ASTContext.h revision 175c8e2e57befe2db15dd339ab5eb27d0c2b6013
15c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
25c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//
35c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//                     The LLVM Compiler Infrastructure
45c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//
55c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu// This file is distributed under the University of Illinois Open Source
65c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu// License. See LICENSE.TXT for details.
75c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//
85c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//===----------------------------------------------------------------------===//
95c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu///
105c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu/// \file
115c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu/// \brief Defines the clang::ASTContext interface.
125c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu///
135c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu//===----------------------------------------------------------------------===//
145c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
155c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
165c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#define LLVM_CLANG_AST_ASTCONTEXT_H
175c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
185c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/ASTTypeTraits.h"
195c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/CanonicalType.h"
205c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/CommentCommandTraits.h"
215c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/Decl.h"
225c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/LambdaMangleContext.h"
235c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/NestedNameSpecifier.h"
245c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/PrettyPrinter.h"
255c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/RawCommentList.h"
265c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/RecursiveASTVisitor.h"
275c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/TemplateName.h"
285c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/AST/Type.h"
295c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/Basic/AddressSpaces.h"
305c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/Basic/IdentifierTable.h"
315c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/Basic/LangOptions.h"
325c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/Basic/OperatorKinds.h"
335c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/Basic/PartialDiagnostic.h"
345c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "clang/Basic/VersionTuple.h"
355c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/ADT/DenseMap.h"
365c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/ADT/FoldingSet.h"
375c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/ADT/IntrusiveRefCntPtr.h"
385c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/ADT/OwningPtr.h"
395c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/ADT/SmallPtrSet.h"
405c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/ADT/TinyPtrVector.h"
415c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include "llvm/Support/Allocator.h"
425c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu#include <vector>
435c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
445c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liunamespace llvm {
455c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  struct fltSemantics;
465c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu}
475c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
485c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liunamespace clang {
495c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class FileManager;
505c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class ASTRecordLayout;
515c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class BlockExpr;
525c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class CharUnits;
535c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class DiagnosticsEngine;
545c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class Expr;
555c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class ExternalASTSource;
565c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class ASTMutationListener;
575c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class IdentifierTable;
585c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class SelectorTable;
595c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class TargetInfo;
605c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class CXXABI;
615c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  // Decls
625c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class MangleContext;
635c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class ObjCIvarDecl;
645c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class ObjCPropertyDecl;
655c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class UnresolvedSetIterator;
665c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class UsingDecl;
675c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  class UsingShadowDecl;
685c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
695c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  namespace Builtin { class Context; }
705c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
715c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  namespace comments {
725c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    class FullComment;
735c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  }
745c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
755c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu/// \brief Holds long-lived AST nodes (such as types and decls) that can be
765c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu/// referred to throughout the semantic analysis of a file.
775c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liuclass ASTContext : public RefCountedBase<ASTContext> {
785c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  ASTContext &this_() { return *this; }
795c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
805c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable SmallVector<Type *, 0> Types;
815c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
825c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
835c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<PointerType> PointerTypes;
845c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
855c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
865c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
875c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
885c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
895c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
905c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable std::vector<VariableArrayType*> VariableArrayTypes;
915c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
925c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<DependentSizedExtVectorType>
935c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    DependentSizedExtVectorTypes;
945c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<VectorType> VectorTypes;
955c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
965c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
975c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    FunctionProtoTypes;
985c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
995c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
1005c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
1015c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
1025c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    SubstTemplateTypeParmTypes;
1035c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
1045c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    SubstTemplateTypeParmPackTypes;
1055c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
1065c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    TemplateSpecializationTypes;
1075c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ParenType> ParenTypes;
1085c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
1095c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
1105c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
1115c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu                                     ASTContext&>
1125c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    DependentTemplateSpecializationTypes;
1135c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
1145c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
1155c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
1165c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<AutoType> AutoTypes;
1175c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
1185c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  llvm::FoldingSet<AttributedType> AttributedTypes;
1195c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
1205c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
1215c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
1225c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
1235c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    SubstTemplateTemplateParms;
1245c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
1255c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu                                     ASTContext&>
1265c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu    SubstTemplateTemplateParmPacks;
1275c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
1285c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  /// \brief The set of nested name specifiers.
129116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  ///
130116680a4aac90f2aa7413d9095a592090648e557Ben Murdoch  /// This set is managed by the NestedNameSpecifier class.
1315c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
1325c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
1335c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  friend class NestedNameSpecifier;
1345c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu
1355c02ac1a9c1b504631c0a3d2b6e737b5d738bae1Bo Liu  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
136  ///
137  /// This is lazily created.  This is intentionally not serialized.
138  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
139    ASTRecordLayouts;
140  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
141    ObjCLayouts;
142
143  /// \brief A cache from types to size and alignment information.
144  typedef llvm::DenseMap<const Type*,
145                         std::pair<uint64_t, unsigned> > TypeInfoMap;
146  mutable TypeInfoMap MemoizedTypeInfo;
147
148  /// \brief A cache mapping from CXXRecordDecls to key functions.
149  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
150
151  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
152  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
153
154  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
155  /// interface.
156  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
157
158  /// \brief Mapping from __block VarDecls to their copy initialization expr.
159  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
160
161  /// \brief Mapping from class scope functions specialization to their
162  /// template patterns.
163  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
164    ClassScopeSpecializationPattern;
165
166  /// \brief Representation of a "canonical" template template parameter that
167  /// is used in canonical template names.
168  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
169    TemplateTemplateParmDecl *Parm;
170
171  public:
172    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
173      : Parm(Parm) { }
174
175    TemplateTemplateParmDecl *getParam() const { return Parm; }
176
177    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
178
179    static void Profile(llvm::FoldingSetNodeID &ID,
180                        TemplateTemplateParmDecl *Parm);
181  };
182  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
183    CanonTemplateTemplateParms;
184
185  TemplateTemplateParmDecl *
186    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
187
188  /// \brief The typedef for the __int128_t type.
189  mutable TypedefDecl *Int128Decl;
190
191  /// \brief The typedef for the __uint128_t type.
192  mutable TypedefDecl *UInt128Decl;
193
194  /// \brief The typedef for the target specific predefined
195  /// __builtin_va_list type.
196  mutable TypedefDecl *BuiltinVaListDecl;
197
198  /// \brief The typedef for the predefined \c id type.
199  mutable TypedefDecl *ObjCIdDecl;
200
201  /// \brief The typedef for the predefined \c SEL type.
202  mutable TypedefDecl *ObjCSelDecl;
203
204  /// \brief The typedef for the predefined \c Class type.
205  mutable TypedefDecl *ObjCClassDecl;
206
207  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
208  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
209
210  /// \brief The typedef for the predefined 'BOOL' type.
211  mutable TypedefDecl *BOOLDecl;
212
213  // Typedefs which may be provided defining the structure of Objective-C
214  // pseudo-builtins
215  QualType ObjCIdRedefinitionType;
216  QualType ObjCClassRedefinitionType;
217  QualType ObjCSelRedefinitionType;
218
219  QualType ObjCConstantStringType;
220  mutable RecordDecl *CFConstantStringTypeDecl;
221
222  mutable QualType ObjCSuperType;
223
224  QualType ObjCNSStringType;
225
226  /// \brief The typedef declaration for the Objective-C "instancetype" type.
227  TypedefDecl *ObjCInstanceTypeDecl;
228
229  /// \brief The type for the C FILE type.
230  TypeDecl *FILEDecl;
231
232  /// \brief The type for the C jmp_buf type.
233  TypeDecl *jmp_bufDecl;
234
235  /// \brief The type for the C sigjmp_buf type.
236  TypeDecl *sigjmp_bufDecl;
237
238  /// \brief The type for the C ucontext_t type.
239  TypeDecl *ucontext_tDecl;
240
241  /// \brief Type for the Block descriptor for Blocks CodeGen.
242  ///
243  /// Since this is only used for generation of debug info, it is not
244  /// serialized.
245  mutable RecordDecl *BlockDescriptorType;
246
247  /// \brief Type for the Block descriptor for Blocks CodeGen.
248  ///
249  /// Since this is only used for generation of debug info, it is not
250  /// serialized.
251  mutable RecordDecl *BlockDescriptorExtendedType;
252
253  /// \brief Declaration for the CUDA cudaConfigureCall function.
254  FunctionDecl *cudaConfigureCallDecl;
255
256  TypeSourceInfo NullTypeSourceInfo;
257
258  /// \brief Keeps track of all declaration attributes.
259  ///
260  /// Since so few decls have attrs, we keep them in a hash map instead of
261  /// wasting space in the Decl class.
262  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
263
264  /// \brief Keeps track of the static data member templates from which
265  /// static data members of class template specializations were instantiated.
266  ///
267  /// This data structure stores the mapping from instantiations of static
268  /// data members to the static data member representations within the
269  /// class template from which they were instantiated along with the kind
270  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
271  ///
272  /// Given the following example:
273  ///
274  /// \code
275  /// template<typename T>
276  /// struct X {
277  ///   static T value;
278  /// };
279  ///
280  /// template<typename T>
281  ///   T X<T>::value = T(17);
282  ///
283  /// int *x = &X<int>::value;
284  /// \endcode
285  ///
286  /// This mapping will contain an entry that maps from the VarDecl for
287  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
288  /// class template X) and will be marked TSK_ImplicitInstantiation.
289  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
290    InstantiatedFromStaticDataMember;
291
292  /// \brief Keeps track of the declaration from which a UsingDecl was
293  /// created during instantiation.
294  ///
295  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
296  /// or an UnresolvedUsingTypenameDecl.
