ASTContext.h revision 1952354bd376062c3ab3d328c0fc6c36530c9309
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/Basic/AddressSpaces.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/OperatorKinds.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/VersionTuple.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/LambdaMangleContext.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/TemplateName.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/CanonicalType.h"
31#include "clang/AST/RawCommentList.h"
32#include "clang/AST/CommentCommandTraits.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/FoldingSet.h"
35#include "llvm/ADT/IntrusiveRefCntPtr.h"
36#include "llvm/ADT/OwningPtr.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/TinyPtrVector.h"
39#include "llvm/Support/Allocator.h"
40#include <vector>
41
42namespace llvm {
43  struct fltSemantics;
44}
45
46namespace clang {
47  class FileManager;
48  class ASTRecordLayout;
49  class BlockExpr;
50  class CharUnits;
51  class DiagnosticsEngine;
52  class Expr;
53  class ExternalASTSource;
54  class ASTMutationListener;
55  class IdentifierTable;
56  class SelectorTable;
57  class TargetInfo;
58  class CXXABI;
59  // Decls
60  class DeclContext;
61  class CXXConversionDecl;
62  class CXXMethodDecl;
63  class CXXRecordDecl;
64  class Decl;
65  class FieldDecl;
66  class MangleContext;
67  class ObjCIvarDecl;
68  class ObjCIvarRefExpr;
69  class ObjCPropertyDecl;
70  class ParmVarDecl;
71  class RecordDecl;
72  class StoredDeclsMap;
73  class TagDecl;
74  class TemplateTemplateParmDecl;
75  class TemplateTypeParmDecl;
76  class TranslationUnitDecl;
77  class TypeDecl;
78  class TypedefNameDecl;
79  class UsingDecl;
80  class UsingShadowDecl;
81  class UnresolvedSetIterator;
82
83  namespace Builtin { class Context; }
84
85  namespace comments {
86    class FullComment;
87  }
88
89/// \brief Holds long-lived AST nodes (such as types and decls) that can be
90/// referred to throughout the semantic analysis of a file.
91class ASTContext : public RefCountedBase<ASTContext> {
92  ASTContext &this_() { return *this; }
93
94  mutable std::vector<Type*> Types;
95  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
96  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
97  mutable llvm::FoldingSet<PointerType> PointerTypes;
98  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
99  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
100  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
101  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
102  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
103  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
104  mutable std::vector<VariableArrayType*> VariableArrayTypes;
105  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
106  mutable llvm::FoldingSet<DependentSizedExtVectorType>
107    DependentSizedExtVectorTypes;
108  mutable llvm::FoldingSet<VectorType> VectorTypes;
109  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
110  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
111    FunctionProtoTypes;
112  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
113  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
114  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
115  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
116    SubstTemplateTypeParmTypes;
117  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
118    SubstTemplateTypeParmPackTypes;
119  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
120    TemplateSpecializationTypes;
121  mutable llvm::FoldingSet<ParenType> ParenTypes;
122  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
123  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
124  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
125                                     ASTContext&>
126    DependentTemplateSpecializationTypes;
127  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
128  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
129  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
130  mutable llvm::FoldingSet<AutoType> AutoTypes;
131  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
132  llvm::FoldingSet<AttributedType> AttributedTypes;
133
134  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
135  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
136  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
137    SubstTemplateTemplateParms;
138  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
139                                     ASTContext&>
140    SubstTemplateTemplateParmPacks;
141
142  /// \brief The set of nested name specifiers.
143  ///
144  /// This set is managed by the NestedNameSpecifier class.
145  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
146  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
147  friend class NestedNameSpecifier;
148
149  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
150  ///
151  /// This is lazily created.  This is intentionally not serialized.
152  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
153    ASTRecordLayouts;
154  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
155    ObjCLayouts;
156
157  /// \brief A cache from types to size and alignment information.
158  typedef llvm::DenseMap<const Type*,
159                         std::pair<uint64_t, unsigned> > TypeInfoMap;
160  mutable TypeInfoMap MemoizedTypeInfo;
161
162  /// \brief A cache mapping from CXXRecordDecls to key functions.
