          const ObjCObjectPointerType *RHSOPT,
1936                                          bool BlockReturnType);
1937  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1938  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1939                                   const ObjCObjectPointerType *RHSOPT);
1940  bool canBindObjCObjectType(QualType To, QualType From);
1941
1942  // Functions for calculating composite types
1943  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1944                      bool Unqualified = false, bool BlockReturnType = false);
1945  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1946                              bool Unqualified = false);
1947  QualType mergeFunctionArgumentTypes(QualType, QualType,
1948                                      bool OfBlockPointer=false,
1949                                      bool Unqualified = false);
1950  QualType mergeTransparentUnionType(QualType, QualType,
1951                                     bool OfBlockPointer=false,
1952                                     bool Unqualified = false);
1953
1954  QualType mergeObjCGCQualifiers(QualType, QualType);
1955
1956  bool FunctionTypesMatchOnNSConsumedAttrs(
1957         const FunctionProtoType *FromFunctionType,
1958         const FunctionProtoType *ToFunctionType);
1959
1960  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1961    ObjCLayouts[CD] = 0;
1962  }
1963
1964  //===--------------------------------------------------------------------===//
1965  //                    Integer Predicates
1966  //===--------------------------------------------------------------------===//
1967
1968  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1969  // of bits in an integer type excluding any padding bits.
1970  unsigned getIntWidth(QualType T) const;
1971
1972  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1973  // unsigned integer type.  This method takes a signed type, and returns the
1974  // corresponding unsigned integer type.
1975  QualType getCorrespondingUnsignedType(QualType T) const;
1976
1977  //===--------------------------------------------------------------------===//
1978  //                    Type Iterators.
1979  //===--------------------------------------------------------------------===//
1980
1981  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
1982  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
1983
1984  type_iterator types_begin() { return Types.begin(); }
1985  type_iterator types_end() { return Types.end(); }
1986  const_type_iterator types_begin() const { return Types.begin(); }
1987  const_type_iterator types_end() const { return Types.end(); }
1988
1989  //===--------------------------------------------------------------------===//
1990  //                    Integer Values
1991  //===--------------------------------------------------------------------===//
1992
1993  /// \brief Make an APSInt of the appropriate width and signedness for the
1994  /// given \p Value and integer \p Type.
1995  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1996    llvm::APSInt Res(getIntWidth(Type),
1997                     !Type->isSignedIntegerOrEnumerationType());
1998    Res = Value;
1999    return Res;
2000  }
2001
2002  bool isSentinelNullExpr(const Expr *E);
2003
2004  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2005  /// none exists.
2006  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2007  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2008  /// none exists.
2009  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2010
2011  /// \brief Return true if there is at least one \@implementation in the TU.
2012  bool AnyObjCImplementation() {
2013    return !ObjCImpls.empty();
2014  }
2015
2016  /// \brief Set the implementation of ObjCInterfaceDecl.
2017  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2018                             ObjCImplementationDecl *ImplD);
2019  /// \brief Set the implementation of ObjCCategoryDecl.
2020  void setObjCImplementation(ObjCCategoryDecl *CatD,
2021                             ObjCCategoryImplDecl *ImplD);
2022
2023  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2024  /// interface, or null if none exists.
2025  const ObjCMethodDecl *getObjCMethodRedeclaration(
2026                                               const ObjCMethodDecl *MD) const {
2027    return ObjCMethodRedecls.lookup(MD);
2028  }
2029
2030  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2031                                  const ObjCMethodDecl *Redecl) {
2032    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2033    ObjCMethodRedecls[MD] = Redecl;
2034  }
2035
2036  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2037  /// an Objective-C method/property/ivar etc. that is part of an interface,
2038  /// otherwise returns null.
2039  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2040
2041  /// \brief Set the copy inialization expression of a block var decl.
2042  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2043  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2044  /// NULL if none exists.
2045  Expr *getBlockVarCopyInits(const VarDecl* VD);
2046
2047  /// \brief Allocate an uninitialized TypeSourceInfo.
2048  ///
2049  /// The caller should initialize the memory held by TypeSourceInfo using
2050  /// the TypeLoc wrappers.
2051  ///
2052  /// \param T the type that will be the basis for type source info. This type
2053  /// should refer to how the declarator was written in source code, not to
2054  /// what type semantic analysis resolved the declarator to.
2055  ///
2056  /// \param Size the size of the type info to create, or 0 if the size
2057  /// should be calculated based on the type.
2058  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2059
2060  /// \brief Allocate a TypeSourceInfo where all locations have been
2061  /// initialized to a given location, which defaults to the empty
2062  /// location.