297  ///
298  /// For example:
299  /// \code
300  /// template<typename T>
301  /// struct A {
302  ///   void f();
303  /// };
304  ///
305  /// template<typename T>
306  /// struct B : A<T> {
307  ///   using A<T>::f;
308  /// };
309  ///
310  /// template struct B<int>;
311  /// \endcode
312  ///
313  /// This mapping will contain an entry that maps from the UsingDecl in
314  /// B<int> to the UnresolvedUsingDecl in B<T>.
315  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
316
317  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
318    InstantiatedFromUsingShadowDecl;
319
320  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
321
322  /// \brief Mapping that stores the methods overridden by a given C++
323  /// member function.
324  ///
325  /// Since most C++ member functions aren't virtual and therefore
326  /// don't override anything, we store the overridden functions in
327  /// this map on the side rather than within the CXXMethodDecl structure.
328  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
329  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
330
331  /// \brief Used to cache results from \c getBaseObjCCategoriesAfterInterface.
332  mutable llvm::DenseMap<const ObjCInterfaceDecl *,
333            llvm::SmallVector<const ObjCCategoryDecl *, 2> > CatsAfterInterface;
334
335  /// \brief Mapping from each declaration context to its corresponding lambda
336  /// mangling context.
337  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
338
339  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
340  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
341
342  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
343  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
344  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
345  ParameterIndexTable ParamIndices;
346
347  ImportDecl *FirstLocalImport;
348  ImportDecl *LastLocalImport;
349
350  TranslationUnitDecl *TUDecl;
351
352  /// \brief The associated SourceManager object.a
353  SourceManager &SourceMgr;
354
355  /// \brief The language options used to create the AST associated with
356  ///  this ASTContext object.
357  LangOptions &LangOpts;
358
359  /// \brief The allocator used to create AST objects.
360  ///
361  /// AST objects are never destructed; rather, all memory associated with the
362  /// AST objects will be released when the ASTContext itself is destroyed.
363  mutable llvm::BumpPtrAllocator BumpAlloc;
364
365  /// \brief Allocator for partial diagnostics.
366  PartialDiagnostic::StorageAllocator DiagAllocator;
367
368  /// \brief The current C++ ABI.
369  OwningPtr<CXXABI> ABI;
370  CXXABI *createCXXABI(const TargetInfo &T);
371
372  /// \brief The logical -> physical address space map.
373  const LangAS::Map *AddrSpaceMap;
374
375  friend class ASTDeclReader;
376  friend class ASTReader;
377  friend class ASTWriter;
378  friend class CXXRecordDecl;
379
380  const TargetInfo *Target;
381  clang::PrintingPolicy PrintingPolicy;
382
383public:
384  IdentifierTable &Idents;
385  SelectorTable &Selectors;
386  Builtin::Context &BuiltinInfo;
387  mutable DeclarationNameTable DeclarationNames;
388  OwningPtr<ExternalASTSource> ExternalSource;
389  ASTMutationListener *Listener;
390
391  /// \brief Contains parents of a node.
392  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
393
394  /// \brief Maps from a node to its parents.
395  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
396
397  /// \brief Returns the parents of the given node.
398  ///
399  /// Note that this will lazily compute the parents of all nodes
400  /// and store them for later retrieval. Thus, the first call is O(n)
401  /// in the number of AST nodes.
402  ///
403  /// Caveats and FIXMEs:
404  /// Calculating the parent map over all AST nodes will need to load the
405  /// full AST. This can be undesirable in the case where the full AST is
406  /// expensive to create (for example, when using precompiled header
407  /// preambles). Thus, there are good opportunities for optimization here.
408  /// One idea is to walk the given node downwards, looking for references
409  /// to declaration contexts - once a declaration context is found, compute
410  /// the parent map for the declaration context; if that can satisfy the
411  /// request, loading the whole AST can be avoided. Note that this is made
412  /// more complex by statements in templates having multiple parents - those
413  /// problems can be solved by building closure over the templated parts of
414  /// the AST, which also avoids touching large parts of the AST.
415  /// Additionally, we will want to add an interface to already give a hint
416  /// where to search for the parents, for example when looking at a statement
417  /// inside a certain function.
418  ///
419  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
420  /// NestedNameSpecifier or NestedNameSpecifierLoc.
421  template <typename NodeT>
422  ParentVector getParents(const NodeT &Node) {
423    return getParents(ast_type_traits::DynTypedNode::create(Node));
424  }
425
426  ParentVector getParents(const ast_type_traits::DynTypedNode &Node) {
427    assert(Node.getMemoizationData() &&
428           "Invariant broken: only nodes that support memoization may be "
429           "used in the parent map.");
430    if (!AllParents) {
431      // We always need to run over the whole translation unit, as
432      // hasAncestor can escape any subtree.
433      AllParents.reset(
434          ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
435    }
436    ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
437    if (I == AllParents->end()) {
438      return ParentVector();
439    }
440    return I->second;
441  }
442
443  const clang::PrintingPolicy &getPrintingPolicy() const {
444    return PrintingPolicy;
445  }
446
447  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
448    PrintingPolicy = Policy;
449  }
450
451  SourceManager& getSourceManager() { return SourceMgr; }
452  const SourceManager& getSourceManager() const { return SourceMgr; }
453
454  llvm::BumpPtrAllocator &getAllocator() const {
455    return BumpAlloc;
456  }
457
458  void *Allocate(unsigned Size, unsigned Align = 8) const {
459    return BumpAlloc.Allocate(Size, Align);
460  }
461  void Deallocate(void *Ptr) const { }
462
463  /// Return the total amount of physical memory allocated for representing
464  /// AST nodes and type information.
465  size_t getASTAllocatedMemory() const {
466    return BumpAlloc.getTotalMemory();
467  }
468  /// Return the total memory used for various side tables.
469  size_t getSideTableAllocatedMemory() const;
470
471  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
472    return DiagAllocator;
473  }
474
475  const TargetInfo &getTargetInfo() const { return *Target; }
476
477  const LangOptions& getLangOpts() const { return LangOpts; }
478
479  DiagnosticsEngine &getDiagnostics() const;
480
481  FullSourceLoc getFullLoc(SourceLocation Loc) const {
482    return FullSourceLoc(Loc,SourceMgr);
483  }
484
485  /// \brief All comments in this translation unit.
486  RawCommentList Comments;
487
488  /// \brief True if comments are already loaded from ExternalASTSource.
489  mutable bool CommentsLoaded;
490
491  class RawCommentAndCacheFlags {
492  public:
493    enum Kind {
494      /// We searched for a comment attached to the particular declaration, but
495      /// didn't find any.
496      ///
497      /// getRaw() == 0.
498      NoCommentInDecl = 0,
499
500      /// We have found a comment attached to this particular declaration.
501      ///
502      /// getRaw() != 0.
503      FromDecl,
504
505      /// This declaration does not have an attached comment, and we have
506      /// searched the redeclaration chain.
507      ///
508      /// If getRaw() == 0, the whole redeclaration chain does not have any
509      /// comments.
510      ///
511      /// If getRaw() != 0, it is a comment propagated from other
512      /// redeclaration.
513      FromRedecl
514    };
515
516    Kind getKind() const LLVM_READONLY {
517      return Data.getInt();
518    }
519
520    void setKind(Kind K) {
521      Data.setInt(K);
522    }
523
524    const RawComment *getRaw() const LLVM_READONLY {
525      return Data.getPointer();
526    }
527
528    void setRaw(const RawComment *RC) {
529      Data.setPointer(RC);
530    }
531
532    const Decl *getOriginalDecl() const LLVM_READONLY {
533      return OriginalDecl;
534    }
535
536    void setOriginalDecl(const Decl *Orig) {
537      OriginalDecl = Orig;
538    }
539
540  private:
541    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
542    const Decl *OriginalDecl;
543  };
544
545  /// \brief Mapping from declarations to comments attached to any
546  /// redeclaration.
547  ///
548  /// Raw comments are owned by Comments list.  This mapping is populated
549  /// lazily.
550  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
551
552  /// \brief Mapping from declarations to parsed comments attached to any
553  /// redeclaration.
554  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
555
556  /// \brief Return the documentation comment attached to a given declaration,
557  /// without looking into cache.
558  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
559
560public:
561  RawCommentList &getRawCommentList() {
562    return Comments;
563  }
564
565  void addComment(const RawComment &RC) {
566    assert(LangOpts.RetainCommentsFromSystemHeaders ||
567           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
568    Comments.addComment(RC, BumpAlloc);
569  }
570
571  /// \brief Return the documentation comment attached to a given declaration.
572  /// Returns NULL if no comment is attached.
573  ///
574  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
575  /// the comment, if the comment we found comes from a redeclaration.
576  const RawComment *getRawCommentForAnyRedecl(
577                                      const Decl *D,
578                                      const Decl **OriginalDecl = NULL) const;
579
580  /// Return parsed documentation comment attached to a given declaration.
581  /// Returns NULL if no comment is attached.
582  ///
583  /// \param PP the Preprocessor used with this TU.  Could be NULL if
584  /// preprocessor is not available.
585  comments::FullComment *getCommentForDecl(const Decl *D,
586                                           const Preprocessor *PP) const;
587
588  comments::FullComment *cloneFullComment(comments::FullComment *FC,
589                                         const Decl *D) const;
590
591private:
592  mutable comments::CommandTraits CommentCommandTraits;
593
594public:
595  comments::CommandTraits &getCommentCommandTraits() const {
596    return CommentCommandTraits;
597  }
598
599  /// \brief Retrieve the attributes for the given declaration.
600  AttrVec& getDeclAttrs(const Decl *D);
601
602  /// \brief Erase the attributes corresponding to the given declaration.
603  void eraseDeclAttrs(const Decl *D);
604
605  /// \brief If this variable is an instantiated static data member of a
606  /// class template specialization, returns the templated static data member
607  /// from which it was instantiated.