163  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
164
165  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
166  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
167
168  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
169  /// interface.
170  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
171
172  /// \brief Mapping from __block VarDecls to their copy initialization expr.
173  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
174
175  /// \brief Mapping from class scope functions specialization to their
176  /// template patterns.
177  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
178    ClassScopeSpecializationPattern;
179
180  /// \brief Representation of a "canonical" template template parameter that
181  /// is used in canonical template names.
182  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
183    TemplateTemplateParmDecl *Parm;
184
185  public:
186    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
187      : Parm(Parm) { }
188
189    TemplateTemplateParmDecl *getParam() const { return Parm; }
190
191    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
192
193    static void Profile(llvm::FoldingSetNodeID &ID,
194                        TemplateTemplateParmDecl *Parm);
195  };
196  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
197    CanonTemplateTemplateParms;
198
199  TemplateTemplateParmDecl *
200    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
201
202  /// \brief The typedef for the __int128_t type.
203  mutable TypedefDecl *Int128Decl;
204
205  /// \brief The typedef for the __uint128_t type.
206  mutable TypedefDecl *UInt128Decl;
207
208  /// \brief The typedef for the target specific predefined
209  /// __builtin_va_list type.
210  mutable TypedefDecl *BuiltinVaListDecl;
211
212  /// \brief The typedef for the predefined \c id type.
213  mutable TypedefDecl *ObjCIdDecl;
214
215  /// \brief The typedef for the predefined \c SEL type.
216  mutable TypedefDecl *ObjCSelDecl;
217
218  /// \brief The typedef for the predefined \c Class type.
219  mutable TypedefDecl *ObjCClassDecl;
220
221  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
222  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
223
224  /// \brief The typedef for the predefined 'BOOL' type.
225  mutable TypedefDecl *BOOLDecl;
226
227  // Typedefs which may be provided defining the structure of Objective-C
228  // pseudo-builtins
229  QualType ObjCIdRedefinitionType;
230  QualType ObjCClassRedefinitionType;
231  QualType ObjCSelRedefinitionType;
232
233  QualType ObjCConstantStringType;
234  mutable RecordDecl *CFConstantStringTypeDecl;
235
236  QualType ObjCNSStringType;
237
238  /// \brief The typedef declaration for the Objective-C "instancetype" type.
239  TypedefDecl *ObjCInstanceTypeDecl;
240
241  /// \brief The type for the C FILE type.
242  TypeDecl *FILEDecl;
243
244  /// \brief The type for the C jmp_buf type.
245  TypeDecl *jmp_bufDecl;
246
247  /// \brief The type for the C sigjmp_buf type.
248  TypeDecl *sigjmp_bufDecl;
249
250  /// \brief The type for the C ucontext_t type.
251  TypeDecl *ucontext_tDecl;
252
253  /// \brief Type for the Block descriptor for Blocks CodeGen.
254  ///
255  /// Since this is only used for generation of debug info, it is not
256  /// serialized.
257  mutable RecordDecl *BlockDescriptorType;
258
259  /// \brief Type for the Block descriptor for Blocks CodeGen.
260  ///
261  /// Since this is only used for generation of debug info, it is not
262  /// serialized.
263  mutable RecordDecl *BlockDescriptorExtendedType;
264
265  /// \brief Declaration for the CUDA cudaConfigureCall function.
266  FunctionDecl *cudaConfigureCallDecl;
267
268  TypeSourceInfo NullTypeSourceInfo;
269
270  /// \brief Keeps track of all declaration attributes.
271  ///
272  /// Since so few decls have attrs, we keep them in a hash map instead of
273  /// wasting space in the Decl class.
274  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
275
276  /// \brief Keeps track of the static data member templates from which
277  /// static data members of class template specializations were instantiated.
278  ///
279  /// This data structure stores the mapping from instantiations of static
280  /// data members to the static data member representations within the
281  /// class template from which they were instantiated along with the kind
282  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
283  ///
284  /// Given the following example:
285  ///
286  /// \code
287  /// template<typename T>
288  /// struct X {
289  ///   static T value;
290  /// };
291  ///
292  /// template<typename T>
293  ///   T X<T>::value = T(17);
294  ///
295  /// int *x = &X<int>::value;
296  /// \endcode
297  ///
298  /// This mapping will contain an entry that maps from the VarDecl for
299  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
300  /// class template X) and will be marked TSK_ImplicitInstantiation.
