ASTContext.h revision 12df246d6dea2ee1f92c186f922f1afcf499647a
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/LambdaMangleContext.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/TemplateName.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/AddressSpaces.h"
29#include "clang/Basic/IdentifierTable.h"
30#include "clang/Basic/LangOptions.h"
31#include "clang/Basic/OperatorKinds.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/VersionTuple.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/IntrusiveRefCntPtr.h"
37#include "llvm/ADT/OwningPtr.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/Support/Allocator.h"
41#include <vector>
42
43namespace llvm {
44  struct fltSemantics;
45}
46
47namespace clang {
48  class FileManager;
49  class AtomicExpr;
50  class ASTRecordLayout;
51  class BlockExpr;
52  class CharUnits;
53  class DiagnosticsEngine;
54  class Expr;
55  class ExternalASTSource;
56  class ASTMutationListener;
57  class IdentifierTable;
58  class MaterializeTemporaryExpr;
59  class SelectorTable;
60  class TargetInfo;
61  class CXXABI;
62  // Decls
63  class MangleContext;
64  class ObjCIvarDecl;
65  class ObjCPropertyDecl;
66  class UnresolvedSetIterator;
67  class UsingDecl;
68  class UsingShadowDecl;
69
70  namespace Builtin { class Context; }
71
72  namespace comments {
73    class FullComment;
74  }
75
76/// \brief Holds long-lived AST nodes (such as types and decls) that can be
77/// referred to throughout the semantic analysis of a file.
78class ASTContext : public RefCountedBase<ASTContext> {
79  ASTContext &this_() { return *this; }
80
81  mutable SmallVector<Type *, 0> Types;
82  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
84  mutable llvm::FoldingSet<PointerType> PointerTypes;
85  mutable llvm::FoldingSet<DecayedType> DecayedTypes;
86  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92  mutable std::vector<VariableArrayType*> VariableArrayTypes;
93  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94  mutable llvm::FoldingSet<DependentSizedExtVectorType>
95    DependentSizedExtVectorTypes;
96  mutable llvm::FoldingSet<VectorType> VectorTypes;
97  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
98  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
99    FunctionProtoTypes;
100  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
101  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
102  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
103  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
104    SubstTemplateTypeParmTypes;
105  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
106    SubstTemplateTypeParmPackTypes;
107  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
108    TemplateSpecializationTypes;
109  mutable llvm::FoldingSet<ParenType> ParenTypes;
110  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
111  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
112  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
113                                     ASTContext&>
114    DependentTemplateSpecializationTypes;
115  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
116  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
117  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
118  mutable llvm::FoldingSet<AutoType> AutoTypes;
119  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
120  llvm::FoldingSet<AttributedType> AttributedTypes;
121
122  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
123  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
124  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
125    SubstTemplateTemplateParms;
126  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
127                                     ASTContext&>
128    SubstTemplateTemplateParmPacks;
129
130  /// \brief The set of nested name specifiers.
131  ///
132  /// This set is managed by the NestedNameSpecifier class.
133  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
134  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
135  friend class NestedNameSpecifier;
136
137  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
138  ///
139  /// This is lazily created.  This is intentionally not serialized.
140  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
141    ASTRecordLayouts;
142  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
143    ObjCLayouts;
144
145  /// \brief A cache from types to size and alignment information.
146  typedef llvm::DenseMap<const Type*,
147                         std::pair<uint64_t, unsigned> > TypeInfoMap;
148  mutable TypeInfoMap MemoizedTypeInfo;
149
150  /// \brief A cache mapping from CXXRecordDecls to key functions.
151  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
152
153  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
154  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
155
156  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
157  /// interface.
158  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
159
160  /// \brief Mapping from __block VarDecls to their copy initialization expr.
161  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
162
163  /// \brief Mapping from class scope functions specialization to their
164  /// template patterns.
165  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
166    ClassScopeSpecializationPattern;
167
168  /// \brief Mapping from materialized temporaries with static storage duration
169  /// that appear in constant initializers to their evaluated values.
170  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
171    MaterializedTemporaryValues;
172
173  /// \brief Representation of a "canonical" template template parameter that
174  /// is used in canonical template names.
175  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176    TemplateTemplateParmDecl *Parm;
177
178  public:
179    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180      : Parm(Parm) { }
181
182    TemplateTemplateParmDecl *getParam() const { return Parm; }
183
184    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185
186    static void Profile(llvm::FoldingSetNodeID &ID,
187                        TemplateTemplateParmDecl *Parm);
188  };
189  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190    CanonTemplateTemplateParms;
191
192  TemplateTemplateParmDecl *
193    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194
195  /// \brief The typedef for the __int128_t type.
196  mutable TypedefDecl *Int128Decl;
197
198  /// \brief The typedef for the __uint128_t type.
199  mutable TypedefDecl *UInt128Decl;
200
201  /// \brief The typedef for the __float128 stub type.
202  mutable TypeDecl *Float128StubDecl;
203
204  /// \brief The typedef for the target specific predefined
205  /// __builtin_va_list type.
206  mutable TypedefDecl *BuiltinVaListDecl;
207
208  /// \brief The typedef for the predefined \c id type.
209  mutable TypedefDecl *ObjCIdDecl;
210
211  /// \brief The typedef for the predefined \c SEL type.
212  mutable TypedefDecl *ObjCSelDecl;
213
214  /// \brief The typedef for the predefined \c Class type.
215  mutable TypedefDecl *ObjCClassDecl;
216
217  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
218  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
219
220  /// \brief The typedef for the predefined 'BOOL' type.
221  mutable TypedefDecl *BOOLDecl;
222
223  // Typedefs which may be provided defining the structure of Objective-C
224  // pseudo-builtins
225  QualType ObjCIdRedefinitionType;
226  QualType ObjCClassRedefinitionType;
227  QualType ObjCSelRedefinitionType;
228
229  QualType ObjCConstantStringType;
230  mutable RecordDecl *CFConstantStringTypeDecl;
231
232  mutable QualType ObjCSuperType;
233
234  QualType ObjCNSStringType;
235
236  /// \brief The typedef declaration for the Objective-C "instancetype" type.
237  TypedefDecl *ObjCInstanceTypeDecl;
238
239  /// \brief The type for the C FILE type.
240  TypeDecl *FILEDecl;
241
242  /// \brief The type for the C jmp_buf type.
243  TypeDecl *jmp_bufDecl;
244
245  /// \brief The type for the C sigjmp_buf type.
246  TypeDecl *sigjmp_bufDecl;
247
248  /// \brief The type for the C ucontext_t type.
249  TypeDecl *ucontext_tDecl;
250
251  /// \brief Type for the Block descriptor for Blocks CodeGen.
252  ///
253  /// Since this is only used for generation of debug info, it is not
254  /// serialized.
255  mutable RecordDecl *BlockDescriptorType;
256
257  /// \brief Type for the Block descriptor for Blocks CodeGen.
258  ///
259  /// Since this is only used for generation of debug info, it is not
260  /// serialized.
261  mutable RecordDecl *BlockDescriptorExtendedType;
262
263  /// \brief Declaration for the CUDA cudaConfigureCall function.
264  FunctionDecl *cudaConfigureCallDecl;
265
266  TypeSourceInfo NullTypeSourceInfo;
267
268  /// \brief Keeps track of all declaration attributes.
269  ///
270  /// Since so few decls have attrs, we keep them in a hash map instead of
271  /// wasting space in the Decl class.
272  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
273
274  /// \brief Keeps track of the static data member templates from which
275  /// static data members of class template specializations were instantiated.
276  ///
277  /// This data structure stores the mapping from instantiations of static
278  /// data members to the static data member representations within the
279  /// class template from which they were instantiated along with the kind
280  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
281  ///
282  /// Given the following example:
283  ///
284  /// \code
285  /// template<typename T>
286  /// struct X {
287  ///   static T value;
288  /// };
289  ///
290  /// template<typename T>
291  ///   T X<T>::value = T(17);
292  ///
293  /// int *x = &X<int>::value;
294  /// \endcode
295  ///
296  /// This mapping will contain an entry that maps from the VarDecl for
297  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
298  /// class template X) and will be marked TSK_ImplicitInstantiation.
299  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
300    InstantiatedFromStaticDataMember;
301
302  /// \brief Keeps track of the declaration from which a UsingDecl was
303  /// created during instantiation.
304  ///
305  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
306  /// or an UnresolvedUsingTypenameDecl.
307  ///
308  /// For example:
309  /// \code
310  /// template<typename T>
311  /// struct A {
312  ///   void f();
313  /// };
314  ///
315  /// template<typename T>
316  /// struct B : A<T> {
317  ///   using A<T>::f;
318  /// };
319  ///
320  /// template struct B<int>;
321  /// \endcode
322  ///
323  /// This mapping will contain an entry that maps from the UsingDecl in
324  /// B<int> to the UnresolvedUsingDecl in B<T>.
325  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
326
327  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
328    InstantiatedFromUsingShadowDecl;
329
330  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
331
332  /// \brief Mapping that stores the methods overridden by a given C++
333  /// member function.
334  ///
335  /// Since most C++ member functions aren't virtual and therefore
336  /// don't override anything, we store the overridden functions in
337  /// this map on the side rather than within the CXXMethodDecl structure.
338  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
339  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
340
341  /// \brief Mapping from each declaration context to its corresponding lambda
342  /// mangling context.