608  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
609                                                           const VarDecl *Var);
610
611  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
612
613  void setClassScopeSpecializationPattern(FunctionDecl *FD,
614                                          FunctionDecl *Pattern);
615
616  /// \brief Note that the static data member \p Inst is an instantiation of
617  /// the static data member template \p Tmpl of a class template.
618  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
619                                           TemplateSpecializationKind TSK,
620                        SourceLocation PointOfInstantiation = SourceLocation());
621
622  /// \brief If the given using decl \p Inst is an instantiation of a
623  /// (possibly unresolved) using decl from a template instantiation,
624  /// return it.
625  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
626
627  /// \brief Remember that the using decl \p Inst is an instantiation
628  /// of the using decl \p Pattern of a class template.
629  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
630
631  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
632                                          UsingShadowDecl *Pattern);
633  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
634
635  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
636
637  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
638
639  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
640  /// the non-bitfield \p LastFD.
641  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
642                                      const FieldDecl *LastFD) const;
643
644  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
645  /// the bitfield \p LastFD.
646  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
647                                   const FieldDecl *LastFD) const;
648
649  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
650  /// \p LastFD.
651  bool BitfieldFollowsBitfield(const FieldDecl *FD,
652                               const FieldDecl *LastFD) const;
653
654  /// \brief Return \c true if \p FD is not a bitfield which follows the
655  /// bitfield \p LastFD.
656  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
657                                  const FieldDecl *LastFD) const;
658
659  /// \brief Return \c true if \p FD is a bitfield which follows the
660  /// non-bitfield \p LastFD.
661  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
662                                  const FieldDecl *LastFD) const;
663
664  // Access to the set of methods overridden by the given C++ method.
665  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
666  overridden_cxx_method_iterator
667  overridden_methods_begin(const CXXMethodDecl *Method) const;
668
669  overridden_cxx_method_iterator
670  overridden_methods_end(const CXXMethodDecl *Method) const;
671
672  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
673
674  /// \brief Note that the given C++ \p Method overrides the given \p
675  /// Overridden method.
676  void addOverriddenMethod(const CXXMethodDecl *Method,
677                           const CXXMethodDecl *Overridden);
678
679  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
680  ///
681  /// An ObjC method is considered to override any method in the class's
682  /// base classes, its protocols, or its categories' protocols, that has
683  /// the same selector and is of the same kind (class or instance).
684  /// A method in an implementation is not considered as overriding the same
685  /// method in the interface or its categories.
686  void getOverriddenMethods(
687                        const NamedDecl *Method,
688                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
689
690  /// \brief Returns the ObjC categories of base classes, that were declared
691  /// after the given interface declaration.
692  void getBaseObjCCategoriesAfterInterface(const ObjCInterfaceDecl *D,
693                         SmallVectorImpl<const ObjCCategoryDecl *> &Cats) const;
694
695  /// \brief Notify the AST context that a new import declaration has been
696  /// parsed or implicitly created within this translation unit.
697  void addedLocalImportDecl(ImportDecl *Import);
698
699  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
700    return Import->NextLocalImport;
701  }
702
703  /// \brief Iterator that visits import declarations.
704  class import_iterator {
705    ImportDecl *Import;
706
707  public:
708    typedef ImportDecl               *value_type;
709    typedef ImportDecl               *reference;
710    typedef ImportDecl               *pointer;
711    typedef int                       difference_type;
712    typedef std::forward_iterator_tag iterator_category;
713
714    import_iterator() : Import() { }
715    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
716
717    reference operator*() const { return Import; }
718    pointer operator->() const { return Import; }
719
720    import_iterator &operator++() {
721      Import = ASTContext::getNextLocalImport(Import);
722      return *this;
723    }
724
725    import_iterator operator++(int) {
726      import_iterator Other(*this);
727      ++(*this);
728      return Other;
729    }
730
731    friend bool operator==(import_iterator X, import_iterator Y) {
732      return X.Import == Y.Import;
733    }
734
735    friend bool operator!=(import_iterator X, import_iterator Y) {
736      return X.Import != Y.Import;
737    }
738  };
739
740  import_iterator local_import_begin() const {
741    return import_iterator(FirstLocalImport);
742  }
743  import_iterator local_import_end() const { return import_iterator(); }
744
745  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
746
747
748  // Builtin Types.
749  CanQualType VoidTy;
750  CanQualType BoolTy;
751  CanQualType CharTy;
752  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
753  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
754  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
755  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
756  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
757  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
758  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
759  CanQualType FloatTy, DoubleTy, LongDoubleTy;
760  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
761  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
762  CanQualType VoidPtrTy, NullPtrTy;
763  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
764  CanQualType BuiltinFnTy;
765  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
766  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
767  CanQualType ObjCBuiltinBoolTy;
768  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
769  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
770  CanQualType OCLImage3dTy;
771  CanQualType OCLSamplerTy, OCLEventTy;
772
773  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
774  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
775  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
776
777  // Type used to help define __builtin_va_list for some targets.
778  // The type is built when constructing 'BuiltinVaListDecl'.
779  mutable QualType VaListTagTy;
780
781  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
782             IdentifierTable &idents, SelectorTable &sels,
783             Builtin::Context &builtins,
784             unsigned size_reserve,
785             bool DelayInitialization = false);
786
787  ~ASTContext();
788
789  /// \brief Attach an external AST source to the AST context.
790  ///
791  /// The external AST source provides the ability to load parts of
792  /// the abstract syntax tree as needed from some external storage,
793  /// e.g., a precompiled header.
794  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
795
796  /// \brief Retrieve a pointer to the external AST source associated
797  /// with this AST context, if any.
798  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
799
800  /// \brief Attach an AST mutation listener to the AST context.
801  ///
802  /// The AST mutation listener provides the ability to track modifications to
803  /// the abstract syntax tree entities committed after they were initially
804  /// created.
805  void setASTMutationListener(ASTMutationListener *Listener) {
806    this->Listener = Listener;
807  }
808
809  /// \brief Retrieve a pointer to the AST mutation listener associated
810  /// with this AST context, if any.
811  ASTMutationListener *getASTMutationListener() const { return Listener; }
812
813  void PrintStats() const;
814  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
815
816  /// \brief Retrieve the declaration for the 128-bit signed integer type.
817  TypedefDecl *getInt128Decl() const;
818
819  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
820  TypedefDecl *getUInt128Decl() const;
821
822  //===--------------------------------------------------------------------===//
823  //                           Type Constructors
824  //===--------------------------------------------------------------------===//
825
826private:
827  /// \brief Return a type with extended qualifiers.
828  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
829
830  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
831
832public:
833  /// \brief Return the uniqued reference to the type for an address space
834  /// qualified type with the specified type and address space.
835  ///
836  /// The resulting type has a union of the qualifiers from T and the address
837  /// space. If T already has an address space specifier, it is silently
838  /// replaced.
839  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
840
841  /// \brief Return the uniqued reference to the type for an Objective-C
842  /// gc-qualified type.
843  ///
844  /// The retulting type has a union of the qualifiers from T and the gc
845  /// attribute.
846  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
847
848  /// \brief Return the uniqued reference to the type for a \c restrict
849  /// qualified type.
850  ///
851  /// The resulting type has a union of the qualifiers from \p T and
852  /// \c restrict.
853  QualType getRestrictType(QualType T) const {
854    return T.withFastQualifiers(Qualifiers::Restrict);
855  }
856
857  /// \brief Return the uniqued reference to the type for a \c volatile
858  /// qualified type.
859  ///
860  /// The resulting type has a union of the qualifiers from \p T and
861  /// \c volatile.
862  QualType getVolatileType(QualType T) const {
863    return T.withFastQualifiers(Qualifiers::Volatile);
864  }
865
866  /// \brief Return the uniqued reference to the type for a \c const
867  /// qualified type.
868  ///
869  /// The resulting type has a union of the qualifiers from \p T and \c const.
870  ///
871  /// It can be reasonably expected that this will always be equivalent to
872  /// calling T.withConst().
873  QualType getConstType(QualType T) const { return T.withConst(); }
874
875  /// \brief Change the ExtInfo on a function type.
876  const FunctionType *adjustFunctionType(const FunctionType *Fn,
877                                         FunctionType::ExtInfo EInfo);
878
879  /// \brief Return the uniqued reference to the type for a complex
880  /// number with the specified element type.
881  QualType getComplexType(QualType T) const;
882  CanQualType getComplexType(CanQualType T) const {
883    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
884  }
885
886  /// \brief Return the uniqued reference to the type for a pointer to
887  /// the specified type.
888  QualType getPointerType(QualType T) const;
889  CanQualType getPointerType(CanQualType T) const {
890    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
891  }
892
893  /// \brief Return the uniqued reference to the atomic type for the specified
894  /// type.
895  QualType getAtomicType(QualType T) const;
896
897  /// \brief Return the uniqued reference to the type for a block of the
898  /// specified type.
899  QualType getBlockPointerType(QualType T) const;
900
901  /// Gets the struct used to keep track of the descriptor for pointer to
902  /// blocks.
903  QualType getBlockDescriptorType() const;
904
905  /// Gets the struct used to keep track of the extended descriptor for
906  /// pointer to blocks.
907  QualType getBlockDescriptorExtendedType() const;
908
909  void setcudaConfigureCallDecl(FunctionDecl *FD) {
910    cudaConfigureCallDecl = FD;
911  }
912  FunctionDecl *getcudaConfigureCallDecl() {
913    return cudaConfigureCallDecl;
914  }
915
916  /// Returns true iff we need copy/dispose helpers for the given type.
917  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
918
919
920  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
921  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
922  /// has extended lifetime.