301  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
302    InstantiatedFromStaticDataMember;
303
304  /// \brief Keeps track of the declaration from which a UsingDecl was
305  /// created during instantiation.
306  ///
307  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
308  /// or an UnresolvedUsingTypenameDecl.
309  ///
310  /// For example:
311  /// \code
312  /// template<typename T>
313  /// struct A {
314  ///   void f();
315  /// };
316  ///
317  /// template<typename T>
318  /// struct B : A<T> {
319  ///   using A<T>::f;
320  /// };
321  ///
322  /// template struct B<int>;
323  /// \endcode
324  ///
325  /// This mapping will contain an entry that maps from the UsingDecl in
326  /// B<int> to the UnresolvedUsingDecl in B<T>.
327  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
328
329  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
330    InstantiatedFromUsingShadowDecl;
331
332  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
333
334  /// \brief Mapping that stores the methods overridden by a given C++
335  /// member function.
336  ///
337  /// Since most C++ member functions aren't virtual and therefore
338  /// don't override anything, we store the overridden functions in
339  /// this map on the side rather than within the CXXMethodDecl structure.
340  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
341  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
342
343  /// \brief Mapping from each declaration context to its corresponding lambda
344  /// mangling context.
345  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
346
347  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
348  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
349  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
350  ParameterIndexTable ParamIndices;
351
352  ImportDecl *FirstLocalImport;
353  ImportDecl *LastLocalImport;
354
355  TranslationUnitDecl *TUDecl;
356
357  /// \brief The associated SourceManager object.a
358  SourceManager &SourceMgr;
359
360  /// \brief The language options used to create the AST associated with
361  ///  this ASTContext object.
362  LangOptions &LangOpts;
363
364  /// \brief The allocator used to create AST objects.
365  ///
366  /// AST objects are never destructed; rather, all memory associated with the
367  /// AST objects will be released when the ASTContext itself is destroyed.
368  mutable llvm::BumpPtrAllocator BumpAlloc;
369
370  /// \brief Allocator for partial diagnostics.
371  PartialDiagnostic::StorageAllocator DiagAllocator;
372
373  /// \brief The current C++ ABI.
374  OwningPtr<CXXABI> ABI;
375  CXXABI *createCXXABI(const TargetInfo &T);
376
377  /// \brief The logical -> physical address space map.
378  const LangAS::Map *AddrSpaceMap;
379
380  friend class ASTDeclReader;
381  friend class ASTReader;
382  friend class ASTWriter;
383  friend class CXXRecordDecl;
384
385  const TargetInfo *Target;
386  clang::PrintingPolicy PrintingPolicy;
387
388public:
389  IdentifierTable &Idents;
390  SelectorTable &Selectors;
391  Builtin::Context &BuiltinInfo;
392  mutable DeclarationNameTable DeclarationNames;
393  OwningPtr<ExternalASTSource> ExternalSource;
394  ASTMutationListener *Listener;
395
396  const clang::PrintingPolicy &getPrintingPolicy() const {
397    return PrintingPolicy;
398  }
399
400  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
401    PrintingPolicy = Policy;
402  }
403
404  SourceManager& getSourceManager() { return SourceMgr; }
405  const SourceManager& getSourceManager() const { return SourceMgr; }
406
407  llvm::BumpPtrAllocator &getAllocator() const {
408    return BumpAlloc;
409  }
410
411  void *Allocate(unsigned Size, unsigned Align = 8) const {
412    return BumpAlloc.Allocate(Size, Align);
413  }
414  void Deallocate(void *Ptr) const { }
415
416  /// Return the total amount of physical memory allocated for representing
417  /// AST nodes and type information.
418  size_t getASTAllocatedMemory() const {
419    return BumpAlloc.getTotalMemory();
420  }
421  /// Return the total memory used for various side tables.