343  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
344
345  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
346  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
347
348  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
349  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
350  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
351  ParameterIndexTable ParamIndices;
352
353  ImportDecl *FirstLocalImport;
354  ImportDecl *LastLocalImport;
355
356  TranslationUnitDecl *TUDecl;
357
358  /// \brief The associated SourceManager object.a
359  SourceManager &SourceMgr;
360
361  /// \brief The language options used to create the AST associated with
362  ///  this ASTContext object.
363  LangOptions &LangOpts;
364
365  /// \brief The allocator used to create AST objects.
366  ///
367  /// AST objects are never destructed; rather, all memory associated with the
368  /// AST objects will be released when the ASTContext itself is destroyed.
369  mutable llvm::BumpPtrAllocator BumpAlloc;
370
371  /// \brief Allocator for partial diagnostics.
372  PartialDiagnostic::StorageAllocator DiagAllocator;
373
374  /// \brief The current C++ ABI.
375  OwningPtr<CXXABI> ABI;
376  CXXABI *createCXXABI(const TargetInfo &T);
377
378  /// \brief The logical -> physical address space map.
379  const LangAS::Map *AddrSpaceMap;
380
381  friend class ASTDeclReader;
382  friend class ASTReader;
383  friend class ASTWriter;
384  friend class CXXRecordDecl;
385
386  const TargetInfo *Target;
387  clang::PrintingPolicy PrintingPolicy;
388
389public:
390  IdentifierTable &Idents;
391  SelectorTable &Selectors;
392  Builtin::Context &BuiltinInfo;
393  mutable DeclarationNameTable DeclarationNames;
394  OwningPtr<ExternalASTSource> ExternalSource;
395  ASTMutationListener *Listener;
396
397  /// \brief Contains parents of a node.
398  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
399
400  /// \brief Maps from a node to its parents.
401  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
402
403  /// \brief Returns the parents of the given node.
404  ///
405  /// Note that this will lazily compute the parents of all nodes
406  /// and store them for later retrieval. Thus, the first call is O(n)
407  /// in the number of AST nodes.
408  ///
409  /// Caveats and FIXMEs:
410  /// Calculating the parent map over all AST nodes will need to load the
411  /// full AST. This can be undesirable in the case where the full AST is
412  /// expensive to create (for example, when using precompiled header
413  /// preambles). Thus, there are good opportunities for optimization here.
414  /// One idea is to walk the given node downwards, looking for references
415  /// to declaration contexts - once a declaration context is found, compute
416  /// the parent map for the declaration context; if that can satisfy the
417  /// request, loading the whole AST can be avoided. Note that this is made
418  /// more complex by statements in templates having multiple parents - those
419  /// problems can be solved by building closure over the templated parts of
420  /// the AST, which also avoids touching large parts of the AST.
421  /// Additionally, we will want to add an interface to already give a hint
422  /// where to search for the parents, for example when looking at a statement
423  /// inside a certain function.
424  ///
425  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
426  /// NestedNameSpecifier or NestedNameSpecifierLoc.
427  template <typename NodeT>
428  ParentVector getParents(const NodeT &Node) {
429    return getParents(ast_type_traits::DynTypedNode::create(Node));
430  }
431
432  ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
433
434  const clang::PrintingPolicy &getPrintingPolicy() const {
435    return PrintingPolicy;
436  }
437
438  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
439    PrintingPolicy = Policy;
440  }
441
442  SourceManager& getSourceManager() { return SourceMgr; }
443  const SourceManager& getSourceManager() const { return SourceMgr; }
444
445  llvm::BumpPtrAllocator &getAllocator() const {
446    return BumpAlloc;
447  }
448
449  void *Allocate(size_t Size, unsigned Align = 8) const {
450    return BumpAlloc.Allocate(Size, Align);
451  }
452  void Deallocate(void *Ptr) const { }
453
454  /// Return the total amount of physical memory allocated for representing
455  /// AST nodes and type information.
456  size_t getASTAllocatedMemory() const {
457    return BumpAlloc.getTotalMemory();
458  }
459  /// Return the total memory used for various side tables.
460  size_t getSideTableAllocatedMemory() const;
461
462  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
463    return DiagAllocator;
464  }
465
466  const TargetInfo &getTargetInfo() const { return *Target; }
467
468  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
469
470  const LangOptions& getLangOpts() const { return LangOpts; }
471
472  DiagnosticsEngine &getDiagnostics() const;
473
474  FullSourceLoc getFullLoc(SourceLocation Loc) const {
475    return FullSourceLoc(Loc,SourceMgr);
476  }
477
478  /// \brief All comments in this translation unit.
479  RawCommentList Comments;
480
481  /// \brief True if comments are already loaded from ExternalASTSource.
482  mutable bool CommentsLoaded;
483
484  class RawCommentAndCacheFlags {
485  public:
486    enum Kind {
487      /// We searched for a comment attached to the particular declaration, but
488      /// didn't find any.
489      ///
490      /// getRaw() == 0.
491      NoCommentInDecl = 0,
492
493      /// We have found a comment attached to this particular declaration.
494      ///
495      /// getRaw() != 0.
496      FromDecl,
497
498      /// This declaration does not have an attached comment, and we have
499      /// searched the redeclaration chain.
500      ///
501      /// If getRaw() == 0, the whole redeclaration chain does not have any
502      /// comments.
503      ///
504      /// If getRaw() != 0, it is a comment propagated from other
505      /// redeclaration.
506      FromRedecl
507    };
508
509    Kind getKind() const LLVM_READONLY {
510      return Data.getInt();
511    }
512
513    void setKind(Kind K) {
514      Data.setInt(K);
515    }
516
517    const RawComment *getRaw() const LLVM_READONLY {
518      return Data.getPointer();
519    }
520
521    void setRaw(const RawComment *RC) {
522      Data.setPointer(RC);
523    }
524
525    const Decl *getOriginalDecl() const LLVM_READONLY {
526      return OriginalDecl;
527    }
528
529    void setOriginalDecl(const Decl *Orig) {
530      OriginalDecl = Orig;
531    }
532
533  private:
534    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
535    const Decl *OriginalDecl;
536  };
537
538  /// \brief Mapping from declarations to comments attached to any
539  /// redeclaration.
540  ///
541  /// Raw comments are owned by Comments list.  This mapping is populated
542  /// lazily.
543  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
544
545  /// \brief Mapping from declarations to parsed comments attached to any
546  /// redeclaration.
547  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
548
549  /// \brief Return the documentation comment attached to a given declaration,
550  /// without looking into cache.
551  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
552
553public:
554  RawCommentList &getRawCommentList() {
555    return Comments;
556  }
557
558  void addComment(const RawComment &RC) {
559    assert(LangOpts.RetainCommentsFromSystemHeaders ||
560           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
561    Comments.addComment(RC, BumpAlloc);
562  }
563
564  /// \brief Return the documentation comment attached to a given declaration.
565  /// Returns NULL if no comment is attached.
566  ///
567  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
568  /// the comment, if the comment we found comes from a redeclaration.
569  const RawComment *getRawCommentForAnyRedecl(
570                                      const Decl *D,
571                                      const Decl **OriginalDecl = NULL) const;
572
573  /// Return parsed documentation comment attached to a given declaration.
574  /// Returns NULL if no comment is attached.
575  ///
576  /// \param PP the Preprocessor used with this TU.  Could be NULL if
577  /// preprocessor is not available.
578  comments::FullComment *getCommentForDecl(const Decl *D,
579                                           const Preprocessor *PP) const;
580
581  /// Return parsed documentation comment attached to a given declaration.
582  /// Returns NULL if no comment is attached. Does not look at any
583  /// redeclarations of the declaration.
584  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
585
586  comments::FullComment *cloneFullComment(comments::FullComment *FC,
587                                         const Decl *D) const;
588
589private:
590  mutable comments::CommandTraits CommentCommandTraits;
591
592public:
593  comments::CommandTraits &getCommentCommandTraits() const {
594    return CommentCommandTraits;
595  }
596
597  /// \brief Retrieve the attributes for the given declaration.
598  AttrVec& getDeclAttrs(const Decl *D);
599
600  /// \brief Erase the attributes corresponding to the given declaration.
601  void eraseDeclAttrs(const Decl *D);
602
603  /// \brief If this variable is an instantiated static data member of a
604  /// class template specialization, returns the templated static data member
605  /// from which it was instantiated.
606  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
607                                                           const VarDecl *Var);
608
609  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
610
611  void setClassScopeSpecializationPattern(FunctionDecl *FD,
612                                          FunctionDecl *Pattern);
613
614  /// \brief Note that the static data member \p Inst is an instantiation of
615  /// the static data member template \p Tmpl of a class template.
616  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
617                                           TemplateSpecializationKind TSK,
618                        SourceLocation PointOfInstantiation = SourceLocation());
619
620  /// \brief If the given using decl \p Inst is an instantiation of a
621  /// (possibly unresolved) using decl from a template instantiation,
622  /// return it.
623  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
624
625  /// \brief Remember that the using decl \p Inst is an instantiation
626  /// of the using decl \p Pattern of a class template.
627  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
628
629  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
630                                          UsingShadowDecl *Pattern);
631  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
632
633  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
634
635  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
636
637  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
638  /// the non-bitfield \p LastFD.
639  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
640                                      const FieldDecl *LastFD) const;
641
642  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
643  /// the bitfield \p LastFD.
644  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
645                                   const FieldDecl *LastFD) const;
646
647  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
648  /// \p LastFD.
