ASTContext.h revision 0c01d18094100db92d38daa923c95661512db203
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/Allocator.h"
32#include <vector>
33
34namespace llvm {
35  struct fltSemantics;
36}
37
38namespace clang {
39  class FileManager;
40  class ASTRecordLayout;
41  class BlockExpr;
42  class CharUnits;
43  class Diagnostic;
44  class Expr;
45  class ExternalASTSource;
46  class IdentifierTable;
47  class SelectorTable;
48  class SourceManager;
49  class TargetInfo;
50  // Decls
51  class DeclContext;
52  class CXXMethodDecl;
53  class CXXRecordDecl;
54  class Decl;
55  class FieldDecl;
56  class ObjCIvarDecl;
57  class ObjCIvarRefExpr;
58  class ObjCPropertyDecl;
59  class RecordDecl;
60  class StoredDeclsMap;
61  class TagDecl;
62  class TemplateTypeParmDecl;
63  class TranslationUnitDecl;
64  class TypeDecl;
65  class TypedefDecl;
66  class UsingDecl;
67  class UsingShadowDecl;
68  class UnresolvedSetIterator;
69
70  namespace Builtin { class Context; }
71
72/// \brief A vector of C++ member functions that is optimized for
73/// storing a single method.
74class CXXMethodVector {
75  /// \brief Storage for the vector.
76  ///
77  /// When the low bit is zero, this is a const CXXMethodDecl *. When the
78  /// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
79  mutable uintptr_t Storage;
80
81  typedef std::vector<const CXXMethodDecl *> vector_type;
82
83public:
84  CXXMethodVector() : Storage(0) { }
85
86  typedef const CXXMethodDecl **iterator;
87  iterator begin() const;
88  iterator end() const;
89
90  void push_back(const CXXMethodDecl *Method);
91  void Destroy();
92};
93
94/// ASTContext - This class holds long-lived AST nodes (such as types and
95/// decls) that can be referred to throughout the semantic analysis of a file.
96class ASTContext {
97  std::vector<Type*> Types;
98  llvm::FoldingSet<ExtQuals> ExtQualNodes;
99  llvm::FoldingSet<ComplexType> ComplexTypes;
100  llvm::FoldingSet<PointerType> PointerTypes;
101  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
102  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
103  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
104  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
105  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
106  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
107  std::vector<VariableArrayType*> VariableArrayTypes;
108  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
109  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
110  llvm::FoldingSet<VectorType> VectorTypes;
111  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
112  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
113  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
114  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
115  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
116  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
117  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
118  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
119  llvm::FoldingSet<TypenameType> TypenameTypes;
120  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
121  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
122  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
123
124  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
125  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
126
127  /// \brief The set of nested name specifiers.
128  ///
129  /// This set is managed by the NestedNameSpecifier class.
130  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
131  NestedNameSpecifier *GlobalNestedNameSpecifier;
132  friend class NestedNameSpecifier;
133
134  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
135  ///  This is lazily created.  This is intentionally not serialized.
136  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
137  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
138
139  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
140  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
141
142  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
143  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
144
145  /// BuiltinVaListType - built-in va list type.
146  /// This is initially null and set by Sema::LazilyCreateBuiltin when
147  /// a builtin that takes a valist is encountered.
148  QualType BuiltinVaListType;
149
150  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
151  QualType ObjCIdTypedefType;
152
153  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
154  QualType ObjCSelTypedefType;
155
156  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
157  QualType ObjCProtoType;
158  const RecordType *ProtoStructType;
159
160  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
161  QualType ObjCClassTypedefType;
162
163  QualType ObjCConstantStringType;
164  RecordDecl *CFConstantStringTypeDecl;
165
166  RecordDecl *ObjCFastEnumerationStateTypeDecl;
167
168  /// \brief The type for the C FILE type.
169  TypeDecl *FILEDecl;
170
171  /// \brief The type for the C jmp_buf type.
172  TypeDecl *jmp_bufDecl;
173
174  /// \brief The type for the C sigjmp_buf type.
175  TypeDecl *sigjmp_bufDecl;
176
177  /// \brief Type for the Block descriptor for Blocks CodeGen.
178  RecordDecl *BlockDescriptorType;
179
180  /// \brief Type for the Block descriptor for Blocks CodeGen.
181  RecordDecl *BlockDescriptorExtendedType;
182
183  /// \brief Keeps track of all declaration attributes.
184  ///
185  /// Since so few decls have attrs, we keep them in a hash map instead of
186  /// wasting space in the Decl class.
187  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
188
189  /// \brief Keeps track of the static data member templates from which
190  /// static data members of class template specializations were instantiated.
191  ///
192  /// This data structure stores the mapping from instantiations of static
193  /// data members to the static data member representations within the
194  /// class template from which they were instantiated along with the kind
195  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
196  ///
197  /// Given the following example:
198  ///
199  /// \code
200  /// template<typename T>
201  /// struct X {
202  ///   static T value;
203  /// };
204  ///
205  /// template<typename T>
206  ///   T X<T>::value = T(17);
207  ///
208  /// int *x = &X<int>::value;
209  /// \endcode
210  ///
211  /// This mapping will contain an entry that maps from the VarDecl for
212  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
213  /// class template X) and will be marked TSK_ImplicitInstantiation.
214  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
215    InstantiatedFromStaticDataMember;
216
217  /// \brief Keeps track of the declaration from which a UsingDecl was
218  /// created during instantiation.  The source declaration is always
219  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
220  /// UnresolvedUsingTypenameDecl.