923  bool getByrefLifetime(QualType Ty,
924                        Qualifiers::ObjCLifetime &Lifetime,
925                        bool &HasByrefExtendedLayout) const;
926
927  /// \brief Return the uniqued reference to the type for an lvalue reference
928  /// to the specified type.
929  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
930    const;
931
932  /// \brief Return the uniqued reference to the type for an rvalue reference
933  /// to the specified type.
934  QualType getRValueReferenceType(QualType T) const;
935
936  /// \brief Return the uniqued reference to the type for a member pointer to
937  /// the specified type in the specified class.
938  ///
939  /// The class \p Cls is a \c Type because it could be a dependent name.
940  QualType getMemberPointerType(QualType T, const Type *Cls) const;
941
942  /// \brief Return a non-unique reference to the type for a variable array of
943  /// the specified element type.
944  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
945                                ArrayType::ArraySizeModifier ASM,
946                                unsigned IndexTypeQuals,
947                                SourceRange Brackets) const;
948
949  /// \brief Return a non-unique reference to the type for a dependently-sized
950  /// array of the specified element type.
951  ///
952  /// FIXME: We will need these to be uniqued, or at least comparable, at some
953  /// point.
954  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
955                                      ArrayType::ArraySizeModifier ASM,
956                                      unsigned IndexTypeQuals,
957                                      SourceRange Brackets) const;
958
959  /// \brief Return a unique reference to the type for an incomplete array of
960  /// the specified element type.
961  QualType getIncompleteArrayType(QualType EltTy,
962                                  ArrayType::ArraySizeModifier ASM,
963                                  unsigned IndexTypeQuals) const;
964
965  /// \brief Return the unique reference to the type for a constant array of
966  /// the specified element type.
967  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
968                                ArrayType::ArraySizeModifier ASM,
969                                unsigned IndexTypeQuals) const;
970
971  /// \brief Returns a vla type where known sizes are replaced with [*].
972  QualType getVariableArrayDecayedType(QualType Ty) const;
973
974  /// \brief Return the unique reference to a vector type of the specified
975  /// element type and size.
976  ///
977  /// \pre \p VectorType must be a built-in type.
978  QualType getVectorType(QualType VectorType, unsigned NumElts,
979                         VectorType::VectorKind VecKind) const;
980
981  /// \brief Return the unique reference to an extended vector type
982  /// of the specified element type and size.
983  ///
984  /// \pre \p VectorType must be a built-in type.
985  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
986
987  /// \pre Return a non-unique reference to the type for a dependently-sized
988  /// vector of the specified element type.
989  ///
990  /// FIXME: We will need these to be uniqued, or at least comparable, at some
991  /// point.
992  QualType getDependentSizedExtVectorType(QualType VectorType,
993                                          Expr *SizeExpr,
994                                          SourceLocation AttrLoc) const;
995
996  /// \brief Return a K&R style C function type like 'int()'.
997  QualType getFunctionNoProtoType(QualType ResultTy,
998                                  const FunctionType::ExtInfo &Info) const;
999
1000  QualType getFunctionNoProtoType(QualType ResultTy) const {
1001    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1002  }
1003
1004  /// \brief Return a normal function type with a typed argument list.
1005  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1006                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1007
1008  /// \brief Return the unique reference to the type for the specified type
1009  /// declaration.
1010  QualType getTypeDeclType(const TypeDecl *Decl,
1011                           const TypeDecl *PrevDecl = 0) const {
1012    assert(Decl && "Passed null for Decl param");
1013    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1014
1015    if (PrevDecl) {
1016      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1017      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1018      return QualType(PrevDecl->TypeForDecl, 0);
1019    }
1020
1021    return getTypeDeclTypeSlow(Decl);
1022  }
1023
1024  /// \brief Return the unique reference to the type for the specified
1025  /// typedef-name decl.
1026  QualType getTypedefType(const TypedefNameDecl *Decl,
1027                          QualType Canon = QualType()) const;
1028
1029  QualType getRecordType(const RecordDecl *Decl) const;
1030
1031  QualType getEnumType(const EnumDecl *Decl) const;
1032
1033  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1034
1035  QualType getAttributedType(AttributedType::Kind attrKind,
1036                             QualType modifiedType,
1037                             QualType equivalentType);
1038
1039  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1040                                        QualType Replacement) const;
1041  QualType getSubstTemplateTypeParmPackType(
1042                                          const TemplateTypeParmType *Replaced,
1043                                            const TemplateArgument &ArgPack);
1044
1045  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1046                                   bool ParameterPack,
1047                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1048
1049  QualType getTemplateSpecializationType(TemplateName T,
1050                                         const TemplateArgument *Args,
1051                                         unsigned NumArgs,
1052                                         QualType Canon = QualType()) const;
1053
1054  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1055                                                  const TemplateArgument *Args,
1056                                                  unsigned NumArgs) const;
1057
1058  QualType getTemplateSpecializationType(TemplateName T,
1059                                         const TemplateArgumentListInfo &Args,
1060                                         QualType Canon = QualType()) const;
1061
1062  TypeSourceInfo *
1063  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1064                                    const TemplateArgumentListInfo &Args,
1065                                    QualType Canon = QualType()) const;
1066
1067  QualType getParenType(QualType NamedType) const;
1068
1069  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1070                             NestedNameSpecifier *NNS,
1071                             QualType NamedType) const;
1072  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1073                                NestedNameSpecifier *NNS,
1074                                const IdentifierInfo *Name,
1075                                QualType Canon = QualType()) const;
1076
1077  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1078                                                  NestedNameSpecifier *NNS,
1079                                                  const IdentifierInfo *Name,
1080                                    const TemplateArgumentListInfo &Args) const;
1081  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1082                                                  NestedNameSpecifier *NNS,
1083                                                  const IdentifierInfo *Name,
1084                                                  unsigned NumArgs,
1085                                            const TemplateArgument *Args) const;
1086
1087  QualType getPackExpansionType(QualType Pattern,
1088                                Optional<unsigned> NumExpansions);
1089
1090  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1091                                ObjCInterfaceDecl *PrevDecl = 0) const;
1092
1093  QualType getObjCObjectType(QualType Base,
1094                             ObjCProtocolDecl * const *Protocols,
1095                             unsigned NumProtocols) const;
1096
1097  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1098  QualType getObjCObjectPointerType(QualType OIT) const;
1099
1100  /// \brief GCC extension.
1101  QualType getTypeOfExprType(Expr *e) const;
1102  QualType getTypeOfType(QualType t) const;
1103
1104  /// \brief C++11 decltype.
1105  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1106
1107  /// \brief Unary type transforms
1108  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1109                                 UnaryTransformType::UTTKind UKind) const;
1110
1111  /// \brief C++11 deduced auto type.
1112  QualType getAutoType(QualType DeducedType) const;
1113
1114  /// \brief C++11 deduction pattern for 'auto' type.
1115  QualType getAutoDeductType() const;
1116
1117  /// \brief C++11 deduction pattern for 'auto &&' type.
1118  QualType getAutoRRefDeductType() const;
1119
1120  /// \brief Return the unique reference to the type for the specified TagDecl
1121  /// (struct/union/class/enum) decl.
1122  QualType getTagDeclType(const TagDecl *Decl) const;
1123
1124  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1125  /// <stddef.h>.
1126  ///
1127  /// The sizeof operator requires this (C99 6.5.3.4p4).
1128  CanQualType getSizeType() const;
1129
1130  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1131  /// <stdint.h>.
1132  CanQualType getIntMaxType() const;
1133
1134  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1135  /// <stdint.h>.
1136  CanQualType getUIntMaxType() const;
1137
1138  /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1139  /// returns a type compatible with the type defined in <stddef.h> as defined
1140  /// by the target.
1141  QualType getWCharType() const { return WCharTy; }
1142
1143  /// \brief Return the type of "signed wchar_t".
1144  ///
1145  /// Used when in C++, as a GCC extension.
1146  QualType getSignedWCharType() const;
1147
1148  /// \brief Return the type of "unsigned wchar_t".
1149  ///
1150  /// Used when in C++, as a GCC extension.
1151  QualType getUnsignedWCharType() const;
1152
1153  /// \brief In C99, this returns a type compatible with the type
1154  /// defined in <stddef.h> as defined by the target.
1155  QualType getWIntType() const { return WIntTy; }
1156
1157  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1158  /// as defined by the target.
1159  QualType getIntPtrType() const;
1160
1161  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1162  /// as defined by the target.
1163  QualType getUIntPtrType() const;
1164
1165  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1166  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1167  QualType getPointerDiffType() const;
1168
1169  /// \brief Return the unique type for "pid_t" defined in
1170  /// <sys/types.h>. We need this to compute the correct type for vfork().
1171  QualType getProcessIDType() const;
1172
1173  /// \brief Return the C structure type used to represent constant CFStrings.
1174  QualType getCFConstantStringType() const;
1175
1176  /// \brief Returns the C struct type for objc_super
1177  QualType getObjCSuperType() const;
1178  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1179
1180  /// Get the structure type used to representation CFStrings, or NULL
1181  /// if it hasn't yet been built.
1182  QualType getRawCFConstantStringType() const {
1183    if (CFConstantStringTypeDecl)
1184      return getTagDeclType(CFConstantStringTypeDecl);
1185    return QualType();
1186  }
1187  void setCFConstantStringType(QualType T);
1188
1189  // This setter/getter represents the ObjC type for an NSConstantString.
1190  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1191  QualType getObjCConstantStringInterface() const {
1192    return ObjCConstantStringType;
1193  }
1194
1195  QualType getObjCNSStringType() const {
1196    return ObjCNSStringType;
1197  }
1198
1199  void setObjCNSStringType(QualType T) {
1200    ObjCNSStringType = T;
1201  }
1202
1203  /// \brief Retrieve the type that \c id has been defined to, which may be
1204  /// different from the built-in \c id if \c id has been typedef'd.