649  bool BitfieldFollowsBitfield(const FieldDecl *FD,
650                               const FieldDecl *LastFD) const;
651
652  /// \brief Return \c true if \p FD is not a bitfield which follows the
653  /// bitfield \p LastFD.
654  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
655                                  const FieldDecl *LastFD) const;
656
657  /// \brief Return \c true if \p FD is a bitfield which follows the
658  /// non-bitfield \p LastFD.
659  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
660                                  const FieldDecl *LastFD) const;
661
662  // Access to the set of methods overridden by the given C++ method.
663  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
664  overridden_cxx_method_iterator
665  overridden_methods_begin(const CXXMethodDecl *Method) const;
666
667  overridden_cxx_method_iterator
668  overridden_methods_end(const CXXMethodDecl *Method) const;
669
670  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
671
672  /// \brief Note that the given C++ \p Method overrides the given \p
673  /// Overridden method.
674  void addOverriddenMethod(const CXXMethodDecl *Method,
675                           const CXXMethodDecl *Overridden);
676
677  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
678  ///
679  /// An ObjC method is considered to override any method in the class's
680  /// base classes, its protocols, or its categories' protocols, that has
681  /// the same selector and is of the same kind (class or instance).
682  /// A method in an implementation is not considered as overriding the same
683  /// method in the interface or its categories.
684  void getOverriddenMethods(
685                        const NamedDecl *Method,
686                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
687
688  /// \brief Notify the AST context that a new import declaration has been
689  /// parsed or implicitly created within this translation unit.
690  void addedLocalImportDecl(ImportDecl *Import);
691
692  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
693    return Import->NextLocalImport;
694  }
695
696  /// \brief Iterator that visits import declarations.
697  class import_iterator {
698    ImportDecl *Import;
699
700  public:
701    typedef ImportDecl               *value_type;
702    typedef ImportDecl               *reference;
703    typedef ImportDecl               *pointer;
704    typedef int                       difference_type;
705    typedef std::forward_iterator_tag iterator_category;
706
707    import_iterator() : Import() { }
708    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
709
710    reference operator*() const { return Import; }
711    pointer operator->() const { return Import; }
712
713    import_iterator &operator++() {
714      Import = ASTContext::getNextLocalImport(Import);
715      return *this;
716    }
717
718    import_iterator operator++(int) {
719      import_iterator Other(*this);
720      ++(*this);
721      return Other;
722    }
723
724    friend bool operator==(import_iterator X, import_iterator Y) {
725      return X.Import == Y.Import;
726    }
727
728    friend bool operator!=(import_iterator X, import_iterator Y) {
729      return X.Import != Y.Import;
730    }
731  };
732
733  import_iterator local_import_begin() const {
734    return import_iterator(FirstLocalImport);
735  }
736  import_iterator local_import_end() const { return import_iterator(); }
737
738  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
739
740
741  // Builtin Types.
742  CanQualType VoidTy;
743  CanQualType BoolTy;
744  CanQualType CharTy;
745  CanQualType WCharTy;  // [C++ 3.9.1p5].
746  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
747  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
748  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
749  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
750  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
751  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
752  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
753  CanQualType FloatTy, DoubleTy, LongDoubleTy;
754  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
755  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
756  CanQualType VoidPtrTy, NullPtrTy;
757  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
758  CanQualType BuiltinFnTy;
759  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
760  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
761  CanQualType ObjCBuiltinBoolTy;
762  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
763  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
764  CanQualType OCLImage3dTy;
765  CanQualType OCLSamplerTy, OCLEventTy;
766
767  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
768  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
769  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
770
771  // Type used to help define __builtin_va_list for some targets.
772  // The type is built when constructing 'BuiltinVaListDecl'.
773  mutable QualType VaListTagTy;
774
775  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
776             IdentifierTable &idents, SelectorTable &sels,
777             Builtin::Context &builtins,
778             unsigned size_reserve,
779             bool DelayInitialization = false);
780
781  ~ASTContext();
782
783  /// \brief Attach an external AST source to the AST context.
784  ///
785  /// The external AST source provides the ability to load parts of
786  /// the abstract syntax tree as needed from some external storage,
787  /// e.g., a precompiled header.
788  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
789
790  /// \brief Retrieve a pointer to the external AST source associated
791  /// with this AST context, if any.
792  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
793
794  /// \brief Attach an AST mutation listener to the AST context.
795  ///
796  /// The AST mutation listener provides the ability to track modifications to
797  /// the abstract syntax tree entities committed after they were initially
798  /// created.
799  void setASTMutationListener(ASTMutationListener *Listener) {
800    this->Listener = Listener;
801  }
802
803  /// \brief Retrieve a pointer to the AST mutation listener associated
804  /// with this AST context, if any.
805  ASTMutationListener *getASTMutationListener() const { return Listener; }
806
807  void PrintStats() const;
808  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
809
810  /// \brief Retrieve the declaration for the 128-bit signed integer type.
811  TypedefDecl *getInt128Decl() const;
812
813  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
814  TypedefDecl *getUInt128Decl() const;
815
816  /// \brief Retrieve the declaration for a 128-bit float stub type.
817  TypeDecl *getFloat128StubType() const;
818
819  //===--------------------------------------------------------------------===//
820  //                           Type Constructors
821  //===--------------------------------------------------------------------===//
822
823private:
824  /// \brief Return a type with extended qualifiers.
825  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
826
827  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
828
829public:
830  /// \brief Return the uniqued reference to the type for an address space
831  /// qualified type with the specified type and address space.
832  ///
833  /// The resulting type has a union of the qualifiers from T and the address
834  /// space. If T already has an address space specifier, it is silently
835  /// replaced.
836  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
837
838  /// \brief Return the uniqued reference to the type for an Objective-C
839  /// gc-qualified type.
840  ///
841  /// The retulting type has a union of the qualifiers from T and the gc
842  /// attribute.
843  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
844
845  /// \brief Return the uniqued reference to the type for a \c restrict
846  /// qualified type.
847  ///
848  /// The resulting type has a union of the qualifiers from \p T and
849  /// \c restrict.
850  QualType getRestrictType(QualType T) const {
851    return T.withFastQualifiers(Qualifiers::Restrict);
852  }
853
854  /// \brief Return the uniqued reference to the type for a \c volatile
855  /// qualified type.
856  ///
857  /// The resulting type has a union of the qualifiers from \p T and
858  /// \c volatile.
859  QualType getVolatileType(QualType T) const {
860    return T.withFastQualifiers(Qualifiers::Volatile);
861  }
862
863  /// \brief Return the uniqued reference to the type for a \c const
864  /// qualified type.
865  ///
866  /// The resulting type has a union of the qualifiers from \p T and \c const.
867  ///
868  /// It can be reasonably expected that this will always be equivalent to
869  /// calling T.withConst().
870  QualType getConstType(QualType T) const { return T.withConst(); }
871
872  /// \brief Change the ExtInfo on a function type.
873  const FunctionType *adjustFunctionType(const FunctionType *Fn,
874                                         FunctionType::ExtInfo EInfo);
875
876  /// \brief Change the result type of a function type once it is deduced.
877  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
878
879  /// \brief Return the uniqued reference to the type for a complex
880  /// number with the specified element type.
881  QualType getComplexType(QualType T) const;
882  CanQualType getComplexType(CanQualType T) const {
883    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
884  }
885
886  /// \brief Return the uniqued reference to the type for a pointer to
887  /// the specified type.
888  QualType getPointerType(QualType T) const;
889  CanQualType getPointerType(CanQualType T) const {
890    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
891  }
892
893  /// \brief Return the uniqued reference to the decayed version of the given
894  /// type.  Can only be called on array and function types which decay to
895  /// pointer types.
896  QualType getDecayedType(QualType T) const;
897  CanQualType getDecayedType(CanQualType T) const {
898    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
899  }
900
901  /// \brief Return the uniqued reference to the atomic type for the specified
902  /// type.
903  QualType getAtomicType(QualType T) const;
904
905  /// \brief Return the uniqued reference to the type for a block of the
906  /// specified type.
907  QualType getBlockPointerType(QualType T) const;
908
909  /// Gets the struct used to keep track of the descriptor for pointer to
910  /// blocks.
911  QualType getBlockDescriptorType() const;
912
913  /// Gets the struct used to keep track of the extended descriptor for
914  /// pointer to blocks.
915  QualType getBlockDescriptorExtendedType() const;
916
917  void setcudaConfigureCallDecl(FunctionDecl *FD) {
918    cudaConfigureCallDecl = FD;
919  }
920  FunctionDecl *getcudaConfigureCallDecl() {
921    return cudaConfigureCallDecl;
922  }
923
924  /// Returns true iff we need copy/dispose helpers for the given type.
925  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
926
927
928  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
929  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
930  /// has extended lifetime.
931  bool getByrefLifetime(QualType Ty,
932                        Qualifiers::ObjCLifetime &Lifetime,
933                        bool &HasByrefExtendedLayout) const;
934
935  /// \brief Return the uniqued reference to the type for an lvalue reference
936  /// to the specified type.
937  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
938    const;
939
940  /// \brief Return the uniqued reference to the type for an rvalue reference
941  /// to the specified type.
942  QualType getRValueReferenceType(QualType T) const;
943
944  /// \brief Return the uniqued reference to the type for a member pointer to
945  /// the specified type in the specified class.
946  ///
947  /// The class \p Cls is a \c Type because it could be a dependent name.