221  ///
222  /// For example:
223  /// \code
224  /// template<typename T>
225  /// struct A {
226  ///   void f();
227  /// };
228  ///
229  /// template<typename T>
230  /// struct B : A<T> {
231  ///   using A<T>::f;
232  /// };
233  ///
234  /// template struct B<int>;
235  /// \endcode
236  ///
237  /// This mapping will contain an entry that maps from the UsingDecl in
238  /// B<int> to the UnresolvedUsingDecl in B<T>.
239  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
240
241  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
242    InstantiatedFromUsingShadowDecl;
243
244  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
245
246  /// \brief Mapping that stores the methods overridden by a given C++
247  /// member function.
248  ///
249  /// Since most C++ member functions aren't virtual and therefore
250  /// don't override anything, we store the overridden functions in
251  /// this map on the side rather than within the CXXMethodDecl structure.
252  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
253
254  TranslationUnitDecl *TUDecl;
255
256  /// SourceMgr - The associated SourceManager object.
257  SourceManager &SourceMgr;
258
259  /// LangOpts - The language options used to create the AST associated with
260  ///  this ASTContext object.
261  LangOptions LangOpts;
262
263  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
264  bool FreeMemory;
265  llvm::MallocAllocator MallocAlloc;
266  llvm::BumpPtrAllocator BumpAlloc;
267
268public:
269  const TargetInfo &Target;
270  IdentifierTable &Idents;
271  SelectorTable &Selectors;
272  Builtin::Context &BuiltinInfo;
273  DeclarationNameTable DeclarationNames;
274  llvm::OwningPtr<ExternalASTSource> ExternalSource;
275  clang::PrintingPolicy PrintingPolicy;
276
277  // Typedefs which may be provided defining the structure of Objective-C
278  // pseudo-builtins
279  QualType ObjCIdRedefinitionType;
280  QualType ObjCClassRedefinitionType;
281  QualType ObjCSelRedefinitionType;
282
283  SourceManager& getSourceManager() { return SourceMgr; }
284  const SourceManager& getSourceManager() const { return SourceMgr; }
285  void *Allocate(unsigned Size, unsigned Align = 8) {
286    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
287                        BumpAlloc.Allocate(Size, Align);
288  }
289  void Deallocate(void *Ptr) {
290    if (FreeMemory)
291      MallocAlloc.Deallocate(Ptr);
292  }
293  const LangOptions& getLangOptions() const { return LangOpts; }
294
295  FullSourceLoc getFullLoc(SourceLocation Loc) const {
296    return FullSourceLoc(Loc,SourceMgr);
297  }
298
299  /// \brief Retrieve the attributes for the given declaration.
300  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
301
302  /// \brief Erase the attributes corresponding to the given declaration.
303  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
304
305  /// \brief If this variable is an instantiated static data member of a
306  /// class template specialization, returns the templated static data member
307  /// from which it was instantiated.
308  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
309                                                           const VarDecl *Var);
310
311  /// \brief Note that the static data member \p Inst is an instantiation of
312  /// the static data member template \p Tmpl of a class template.
313  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
314                                           TemplateSpecializationKind TSK);
315
316  /// \brief If the given using decl is an instantiation of a
317  /// (possibly unresolved) using decl from a template instantiation,
318  /// return it.
319  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
320
321  /// \brief Remember that the using decl \p Inst is an instantiation
322  /// of the using decl \p Pattern of a class template.
323  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
324
325  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
326                                          UsingShadowDecl *Pattern);
327  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
328
329  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
330
331  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
332
333  // Access to the set of methods overridden by the given C++ method.
334  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
335  overridden_cxx_method_iterator
336  overridden_methods_begin(const CXXMethodDecl *Method) const;
337
338  overridden_cxx_method_iterator
339  overridden_methods_end(const CXXMethodDecl *Method) const;
340
341  /// \brief Note that the given C++ \p Method overrides the given \p
342  /// Overridden method.
343  void addOverriddenMethod(const CXXMethodDecl *Method,
344                           const CXXMethodDecl *Overridden);
345
346  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
347
348
349  // Builtin Types.
350  CanQualType VoidTy;
351  CanQualType BoolTy;
352  CanQualType CharTy;
353  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
354  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
355  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
356  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
357  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
358  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
359  CanQualType FloatTy, DoubleTy, LongDoubleTy;
360  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
361  CanQualType VoidPtrTy, NullPtrTy;
362  CanQualType OverloadTy;
363  CanQualType DependentTy;
364  CanQualType UndeducedAutoTy;
365  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
366
367  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
368             IdentifierTable &idents, SelectorTable &sels,
369             Builtin::Context &builtins,
370             bool FreeMemory = true, unsigned size_reserve=0);
371
372  ~ASTContext();
373
374  /// \brief Attach an external AST source to the AST context.
375  ///
376  /// The external AST source provides the ability to load parts of
377  /// the abstract syntax tree as needed from some external storage,
378  /// e.g., a precompiled header.
379  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
380
381  /// \brief Retrieve a pointer to the external AST source associated
382  /// with this AST context, if any.
383  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
384
385  void PrintStats() const;
386  const std::vector<Type*>& getTypes() const { return Types; }
387
388  //===--------------------------------------------------------------------===//
389  //                           Type Constructors
390  //===--------------------------------------------------------------------===//
391
392private:
393  /// getExtQualType - Return a type with extended qualifiers.
394  QualType getExtQualType(const Type *Base, Qualifiers Quals);
395
396  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
397
398public:
399  /// getAddSpaceQualType - Return the uniqued reference to the type for an
400  /// address space qualified type with the specified type and address space.