1205  QualType getObjCIdRedefinitionType() const {
1206    if (ObjCIdRedefinitionType.isNull())
1207      return getObjCIdType();
1208    return ObjCIdRedefinitionType;
1209  }
1210
1211  /// \brief Set the user-written type that redefines \c id.
1212  void setObjCIdRedefinitionType(QualType RedefType) {
1213    ObjCIdRedefinitionType = RedefType;
1214  }
1215
1216  /// \brief Retrieve the type that \c Class has been defined to, which may be
1217  /// different from the built-in \c Class if \c Class has been typedef'd.
1218  QualType getObjCClassRedefinitionType() const {
1219    if (ObjCClassRedefinitionType.isNull())
1220      return getObjCClassType();
1221    return ObjCClassRedefinitionType;
1222  }
1223
1224  /// \brief Set the user-written type that redefines 'SEL'.
1225  void setObjCClassRedefinitionType(QualType RedefType) {
1226    ObjCClassRedefinitionType = RedefType;
1227  }
1228
1229  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1230  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1231  QualType getObjCSelRedefinitionType() const {
1232    if (ObjCSelRedefinitionType.isNull())
1233      return getObjCSelType();
1234    return ObjCSelRedefinitionType;
1235  }
1236
1237
1238  /// \brief Set the user-written type that redefines 'SEL'.
1239  void setObjCSelRedefinitionType(QualType RedefType) {
1240    ObjCSelRedefinitionType = RedefType;
1241  }
1242
1243  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1244  /// otherwise, returns a NULL type;
1245  QualType getObjCInstanceType() {
1246    return getTypeDeclType(getObjCInstanceTypeDecl());
1247  }
1248
1249  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1250  /// "instancetype" type.
1251  TypedefDecl *getObjCInstanceTypeDecl();
1252
1253  /// \brief Set the type for the C FILE type.
1254  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1255
1256  /// \brief Retrieve the C FILE type.
1257  QualType getFILEType() const {
1258    if (FILEDecl)
1259      return getTypeDeclType(FILEDecl);
1260    return QualType();
1261  }
1262
1263  /// \brief Set the type for the C jmp_buf type.
1264  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1265    this->jmp_bufDecl = jmp_bufDecl;
1266  }
1267
1268  /// \brief Retrieve the C jmp_buf type.
1269  QualType getjmp_bufType() const {
1270    if (jmp_bufDecl)
1271      return getTypeDeclType(jmp_bufDecl);
1272    return QualType();
1273  }
1274
1275  /// \brief Set the type for the C sigjmp_buf type.
1276  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1277    this->sigjmp_bufDecl = sigjmp_bufDecl;
1278  }
1279
1280  /// \brief Retrieve the C sigjmp_buf type.
1281  QualType getsigjmp_bufType() const {
1282    if (sigjmp_bufDecl)
1283      return getTypeDeclType(sigjmp_bufDecl);
1284    return QualType();
1285  }
1286
1287  /// \brief Set the type for the C ucontext_t type.
1288  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1289    this->ucontext_tDecl = ucontext_tDecl;
1290  }
1291
1292  /// \brief Retrieve the C ucontext_t type.
1293  QualType getucontext_tType() const {
1294    if (ucontext_tDecl)
1295      return getTypeDeclType(ucontext_tDecl);
1296    return QualType();
1297  }
1298
1299  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1300  QualType getLogicalOperationType() const {
1301    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1302  }
1303
1304  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1305  /// \p S.
1306  ///
1307  /// If \p Field is specified then record field names are also encoded.
1308  void getObjCEncodingForType(QualType T, std::string &S,
1309                              const FieldDecl *Field=0) const;
1310
1311  void getLegacyIntegralTypeEncoding(QualType &t) const;
1312
1313  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1314  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1315                                       std::string &S) const;
1316
1317  /// \brief Emit the encoded type for the function \p Decl into \p S.
1318  ///
1319  /// This is in the same format as Objective-C method encodings.
1320  ///
1321  /// \returns true if an error occurred (e.g., because one of the parameter
1322  /// types is incomplete), false otherwise.
1323  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1324
1325  /// \brief Emit the encoded type for the method declaration \p Decl into
1326  /// \p S.
1327  ///
1328  /// \returns true if an error occurred (e.g., because one of the parameter
1329  /// types is incomplete), false otherwise.
1330  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1331                                    bool Extended = false)
1332    const;
1333
1334  /// \brief Return the encoded type for this block declaration.
1335  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1336
1337  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1338  /// this method declaration. If non-NULL, Container must be either
1339  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1340  /// only be NULL when getting encodings for protocol properties.
1341  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1342                                      const Decl *Container,
1343                                      std::string &S) const;
1344
1345  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1346                                      ObjCProtocolDecl *rProto) const;
1347
1348  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1349  /// in characters.
1350  CharUnits getObjCEncodingTypeSize(QualType T) const;
1351
1352  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1353  /// in Objective-C.
1354  TypedefDecl *getObjCIdDecl() const;
1355
1356  /// \brief Represents the Objective-CC \c id type.
1357  ///
1358  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1359  /// pointer type, a pointer to a struct.
1360  QualType getObjCIdType() const {
1361    return getTypeDeclType(getObjCIdDecl());
1362  }
1363
1364  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1365  /// in Objective-C.
1366  TypedefDecl *getObjCSelDecl() const;
1367
1368  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1369  /// 'SEL' type.
1370  QualType getObjCSelType() const {
1371    return getTypeDeclType(getObjCSelDecl());
1372  }
1373
1374  /// \brief Retrieve the typedef declaration corresponding to the predefined
1375  /// Objective-C 'Class' type.
1376  TypedefDecl *getObjCClassDecl() const;
1377
1378  /// \brief Represents the Objective-C \c Class type.
1379  ///
1380  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1381  /// pointer type, a pointer to a struct.
1382  QualType getObjCClassType() const {
1383    return getTypeDeclType(getObjCClassDecl());
1384  }
1385
1386  /// \brief Retrieve the Objective-C class declaration corresponding to
1387  /// the predefined \c Protocol class.
1388  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1389
1390  /// \brief Retrieve declaration of 'BOOL' typedef
1391  TypedefDecl *getBOOLDecl() const {
1392    return BOOLDecl;
1393  }
1394
1395  /// \brief Save declaration of 'BOOL' typedef
1396  void setBOOLDecl(TypedefDecl *TD) {
1397    BOOLDecl = TD;
1398  }
1399
1400  /// \brief type of 'BOOL' type.
1401  QualType getBOOLType() const {
1402    return getTypeDeclType(getBOOLDecl());
1403  }
1404
1405  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1406  QualType getObjCProtoType() const {
1407    return getObjCInterfaceType(getObjCProtocolDecl());
1408  }
1409
1410  /// \brief Retrieve the C type declaration corresponding to the predefined
1411  /// \c __builtin_va_list type.
1412  TypedefDecl *getBuiltinVaListDecl() const;
1413
1414  /// \brief Retrieve the type of the \c __builtin_va_list type.
1415  QualType getBuiltinVaListType() const {
1416    return getTypeDeclType(getBuiltinVaListDecl());
1417  }
1418
1419  /// \brief Retrieve the C type declaration corresponding to the predefined
1420  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1421  /// for some targets.
1422  QualType getVaListTagType() const;
1423
1424  /// \brief Return a type with additional \c const, \c volatile, or
1425  /// \c restrict qualifiers.
1426  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1427    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1428  }
1429
1430  /// \brief Un-split a SplitQualType.
1431  QualType getQualifiedType(SplitQualType split) const {
1432    return getQualifiedType(split.Ty, split.Quals);
1433  }
1434
1435  /// \brief Return a type with additional qualifiers.
1436  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1437    if (!Qs.hasNonFastQualifiers())
1438      return T.withFastQualifiers(Qs.getFastQualifiers());
1439    QualifierCollector Qc(Qs);
1440    const Type *Ptr = Qc.strip(T);
1441    return getExtQualType(Ptr, Qc);
1442  }
1443
1444  /// \brief Return a type with additional qualifiers.
1445  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1446    if (!Qs.hasNonFastQualifiers())
1447      return QualType(T, Qs.getFastQualifiers());
1448    return getExtQualType(T, Qs);
1449  }
1450
1451  /// \brief Return a type with the given lifetime qualifier.
1452  ///
1453  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1454  QualType getLifetimeQualifiedType(QualType type,
1455                                    Qualifiers::ObjCLifetime lifetime) {
1456    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1457    assert(lifetime != Qualifiers::OCL_None);
1458
1459    Qualifiers qs;
1460    qs.addObjCLifetime(lifetime);
1461    return getQualifiedType(type, qs);
1462  }
1463
1464  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1465                                         SourceLocation NameLoc) const;
1466
1467  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1468                                         UnresolvedSetIterator End) const;
1469
1470  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1471                                        bool TemplateKeyword,
1472                                        TemplateDecl *Template) const;
1473
1474  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1475                                        const IdentifierInfo *Name) const;
1476  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1477                                        OverloadedOperatorKind Operator) const;
1478  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1479                                            TemplateName replacement) const;
1480  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1481                                        const TemplateArgument &ArgPack) const;
1482
1483  enum GetBuiltinTypeError {
1484    GE_None,              ///< No error
1485    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1486    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1487    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1488  };
1489
1490  /// \brief Return the type for the specified builtin.
1491  ///
1492  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1493  /// arguments to the builtin that are required to be integer constant
1494  /// expressions.
1495  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1496                          unsigned *IntegerConstantArgs = 0) const;
1497
1498private:
1499  CanQualType getFromTargetType(unsigned Type) const;
1500  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1501
1502  //===--------------------------------------------------------------------===//
1503  //                         Type Predicates.