948  QualType getMemberPointerType(QualType T, const Type *Cls) const;
949
950  /// \brief Return a non-unique reference to the type for a variable array of
951  /// the specified element type.
952  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
953                                ArrayType::ArraySizeModifier ASM,
954                                unsigned IndexTypeQuals,
955                                SourceRange Brackets) const;
956
957  /// \brief Return a non-unique reference to the type for a dependently-sized
958  /// array of the specified element type.
959  ///
960  /// FIXME: We will need these to be uniqued, or at least comparable, at some
961  /// point.
962  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
963                                      ArrayType::ArraySizeModifier ASM,
964                                      unsigned IndexTypeQuals,
965                                      SourceRange Brackets) const;
966
967  /// \brief Return a unique reference to the type for an incomplete array of
968  /// the specified element type.
969  QualType getIncompleteArrayType(QualType EltTy,
970                                  ArrayType::ArraySizeModifier ASM,
971                                  unsigned IndexTypeQuals) const;
972
973  /// \brief Return the unique reference to the type for a constant array of
974  /// the specified element type.
975  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
976                                ArrayType::ArraySizeModifier ASM,
977                                unsigned IndexTypeQuals) const;
978
979  /// \brief Returns a vla type where known sizes are replaced with [*].
980  QualType getVariableArrayDecayedType(QualType Ty) const;
981
982  /// \brief Return the unique reference to a vector type of the specified
983  /// element type and size.
984  ///
985  /// \pre \p VectorType must be a built-in type.
986  QualType getVectorType(QualType VectorType, unsigned NumElts,
987                         VectorType::VectorKind VecKind) const;
988
989  /// \brief Return the unique reference to an extended vector type
990  /// of the specified element type and size.
991  ///
992  /// \pre \p VectorType must be a built-in type.
993  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
994
995  /// \pre Return a non-unique reference to the type for a dependently-sized
996  /// vector of the specified element type.
997  ///
998  /// FIXME: We will need these to be uniqued, or at least comparable, at some
999  /// point.
1000  QualType getDependentSizedExtVectorType(QualType VectorType,
1001                                          Expr *SizeExpr,
1002                                          SourceLocation AttrLoc) const;
1003
1004  /// \brief Return a K&R style C function type like 'int()'.
1005  QualType getFunctionNoProtoType(QualType ResultTy,
1006                                  const FunctionType::ExtInfo &Info) const;
1007
1008  QualType getFunctionNoProtoType(QualType ResultTy) const {
1009    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1010  }
1011
1012  /// \brief Return a normal function type with a typed argument list.
1013  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1014                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1015
1016  /// \brief Return the unique reference to the type for the specified type
1017  /// declaration.
1018  QualType getTypeDeclType(const TypeDecl *Decl,
1019                           const TypeDecl *PrevDecl = 0) const {
1020    assert(Decl && "Passed null for Decl param");
1021    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1022
1023    if (PrevDecl) {
1024      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1025      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1026      return QualType(PrevDecl->TypeForDecl, 0);
1027    }
1028
1029    return getTypeDeclTypeSlow(Decl);
1030  }
1031
1032  /// \brief Return the unique reference to the type for the specified
1033  /// typedef-name decl.
1034  QualType getTypedefType(const TypedefNameDecl *Decl,
1035                          QualType Canon = QualType()) const;
1036
1037  QualType getRecordType(const RecordDecl *Decl) const;
1038
1039  QualType getEnumType(const EnumDecl *Decl) const;
1040
1041  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1042
1043  QualType getAttributedType(AttributedType::Kind attrKind,
1044                             QualType modifiedType,
1045                             QualType equivalentType);
1046
1047  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1048                                        QualType Replacement) const;
1049  QualType getSubstTemplateTypeParmPackType(
1050                                          const TemplateTypeParmType *Replaced,
1051                                            const TemplateArgument &ArgPack);
1052
1053  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1054                                   bool ParameterPack,
1055                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1056
1057  QualType getTemplateSpecializationType(TemplateName T,
1058                                         const TemplateArgument *Args,
1059                                         unsigned NumArgs,
1060                                         QualType Canon = QualType()) const;
1061
1062  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1063                                                  const TemplateArgument *Args,
1064                                                  unsigned NumArgs) const;
1065
1066  QualType getTemplateSpecializationType(TemplateName T,
1067                                         const TemplateArgumentListInfo &Args,
1068                                         QualType Canon = QualType()) const;
1069
1070  TypeSourceInfo *
1071  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1072                                    const TemplateArgumentListInfo &Args,
1073                                    QualType Canon = QualType()) const;
1074
1075  QualType getParenType(QualType NamedType) const;
1076
1077  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1078                             NestedNameSpecifier *NNS,
1079                             QualType NamedType) const;
1080  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1081                                NestedNameSpecifier *NNS,
1082                                const IdentifierInfo *Name,
1083                                QualType Canon = QualType()) const;
1084
1085  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1086                                                  NestedNameSpecifier *NNS,
1087                                                  const IdentifierInfo *Name,
1088                                    const TemplateArgumentListInfo &Args) const;
1089  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1090                                                  NestedNameSpecifier *NNS,
1091                                                  const IdentifierInfo *Name,
1092                                                  unsigned NumArgs,
1093                                            const TemplateArgument *Args) const;
1094
1095  QualType getPackExpansionType(QualType Pattern,
1096                                Optional<unsigned> NumExpansions);
1097
1098  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1099                                ObjCInterfaceDecl *PrevDecl = 0) const;
1100
1101  QualType getObjCObjectType(QualType Base,
1102                             ObjCProtocolDecl * const *Protocols,
1103                             unsigned NumProtocols) const;
1104
1105  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1106  QualType getObjCObjectPointerType(QualType OIT) const;
1107
1108  /// \brief GCC extension.
1109  QualType getTypeOfExprType(Expr *e) const;
1110  QualType getTypeOfType(QualType t) const;
1111
1112  /// \brief C++11 decltype.
1113  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1114
1115  /// \brief Unary type transforms
1116  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1117                                 UnaryTransformType::UTTKind UKind) const;
1118
1119  /// \brief C++11 deduced auto type.
1120  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1121                       bool IsDependent = false) const;
1122
1123  /// \brief C++11 deduction pattern for 'auto' type.
1124  QualType getAutoDeductType() const;
1125
1126  /// \brief C++11 deduction pattern for 'auto &&' type.
1127  QualType getAutoRRefDeductType() const;
1128
1129  /// \brief Return the unique reference to the type for the specified TagDecl
1130  /// (struct/union/class/enum) decl.
1131  QualType getTagDeclType(const TagDecl *Decl) const;
1132
1133  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1134  /// <stddef.h>.
1135  ///
1136  /// The sizeof operator requires this (C99 6.5.3.4p4).
1137  CanQualType getSizeType() const;
1138
1139  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1140  /// <stdint.h>.
1141  CanQualType getIntMaxType() const;
1142
1143  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1144  /// <stdint.h>.
1145  CanQualType getUIntMaxType() const;
1146
1147  /// \brief Return the unique wchar_t type available in C++ (and available as
1148  /// __wchar_t as a Microsoft extension).
1149  QualType getWCharType() const { return WCharTy; }
1150
1151  /// \brief Return the type of wide characters. In C++, this returns the
1152  /// unique wchar_t type. In C99, this returns a type compatible with the type
1153  /// defined in <stddef.h> as defined by the target.
1154  QualType getWideCharType() const { return WideCharTy; }
1155
1156  /// \brief Return the type of "signed wchar_t".
1157  ///
1158  /// Used when in C++, as a GCC extension.
1159  QualType getSignedWCharType() const;
1160
1161  /// \brief Return the type of "unsigned wchar_t".
1162  ///
1163  /// Used when in C++, as a GCC extension.
1164  QualType getUnsignedWCharType() const;
1165
1166  /// \brief In C99, this returns a type compatible with the type
1167  /// defined in <stddef.h> as defined by the target.
1168  QualType getWIntType() const { return WIntTy; }
1169
1170  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1171  /// as defined by the target.
1172  QualType getIntPtrType() const;
1173
1174  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1175  /// as defined by the target.
1176  QualType getUIntPtrType() const;
1177
1178  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1179  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1180  QualType getPointerDiffType() const;
1181
1182  /// \brief Return the unique type for "pid_t" defined in
1183  /// <sys/types.h>. We need this to compute the correct type for vfork().
1184  QualType getProcessIDType() const;
1185
1186  /// \brief Return the C structure type used to represent constant CFStrings.
1187  QualType getCFConstantStringType() const;
1188
1189  /// \brief Returns the C struct type for objc_super
1190  QualType getObjCSuperType() const;
1191  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1192
1193  /// Get the structure type used to representation CFStrings, or NULL
1194  /// if it hasn't yet been built.
1195  QualType getRawCFConstantStringType() const {
1196    if (CFConstantStringTypeDecl)
1197      return getTagDeclType(CFConstantStringTypeDecl);
1198    return QualType();
1199  }
1200  void setCFConstantStringType(QualType T);
1201
1202  // This setter/getter represents the ObjC type for an NSConstantString.
1203  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1204  QualType getObjCConstantStringInterface() const {
1205    return ObjCConstantStringType;
1206  }
1207
1208  QualType getObjCNSStringType() const {
1209    return ObjCNSStringType;
1210  }
1211
1212  void setObjCNSStringType(QualType T) {
1213    ObjCNSStringType = T;
1214  }
1215
1216  /// \brief Retrieve the type that \c id has been defined to, which may be
1217  /// different from the built-in \c id if \c id has been typedef'd.