401  /// The resulting type has a union of the qualifiers from T and the address
402  /// space. If T already has an address space specifier, it is silently
403  /// replaced.
404  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
405
406  /// getObjCGCQualType - Returns the uniqued reference to the type for an
407  /// objc gc qualified type. The retulting type has a union of the qualifiers
408  /// from T and the gc attribute.
409  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
410
411  /// getRestrictType - Returns the uniqued reference to the type for a
412  /// 'restrict' qualified type.  The resulting type has a union of the
413  /// qualifiers from T and 'restrict'.
414  QualType getRestrictType(QualType T) {
415    return T.withFastQualifiers(Qualifiers::Restrict);
416  }
417
418  /// getVolatileType - Returns the uniqued reference to the type for a
419  /// 'volatile' qualified type.  The resulting type has a union of the
420  /// qualifiers from T and 'volatile'.
421  QualType getVolatileType(QualType T);
422
423  /// getConstType - Returns the uniqued reference to the type for a
424  /// 'const' qualified type.  The resulting type has a union of the
425  /// qualifiers from T and 'const'.
426  ///
427  /// It can be reasonably expected that this will always be
428  /// equivalent to calling T.withConst().
429  QualType getConstType(QualType T) { return T.withConst(); }
430
431  /// getNoReturnType - Add or remove the noreturn attribute to the given type
432  /// which must be a FunctionType or a pointer to an allowable type or a
433  /// BlockPointer.
434  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
435
436  /// getCallConvType - Adds the specified calling convention attribute to
437  /// the given type, which must be a FunctionType or a pointer to an
438  /// allowable type.
439  QualType getCallConvType(QualType T, CallingConv CallConv);
440
441  /// getComplexType - Return the uniqued reference to the type for a complex
442  /// number with the specified element type.
443  QualType getComplexType(QualType T);
444  CanQualType getComplexType(CanQualType T) {
445    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
446  }
447
448  /// getPointerType - Return the uniqued reference to the type for a pointer to
449  /// the specified type.
450  QualType getPointerType(QualType T);
451  CanQualType getPointerType(CanQualType T) {
452    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
453  }
454
455  /// getBlockPointerType - Return the uniqued reference to the type for a block
456  /// of the specified type.
457  QualType getBlockPointerType(QualType T);
458
459  /// This gets the struct used to keep track of the descriptor for pointer to
460  /// blocks.
461  QualType getBlockDescriptorType();
462
463  // Set the type for a Block descriptor type.
464  void setBlockDescriptorType(QualType T);
465  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
466  QualType getRawBlockdescriptorType() {
467    if (BlockDescriptorType)
468      return getTagDeclType(BlockDescriptorType);
469    return QualType();
470  }
471
472  /// This gets the struct used to keep track of the extended descriptor for
473  /// pointer to blocks.
474  QualType getBlockDescriptorExtendedType();
475
476  // Set the type for a Block descriptor extended type.
477  void setBlockDescriptorExtendedType(QualType T);
478  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
479  /// built.
480  QualType getRawBlockdescriptorExtendedType() {
481    if (BlockDescriptorExtendedType)
482      return getTagDeclType(BlockDescriptorExtendedType);
483    return QualType();
484  }
485
486  /// This gets the struct used to keep track of pointer to blocks, complete
487  /// with captured variables.
488  QualType getBlockParmType(bool BlockHasCopyDispose,
489                            llvm::SmallVector<const Expr *, 8> &BDRDs);
490
491  /// This builds the struct used for __block variables.
492  QualType BuildByRefType(const char *DeclName, QualType Ty);
493
494  /// Returns true iff we need copy/dispose helpers for the given type.
495  bool BlockRequiresCopying(QualType Ty);
496
497  /// getLValueReferenceType - Return the uniqued reference to the type for an
498  /// lvalue reference to the specified type.
499  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
500
501  /// getRValueReferenceType - Return the uniqued reference to the type for an
502  /// rvalue reference to the specified type.
503  QualType getRValueReferenceType(QualType T);
504
505  /// getMemberPointerType - Return the uniqued reference to the type for a
506  /// member pointer to the specified type in the specified class. The class
507  /// is a Type because it could be a dependent name.
508  QualType getMemberPointerType(QualType T, const Type *Cls);
509
510  /// getVariableArrayType - Returns a non-unique reference to the type for a
511  /// variable array of the specified element type.
512  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
513                                ArrayType::ArraySizeModifier ASM,
514                                unsigned EltTypeQuals,
515                                SourceRange Brackets);
516
517  /// getDependentSizedArrayType - Returns a non-unique reference to
518  /// the type for a dependently-sized array of the specified element
519  /// type. FIXME: We will need these to be uniqued, or at least
520  /// comparable, at some point.
521  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
522                                      ArrayType::ArraySizeModifier ASM,
523                                      unsigned EltTypeQuals,
524                                      SourceRange Brackets);
525
526  /// getIncompleteArrayType - Returns a unique reference to the type for a
527  /// incomplete array of the specified element type.
528  QualType getIncompleteArrayType(QualType EltTy,
529                                  ArrayType::ArraySizeModifier ASM,
530                                  unsigned EltTypeQuals);
531
532  /// getConstantArrayType - Return the unique reference to the type for a
533  /// constant array of the specified element type.
534  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
535                                ArrayType::ArraySizeModifier ASM,
536                                unsigned EltTypeQuals);
537
538  /// getVectorType - Return the unique reference to a vector type of
539  /// the specified element type and size. VectorType must be a built-in type.