2063  TypeSourceInfo *
2064  getTrivialTypeSourceInfo(QualType T,
2065                           SourceLocation Loc = SourceLocation()) const;
2066
2067  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2068
2069  /// \brief Add a deallocation callback that will be invoked when the
2070  /// ASTContext is destroyed.
2071  ///
2072  /// \param Callback A callback function that will be invoked on destruction.
2073  ///
2074  /// \param Data Pointer data that will be provided to the callback function
2075  /// when it is called.
2076  void AddDeallocation(void (*Callback)(void*), void *Data);
2077
2078  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2079  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2080
2081  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2082  /// lazily, only when used; this is only relevant for function or file scoped
2083  /// var definitions.
2084  ///
2085  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2086  /// it is not used.
2087  bool DeclMustBeEmitted(const Decl *D);
2088
2089  void addUnnamedTag(const TagDecl *Tag);
2090  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2091
2092  /// \brief Retrieve the context for computing mangling numbers in the given
2093  /// DeclContext.
2094  MangleNumberingContext &getManglingNumberContext(DeclContext *DC);
2095
2096  /// \brief Used by ParmVarDecl to store on the side the
2097  /// index of the parameter when it exceeds the size of the normal bitfield.
2098  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2099
2100  /// \brief Used by ParmVarDecl to retrieve on the side the
2101  /// index of the parameter when it exceeds the size of the normal bitfield.
2102  unsigned getParameterIndex(const ParmVarDecl *D) const;
2103
2104  /// \brief Get the storage for the constant value of a materialized temporary
2105  /// of static storage duration.
2106  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2107                                         bool MayCreate);
2108
2109  //===--------------------------------------------------------------------===//
2110  //                    Statistics
2111  //===--------------------------------------------------------------------===//
2112
2113  /// \brief The number of implicitly-declared default constructors.
2114  static unsigned NumImplicitDefaultConstructors;
2115
2116  /// \brief The number of implicitly-declared default constructors for
2117  /// which declarations were built.
2118  static unsigned NumImplicitDefaultConstructorsDeclared;
2119
2120  /// \brief The number of implicitly-declared copy constructors.
2121  static unsigned NumImplicitCopyConstructors;
2122
2123  /// \brief The number of implicitly-declared copy constructors for
2124  /// which declarations were built.
2125  static unsigned NumImplicitCopyConstructorsDeclared;
2126
2127  /// \brief The number of implicitly-declared move constructors.
2128  static unsigned NumImplicitMoveConstructors;
2129
2130  /// \brief The number of implicitly-declared move constructors for
2131  /// which declarations were built.
2132  static unsigned NumImplicitMoveConstructorsDeclared;
2133
2134  /// \brief The number of implicitly-declared copy assignment operators.
2135  static unsigned NumImplicitCopyAssignmentOperators;
2136
2137  /// \brief The number of implicitly-declared copy assignment operators for
2138  /// which declarations were built.
2139  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2140
2141  /// \brief The number of implicitly-declared move assignment operators.
2142  static unsigned NumImplicitMoveAssignmentOperators;
2143
2144  /// \brief The number of implicitly-declared move assignment operators for
2145  /// which declarations were built.
2146  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2147
2148  /// \brief The number of implicitly-declared destructors.
2149  static unsigned NumImplicitDestructors;
2150
2151  /// \brief The number of implicitly-declared destructors for which
2152  /// declarations were built.
2153  static unsigned NumImplicitDestructorsDeclared;
2154
2155private:
2156  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2157  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2158
2159public:
2160  /// \brief Initialize built-in types.
2161  ///
2162  /// This routine may only be invoked once for a given ASTContext object.
2163  /// It is normally invoked by the ASTContext constructor. However, the
2164  /// constructor can be asked to delay initialization, which places the burden
2165  /// of calling this function on the user of that object.
2166  ///
2167  /// \param Target The target
2168  void InitBuiltinTypes(const TargetInfo &Target);
2169
2170private:
2171  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2172
2173  // Return the Objective-C type encoding for a given type.
2174  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2175                                  bool ExpandPointedToStructures,
2176                                  bool ExpandStructures,
2177                                  const FieldDecl *Field,
2178                                  bool OutermostType = false,
2179                                  bool EncodingProperty = false,
2180                                  bool StructField = false,
2181                                  bool EncodeBlockParameters = false,
2182                                  bool EncodeClassNames = false,
2183                                  bool EncodePointerToObjCTypedef = false) const;
2184
2185  // Adds the encoding of the structure's members.