1218  QualType getObjCIdRedefinitionType() const {
1219    if (ObjCIdRedefinitionType.isNull())
1220      return getObjCIdType();
1221    return ObjCIdRedefinitionType;
1222  }
1223
1224  /// \brief Set the user-written type that redefines \c id.
1225  void setObjCIdRedefinitionType(QualType RedefType) {
1226    ObjCIdRedefinitionType = RedefType;
1227  }
1228
1229  /// \brief Retrieve the type that \c Class has been defined to, which may be
1230  /// different from the built-in \c Class if \c Class has been typedef'd.
1231  QualType getObjCClassRedefinitionType() const {
1232    if (ObjCClassRedefinitionType.isNull())
1233      return getObjCClassType();
1234    return ObjCClassRedefinitionType;
1235  }
1236
1237  /// \brief Set the user-written type that redefines 'SEL'.
1238  void setObjCClassRedefinitionType(QualType RedefType) {
1239    ObjCClassRedefinitionType = RedefType;
1240  }
1241
1242  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1243  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1244  QualType getObjCSelRedefinitionType() const {
1245    if (ObjCSelRedefinitionType.isNull())
1246      return getObjCSelType();
1247    return ObjCSelRedefinitionType;
1248  }
1249
1250
1251  /// \brief Set the user-written type that redefines 'SEL'.
1252  void setObjCSelRedefinitionType(QualType RedefType) {
1253    ObjCSelRedefinitionType = RedefType;
1254  }
1255
1256  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1257  /// otherwise, returns a NULL type;
1258  QualType getObjCInstanceType() {
1259    return getTypeDeclType(getObjCInstanceTypeDecl());
1260  }
1261
1262  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1263  /// "instancetype" type.
1264  TypedefDecl *getObjCInstanceTypeDecl();
1265
1266  /// \brief Set the type for the C FILE type.
1267  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1268
1269  /// \brief Retrieve the C FILE type.
1270  QualType getFILEType() const {
1271    if (FILEDecl)
1272      return getTypeDeclType(FILEDecl);
1273    return QualType();
1274  }
1275
1276  /// \brief Set the type for the C jmp_buf type.
1277  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1278    this->jmp_bufDecl = jmp_bufDecl;
1279  }
1280
1281  /// \brief Retrieve the C jmp_buf type.
1282  QualType getjmp_bufType() const {
1283    if (jmp_bufDecl)
1284      return getTypeDeclType(jmp_bufDecl);
1285    return QualType();
1286  }
1287
1288  /// \brief Set the type for the C sigjmp_buf type.
1289  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1290    this->sigjmp_bufDecl = sigjmp_bufDecl;
1291  }
1292
1293  /// \brief Retrieve the C sigjmp_buf type.
1294  QualType getsigjmp_bufType() const {
1295    if (sigjmp_bufDecl)
1296      return getTypeDeclType(sigjmp_bufDecl);
1297    return QualType();
1298  }
1299
1300  /// \brief Set the type for the C ucontext_t type.
1301  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1302    this->ucontext_tDecl = ucontext_tDecl;
1303  }
1304
1305  /// \brief Retrieve the C ucontext_t type.
1306  QualType getucontext_tType() const {
1307    if (ucontext_tDecl)
1308      return getTypeDeclType(ucontext_tDecl);
1309    return QualType();
1310  }
1311
1312  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1313  QualType getLogicalOperationType() const {
1314    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1315  }
1316
1317  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1318  /// \p S.
1319  ///
1320  /// If \p Field is specified then record field names are also encoded.
1321  void getObjCEncodingForType(QualType T, std::string &S,
1322                              const FieldDecl *Field=0) const;
1323
1324  void getLegacyIntegralTypeEncoding(QualType &t) const;
1325
1326  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1327  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1328                                       std::string &S) const;
1329
1330  /// \brief Emit the encoded type for the function \p Decl into \p S.
1331  ///
1332  /// This is in the same format as Objective-C method encodings.
1333  ///
1334  /// \returns true if an error occurred (e.g., because one of the parameter
1335  /// types is incomplete), false otherwise.
1336  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1337
1338  /// \brief Emit the encoded type for the method declaration \p Decl into
1339  /// \p S.
1340  ///
1341  /// \returns true if an error occurred (e.g., because one of the parameter
1342  /// types is incomplete), false otherwise.
1343  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1344                                    bool Extended = false)
1345    const;
1346
1347  /// \brief Return the encoded type for this block declaration.
1348  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1349
1350  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1351  /// this method declaration. If non-NULL, Container must be either
1352  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1353  /// only be NULL when getting encodings for protocol properties.
1354  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1355                                      const Decl *Container,
1356                                      std::string &S) const;
1357
1358  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1359                                      ObjCProtocolDecl *rProto) const;
1360
1361  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1362  /// in characters.
1363  CharUnits getObjCEncodingTypeSize(QualType T) const;
1364
1365  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1366  /// in Objective-C.
1367  TypedefDecl *getObjCIdDecl() const;
1368
1369  /// \brief Represents the Objective-CC \c id type.
1370  ///
1371  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1372  /// pointer type, a pointer to a struct.
1373  QualType getObjCIdType() const {
1374    return getTypeDeclType(getObjCIdDecl());
1375  }
1376
1377  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1378  /// in Objective-C.
1379  TypedefDecl *getObjCSelDecl() const;
1380
1381  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1382  /// 'SEL' type.
1383  QualType getObjCSelType() const {
1384    return getTypeDeclType(getObjCSelDecl());
1385  }
1386
1387  /// \brief Retrieve the typedef declaration corresponding to the predefined
1388  /// Objective-C 'Class' type.
1389  TypedefDecl *getObjCClassDecl() const;
1390
1391  /// \brief Represents the Objective-C \c Class type.
1392  ///
1393  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1394  /// pointer type, a pointer to a struct.
1395  QualType getObjCClassType() const {
1396    return getTypeDeclType(getObjCClassDecl());
1397  }
1398
1399  /// \brief Retrieve the Objective-C class declaration corresponding to
1400  /// the predefined \c Protocol class.
1401  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1402
1403  /// \brief Retrieve declaration of 'BOOL' typedef
1404  TypedefDecl *getBOOLDecl() const {
1405    return BOOLDecl;
1406  }
1407
1408  /// \brief Save declaration of 'BOOL' typedef
1409  void setBOOLDecl(TypedefDecl *TD) {
1410    BOOLDecl = TD;
1411  }
1412
1413  /// \brief type of 'BOOL' type.
1414  QualType getBOOLType() const {
1415    return getTypeDeclType(getBOOLDecl());
1416  }
1417
1418  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1419  QualType getObjCProtoType() const {
1420    return getObjCInterfaceType(getObjCProtocolDecl());
1421  }
1422
1423  /// \brief Retrieve the C type declaration corresponding to the predefined
1424  /// \c __builtin_va_list type.
1425  TypedefDecl *getBuiltinVaListDecl() const;
1426
1427  /// \brief Retrieve the type of the \c __builtin_va_list type.
1428  QualType getBuiltinVaListType() const {
1429    return getTypeDeclType(getBuiltinVaListDecl());
1430  }
1431
1432  /// \brief Retrieve the C type declaration corresponding to the predefined
1433  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1434  /// for some targets.
1435  QualType getVaListTagType() const;
1436
1437  /// \brief Return a type with additional \c const, \c volatile, or
1438  /// \c restrict qualifiers.
1439  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1440    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1441  }
1442
1443  /// \brief Un-split a SplitQualType.
1444  QualType getQualifiedType(SplitQualType split) const {
1445    return getQualifiedType(split.Ty, split.Quals);
1446  }
1447
1448  /// \brief Return a type with additional qualifiers.
1449  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1450    if (!Qs.hasNonFastQualifiers())
1451      return T.withFastQualifiers(Qs.getFastQualifiers());
1452    QualifierCollector Qc(Qs);
1453    const Type *Ptr = Qc.strip(T);
1454    return getExtQualType(Ptr, Qc);
1455  }
1456
1457  /// \brief Return a type with additional qualifiers.
1458  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1459    if (!Qs.hasNonFastQualifiers())
1460      return QualType(T, Qs.getFastQualifiers());
1461    return getExtQualType(T, Qs);
1462  }
1463
1464  /// \brief Return a type with the given lifetime qualifier.
1465  ///
1466  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1467  QualType getLifetimeQualifiedType(QualType type,
1468                                    Qualifiers::ObjCLifetime lifetime) {
1469    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1470    assert(lifetime != Qualifiers::OCL_None);
1471
1472    Qualifiers qs;
1473    qs.addObjCLifetime(lifetime);
1474    return getQualifiedType(type, qs);
1475  }
1476
1477  /// getUnqualifiedObjCPointerType - Returns version of
1478  /// Objective-C pointer type with lifetime qualifier removed.