540  QualType getVectorType(QualType VectorType, unsigned NumElts,
541                         bool AltiVec, bool IsPixel);
542
543  /// getExtVectorType - Return the unique reference to an extended vector type
544  /// of the specified element type and size.  VectorType must be a built-in
545  /// type.
546  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
547
548  /// getDependentSizedExtVectorType - Returns a non-unique reference to
549  /// the type for a dependently-sized vector of the specified element
550  /// type. FIXME: We will need these to be uniqued, or at least
551  /// comparable, at some point.
552  QualType getDependentSizedExtVectorType(QualType VectorType,
553                                          Expr *SizeExpr,
554                                          SourceLocation AttrLoc);
555
556  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
557  ///
558  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false,
559                                  CallingConv CallConv = CC_Default);
560
561  /// getFunctionType - Return a normal function type with a typed argument
562  /// list.  isVariadic indicates whether the argument list includes '...'.
563  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
564                           unsigned NumArgs, bool isVariadic,
565                           unsigned TypeQuals, bool hasExceptionSpec,
566                           bool hasAnyExceptionSpec,
567                           unsigned NumExs, const QualType *ExArray,
568                           bool NoReturn,
569                           CallingConv CallConv);
570
571  /// getTypeDeclType - Return the unique reference to the type for
572  /// the specified type declaration.
573  QualType getTypeDeclType(const TypeDecl *Decl,
574                           const TypeDecl *PrevDecl = 0) {
575    assert(Decl && "Passed null for Decl param");
576    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
577
578    if (PrevDecl) {
579      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
580      Decl->TypeForDecl = PrevDecl->TypeForDecl;
581      return QualType(PrevDecl->TypeForDecl, 0);
582    }
583
584    return getTypeDeclTypeSlow(Decl);
585  }
586
587  /// getTypedefType - Return the unique reference to the type for the
588  /// specified typename decl.
589  QualType getTypedefType(const TypedefDecl *Decl);
590
591  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
592
593  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
594                                        QualType Replacement);
595
596  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
597                                   bool ParameterPack,
598                                   IdentifierInfo *Name = 0);
599
600  QualType getTemplateSpecializationType(TemplateName T,
601                                         const TemplateArgument *Args,
602                                         unsigned NumArgs,
603                                         QualType Canon = QualType());
604
605  QualType getTemplateSpecializationType(TemplateName T,
606                                         const TemplateArgumentListInfo &Args,
607                                         QualType Canon = QualType());
608
609  TypeSourceInfo *
610  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
611                                    const TemplateArgumentListInfo &Args,
612                                    QualType Canon = QualType());
613
614  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
615                                QualType NamedType);
616  QualType getTypenameType(NestedNameSpecifier *NNS,
617                           const IdentifierInfo *Name,
618                           QualType Canon = QualType());
619  QualType getTypenameType(NestedNameSpecifier *NNS,
620                           const TemplateSpecializationType *TemplateId,
621                           QualType Canon = QualType());
622  QualType getElaboratedType(QualType UnderlyingType,
623                             ElaboratedType::TagKind Tag);
624
625  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
626                                ObjCProtocolDecl **Protocols = 0,
627                                unsigned NumProtocols = 0);
628
629  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
630  /// given interface decl and the conforming protocol list.
631  QualType getObjCObjectPointerType(QualType OIT,
632                                    ObjCProtocolDecl **ProtocolList = 0,
633                                    unsigned NumProtocols = 0,
634                                    unsigned Quals = 0);
635
636  /// getTypeOfType - GCC extension.
637  QualType getTypeOfExprType(Expr *e);
638  QualType getTypeOfType(QualType t);
639
640  /// getDecltypeType - C++0x decltype.
641  QualType getDecltypeType(Expr *e);
642
643  /// getTagDeclType - Return the unique reference to the type for the
644  /// specified TagDecl (struct/union/class/enum) decl.
645  QualType getTagDeclType(const TagDecl *Decl);
646
647  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
648  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
649  CanQualType getSizeType() const;
650
651  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
652  /// returns a type compatible with the type defined in <stddef.h> as defined
653  /// by the target.
654  QualType getWCharType() const { return WCharTy; }
655
656  /// getSignedWCharType - Return the type of "signed wchar_t".
657  /// Used when in C++, as a GCC extension.
658  QualType getSignedWCharType() const;
659
660  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
661  /// Used when in C++, as a GCC extension.
662  QualType getUnsignedWCharType() const;
663
664  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
665  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
666  QualType getPointerDiffType() const;
667
668  // getCFConstantStringType - Return the C structure type used to represent
669  // constant CFStrings.
670  QualType getCFConstantStringType();
671
672  /// Get the structure type used to representation CFStrings, or NULL
673  /// if it hasn't yet been built.
674  QualType getRawCFConstantStringType() {
675    if (CFConstantStringTypeDecl)
676      return getTagDeclType(CFConstantStringTypeDecl);
677    return QualType();
678  }
679  void setCFConstantStringType(QualType T);
680
681  // This setter/getter represents the ObjC type for an NSConstantString.
682  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
683  QualType getObjCConstantStringInterface() const {
684    return ObjCConstantStringType;
685  }
686
687  //// This gets the struct used to keep track of fast enumerations.
688  QualType getObjCFastEnumerationStateType();
689
690  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
691  /// been built.
692  QualType getRawObjCFastEnumerationStateType() {
693    if (ObjCFastEnumerationStateTypeDecl)
694      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
695    return QualType();
696  }
697
698  void setObjCFastEnumerationStateType(QualType T);
699
700  /// \brief Set the type for the C FILE type.
701  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
702
703  /// \brief Retrieve the C FILE type.