2186  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2187                                       const FieldDecl *Field,
2188                                       bool includeVBases = true) const;
2189
2190  // Adds the encoding of a method parameter or return type.
2191  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2192                                         QualType T, std::string& S,
2193                                         bool Extended) const;
2194
2195  const ASTRecordLayout &
2196  getObjCLayout(const ObjCInterfaceDecl *D,
2197                const ObjCImplementationDecl *Impl) const;
2198
2199private:
2200  /// \brief A set of deallocations that should be performed when the
2201  /// ASTContext is destroyed.
2202  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2203    DeallocationMap;
2204  DeallocationMap Deallocations;
2205
2206  // FIXME: This currently contains the set of StoredDeclMaps used
2207  // by DeclContext objects.  This probably should not be in ASTContext,
2208  // but we include it here so that ASTContext can quickly deallocate them.
2209  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2210
2211  friend class DeclContext;
2212  friend class DeclarationNameTable;
2213  void ReleaseDeclContextMaps();
2214
2215  llvm::OwningPtr<ParentMap> AllParents;
2216};
2217
2218/// \brief Utility function for constructing a nullary selector.
2219static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2220  IdentifierInfo* II = &Ctx.Idents.get(name);
2221  return Ctx.Selectors.getSelector(0, &II);
2222}
2223
2224/// \brief Utility function for constructing an unary selector.
2225static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2226  IdentifierInfo* II = &Ctx.Idents.get(name);
2227  return Ctx.Selectors.getSelector(1, &II);
2228}
2229
2230}  // end namespace clang
2231
2232// operator new and delete aren't allowed inside namespaces.
2233
2234/// @brief Placement new for using the ASTContext's allocator.
2235///
2236/// This placement form of operator new uses the ASTContext's allocator for
2237/// obtaining memory.
2238///
2239/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2240/// here need to also be made there.
2241///
2242/// We intentionally avoid using a nothrow specification here so that the calls
2243/// to this operator will not perform a null check on the result -- the
2244/// underlying allocator never returns null pointers.
2245///
2246/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2247/// @code
2248/// // Default alignment (8)
2249/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2250/// // Specific alignment
2251/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2252/// @endcode
2253/// Please note that you cannot use delete on the pointer; it must be
2254/// deallocated using an explicit destructor call followed by
2255/// @c Context.Deallocate(Ptr).
2256///
2257/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2258/// @param C The ASTContext that provides the allocator.
2259/// @param Alignment The alignment of the allocated memory (if the underlying
2260///                  allocator supports it).
2261/// @return The allocated memory. Could be NULL.
2262inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2263                          size_t Alignment) {
2264  return C.Allocate(Bytes, Alignment);
2265}
2266/// @brief Placement delete companion to the new above.
2267///
2268/// This operator is just a companion to the new above. There is no way of
2269/// invoking it directly; see the new operator for more details. This operator
2270/// is called implicitly by the compiler if a placement new expression using
2271/// the ASTContext throws in the object constructor.
2272inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2273  C.Deallocate(Ptr);
2274}
2275
2276/// This placement form of operator new[] uses the ASTContext's allocator for
2277/// obtaining memory.
2278///
2279/// We intentionally avoid using a nothrow specification here so that the calls
2280/// to this operator will not perform a null check on the result -- the
2281/// underlying allocator never returns null pointers.
2282///
2283/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2284/// @code
2285/// // Default alignment (8)
2286/// char *data = new (Context) char[10];
2287/// // Specific alignment
2288/// char *data = new (Context, 4) char[10];
2289/// @endcode
2290/// Please note that you cannot use delete on the pointer; it must be
2291/// deallocated using an explicit destructor call followed by
2292/// @c Context.Deallocate(Ptr).
2293///
2294/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2295/// @param C The ASTContext that provides the allocator.
2296/// @param Alignment The alignment of the allocated memory (if the underlying
2297///                  allocator supports it).
2298/// @return The allocated memory. Could be NULL.
2299inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2300                            size_t Alignment = 8) {
2301  return C.Allocate(Bytes, Alignment);
2302}
2303
2304/// @brief Placement delete[] companion to the new[] above.
2305///
2306/// This operator is just a companion to the new[] above. There is no way of
2307/// invoking it directly; see the new[] operator for more details. This operator
2308/// is called implicitly by the compiler if a placement new[] expression using
2309/// the ASTContext throws in the object constructor.
2310inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2311  C.Deallocate(Ptr);
2312}
2313
2314#endif
2315