1479  QualType getUnqualifiedObjCPointerType(QualType type) const {
1480    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1481        !type.getQualifiers().hasObjCLifetime())
1482      return type;
1483    Qualifiers Qs = type.getQualifiers();
1484    Qs.removeObjCLifetime();
1485    return getQualifiedType(type.getUnqualifiedType(), Qs);
1486  }
1487
1488  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1489                                         SourceLocation NameLoc) const;
1490
1491  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1492                                         UnresolvedSetIterator End) const;
1493
1494  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1495                                        bool TemplateKeyword,
1496                                        TemplateDecl *Template) const;
1497
1498  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1499                                        const IdentifierInfo *Name) const;
1500  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1501                                        OverloadedOperatorKind Operator) const;
1502  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1503                                            TemplateName replacement) const;
1504  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1505                                        const TemplateArgument &ArgPack) const;
1506
1507  enum GetBuiltinTypeError {
1508    GE_None,              ///< No error
1509    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1510    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1511    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1512  };
1513
1514  /// \brief Return the type for the specified builtin.
1515  ///
1516  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1517  /// arguments to the builtin that are required to be integer constant
1518  /// expressions.
1519  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1520                          unsigned *IntegerConstantArgs = 0) const;
1521
1522private:
1523  CanQualType getFromTargetType(unsigned Type) const;
1524  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1525
1526  //===--------------------------------------------------------------------===//
1527  //                         Type Predicates.
1528  //===--------------------------------------------------------------------===//
1529
1530public:
1531  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1532  /// collection attributes.
1533  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1534
1535  /// \brief Return true if the given vector types are of the same unqualified
1536  /// type or if they are equivalent to the same GCC vector type.
1537  ///
1538  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1539  /// types.
1540  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1541
1542  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1543  /// attribute set.
1544  static bool isObjCNSObjectType(QualType Ty) {
1545    return Ty->isObjCNSObjectType();
1546  }
1547
1548  //===--------------------------------------------------------------------===//
1549  //                         Type Sizing and Analysis
1550  //===--------------------------------------------------------------------===//
1551
1552  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1553  /// point type.
1554  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1555
1556  /// \brief Get the size and alignment of the specified complete type in bits.
1557  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1558  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1559    return getTypeInfo(T.getTypePtr());
1560  }
1561
1562  /// \brief Return the size of the specified (complete) type \p T, in bits.
1563  uint64_t getTypeSize(QualType T) const {
1564    return getTypeInfo(T).first;
1565  }
1566  uint64_t getTypeSize(const Type *T) const {
1567    return getTypeInfo(T).first;
1568  }
1569
1570  /// \brief Return the size of the character type, in bits.
1571  uint64_t getCharWidth() const {
1572    return getTypeSize(CharTy);
1573  }
1574
1575  /// \brief Convert a size in bits to a size in characters.
1576  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1577
1578  /// \brief Convert a size in characters to a size in bits.
1579  int64_t toBits(CharUnits CharSize) const;
1580
1581  /// \brief Return the size of the specified (complete) type \p T, in
1582  /// characters.
1583  CharUnits getTypeSizeInChars(QualType T) const;
1584  CharUnits getTypeSizeInChars(const Type *T) const;
1585
1586  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1587  /// bits.
1588  unsigned getTypeAlign(QualType T) const {
1589    return getTypeInfo(T).second;
1590  }
1591  unsigned getTypeAlign(const Type *T) const {
1592    return getTypeInfo(T).second;
1593  }
1594
1595  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1596  /// characters.
1597  CharUnits getTypeAlignInChars(QualType T) const;
1598  CharUnits getTypeAlignInChars(const Type *T) const;
1599
1600  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1601  // type is a record, its data size is returned.
1602  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1603
1604  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1605  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1606
1607  /// \brief Return the "preferred" alignment of the specified type \p T for
1608  /// the current target, in bits.
1609  ///
1610  /// This can be different than the ABI alignment in cases where it is
1611  /// beneficial for performance to overalign a data type.
1612  unsigned getPreferredTypeAlign(const Type *T) const;
1613
1614  /// \brief Return the alignment in bits that should be given to a
1615  /// global variable with type \p T.
1616  unsigned getAlignOfGlobalVar(QualType T) const;
1617
1618  /// \brief Return the alignment in characters that should be given to a
1619  /// global variable with type \p T.
1620  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1621
1622  /// \brief Return a conservative estimate of the alignment of the specified
1623  /// decl \p D.
1624  ///
1625  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1626  /// alignment.
1627  ///
1628  /// If \p RefAsPointee, references are treated like their underlying type
1629  /// (for alignof), else they're treated like pointers (for CodeGen).
1630  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1631
1632  /// \brief Get or compute information about the layout of the specified
1633  /// record (struct/union/class) \p D, which indicates its size and field
1634  /// position information.
1635  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1636
1637  /// \brief Get or compute information about the layout of the specified
1638  /// Objective-C interface.
1639  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1640    const;
1641
1642  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1643                        bool Simple = false) const;
1644
1645  /// \brief Get or compute information about the layout of the specified
1646  /// Objective-C implementation.
1647  ///
1648  /// This may differ from the interface if synthesized ivars are present.
1649  const ASTRecordLayout &
1650  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1651
1652  /// \brief Get our current best idea for the key function of the
1653  /// given record decl, or NULL if there isn't one.
1654  ///
1655  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1656  ///   ...the first non-pure virtual function that is not inline at the
1657  ///   point of class definition.
1658  ///
1659  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1660  /// virtual functions that are defined 'inline', which means that
1661  /// the result of this computation can change.
1662  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1663
1664  /// \brief Observe that the given method cannot be a key function.
1665  /// Checks the key-function cache for the method's class and clears it
1666  /// if matches the given declaration.
1667  ///
1668  /// This is used in ABIs where out-of-line definitions marked
1669  /// inline are not considered to be key functions.
1670  ///
1671  /// \param method should be the declaration from the class definition
1672  void setNonKeyFunction(const CXXMethodDecl *method);
1673
1674  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1675  uint64_t getFieldOffset(const ValueDecl *FD) const;
1676
1677  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1678
1679  MangleContext *createMangleContext();
1680
1681  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1682                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1683
1684  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1685  void CollectInheritedProtocols(const Decl *CDecl,
1686                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1687
1688  //===--------------------------------------------------------------------===//
1689  //                            Type Operators
1690  //===--------------------------------------------------------------------===//
1691
1692  /// \brief Return the canonical (structural) type corresponding to the
1693  /// specified potentially non-canonical type \p T.
1694  ///
1695  /// The non-canonical version of a type may have many "decorated" versions of
1696  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1697  /// returned type is guaranteed to be free of any of these, allowing two
1698  /// canonical types to be compared for exact equality with a simple pointer
1699  /// comparison.
1700  CanQualType getCanonicalType(QualType T) const {
1701    return CanQualType::CreateUnsafe(T.getCanonicalType());
1702  }
1703
1704  const Type *getCanonicalType(const Type *T) const {
1705    return T->getCanonicalTypeInternal().getTypePtr();
1706  }
1707
1708  /// \brief Return the canonical parameter type corresponding to the specific
1709  /// potentially non-canonical one.
1710  ///
1711  /// Qualifiers are stripped off, functions are turned into function
1712  /// pointers, and arrays decay one level into pointers.
1713  CanQualType getCanonicalParamType(QualType T) const;
1714
1715  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1716  bool hasSameType(QualType T1, QualType T2) const {
1717    return getCanonicalType(T1) == getCanonicalType(T2);
1718  }
1719
1720  /// \brief Return this type as a completely-unqualified array type,
1721  /// capturing the qualifiers in \p Quals.
1722  ///
1723  /// This will remove the minimal amount of sugaring from the types, similar
1724  /// to the behavior of QualType::getUnqualifiedType().
1725  ///
1726  /// \param T is the qualified type, which may be an ArrayType
1727  ///
1728  /// \param Quals will receive the full set of qualifiers that were
1729  /// applied to the array.
1730  ///
1731  /// \returns if this is an array type, the completely unqualified array type
1732  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1733  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1734
1735  /// \brief Determine whether the given types are equivalent after
1736  /// cvr-qualifiers have been removed.
1737  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1738    return getCanonicalType(T1).getTypePtr() ==
1739           getCanonicalType(T2).getTypePtr();
1740  }
1741
1742  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1743
1744  /// \brief Retrieves the "canonical" nested name specifier for a
1745  /// given nested name specifier.
1746  ///
1747  /// The canonical nested name specifier is a nested name specifier
1748  /// that uniquely identifies a type or namespace within the type
1749  /// system. For example, given:
1750  ///
1751  /// \code
1752  /// namespace N {
1753  ///   struct S {
1754  ///     template<typename T> struct X { typename T* type; };
1755  ///   };
1756  /// }
1757  ///
1758  /// template<typename T> struct Y {
1759  ///   typename N::S::X<T>::type member;
1760  /// };
1761  /// \endcode
1762  ///
1763  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1764  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1765  /// by declarations in the type system and the canonical type for
1766  /// the template type parameter 'T' is template-param-0-0.
1767  NestedNameSpecifier *
1768  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1769
1770  /// \brief Retrieves the default calling convention to use for
1771  /// C++ instance methods.
1772  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1773
1774  /// \brief Retrieves the canonical representation of the given
1775  /// calling convention.
1776  CallingConv getCanonicalCallConv(CallingConv CC) const;
1777
1778  /// \brief Determines whether two calling conventions name the same
1779  /// calling convention.
1780  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1781    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1782  }
1783
1784  /// \brief Retrieves the "canonical" template name that refers to a
1785  /// given template.
1786  ///
1787  /// The canonical template name is the simplest expression that can
1788  /// be used to refer to a given template. For most templates, this
1789  /// expression is just the template declaration itself. For example,
1790  /// the template std::vector can be referred to via a variety of
1791  /// names---std::vector, \::std::vector, vector (if vector is in
1792  /// scope), etc.---but all of these names map down to the same
1793  /// TemplateDecl, which is used to form the canonical template name.