704  QualType getFILEType() {
705    if (FILEDecl)
706      return getTypeDeclType(FILEDecl);
707    return QualType();
708  }
709
710  /// \brief Set the type for the C jmp_buf type.
711  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
712    this->jmp_bufDecl = jmp_bufDecl;
713  }
714
715  /// \brief Retrieve the C jmp_buf type.
716  QualType getjmp_bufType() {
717    if (jmp_bufDecl)
718      return getTypeDeclType(jmp_bufDecl);
719    return QualType();
720  }
721
722  /// \brief Set the type for the C sigjmp_buf type.
723  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
724    this->sigjmp_bufDecl = sigjmp_bufDecl;
725  }
726
727  /// \brief Retrieve the C sigjmp_buf type.
728  QualType getsigjmp_bufType() {
729    if (sigjmp_bufDecl)
730      return getTypeDeclType(sigjmp_bufDecl);
731    return QualType();
732  }
733
734  /// getObjCEncodingForType - Emit the ObjC type encoding for the
735  /// given type into \arg S. If \arg NameFields is specified then
736  /// record field names are also encoded.
737  void getObjCEncodingForType(QualType t, std::string &S,
738                              const FieldDecl *Field=0);
739
740  void getLegacyIntegralTypeEncoding(QualType &t) const;
741
742  // Put the string version of type qualifiers into S.
743  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
744                                       std::string &S) const;
745
746  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
747  /// declaration.
748  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
749
750  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
751  /// declaration.
752  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
753
754  /// getObjCEncodingForPropertyDecl - Return the encoded type for
755  /// this method declaration. If non-NULL, Container must be either
756  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
757  /// only be NULL when getting encodings for protocol properties.
758  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
759                                      const Decl *Container,
760                                      std::string &S);
761
762  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
763                                      ObjCProtocolDecl *rProto);
764
765  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
766  /// purpose in characters.
767  CharUnits getObjCEncodingTypeSize(QualType t);
768
769  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
770  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
771  QualType getObjCIdType() const { return ObjCIdTypedefType; }
772  void setObjCIdType(QualType T);
773
774  void setObjCSelType(QualType T);
775  QualType getObjCSelType() const { return ObjCSelTypedefType; }
776
777  void setObjCProtoType(QualType QT);
778  QualType getObjCProtoType() const { return ObjCProtoType; }
779
780  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
781  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
782  /// struct.
783  QualType getObjCClassType() const { return ObjCClassTypedefType; }
784  void setObjCClassType(QualType T);
785
786  void setBuiltinVaListType(QualType T);
787  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
788
789  /// getCVRQualifiedType - Returns a type with additional const,
790  /// volatile, or restrict qualifiers.
791  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
792    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
793  }
794
795  /// getQualifiedType - Returns a type with additional qualifiers.
796  QualType getQualifiedType(QualType T, Qualifiers Qs) {
797    if (!Qs.hasNonFastQualifiers())
798      return T.withFastQualifiers(Qs.getFastQualifiers());
799    QualifierCollector Qc(Qs);
800    const Type *Ptr = Qc.strip(T);
801    return getExtQualType(Ptr, Qc);
802  }
803
804  /// getQualifiedType - Returns a type with additional qualifiers.
805  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
806    if (!Qs.hasNonFastQualifiers())
807      return QualType(T, Qs.getFastQualifiers());
808    return getExtQualType(T, Qs);
809  }
810
811  DeclarationName getNameForTemplate(TemplateName Name);
812
813  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
814                                         UnresolvedSetIterator End);
815
816  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
817                                        bool TemplateKeyword,
818                                        TemplateDecl *Template);
819
820  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
821                                        const IdentifierInfo *Name);
822  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
823                                        OverloadedOperatorKind Operator);
824
825  enum GetBuiltinTypeError {
826    GE_None,              //< No error
827    GE_Missing_stdio,     //< Missing a type from <stdio.h>
828    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
829  };
830
831  /// GetBuiltinType - Return the type for the specified builtin.
832  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
833
834private:
835  CanQualType getFromTargetType(unsigned Type) const;
836
837  //===--------------------------------------------------------------------===//
838  //                         Type Predicates.
839  //===--------------------------------------------------------------------===//
840
841public:
842  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
843  /// garbage collection attribute.
844  ///
845  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
846
847  /// isObjCNSObjectType - Return true if this is an NSObject object with
848  /// its NSObject attribute set.
849  bool isObjCNSObjectType(QualType Ty) const;
850
851  //===--------------------------------------------------------------------===//
852  //                         Type Sizing and Analysis
853  //===--------------------------------------------------------------------===//
854
855  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
856  /// scalar floating point type.
857  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
858
859  /// getTypeInfo - Get the size and alignment of the specified complete type in
860  /// bits.
861  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
862  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
863    return getTypeInfo(T.getTypePtr());
864  }
865
866  /// getTypeSize - Return the size of the specified type, in bits.  This method
867  /// does not work on incomplete types.
868  uint64_t getTypeSize(QualType T) {
869    return getTypeInfo(T).first;
870  }
871  uint64_t getTypeSize(const Type *T) {
872    return getTypeInfo(T).first;
873  }
874
875  /// getCharWidth - Return the size of the character type, in bits
876  uint64_t getCharWidth() {
877    return getTypeSize(CharTy);
878  }
879
880  /// getTypeSizeInChars - Return the size of the specified type, in characters.
881  /// This method does not work on incomplete types.
882  CharUnits getTypeSizeInChars(QualType T);
883  CharUnits getTypeSizeInChars(const Type *T);
884
885  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
886  /// This method does not work on incomplete types.