1504  //===--------------------------------------------------------------------===//
1505
1506public:
1507  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1508  /// collection attributes.
1509  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1510
1511  /// \brief Return true if the given vector types are of the same unqualified
1512  /// type or if they are equivalent to the same GCC vector type.
1513  ///
1514  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1515  /// types.
1516  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1517
1518  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1519  /// attribute set.
1520  static bool isObjCNSObjectType(QualType Ty) {
1521    return Ty->isObjCNSObjectType();
1522  }
1523
1524  //===--------------------------------------------------------------------===//
1525  //                         Type Sizing and Analysis
1526  //===--------------------------------------------------------------------===//
1527
1528  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1529  /// point type.
1530  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1531
1532  /// \brief Get the size and alignment of the specified complete type in bits.
1533  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1534  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1535    return getTypeInfo(T.getTypePtr());
1536  }
1537
1538  /// \brief Return the size of the specified (complete) type \p T, in bits.
1539  uint64_t getTypeSize(QualType T) const {
1540    return getTypeInfo(T).first;
1541  }
1542  uint64_t getTypeSize(const Type *T) const {
1543    return getTypeInfo(T).first;
1544  }
1545
1546  /// \brief Return the size of the character type, in bits.
1547  uint64_t getCharWidth() const {
1548    return getTypeSize(CharTy);
1549  }
1550
1551  /// \brief Convert a size in bits to a size in characters.
1552  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1553
1554  /// \brief Convert a size in characters to a size in bits.
1555  int64_t toBits(CharUnits CharSize) const;
1556
1557  /// \brief Return the size of the specified (complete) type \p T, in
1558  /// characters.
1559  CharUnits getTypeSizeInChars(QualType T) const;
1560  CharUnits getTypeSizeInChars(const Type *T) const;
1561
1562  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1563  /// bits.
1564  unsigned getTypeAlign(QualType T) const {
1565    return getTypeInfo(T).second;
1566  }
1567  unsigned getTypeAlign(const Type *T) const {
1568    return getTypeInfo(T).second;
1569  }
1570
1571  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1572  /// characters.
1573  CharUnits getTypeAlignInChars(QualType T) const;
1574  CharUnits getTypeAlignInChars(const Type *T) const;
1575
1576  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1577  // type is a record, its data size is returned.
1578  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1579
1580  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1581  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1582
1583  /// \brief Return the "preferred" alignment of the specified type \p T for
1584  /// the current target, in bits.
1585  ///
1586  /// This can be different than the ABI alignment in cases where it is
1587  /// beneficial for performance to overalign a data type.
1588  unsigned getPreferredTypeAlign(const Type *T) const;
1589
1590  /// \brief Return a conservative estimate of the alignment of the specified
1591  /// decl \p D.
1592  ///
1593  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1594  /// alignment.
1595  ///
1596  /// If \p RefAsPointee, references are treated like their underlying type
1597  /// (for alignof), else they're treated like pointers (for CodeGen).
1598  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1599
1600  /// \brief Get or compute information about the layout of the specified
1601  /// record (struct/union/class) \p D, which indicates its size and field
1602  /// position information.
1603  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1604
1605  /// \brief Get or compute information about the layout of the specified
1606  /// Objective-C interface.
1607  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1608    const;
1609
1610  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1611                        bool Simple = false) const;
1612
1613  /// \brief Get or compute information about the layout of the specified
1614  /// Objective-C implementation.
1615  ///
1616  /// This may differ from the interface if synthesized ivars are present.
1617  const ASTRecordLayout &
1618  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1619
1620  /// \brief Get our current best idea for the key function of the
1621  /// given record decl, or NULL if there isn't one.
1622  ///
1623  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1624  ///   ...the first non-pure virtual function that is not inline at the
1625  ///   point of class definition.
1626  ///
1627  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1628  /// virtual functions that are defined 'inline', which means that
1629  /// the result of this computation can change.
1630  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1631
1632  /// \brief Observe that the given method cannot be a key function.
1633  /// Checks the key-function cache for the method's class and clears it
1634  /// if matches the given declaration.
1635  ///
1636  /// This is used in ABIs where out-of-line definitions marked
1637  /// inline are not considered to be key functions.
1638  ///
1639  /// \param method should be the declaration from the class definition
1640  void setNonKeyFunction(const CXXMethodDecl *method);
1641
1642  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1643  uint64_t getFieldOffset(const ValueDecl *FD) const;
1644
1645  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1646
1647  MangleContext *createMangleContext();
1648
1649  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1650                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1651
1652  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1653  void CollectInheritedProtocols(const Decl *CDecl,
1654                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1655
1656  //===--------------------------------------------------------------------===//
1657  //                            Type Operators
1658  //===--------------------------------------------------------------------===//
1659
1660  /// \brief Return the canonical (structural) type corresponding to the
1661  /// specified potentially non-canonical type \p T.
1662  ///
1663  /// The non-canonical version of a type may have many "decorated" versions of
1664  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1665  /// returned type is guaranteed to be free of any of these, allowing two
1666  /// canonical types to be compared for exact equality with a simple pointer
1667  /// comparison.
1668  CanQualType getCanonicalType(QualType T) const {
1669    return CanQualType::CreateUnsafe(T.getCanonicalType());
1670  }
1671
1672  const Type *getCanonicalType(const Type *T) const {
1673    return T->getCanonicalTypeInternal().getTypePtr();
1674  }
1675
1676  /// \brief Return the canonical parameter type corresponding to the specific
1677  /// potentially non-canonical one.
1678  ///
1679  /// Qualifiers are stripped off, functions are turned into function
1680  /// pointers, and arrays decay one level into pointers.
1681  CanQualType getCanonicalParamType(QualType T) const;
1682
1683  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1684  bool hasSameType(QualType T1, QualType T2) const {
1685    return getCanonicalType(T1) == getCanonicalType(T2);
1686  }
1687
1688  /// \brief Return this type as a completely-unqualified array type,
1689  /// capturing the qualifiers in \p Quals.
1690  ///
1691  /// This will remove the minimal amount of sugaring from the types, similar
1692  /// to the behavior of QualType::getUnqualifiedType().
1693  ///
1694  /// \param T is the qualified type, which may be an ArrayType
1695  ///
1696  /// \param Quals will receive the full set of qualifiers that were
1697  /// applied to the array.
1698  ///
1699  /// \returns if this is an array type, the completely unqualified array type
1700  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1701  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1702
1703  /// \brief Determine whether the given types are equivalent after
1704  /// cvr-qualifiers have been removed.
1705  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1706    return getCanonicalType(T1).getTypePtr() ==
1707           getCanonicalType(T2).getTypePtr();
1708  }
1709
1710  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1711
1712  /// \brief Retrieves the "canonical" nested name specifier for a
1713  /// given nested name specifier.
1714  ///
1715  /// The canonical nested name specifier is a nested name specifier
1716  /// that uniquely identifies a type or namespace within the type
1717  /// system. For example, given:
1718  ///
1719  /// \code
1720  /// namespace N {
1721  ///   struct S {
1722  ///     template<typename T> struct X { typename T* type; };
1723  ///   };
1724  /// }
1725  ///
1726  /// template<typename T> struct Y {
1727  ///   typename N::S::X<T>::type member;
1728  /// };
1729  /// \endcode
1730  ///
1731  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1732  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1733  /// by declarations in the type system and the canonical type for
1734  /// the template type parameter 'T' is template-param-0-0.
1735  NestedNameSpecifier *
1736  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1737
1738  /// \brief Retrieves the default calling convention to use for
1739  /// C++ instance methods.
1740  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1741
1742  /// \brief Retrieves the canonical representation of the given
1743  /// calling convention.
1744  CallingConv getCanonicalCallConv(CallingConv CC) const;
1745
1746  /// \brief Determines whether two calling conventions name the same
1747  /// calling convention.
1748  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1749    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1750  }
1751
1752  /// \brief Retrieves the "canonical" template name that refers to a
1753  /// given template.
1754  ///
1755  /// The canonical template name is the simplest expression that can
1756  /// be used to refer to a given template. For most templates, this
1757  /// expression is just the template declaration itself. For example,
1758  /// the template std::vector can be referred to via a variety of
1759  /// names---std::vector, \::std::vector, vector (if vector is in
1760  /// scope), etc.---but all of these names map down to the same
1761  /// TemplateDecl, which is used to form the canonical template name.
1762  ///
1763  /// Dependent template names are more interesting. Here, the
1764  /// template name could be something like T::template apply or
1765  /// std::allocator<T>::template rebind, where the nested name
1766  /// specifier itself is dependent. In this case, the canonical
1767  /// template name uses the shortest form of the dependent
1768  /// nested-name-specifier, which itself contains all canonical
1769  /// types, values, and templates.
1770  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1771
1772  /// \brief Determine whether the given template names refer to the same
1773  /// template.
1774  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1775
1776  /// \brief Retrieve the "canonical" template argument.
1777  ///
1778  /// The canonical template argument is the simplest template argument
1779  /// (which may be a type, value, expression, or declaration) that
1780  /// expresses the value of the argument.
1781  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1782    const;
1783
1784  /// Type Query functions.  If the type is an instance of the specified class,
1785  /// return the Type pointer for the underlying maximally pretty type.  This
1786  /// is a member of ASTContext because this may need to do some amount of
1787  /// canonicalization, e.g. to move type qualifiers into the element type.
1788  const ArrayType *getAsArrayType(QualType T) const;
1789  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1790    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1791  }
1792  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1793    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1794  }
1795  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1796    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1797  }
1798  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1799    const {
1800    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1801  }
1802
1803  /// \brief Return the innermost element type of an array type.
1804  ///
1805  /// For example, will return "int" for int[m][n]
1806  QualType getBaseElementType(const ArrayType *VAT) const;
1807
1808  /// \brief Return the innermost element type of a type (which needn't
1809  /// actually be an array type).