1794  ///
1795  /// Dependent template names are more interesting. Here, the
1796  /// template name could be something like T::template apply or
1797  /// std::allocator<T>::template rebind, where the nested name
1798  /// specifier itself is dependent. In this case, the canonical
1799  /// template name uses the shortest form of the dependent
1800  /// nested-name-specifier, which itself contains all canonical
1801  /// types, values, and templates.
1802  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1803
1804  /// \brief Determine whether the given template names refer to the same
1805  /// template.
1806  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1807
1808  /// \brief Retrieve the "canonical" template argument.
1809  ///
1810  /// The canonical template argument is the simplest template argument
1811  /// (which may be a type, value, expression, or declaration) that
1812  /// expresses the value of the argument.
1813  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1814    const;
1815
1816  /// Type Query functions.  If the type is an instance of the specified class,
1817  /// return the Type pointer for the underlying maximally pretty type.  This
1818  /// is a member of ASTContext because this may need to do some amount of
1819  /// canonicalization, e.g. to move type qualifiers into the element type.
1820  const ArrayType *getAsArrayType(QualType T) const;
1821  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1822    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1823  }
1824  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1825    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1826  }
1827  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1828    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1829  }
1830  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1831    const {
1832    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1833  }
1834
1835  /// \brief Return the innermost element type of an array type.
1836  ///
1837  /// For example, will return "int" for int[m][n]
1838  QualType getBaseElementType(const ArrayType *VAT) const;
1839
1840  /// \brief Return the innermost element type of a type (which needn't
1841  /// actually be an array type).
1842  QualType getBaseElementType(QualType QT) const;
1843
1844  /// \brief Return number of constant array elements.
1845  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1846
1847  /// \brief Perform adjustment on the parameter type of a function.
1848  ///
1849  /// This routine adjusts the given parameter type @p T to the actual
1850  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1851  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1852  QualType getAdjustedParameterType(QualType T) const;
1853
1854  /// \brief Retrieve the parameter type as adjusted for use in the signature
1855  /// of a function, decaying array and function types and removing top-level
1856  /// cv-qualifiers.
1857  QualType getSignatureParameterType(QualType T) const;
1858
1859  /// \brief Return the properly qualified result of decaying the specified
1860  /// array type to a pointer.
1861  ///
1862  /// This operation is non-trivial when handling typedefs etc.  The canonical
1863  /// type of \p T must be an array type, this returns a pointer to a properly
1864  /// qualified element of the array.
1865  ///
1866  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1867  QualType getArrayDecayedType(QualType T) const;
1868
1869  /// \brief Return the type that \p PromotableType will promote to: C99
1870  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1871  QualType getPromotedIntegerType(QualType PromotableType) const;
1872
1873  /// \brief Recurses in pointer/array types until it finds an Objective-C
1874  /// retainable type and returns its ownership.
1875  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1876
1877  /// \brief Whether this is a promotable bitfield reference according
1878  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1879  ///
1880  /// \returns the type this bit-field will promote to, or NULL if no
1881  /// promotion occurs.
1882  QualType isPromotableBitField(Expr *E) const;
1883
1884  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1885  ///
1886  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1887  /// \p LHS < \p RHS, return -1.
1888  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1889
1890  /// \brief Compare the rank of the two specified floating point types,
1891  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1892  ///
1893  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1894  /// \p LHS < \p RHS, return -1.
1895  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1896
1897  /// \brief Return a real floating point or a complex type (based on
1898  /// \p typeDomain/\p typeSize).
1899  ///
1900  /// \param typeDomain a real floating point or complex type.
1901  /// \param typeSize a real floating point or complex type.
1902  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1903                                             QualType typeDomain) const;
1904
1905  unsigned getTargetAddressSpace(QualType T) const {
1906    return getTargetAddressSpace(T.getQualifiers());
1907  }
1908
1909  unsigned getTargetAddressSpace(Qualifiers Q) const {
1910    return getTargetAddressSpace(Q.getAddressSpace());
1911  }
1912
1913  unsigned getTargetAddressSpace(unsigned AS) const {
1914    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1915      return AS;
1916    else
1917      return (*AddrSpaceMap)[AS - LangAS::Offset];
1918  }
1919
1920private:
1921  // Helper for integer ordering
1922  unsigned getIntegerRank(const Type *T) const;
1923
1924public:
1925
1926  //===--------------------------------------------------------------------===//
1927  //                    Type Compatibility Predicates
1928  //===--------------------------------------------------------------------===//
1929
1930  /// Compatibility predicates used to check assignment expressions.
1931  bool typesAreCompatible(QualType T1, QualType T2,
1932                          bool CompareUnqualified = false); // C99 6.2.7p1
1933
1934  bool propertyTypesAreCompatible(QualType, QualType);
1935  bool typesAreBlockPointerCompatible(QualType, QualType);
1936
1937  bool isObjCIdType(QualType T) const {
1938    return T == getObjCIdType();
1939  }
1940  bool isObjCClassType(QualType T) const {
1941    return T == getObjCClassType();
1942  }
1943  bool isObjCSelType(QualType T) const {
1944    return T == getObjCSelType();
1945  }
1946  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1947  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1948                                         bool ForCompare);
1949
1950  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1951
1952  // Check the safety of assignment from LHS to RHS
1953  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1954                               const ObjCObjectPointerType *RHSOPT);
1955  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1956                               const ObjCObjectType *RHS);
1957  bool canAssignObjCInterfacesInBlockPointer(
1958                                          const ObjCObjectPointerType *LHSOPT,
1959                                          const ObjCObjectPointerType *RHSOPT,
1960                                          bool BlockReturnType);
1961  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1962  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1963                                   const ObjCObjectPointerType *RHSOPT);
1964  bool canBindObjCObjectType(QualType To, QualType From);
1965
1966  // Functions for calculating composite types
1967  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1968                      bool Unqualified = false, bool BlockReturnType = false);
1969  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1970                              bool Unqualified = false);
1971  QualType mergeFunctionArgumentTypes(QualType, QualType,
1972                                      bool OfBlockPointer=false,
1973                                      bool Unqualified = false);
1974  QualType mergeTransparentUnionType(QualType, QualType,
1975                                     bool OfBlockPointer=false,
1976                                     bool Unqualified = false);
1977
1978  QualType mergeObjCGCQualifiers(QualType, QualType);
1979
1980  bool FunctionTypesMatchOnNSConsumedAttrs(
1981         const FunctionProtoType *FromFunctionType,
1982         const FunctionProtoType *ToFunctionType);
1983
1984  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1985    ObjCLayouts[CD] = 0;
1986  }
1987
1988  //===--------------------------------------------------------------------===//
1989  //                    Integer Predicates
1990  //===--------------------------------------------------------------------===//
1991
1992  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1993  // of bits in an integer type excluding any padding bits.
1994  unsigned getIntWidth(QualType T) const;
1995
1996  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1997  // unsigned integer type.  This method takes a signed type, and returns the
1998  // corresponding unsigned integer type.
1999  QualType getCorrespondingUnsignedType(QualType T) const;
2000
2001  //===--------------------------------------------------------------------===//
2002  //                    Type Iterators.
2003  //===--------------------------------------------------------------------===//
2004
2005  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
2006  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
2007
2008  type_iterator types_begin() { return Types.begin(); }
2009  type_iterator types_end() { return Types.end(); }
2010  const_type_iterator types_begin() const { return Types.begin(); }
2011  const_type_iterator types_end() const { return Types.end(); }
2012
2013  //===--------------------------------------------------------------------===//
2014  //                    Integer Values
2015  //===--------------------------------------------------------------------===//
2016
2017  /// \brief Make an APSInt of the appropriate width and signedness for the
2018  /// given \p Value and integer \p Type.
2019  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2020    llvm::APSInt Res(getIntWidth(Type),
2021                     !Type->isSignedIntegerOrEnumerationType());
2022    Res = Value;
2023    return Res;
2024  }
2025
2026  bool isSentinelNullExpr(const Expr *E);
2027
2028  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2029  /// none exists.
2030  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2031  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2032  /// none exists.
2033  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2034
2035  /// \brief Return true if there is at least one \@implementation in the TU.
2036  bool AnyObjCImplementation() {
2037    return !ObjCImpls.empty();
2038  }
2039
2040  /// \brief Set the implementation of ObjCInterfaceDecl.
2041  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2042                             ObjCImplementationDecl *ImplD);
2043  /// \brief Set the implementation of ObjCCategoryDecl.
2044  void setObjCImplementation(ObjCCategoryDecl *CatD,
2045                             ObjCCategoryImplDecl *ImplD);
2046
2047  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2048  /// interface, or null if none exists.
2049  const ObjCMethodDecl *getObjCMethodRedeclaration(
2050                                               const ObjCMethodDecl *MD) const {
2051    return ObjCMethodRedecls.lookup(MD);
2052  }
2053
2054  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2055                                  const ObjCMethodDecl *Redecl) {
2056    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2057    ObjCMethodRedecls[MD] = Redecl;
2058  }
2059
2060  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2061  /// an Objective-C method/property/ivar etc. that is part of an interface,
2062  /// otherwise returns null.
2063  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2064
2065  /// \brief Set the copy inialization expression of a block var decl.
2066  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2067  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2068  /// NULL if none exists.