887  unsigned getTypeAlign(QualType T) {
888    return getTypeInfo(T).second;
889  }
890  unsigned getTypeAlign(const Type *T) {
891    return getTypeInfo(T).second;
892  }
893
894  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
895  /// characters. This method does not work on incomplete types.
896  CharUnits getTypeAlignInChars(QualType T);
897  CharUnits getTypeAlignInChars(const Type *T);
898
899  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
900  /// type for the current target in bits.  This can be different than the ABI
901  /// alignment in cases where it is beneficial for performance to overalign
902  /// a data type.
903  unsigned getPreferredTypeAlign(const Type *T);
904
905  /// getDeclAlign - Return a conservative estimate of the alignment of
906  /// the specified decl.  Note that bitfields do not have a valid alignment, so
907  /// this method will assert on them.
908  /// If @p RefAsPointee, references are treated like their underlying type
909  /// (for alignof), else they're treated like pointers (for CodeGen).
910  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
911
912  /// getASTRecordLayout - Get or compute information about the layout of the
913  /// specified record (struct/union/class), which indicates its size and field
914  /// position information.
915  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
916
917  /// getASTObjCInterfaceLayout - Get or compute information about the
918  /// layout of the specified Objective-C interface.
919  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
920
921  /// getASTObjCImplementationLayout - Get or compute information about
922  /// the layout of the specified Objective-C implementation. This may
923  /// differ from the interface if synthesized ivars are present.
924  const ASTRecordLayout &
925  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
926
927  /// getKeyFunction - Get the key function for the given record decl.
928  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
929  ///
930  /// ...the first non-pure virtual function that is not inline at the point
931  /// of class definition.
932  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
933
934  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
935                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
936
937  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
938                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
939  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
940                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
941  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
942  void CollectInheritedProtocols(const Decl *CDecl,
943                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
944
945  //===--------------------------------------------------------------------===//
946  //                            Type Operators
947  //===--------------------------------------------------------------------===//
948
949  /// getCanonicalType - Return the canonical (structural) type corresponding to
950  /// the specified potentially non-canonical type.  The non-canonical version
951  /// of a type may have many "decorated" versions of types.  Decorators can
952  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
953  /// to be free of any of these, allowing two canonical types to be compared
954  /// for exact equality with a simple pointer comparison.
955  CanQualType getCanonicalType(QualType T);
956  const Type *getCanonicalType(const Type *T) {
957    return T->getCanonicalTypeInternal().getTypePtr();
958  }
959
960  /// getCanonicalParamType - Return the canonical parameter type
961  /// corresponding to the specific potentially non-canonical one.
962  /// Qualifiers are stripped off, functions are turned into function
963  /// pointers, and arrays decay one level into pointers.
964  CanQualType getCanonicalParamType(QualType T);
965
966  /// \brief Determine whether the given types are equivalent.
967  bool hasSameType(QualType T1, QualType T2) {
968    return getCanonicalType(T1) == getCanonicalType(T2);
969  }
970
971  /// \brief Returns this type as a completely-unqualified array type,
972  /// capturing the qualifiers in Quals. This will remove the minimal amount of
973  /// sugaring from the types, similar to the behavior of
974  /// QualType::getUnqualifiedType().
975  ///
976  /// \param T is the qualified type, which may be an ArrayType
977  ///
978  /// \param Quals will receive the full set of qualifiers that were
979  /// applied to the array.
980  ///
981  /// \returns if this is an array type, the completely unqualified array type
982  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
983  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
984
985  /// \brief Determine whether the given types are equivalent after
986  /// cvr-qualifiers have been removed.
987  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
988    CanQualType CT1 = getCanonicalType(T1);
989    CanQualType CT2 = getCanonicalType(T2);
990
991    Qualifiers Quals;
992    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
993    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
994    return UnqualT1 == UnqualT2;
995  }
996
997  /// \brief Retrieves the "canonical" declaration of
998
999  /// \brief Retrieves the "canonical" nested name specifier for a
1000  /// given nested name specifier.
1001  ///
1002  /// The canonical nested name specifier is a nested name specifier
1003  /// that uniquely identifies a type or namespace within the type
1004  /// system. For example, given:
1005  ///
1006  /// \code
1007  /// namespace N {
1008  ///   struct S {
1009  ///     template<typename T> struct X { typename T* type; };
1010  ///   };
1011  /// }
1012  ///
1013  /// template<typename T> struct Y {
1014  ///   typename N::S::X<T>::type member;
1015  /// };
1016  /// \endcode
1017  ///
1018  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1019  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1020  /// by declarations in the type system and the canonical type for
1021  /// the template type parameter 'T' is template-param-0-0.
1022  NestedNameSpecifier *
1023  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1024
1025  /// \brief Retrieves the canonical representation of the given
1026  /// calling convention.
1027  CallingConv getCanonicalCallConv(CallingConv CC) {
1028    if (CC == CC_C)
1029      return CC_Default;
1030    return CC;
1031  }
1032
1033  /// \brief Determines whether two calling conventions name the same
1034  /// calling convention.
1035  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1036    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1037  }
1038
1039  /// \brief Retrieves the "canonical" template name that refers to a
1040  /// given template.
1041  ///
1042  /// The canonical template name is the simplest expression that can
1043  /// be used to refer to a given template. For most templates, this
1044  /// expression is just the template declaration itself. For example,
1045  /// the template std::vector can be referred to via a variety of
1046  /// names---std::vector, ::std::vector, vector (if vector is in
1047  /// scope), etc.---but all of these names map down to the same
1048  /// TemplateDecl, which is used to form the canonical template name.