422  size_t getSideTableAllocatedMemory() const;
423
424  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
425    return DiagAllocator;
426  }
427
428  const TargetInfo &getTargetInfo() const { return *Target; }
429
430  const LangOptions& getLangOpts() const { return LangOpts; }
431
432  DiagnosticsEngine &getDiagnostics() const;
433
434  FullSourceLoc getFullLoc(SourceLocation Loc) const {
435    return FullSourceLoc(Loc,SourceMgr);
436  }
437
438  /// \brief All comments in this translation unit.
439  RawCommentList Comments;
440
441  /// \brief True if comments are already loaded from ExternalASTSource.
442  mutable bool CommentsLoaded;
443
444  class RawCommentAndCacheFlags {
445  public:
446    enum Kind {
447      /// We searched for a comment attached to the particular declaration, but
448      /// didn't find any.
449      ///
450      /// getRaw() == 0.
451      NoCommentInDecl = 0,
452
453      /// We have found a comment attached to this particular declaration.
454      ///
455      /// getRaw() != 0.
456      FromDecl,
457
458      /// This declaration does not have an attached comment, and we have
459      /// searched the redeclaration chain.
460      ///
461      /// If getRaw() == 0, the whole redeclaration chain does not have any
462      /// comments.
463      ///
464      /// If getRaw() != 0, it is a comment propagated from other
465      /// redeclaration.
466      FromRedecl
467    };
468
469    Kind getKind() const LLVM_READONLY {
470      return Data.getInt();
471    }
472
473    void setKind(Kind K) {
474      Data.setInt(K);
475    }
476
477    const RawComment *getRaw() const LLVM_READONLY {
478      return Data.getPointer();
479    }
480
481    void setRaw(const RawComment *RC) {
482      Data.setPointer(RC);
483    }
484
485    const Decl *getOriginalDecl() const LLVM_READONLY {
486      return OriginalDecl;
487    }
488
489    void setOriginalDecl(const Decl *Orig) {
490      OriginalDecl = Orig;
491    }
492
493  private:
494    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
495    const Decl *OriginalDecl;
496  };
497
498  /// \brief Mapping from declarations to comments attached to any
499  /// redeclaration.
500  ///
501  /// Raw comments are owned by Comments list.  This mapping is populated
502  /// lazily.
503  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
504
505  /// \brief Mapping from declarations to parsed comments attached to any
506  /// redeclaration.
507  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
508
509  /// \brief Return the documentation comment attached to a given declaration,
510  /// without looking into cache.
511  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
512
513public:
514  RawCommentList &getRawCommentList() {
515    return Comments;
516  }
517
518  void addComment(const RawComment &RC) {
519    assert(LangOpts.RetainCommentsFromSystemHeaders ||
520           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
521    Comments.addComment(RC, BumpAlloc);
522  }
523
524  /// \brief Return the documentation comment attached to a given declaration.
525  /// Returns NULL if no comment is attached.
526  ///
527  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
528  /// the comment, if the comment we found comes from a redeclaration.
529  const RawComment *getRawCommentForAnyRedecl(
530                                      const Decl *D,
531                                      const Decl **OriginalDecl = NULL) const;
532
533  /// Return parsed documentation comment attached to a given declaration.
534  /// Returns NULL if no comment is attached.
535  ///
536  /// \param PP the Preprocessor used with this TU.  Could be NULL if
537  /// preprocessor is not available.
538  comments::FullComment *getCommentForDecl(const Decl *D,
539                                           const Preprocessor *PP) const;
540
541private:
542  mutable comments::CommandTraits CommentCommandTraits;
543
544public:
545  comments::CommandTraits &getCommentCommandTraits() const {
546    return CommentCommandTraits;
547  }
548
549  /// \brief Retrieve the attributes for the given declaration.
550  AttrVec& getDeclAttrs(const Decl *D);
551
552  /// \brief Erase the attributes corresponding to the given declaration.
553  void eraseDeclAttrs(const Decl *D);
554
555  /// \brief If this variable is an instantiated static data member of a
556  /// class template specialization, returns the templated static data member
557  /// from which it was instantiated.