1810  QualType getBaseElementType(QualType QT) const;
1811
1812  /// \brief Return number of constant array elements.
1813  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1814
1815  /// \brief Perform adjustment on the parameter type of a function.
1816  ///
1817  /// This routine adjusts the given parameter type @p T to the actual
1818  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1819  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1820  QualType getAdjustedParameterType(QualType T) const;
1821
1822  /// \brief Retrieve the parameter type as adjusted for use in the signature
1823  /// of a function, decaying array and function types and removing top-level
1824  /// cv-qualifiers.
1825  QualType getSignatureParameterType(QualType T) const;
1826
1827  /// \brief Return the properly qualified result of decaying the specified
1828  /// array type to a pointer.
1829  ///
1830  /// This operation is non-trivial when handling typedefs etc.  The canonical
1831  /// type of \p T must be an array type, this returns a pointer to a properly
1832  /// qualified element of the array.
1833  ///
1834  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1835  QualType getArrayDecayedType(QualType T) const;
1836
1837  /// \brief Return the type that \p PromotableType will promote to: C99
1838  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1839  QualType getPromotedIntegerType(QualType PromotableType) const;
1840
1841  /// \brief Recurses in pointer/array types until it finds an Objective-C
1842  /// retainable type and returns its ownership.
1843  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1844
1845  /// \brief Whether this is a promotable bitfield reference according
1846  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1847  ///
1848  /// \returns the type this bit-field will promote to, or NULL if no
1849  /// promotion occurs.
1850  QualType isPromotableBitField(Expr *E) const;
1851
1852  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1853  ///
1854  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1855  /// \p LHS < \p RHS, return -1.
1856  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1857
1858  /// \brief Compare the rank of the two specified floating point types,
1859  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1860  ///
1861  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1862  /// \p LHS < \p RHS, return -1.
1863  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1864
1865  /// \brief Return a real floating point or a complex type (based on
1866  /// \p typeDomain/\p typeSize).
1867  ///
1868  /// \param typeDomain a real floating point or complex type.
1869  /// \param typeSize a real floating point or complex type.
1870  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1871                                             QualType typeDomain) const;
1872
1873  unsigned getTargetAddressSpace(QualType T) const {
1874    return getTargetAddressSpace(T.getQualifiers());
1875  }
1876
1877  unsigned getTargetAddressSpace(Qualifiers Q) const {
1878    return getTargetAddressSpace(Q.getAddressSpace());
1879  }
1880
1881  unsigned getTargetAddressSpace(unsigned AS) const {
1882    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1883      return AS;
1884    else
1885      return (*AddrSpaceMap)[AS - LangAS::Offset];
1886  }
1887
1888private:
1889  // Helper for integer ordering
1890  unsigned getIntegerRank(const Type *T) const;
1891
1892public:
1893
1894  //===--------------------------------------------------------------------===//
1895  //                    Type Compatibility Predicates
1896  //===--------------------------------------------------------------------===//
1897
1898  /// Compatibility predicates used to check assignment expressions.
1899  bool typesAreCompatible(QualType T1, QualType T2,
1900                          bool CompareUnqualified = false); // C99 6.2.7p1
1901
1902  bool propertyTypesAreCompatible(QualType, QualType);
1903  bool typesAreBlockPointerCompatible(QualType, QualType);
1904
1905  bool isObjCIdType(QualType T) const {
1906    return T == getObjCIdType();
1907  }
1908  bool isObjCClassType(QualType T) const {
1909    return T == getObjCClassType();
1910  }
1911  bool isObjCSelType(QualType T) const {
1912    return T == getObjCSelType();
1913  }
1914  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1915  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1916                                         bool ForCompare);
1917
1918  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1919
1920  // Check the safety of assignment from LHS to RHS
1921  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1922                               const ObjCObjectPointerType *RHSOPT);
1923  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1924                               const ObjCObjectType *RHS);
1925  bool canAssignObjCInterfacesInBlockPointer(
1926                                          const ObjCObjectPointerType *LHSOPT,
1927                                          const ObjCObjectPointerType *RHSOPT,
1928                                          bool BlockReturnType);
1929  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1930  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1931                                   const ObjCObjectPointerType *RHSOPT);
1932  bool canBindObjCObjectType(QualType To, QualType From);
1933
1934  // Functions for calculating composite types
1935  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1936                      bool Unqualified = false, bool BlockReturnType = false);
1937  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1938                              bool Unqualified = false);
1939  QualType mergeFunctionArgumentTypes(QualType, QualType,
1940                                      bool OfBlockPointer=false,
1941                                      bool Unqualified = false);
1942  QualType mergeTransparentUnionType(QualType, QualType,
1943                                     bool OfBlockPointer=false,
1944                                     bool Unqualified = false);
1945
1946  QualType mergeObjCGCQualifiers(QualType, QualType);
1947
1948  bool FunctionTypesMatchOnNSConsumedAttrs(
1949         const FunctionProtoType *FromFunctionType,
1950         const FunctionProtoType *ToFunctionType);
1951
1952  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1953    ObjCLayouts[CD] = 0;
1954  }
1955
1956  //===--------------------------------------------------------------------===//
1957  //                    Integer Predicates
1958  //===--------------------------------------------------------------------===//
1959
1960  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1961  // of bits in an integer type excluding any padding bits.
1962  unsigned getIntWidth(QualType T) const;
1963
1964  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1965  // unsigned integer type.  This method takes a signed type, and returns the
1966  // corresponding unsigned integer type.
1967  QualType getCorrespondingUnsignedType(QualType T) const;
1968
1969  //===--------------------------------------------------------------------===//
1970  //                    Type Iterators.
1971  //===--------------------------------------------------------------------===//
1972
1973  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
1974  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
1975
1976  type_iterator types_begin() { return Types.begin(); }
1977  type_iterator types_end() { return Types.end(); }
1978  const_type_iterator types_begin() const { return Types.begin(); }
1979  const_type_iterator types_end() const { return Types.end(); }
1980
1981  //===--------------------------------------------------------------------===//
1982  //                    Integer Values
1983  //===--------------------------------------------------------------------===//
1984
1985  /// \brief Make an APSInt of the appropriate width and signedness for the
1986  /// given \p Value and integer \p Type.
1987  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1988    llvm::APSInt Res(getIntWidth(Type),
1989                     !Type->isSignedIntegerOrEnumerationType());
1990    Res = Value;
1991    return Res;
1992  }
1993
1994  bool isSentinelNullExpr(const Expr *E);
1995
1996  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1997  /// none exists.
1998  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1999  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2000  /// none exists.
2001  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2002
2003  /// \brief Return true if there is at least one \@implementation in the TU.
2004  bool AnyObjCImplementation() {
2005    return !ObjCImpls.empty();
2006  }
2007
2008  /// \brief Set the implementation of ObjCInterfaceDecl.
2009  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2010                             ObjCImplementationDecl *ImplD);
2011  /// \brief Set the implementation of ObjCCategoryDecl.
2012  void setObjCImplementation(ObjCCategoryDecl *CatD,
2013                             ObjCCategoryImplDecl *ImplD);
2014
2015  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2016  /// interface, or null if none exists.
2017  const ObjCMethodDecl *getObjCMethodRedeclaration(
2018                                               const ObjCMethodDecl *MD) const {
2019    return ObjCMethodRedecls.lookup(MD);
2020  }
2021
2022  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2023                                  const ObjCMethodDecl *Redecl) {
2024    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2025    ObjCMethodRedecls[MD] = Redecl;
2026  }
2027
2028  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2029  /// an Objective-C method/property/ivar etc. that is part of an interface,
2030  /// otherwise returns null.
2031  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2032
2033  /// \brief Set the copy inialization expression of a block var decl.
2034  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2035  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2036  /// NULL if none exists.
2037  Expr *getBlockVarCopyInits(const VarDecl* VD);
2038
2039  /// \brief Allocate an uninitialized TypeSourceInfo.
2040  ///
2041  /// The caller should initialize the memory held by TypeSourceInfo using
2042  /// the TypeLoc wrappers.
2043  ///
2044  /// \param T the type that will be the basis for type source info. This type
2045  /// should refer to how the declarator was written in source code, not to
2046  /// what type semantic analysis resolved the declarator to.
2047  ///
2048  /// \param Size the size of the type info to create, or 0 if the size
2049  /// should be calculated based on the type.
2050  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2051
2052  /// \brief Allocate a TypeSourceInfo where all locations have been
2053  /// initialized to a given location, which defaults to the empty
2054  /// location.
2055  TypeSourceInfo *
2056  getTrivialTypeSourceInfo(QualType T,
2057                           SourceLocation Loc = SourceLocation()) const;
2058
2059  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2060
2061  /// \brief Add a deallocation callback that will be invoked when the
2062  /// ASTContext is destroyed.
2063  ///
2064  /// \param Callback A callback function that will be invoked on destruction.
2065  ///
2066  /// \param Data Pointer data that will be provided to the callback function
2067  /// when it is called.
2068  void AddDeallocation(void (*Callback)(void*), void *Data);
2069
2070  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2071  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2072
2073  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2074  /// lazily, only when used; this is only relevant for function or file scoped
2075  /// var definitions.
2076  ///
2077  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2078  /// it is not used.
2079  bool DeclMustBeEmitted(const Decl *D);
2080
2081  void addUnnamedTag(const TagDecl *Tag);
2082  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2083
2084  /// \brief Retrieve the lambda mangling number for a lambda expression.
2085  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2086
2087  /// \brief Used by ParmVarDecl to store on the side the
2088  /// index of the parameter when it exceeds the size of the normal bitfield.