1049  ///
1050  /// Dependent template names are more interesting. Here, the
1051  /// template name could be something like T::template apply or
1052  /// std::allocator<T>::template rebind, where the nested name
1053  /// specifier itself is dependent. In this case, the canonical
1054  /// template name uses the shortest form of the dependent
1055  /// nested-name-specifier, which itself contains all canonical
1056  /// types, values, and templates.
1057  TemplateName getCanonicalTemplateName(TemplateName Name);
1058
1059  /// \brief Determine whether the given template names refer to the same
1060  /// template.
1061  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1062
1063  /// \brief Retrieve the "canonical" template argument.
1064  ///
1065  /// The canonical template argument is the simplest template argument
1066  /// (which may be a type, value, expression, or declaration) that
1067  /// expresses the value of the argument.
1068  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1069
1070  /// Type Query functions.  If the type is an instance of the specified class,
1071  /// return the Type pointer for the underlying maximally pretty type.  This
1072  /// is a member of ASTContext because this may need to do some amount of
1073  /// canonicalization, e.g. to move type qualifiers into the element type.
1074  const ArrayType *getAsArrayType(QualType T);
1075  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1076    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1077  }
1078  const VariableArrayType *getAsVariableArrayType(QualType T) {
1079    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1080  }
1081  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1082    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1083  }
1084  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1085    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1086  }
1087
1088  /// getBaseElementType - Returns the innermost element type of an array type.
1089  /// For example, will return "int" for int[m][n]
1090  QualType getBaseElementType(const ArrayType *VAT);
1091
1092  /// getBaseElementType - Returns the innermost element type of a type
1093  /// (which needn't actually be an array type).
1094  QualType getBaseElementType(QualType QT);
1095
1096  /// getConstantArrayElementCount - Returns number of constant array elements.
1097  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1098
1099  /// getArrayDecayedType - Return the properly qualified result of decaying the
1100  /// specified array type to a pointer.  This operation is non-trivial when
1101  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1102  /// this returns a pointer to a properly qualified element of the array.
1103  ///
1104  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1105  QualType getArrayDecayedType(QualType T);
1106
1107  /// getPromotedIntegerType - Returns the type that Promotable will
1108  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1109  /// integer type.
1110  QualType getPromotedIntegerType(QualType PromotableType);
1111
1112  /// \brief Whether this is a promotable bitfield reference according
1113  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1114  ///
1115  /// \returns the type this bit-field will promote to, or NULL if no
1116  /// promotion occurs.
1117  QualType isPromotableBitField(Expr *E);
1118
1119  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1120  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1121  /// LHS < RHS, return -1.
1122  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1123
1124  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1125  /// point types, ignoring the domain of the type (i.e. 'double' ==
1126  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1127  /// LHS < RHS, return -1.
1128  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1129
1130  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1131  /// point or a complex type (based on typeDomain/typeSize).
1132  /// 'typeDomain' is a real floating point or complex type.
1133  /// 'typeSize' is a real floating point or complex type.
1134  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1135                                             QualType typeDomain) const;
1136
1137private:
1138  // Helper for integer ordering
1139  unsigned getIntegerRank(Type* T);
1140
1141public:
1142
1143  //===--------------------------------------------------------------------===//
1144  //                    Type Compatibility Predicates
1145  //===--------------------------------------------------------------------===//
1146
1147  /// Compatibility predicates used to check assignment expressions.
1148  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1149
1150  bool typesAreBlockPointerCompatible(QualType, QualType);
1151
1152  bool isObjCIdType(QualType T) const {
1153    return T == ObjCIdTypedefType;
1154  }
1155  bool isObjCClassType(QualType T) const {
1156    return T == ObjCClassTypedefType;
1157  }
1158  bool isObjCSelType(QualType T) const {
1159    return T == ObjCSelTypedefType;
1160  }
1161  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1162  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1163                                         bool ForCompare);
1164
1165  // Check the safety of assignment from LHS to RHS
1166  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1167                               const ObjCObjectPointerType *RHSOPT);
1168  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1169                               const ObjCInterfaceType *RHS);
1170  bool canAssignObjCInterfacesInBlockPointer(
1171                                          const ObjCObjectPointerType *LHSOPT,
1172                                          const ObjCObjectPointerType *RHSOPT);
1173  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1174  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1175                                   const ObjCObjectPointerType *RHSOPT);
1176
1177  // Functions for calculating composite types
1178  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1179  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1180
1181  /// UsualArithmeticConversionsType - handles the various conversions
1182  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1183  /// and returns the result type of that conversion.
1184  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1185
1186  //===--------------------------------------------------------------------===//
1187  //                    Integer Predicates
1188  //===--------------------------------------------------------------------===//
1189
1190  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1191  // of bits in an integer type excluding any padding bits.
1192  unsigned getIntWidth(QualType T);
1193
1194  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1195  // unsigned integer type.  This method takes a signed type, and returns the
1196  // corresponding unsigned integer type.
1197  QualType getCorrespondingUnsignedType(QualType T);
1198
1199  //===--------------------------------------------------------------------===//
1200  //                    Type Iterators.
1201  //===--------------------------------------------------------------------===//
1202
1203  typedef std::vector<Type*>::iterator       type_iterator;
1204  typedef std::vector<Type*>::const_iterator const_type_iterator;
1205
1206  type_iterator types_begin() { return Types.begin(); }
1207  type_iterator types_end() { return Types.end(); }
1208  const_type_iterator types_begin() const { return Types.begin(); }
1209  const_type_iterator types_end() const { return Types.end(); }
1210
1211  //===--------------------------------------------------------------------===//
1212  //                    Integer Values
1213  //===--------------------------------------------------------------------===//
1214
1215  /// MakeIntValue - Make an APSInt of the appropriate width and
1216  /// signedness for the given \arg Value and integer \arg Type.