558  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
559                                                           const VarDecl *Var);
560
561  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
562
563  void setClassScopeSpecializationPattern(FunctionDecl *FD,
564                                          FunctionDecl *Pattern);
565
566  /// \brief Note that the static data member \p Inst is an instantiation of
567  /// the static data member template \p Tmpl of a class template.
568  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
569                                           TemplateSpecializationKind TSK,
570                        SourceLocation PointOfInstantiation = SourceLocation());
571
572  /// \brief If the given using decl \p Inst is an instantiation of a
573  /// (possibly unresolved) using decl from a template instantiation,
574  /// return it.
575  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
576
577  /// \brief Remember that the using decl \p Inst is an instantiation
578  /// of the using decl \p Pattern of a class template.
579  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
580
581  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
582                                          UsingShadowDecl *Pattern);
583  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
584
585  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
586
587  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
588
589  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
590  /// the non-bitfield \p LastFD.
591  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
592                                      const FieldDecl *LastFD) const;
593
594  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
595  /// the bitfield \p LastFD.
596  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
597                                   const FieldDecl *LastFD) const;
598
599  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
600  /// \p LastFD.
601  bool BitfieldFollowsBitfield(const FieldDecl *FD,
602                               const FieldDecl *LastFD) const;
603
604  /// \brief Return \c true if \p FD is not a bitfield which follows the
605  /// bitfield \p LastFD.
606  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
607                                  const FieldDecl *LastFD) const;
608
609  /// \brief Return \c true if \p FD is a bitfield which follows the
610  /// non-bitfield \p LastFD.
611  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
612                                  const FieldDecl *LastFD) const;
613
614  // Access to the set of methods overridden by the given C++ method.
615  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
616  overridden_cxx_method_iterator
617  overridden_methods_begin(const CXXMethodDecl *Method) const;
618
619  overridden_cxx_method_iterator
620  overridden_methods_end(const CXXMethodDecl *Method) const;
621
622  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
623
624  /// \brief Note that the given C++ \p Method overrides the given \p
625  /// Overridden method.
626  void addOverriddenMethod(const CXXMethodDecl *Method,
627                           const CXXMethodDecl *Overridden);
628
629  /// \brief Notify the AST context that a new import declaration has been
630  /// parsed or implicitly created within this translation unit.
631  void addedLocalImportDecl(ImportDecl *Import);
632
633  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
634    return Import->NextLocalImport;
635  }
636
637  /// \brief Iterator that visits import declarations.
638  class import_iterator {
639    ImportDecl *Import;
640
641  public:
642    typedef ImportDecl               *value_type;
643    typedef ImportDecl               *reference;
644    typedef ImportDecl               *pointer;
645    typedef int                       difference_type;
646    typedef std::forward_iterator_tag iterator_category;
647
648    import_iterator() : Import() { }
649    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
650
651    reference operator*() const { return Import; }
652    pointer operator->() const { return Import; }
653
654    import_iterator &operator++() {
655      Import = ASTContext::getNextLocalImport(Import);
656      return *this;
657    }
658
659    import_iterator operator++(int) {
660      import_iterator Other(*this);
661      ++(*this);
662      return Other;
663    }
664
665    friend bool operator==(import_iterator X, import_iterator Y) {
666      return X.Import == Y.Import;
667    }
668
669    friend bool operator!=(import_iterator X, import_iterator Y) {
670      return X.Import != Y.Import;
671    }
672  };
673
674  import_iterator local_import_begin() const {
675    return import_iterator(FirstLocalImport);
676  }
677  import_iterator local_import_end() const { return import_iterator(); }
678
679  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
680
681
682  // Builtin Types.
683  CanQualType VoidTy;
684  CanQualType BoolTy;
685  CanQualType CharTy;
686  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
687  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
688  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
689  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
690  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
691  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
692  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
693  CanQualType FloatTy, DoubleTy, LongDoubleTy;
694  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
695  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
696  CanQualType VoidPtrTy, NullPtrTy;
697  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
698  CanQualType BuiltinFnTy;
699  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
700  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
701  CanQualType ObjCBuiltinBoolTy;
702
703  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
704  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
705  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
706
707  // Type used to help define __builtin_va_list for some targets.