2069  Expr *getBlockVarCopyInits(const VarDecl* VD);
2070
2071  /// \brief Allocate an uninitialized TypeSourceInfo.
2072  ///
2073  /// The caller should initialize the memory held by TypeSourceInfo using
2074  /// the TypeLoc wrappers.
2075  ///
2076  /// \param T the type that will be the basis for type source info. This type
2077  /// should refer to how the declarator was written in source code, not to
2078  /// what type semantic analysis resolved the declarator to.
2079  ///
2080  /// \param Size the size of the type info to create, or 0 if the size
2081  /// should be calculated based on the type.
2082  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2083
2084  /// \brief Allocate a TypeSourceInfo where all locations have been
2085  /// initialized to a given location, which defaults to the empty
2086  /// location.
2087  TypeSourceInfo *
2088  getTrivialTypeSourceInfo(QualType T,
2089                           SourceLocation Loc = SourceLocation()) const;
2090
2091  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2092
2093  /// \brief Add a deallocation callback that will be invoked when the
2094  /// ASTContext is destroyed.
2095  ///
2096  /// \param Callback A callback function that will be invoked on destruction.
2097  ///
2098  /// \param Data Pointer data that will be provided to the callback function
2099  /// when it is called.
2100  void AddDeallocation(void (*Callback)(void*), void *Data);
2101
2102  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2103  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2104
2105  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2106  /// lazily, only when used; this is only relevant for function or file scoped
2107  /// var definitions.
2108  ///
2109  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2110  /// it is not used.
2111  bool DeclMustBeEmitted(const Decl *D);
2112
2113  void addUnnamedTag(const TagDecl *Tag);
2114  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2115
2116  /// \brief Retrieve the lambda mangling number for a lambda expression.
2117  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2118
2119  /// \brief Used by ParmVarDecl to store on the side the
2120  /// index of the parameter when it exceeds the size of the normal bitfield.
2121  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2122
2123  /// \brief Used by ParmVarDecl to retrieve on the side the
2124  /// index of the parameter when it exceeds the size of the normal bitfield.
2125  unsigned getParameterIndex(const ParmVarDecl *D) const;
2126
2127  /// \brief Get the storage for the constant value of a materialized temporary
2128  /// of static storage duration.
2129  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2130                                         bool MayCreate);
2131
2132  //===--------------------------------------------------------------------===//
2133  //                    Statistics
2134  //===--------------------------------------------------------------------===//
2135
2136  /// \brief The number of implicitly-declared default constructors.
2137  static unsigned NumImplicitDefaultConstructors;
2138
2139  /// \brief The number of implicitly-declared default constructors for
2140  /// which declarations were built.
2141  static unsigned NumImplicitDefaultConstructorsDeclared;
2142
2143  /// \brief The number of implicitly-declared copy constructors.
2144  static unsigned NumImplicitCopyConstructors;
2145
2146  /// \brief The number of implicitly-declared copy constructors for
2147  /// which declarations were built.
2148  static unsigned NumImplicitCopyConstructorsDeclared;
2149
2150  /// \brief The number of implicitly-declared move constructors.
2151  static unsigned NumImplicitMoveConstructors;
2152
2153  /// \brief The number of implicitly-declared move constructors for
2154  /// which declarations were built.
2155  static unsigned NumImplicitMoveConstructorsDeclared;
2156
2157  /// \brief The number of implicitly-declared copy assignment operators.
2158  static unsigned NumImplicitCopyAssignmentOperators;
2159
2160  /// \brief The number of implicitly-declared copy assignment operators for
2161  /// which declarations were built.
2162  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2163
2164  /// \brief The number of implicitly-declared move assignment operators.
2165  static unsigned NumImplicitMoveAssignmentOperators;
2166
2167  /// \brief The number of implicitly-declared move assignment operators for
2168  /// which declarations were built.
2169  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2170
2171  /// \brief The number of implicitly-declared destructors.
2172  static unsigned NumImplicitDestructors;
2173
2174  /// \brief The number of implicitly-declared destructors for which
2175  /// declarations were built.
2176  static unsigned NumImplicitDestructorsDeclared;
2177
2178private:
2179  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2180  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2181
2182public:
2183  /// \brief Initialize built-in types.
2184  ///
2185  /// This routine may only be invoked once for a given ASTContext object.
2186  /// It is normally invoked by the ASTContext constructor. However, the
2187  /// constructor can be asked to delay initialization, which places the burden
2188  /// of calling this function on the user of that object.
2189  ///
2190  /// \param Target The target
2191  void InitBuiltinTypes(const TargetInfo &Target);
2192
2193private:
2194  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2195
2196  // Return the Objective-C type encoding for a given type.
2197  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2198                                  bool ExpandPointedToStructures,
2199                                  bool ExpandStructures,
2200                                  const FieldDecl *Field,
2201                                  bool OutermostType = false,
2202                                  bool EncodingProperty = false,
2203                                  bool StructField = false,
2204                                  bool EncodeBlockParameters = false,
2205                                  bool EncodeClassNames = false,
2206                                  bool EncodePointerToObjCTypedef = false) const;
2207
2208  // Adds the encoding of the structure's members.
2209  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2210                                       const FieldDecl *Field,
2211                                       bool includeVBases = true) const;
2212
2213  // Adds the encoding of a method parameter or return type.
2214  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2215                                         QualType T, std::string& S,
2216                                         bool Extended) const;
2217
2218  const ASTRecordLayout &
2219  getObjCLayout(const ObjCInterfaceDecl *D,
2220                const ObjCImplementationDecl *Impl) const;
2221
2222private:
2223  /// \brief A set of deallocations that should be performed when the
2224  /// ASTContext is destroyed.
2225  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2226    DeallocationMap;
2227  DeallocationMap Deallocations;
2228
2229  // FIXME: This currently contains the set of StoredDeclMaps used
2230  // by DeclContext objects.  This probably should not be in ASTContext,
2231  // but we include it here so that ASTContext can quickly deallocate them.
2232  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2233
2234  friend class DeclContext;
2235  friend class DeclarationNameTable;
2236  void ReleaseDeclContextMaps();
2237
2238  llvm::OwningPtr<ParentMap> AllParents;
2239};
2240
2241/// \brief Utility function for constructing a nullary selector.
2242static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2243  IdentifierInfo* II = &Ctx.Idents.get(name);
2244  return Ctx.Selectors.getSelector(0, &II);
2245}
2246
2247/// \brief Utility function for constructing an unary selector.
2248static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2249  IdentifierInfo* II = &Ctx.Idents.get(name);
2250  return Ctx.Selectors.getSelector(1, &II);
2251}
2252
2253}  // end namespace clang
2254
2255// operator new and delete aren't allowed inside namespaces.
2256
2257/// @brief Placement new for using the ASTContext's allocator.
2258///
2259/// This placement form of operator new uses the ASTContext's allocator for
2260/// obtaining memory.
2261///
2262/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2263/// here need to also be made there.
2264///
2265/// We intentionally avoid using a nothrow specification here so that the calls
2266/// to this operator will not perform a null check on the result -- the
2267/// underlying allocator never returns null pointers.
2268///
2269/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2270/// @code
2271/// // Default alignment (8)
2272/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2273/// // Specific alignment
2274/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2275/// @endcode
2276/// Please note that you cannot use delete on the pointer; it must be
2277/// deallocated using an explicit destructor call followed by
2278/// @c Context.Deallocate(Ptr).
2279///
2280/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2281/// @param C The ASTContext that provides the allocator.
2282/// @param Alignment The alignment of the allocated memory (if the underlying
2283///                  allocator supports it).
2284/// @return The allocated memory. Could be NULL.
2285inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2286                          size_t Alignment) {
2287  return C.Allocate(Bytes, Alignment);
2288}
2289/// @brief Placement delete companion to the new above.
2290///
2291/// This operator is just a companion to the new above. There is no way of
2292/// invoking it directly; see the new operator for more details. This operator
2293/// is called implicitly by the compiler if a placement new expression using
2294/// the ASTContext throws in the object constructor.
2295inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2296  C.Deallocate(Ptr);
2297}
2298
2299/// This placement form of operator new[] uses the ASTContext's allocator for
2300/// obtaining memory.
2301///
2302/// We intentionally avoid using a nothrow specification here so that the calls
2303/// to this operator will not perform a null check on the result -- the
2304/// underlying allocator never returns null pointers.
2305///
2306/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2307/// @code
2308/// // Default alignment (8)
2309/// char *data = new (Context) char[10];
2310/// // Specific alignment
2311/// char *data = new (Context, 4) char[10];
2312/// @endcode
2313/// Please note that you cannot use delete on the pointer; it must be
2314/// deallocated using an explicit destructor call followed by
2315/// @c Context.Deallocate(Ptr).
2316///
2317/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2318/// @param C The ASTContext that provides the allocator.
2319/// @param Alignment The alignment of the allocated memory (if the underlying
2320///                  allocator supports it).
2321/// @return The allocated memory. Could be NULL.
2322inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2323                            size_t Alignment = 8) {
2324  return C.Allocate(Bytes, Alignment);
2325}
2326
2327/// @brief Placement delete[] companion to the new[] above.
2328///
2329/// This operator is just a companion to the new[] above. There is no way of
2330/// invoking it directly; see the new[] operator for more details. This operator
2331/// is called implicitly by the compiler if a placement new[] expression using
2332/// the ASTContext throws in the object constructor.
2333inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2334  C.Deallocate(Ptr);
2335}
2336
2337#endif
2338