1217  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1218    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1219    Res = Value;
1220    return Res;
1221  }
1222
1223  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1224  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1225  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1226  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1227
1228  /// \brief Set the implementation of ObjCInterfaceDecl.
1229  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1230                             ObjCImplementationDecl *ImplD);
1231  /// \brief Set the implementation of ObjCCategoryDecl.
1232  void setObjCImplementation(ObjCCategoryDecl *CatD,
1233                             ObjCCategoryImplDecl *ImplD);
1234
1235  /// \brief Allocate an uninitialized TypeSourceInfo.
1236  ///
1237  /// The caller should initialize the memory held by TypeSourceInfo using
1238  /// the TypeLoc wrappers.
1239  ///
1240  /// \param T the type that will be the basis for type source info. This type
1241  /// should refer to how the declarator was written in source code, not to
1242  /// what type semantic analysis resolved the declarator to.
1243  ///
1244  /// \param Size the size of the type info to create, or 0 if the size
1245  /// should be calculated based on the type.
1246  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1247
1248  /// \brief Allocate a TypeSourceInfo where all locations have been
1249  /// initialized to a given location, which defaults to the empty
1250  /// location.
1251  TypeSourceInfo *
1252  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1253
1254private:
1255  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1256  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1257
1258  void InitBuiltinTypes();
1259  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1260
1261  // Return the ObjC type encoding for a given type.
1262  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1263                                  bool ExpandPointedToStructures,
1264                                  bool ExpandStructures,
1265                                  const FieldDecl *Field,
1266                                  bool OutermostType = false,
1267                                  bool EncodingProperty = false);
1268
1269  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1270                                       const ObjCImplementationDecl *Impl);
1271
1272private:
1273  // FIXME: This currently contains the set of StoredDeclMaps used
1274  // by DeclContext objects.  This probably should not be in ASTContext,
1275  // but we include it here so that ASTContext can quickly deallocate them.
1276  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1277  friend class DeclContext;
1278  void ReleaseDeclContextMaps();
1279};
1280
1281/// @brief Utility function for constructing a nullary selector.
1282static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1283  IdentifierInfo* II = &Ctx.Idents.get(name);
1284  return Ctx.Selectors.getSelector(0, &II);
1285}
1286
1287/// @brief Utility function for constructing an unary selector.
1288static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1289  IdentifierInfo* II = &Ctx.Idents.get(name);
1290  return Ctx.Selectors.getSelector(1, &II);
1291}
1292
1293}  // end namespace clang
1294
1295// operator new and delete aren't allowed inside namespaces.
1296// The throw specifications are mandated by the standard.
1297/// @brief Placement new for using the ASTContext's allocator.
1298///
1299/// This placement form of operator new uses the ASTContext's allocator for
1300/// obtaining memory. It is a non-throwing new, which means that it returns
1301/// null on error. (If that is what the allocator does. The current does, so if
1302/// this ever changes, this operator will have to be changed, too.)
1303/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1304/// @code
1305/// // Default alignment (8)
1306/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1307/// // Specific alignment
1308/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1309/// @endcode
1310/// Please note that you cannot use delete on the pointer; it must be
1311/// deallocated using an explicit destructor call followed by
1312/// @c Context.Deallocate(Ptr).
1313///
1314/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1315/// @param C The ASTContext that provides the allocator.
1316/// @param Alignment The alignment of the allocated memory (if the underlying
1317///                  allocator supports it).
1318/// @return The allocated memory. Could be NULL.
1319inline void *operator new(size_t Bytes, clang::ASTContext &C,
1320                          size_t Alignment) throw () {
1321  return C.Allocate(Bytes, Alignment);
1322}
1323/// @brief Placement delete companion to the new above.
1324///
1325/// This operator is just a companion to the new above. There is no way of
1326/// invoking it directly; see the new operator for more details. This operator
1327/// is called implicitly by the compiler if a placement new expression using
1328/// the ASTContext throws in the object constructor.
1329inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1330              throw () {
1331  C.Deallocate(Ptr);
1332}
1333
1334/// This placement form of operator new[] uses the ASTContext's allocator for
1335/// obtaining memory. It is a non-throwing new[], which means that it returns
1336/// null on error.
1337/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1338/// @code
1339/// // Default alignment (8)
1340/// char *data = new (Context) char[10];
1341/// // Specific alignment
1342/// char *data = new (Context, 4) char[10];
1343/// @endcode
1344/// Please note that you cannot use delete on the pointer; it must be
1345/// deallocated using an explicit destructor call followed by
1346/// @c Context.Deallocate(Ptr).
1347///
1348/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1349/// @param C The ASTContext that provides the allocator.
1350/// @param Alignment The alignment of the allocated memory (if the underlying
1351///                  allocator supports it).
1352/// @return The allocated memory. Could be NULL.
1353inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1354                            size_t Alignment = 8) throw () {
1355  return C.Allocate(Bytes, Alignment);
1356}
1357
1358/// @brief Placement delete[] companion to the new[] above.
1359///
1360/// This operator is just a companion to the new[] above. There is no way of
1361/// invoking it directly; see the new[] operator for more details. This operator
1362/// is called implicitly by the compiler if a placement new[] expression using
1363/// the ASTContext throws in the object constructor.
1364inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1365              throw () {
1366  C.Deallocate(Ptr);
1367}
1368
1369#endif
1370