708  // The type is built when constructing 'BuiltinVaListDecl'.
709  mutable QualType VaListTagTy;
710
711  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
712             IdentifierTable &idents, SelectorTable &sels,
713             Builtin::Context &builtins,
714             unsigned size_reserve,
715             bool DelayInitialization = false);
716
717  ~ASTContext();
718
719  /// \brief Attach an external AST source to the AST context.
720  ///
721  /// The external AST source provides the ability to load parts of
722  /// the abstract syntax tree as needed from some external storage,
723  /// e.g., a precompiled header.
724  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
725
726  /// \brief Retrieve a pointer to the external AST source associated
727  /// with this AST context, if any.
728  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
729
730  /// \brief Attach an AST mutation listener to the AST context.
731  ///
732  /// The AST mutation listener provides the ability to track modifications to
733  /// the abstract syntax tree entities committed after they were initially
734  /// created.
735  void setASTMutationListener(ASTMutationListener *Listener) {
736    this->Listener = Listener;
737  }
738
739  /// \brief Retrieve a pointer to the AST mutation listener associated
740  /// with this AST context, if any.
741  ASTMutationListener *getASTMutationListener() const { return Listener; }
742
743  void PrintStats() const;
744  const std::vector<Type*>& getTypes() const { return Types; }
745
746  /// \brief Retrieve the declaration for the 128-bit signed integer type.
747  TypedefDecl *getInt128Decl() const;
748
749  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
750  TypedefDecl *getUInt128Decl() const;
751
752  //===--------------------------------------------------------------------===//
753  //                           Type Constructors
754  //===--------------------------------------------------------------------===//
755
756private:
757  /// \brief Return a type with extended qualifiers.
758  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
759
760  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
761
762public:
763  /// \brief Return the uniqued reference to the type for an address space
764  /// qualified type with the specified type and address space.
765  ///
766  /// The resulting type has a union of the qualifiers from T and the address
767  /// space. If T already has an address space specifier, it is silently
768  /// replaced.
769  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
770
771  /// \brief Return the uniqued reference to the type for an Objective-C
772  /// gc-qualified type.
773  ///
774  /// The retulting type has a union of the qualifiers from T and the gc
775  /// attribute.
776  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
777
778  /// \brief Return the uniqued reference to the type for a \c restrict
779  /// qualified type.
780  ///
781  /// The resulting type has a union of the qualifiers from \p T and
782  /// \c restrict.
783  QualType getRestrictType(QualType T) const {
784    return T.withFastQualifiers(Qualifiers::Restrict);
785  }
786
787  /// \brief Return the uniqued reference to the type for a \c volatile
788  /// qualified type.
789  ///
790  /// The resulting type has a union of the qualifiers from \p T and
791  /// \c volatile.
792  QualType getVolatileType(QualType T) const {
793    return T.withFastQualifiers(Qualifiers::Volatile);
794  }
795
796  /// \brief Return the uniqued reference to the type for a \c const
797  /// qualified type.
798  ///
799  /// The resulting type has a union of the qualifiers from \p T and \c const.
800  ///
801  /// It can be reasonably expected that this will always be equivalent to
802  /// calling T.withConst().
803  QualType getConstType(QualType T) const { return T.withConst(); }
804
805  /// \brief Change the ExtInfo on a function type.
806  const FunctionType *adjustFunctionType(const FunctionType *Fn,
807                                         FunctionType::ExtInfo EInfo);
808
809  /// \brief Return the uniqued reference to the type for a complex
810  /// number with the specified element type.
811  QualType getComplexType(QualType T) const;
812  CanQualType getComplexType(CanQualType T) const {
813    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
814  }
815
816  /// \brief Return the uniqued reference to the type for a pointer to
817  /// the specified type.
818  QualType getPointerType(QualType T) const;
819  CanQualType getPointerType(CanQualType T) const {
820    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
821  }
822
823  /// \brief Return the uniqued reference to the atomic type for the specified
824  /// type.