2089  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2090
2091  /// \brief Used by ParmVarDecl to retrieve on the side the
2092  /// index of the parameter when it exceeds the size of the normal bitfield.
2093  unsigned getParameterIndex(const ParmVarDecl *D) const;
2094
2095  //===--------------------------------------------------------------------===//
2096  //                    Statistics
2097  //===--------------------------------------------------------------------===//
2098
2099  /// \brief The number of implicitly-declared default constructors.
2100  static unsigned NumImplicitDefaultConstructors;
2101
2102  /// \brief The number of implicitly-declared default constructors for
2103  /// which declarations were built.
2104  static unsigned NumImplicitDefaultConstructorsDeclared;
2105
2106  /// \brief The number of implicitly-declared copy constructors.
2107  static unsigned NumImplicitCopyConstructors;
2108
2109  /// \brief The number of implicitly-declared copy constructors for
2110  /// which declarations were built.
2111  static unsigned NumImplicitCopyConstructorsDeclared;
2112
2113  /// \brief The number of implicitly-declared move constructors.
2114  static unsigned NumImplicitMoveConstructors;
2115
2116  /// \brief The number of implicitly-declared move constructors for
2117  /// which declarations were built.
2118  static unsigned NumImplicitMoveConstructorsDeclared;
2119
2120  /// \brief The number of implicitly-declared copy assignment operators.
2121  static unsigned NumImplicitCopyAssignmentOperators;
2122
2123  /// \brief The number of implicitly-declared copy assignment operators for
2124  /// which declarations were built.
2125  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2126
2127  /// \brief The number of implicitly-declared move assignment operators.
2128  static unsigned NumImplicitMoveAssignmentOperators;
2129
2130  /// \brief The number of implicitly-declared move assignment operators for
2131  /// which declarations were built.
2132  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2133
2134  /// \brief The number of implicitly-declared destructors.
2135  static unsigned NumImplicitDestructors;
2136
2137  /// \brief The number of implicitly-declared destructors for which
2138  /// declarations were built.
2139  static unsigned NumImplicitDestructorsDeclared;
2140
2141private:
2142  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2143  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2144
2145public:
2146  /// \brief Initialize built-in types.
2147  ///
2148  /// This routine may only be invoked once for a given ASTContext object.
2149  /// It is normally invoked by the ASTContext constructor. However, the
2150  /// constructor can be asked to delay initialization, which places the burden
2151  /// of calling this function on the user of that object.
2152  ///
2153  /// \param Target The target
2154  void InitBuiltinTypes(const TargetInfo &Target);
2155
2156private:
2157  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2158
2159  // Return the Objective-C type encoding for a given type.
2160  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2161                                  bool ExpandPointedToStructures,
2162                                  bool ExpandStructures,
2163                                  const FieldDecl *Field,
2164                                  bool OutermostType = false,
2165                                  bool EncodingProperty = false,
2166                                  bool StructField = false,
2167                                  bool EncodeBlockParameters = false,
2168                                  bool EncodeClassNames = false,
2169                                  bool EncodePointerToObjCTypedef = false) const;
2170
2171  // Adds the encoding of the structure's members.
2172  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2173                                       const FieldDecl *Field,
2174                                       bool includeVBases = true) const;
2175
2176  // Adds the encoding of a method parameter or return type.
2177  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2178                                         QualType T, std::string& S,
2179                                         bool Extended) const;
2180
2181  const ASTRecordLayout &
2182  getObjCLayout(const ObjCInterfaceDecl *D,
2183                const ObjCImplementationDecl *Impl) const;
2184
2185private:
2186  /// \brief A set of deallocations that should be performed when the
2187  /// ASTContext is destroyed.
2188  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2189
2190  // FIXME: This currently contains the set of StoredDeclMaps used
2191  // by DeclContext objects.  This probably should not be in ASTContext,
2192  // but we include it here so that ASTContext can quickly deallocate them.
2193  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2194
2195  /// \brief A counter used to uniquely identify "blocks".
2196  mutable unsigned int UniqueBlockByRefTypeID;
2197
2198  friend class DeclContext;
2199  friend class DeclarationNameTable;
2200  void ReleaseDeclContextMaps();
2201
2202  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
2203  /// parents as defined by the \c RecursiveASTVisitor.
2204  ///
2205  /// Note that the relationship described here is purely in terms of AST
2206  /// traversal - there are other relationships (for example declaration context)
2207  /// in the AST that are better modeled by special matchers.
2208  ///
2209  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
2210  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
2211  public:
2212    /// \brief Builds and returns the translation unit's parent map.
2213    ///
2214    ///  The caller takes ownership of the returned \c ParentMap.
2215    static ParentMap *buildMap(TranslationUnitDecl &TU) {
2216      ParentMapASTVisitor Visitor(new ParentMap);
2217      Visitor.TraverseDecl(&TU);
2218      return Visitor.Parents;
2219    }
2220
2221  private:
2222    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
2223
2224    ParentMapASTVisitor(ParentMap *Parents) : Parents(Parents) {
2225    }
2226
2227    bool shouldVisitTemplateInstantiations() const {
2228      return true;
2229    }
2230    bool shouldVisitImplicitCode() const {
2231      return true;
2232    }
2233    // Disables data recursion. We intercept Traverse* methods in the RAV, which
2234    // are not triggered during data recursion.
2235    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
2236      return false;
2237    }
2238
2239    template <typename T>
2240    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
2241      if (Node == NULL)
2242        return true;
2243      if (ParentStack.size() > 0)
2244        // FIXME: Currently we add the same parent multiple times, for example
2245        // when we visit all subexpressions of template instantiations; this is
2246        // suboptimal, bug benign: the only way to visit those is with
2247        // hasAncestor / hasParent, and those do not create new matches.
2248        // The plan is to enable DynTypedNode to be storable in a map or hash
2249        // map. The main problem there is to implement hash functions /
2250        // comparison operators for all types that DynTypedNode supports that
2251        // do not have pointer identity.
2252        (*Parents)[Node].push_back(ParentStack.back());
2253      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
2254      bool Result = (this ->* traverse) (Node);
2255      ParentStack.pop_back();
2256      return Result;
2257    }
2258
2259    bool TraverseDecl(Decl *DeclNode) {
2260      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
2261    }
2262
2263    bool TraverseStmt(Stmt *StmtNode) {
2264      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
2265    }
2266
2267    ParentMap *Parents;
2268    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
2269
2270    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
2271  };
2272
2273  llvm::OwningPtr<ParentMap> AllParents;
2274};
2275
2276/// \brief Utility function for constructing a nullary selector.
2277static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2278  IdentifierInfo* II = &Ctx.Idents.get(name);
2279  return Ctx.Selectors.getSelector(0, &II);
2280}
2281
2282/// \brief Utility function for constructing an unary selector.
2283static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2284  IdentifierInfo* II = &Ctx.Idents.get(name);
2285  return Ctx.Selectors.getSelector(1, &II);
2286}
2287
2288}  // end namespace clang
2289
2290// operator new and delete aren't allowed inside namespaces.
2291
2292/// @brief Placement new for using the ASTContext's allocator.
2293///
2294/// This placement form of operator new uses the ASTContext's allocator for
2295/// obtaining memory.
2296///
2297/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2298/// here need to also be made there.
2299///
2300/// We intentionally avoid using a nothrow specification here so that the calls
2301/// to this operator will not perform a null check on the result -- the
2302/// underlying allocator never returns null pointers.
2303///
2304/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2305/// @code
2306/// // Default alignment (8)
2307/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2308/// // Specific alignment
2309/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2310/// @endcode
2311/// Please note that you cannot use delete on the pointer; it must be
2312/// deallocated using an explicit destructor call followed by
2313/// @c Context.Deallocate(Ptr).
2314///
2315/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2316/// @param C The ASTContext that provides the allocator.
2317/// @param Alignment The alignment of the allocated memory (if the underlying
2318///                  allocator supports it).
2319/// @return The allocated memory. Could be NULL.
2320inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2321                          size_t Alignment) {
2322  return C.Allocate(Bytes, Alignment);
2323}
2324/// @brief Placement delete companion to the new above.
2325///
2326/// This operator is just a companion to the new above. There is no way of
2327/// invoking it directly; see the new operator for more details. This operator
2328/// is called implicitly by the compiler if a placement new expression using
2329/// the ASTContext throws in the object constructor.
2330inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2331  C.Deallocate(Ptr);
2332}
2333
2334/// This placement form of operator new[] uses the ASTContext's allocator for
2335/// obtaining memory.
2336///
2337/// We intentionally avoid using a nothrow specification here so that the calls
2338/// to this operator will not perform a null check on the result -- the
2339/// underlying allocator never returns null pointers.
2340///
2341/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2342/// @code
2343/// // Default alignment (8)
2344/// char *data = new (Context) char[10];
2345/// // Specific alignment
2346/// char *data = new (Context, 4) char[10];
2347/// @endcode
2348/// Please note that you cannot use delete on the pointer; it must be
2349/// deallocated using an explicit destructor call followed by
2350/// @c Context.Deallocate(Ptr).
2351///
2352/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2353/// @param C The ASTContext that provides the allocator.
2354/// @param Alignment The alignment of the allocated memory (if the underlying
2355///                  allocator supports it).
2356/// @return The allocated memory. Could be NULL.
2357inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2358                            size_t Alignment = 8) {
2359  return C.Allocate(Bytes, Alignment);
2360}
2361
2362/// @brief Placement delete[] companion to the new[] above.
2363///
2364/// This operator is just a companion to the new[] above. There is no way of
2365/// invoking it directly; see the new[] operator for more details. This operator
2366/// is called implicitly by the compiler if a placement new[] expression using
2367/// the ASTContext throws in the object constructor.
2368inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2369  C.Deallocate(Ptr);
2370}
2371
2372#endif
2373