825  QualType getAtomicType(QualType T) const;
826
827  /// \brief Return the uniqued reference to the type for a block of the
828  /// specified type.
829  QualType getBlockPointerType(QualType T) const;
830
831  /// Gets the struct used to keep track of the descriptor for pointer to
832  /// blocks.
833  QualType getBlockDescriptorType() const;
834
835  /// Gets the struct used to keep track of the extended descriptor for
836  /// pointer to blocks.
837  QualType getBlockDescriptorExtendedType() const;
838
839  void setcudaConfigureCallDecl(FunctionDecl *FD) {
840    cudaConfigureCallDecl = FD;
841  }
842  FunctionDecl *getcudaConfigureCallDecl() {
843    return cudaConfigureCallDecl;
844  }
845
846  /// Builds the struct used for __block variables.
847  QualType BuildByRefType(StringRef DeclName, QualType Ty) const;
848
849  /// Returns true iff we need copy/dispose helpers for the given type.
850  bool BlockRequiresCopying(QualType Ty) const;
851
852  /// \brief Return the uniqued reference to the type for an lvalue reference
853  /// to the specified type.
854  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
855    const;
856
857  /// \brief Return the uniqued reference to the type for an rvalue reference
858  /// to the specified type.
859  QualType getRValueReferenceType(QualType T) const;
860
861  /// \brief Return the uniqued reference to the type for a member pointer to
862  /// the specified type in the specified class.
863  ///
864  /// The class \p Cls is a \c Type because it could be a dependent name.
865  QualType getMemberPointerType(QualType T, const Type *Cls) const;
866
867  /// \brief Return a non-unique reference to the type for a variable array of
868  /// the specified element type.
869  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
870                                ArrayType::ArraySizeModifier ASM,
871                                unsigned IndexTypeQuals,
872                                SourceRange Brackets) const;
873
874  /// \brief Return a non-unique reference to the type for a dependently-sized
875  /// array of the specified element type.
876  ///
877  /// FIXME: We will need these to be uniqued, or at least comparable, at some
878  /// point.
879  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
880                                      ArrayType::ArraySizeModifier ASM,
881                                      unsigned IndexTypeQuals,
882                                      SourceRange Brackets) const;
883
884  /// \brief Return a unique reference to the type for an incomplete array of
885  /// the specified element type.
886  QualType getIncompleteArrayType(QualType EltTy,
887                                  ArrayType::ArraySizeModifier ASM,
888                                  unsigned IndexTypeQuals) const;
889
890  /// \brief Return the unique reference to the type for a constant array of
891  /// the specified element type.
892  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
893                                ArrayType::ArraySizeModifier ASM,
894                                unsigned IndexTypeQuals) const;
895
896  /// \brief Returns a vla type where known sizes are replaced with [*].
897  QualType getVariableArrayDecayedType(QualType Ty) const;
898
899  /// \brief Return the unique reference to a vector type of the specified
900  /// element type and size.
901  ///
902  /// \pre \p VectorType must be a built-in type.
903  QualType getVectorType(QualType VectorType, unsigned NumElts,
904                         VectorType::VectorKind VecKind) const;
905
906  /// \brief Return the unique reference to an extended vector type
907  /// of the specified element type and size.
908  ///
909  /// \pre \p VectorType must be a built-in type.
910  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
911
912  /// \pre Return a non-unique reference to the type for a dependently-sized
913  /// vector of the specified element type.
914  ///
915  /// FIXME: We will need these to be uniqued, or at least comparable, at some
916  /// point.
917  QualType getDependentSizedExtVectorType(QualType VectorType,
918                                          Expr *SizeExpr,
919                                          SourceLocation AttrLoc) const;
920
921  /// \brief Return a K&R style C function type like 'int()'.
922  QualType getFunctionNoProtoType(QualType ResultTy,
923                                  const FunctionType::ExtInfo &Info) const;
924
925  QualType getFunctionNoProtoType(QualType ResultTy) const {
926    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
927  }
928
929  /// \brief Return a normal function type with a typed argument list.
930  QualType getFunctionType(QualType ResultTy,
931                           const QualType *Args, unsigned NumArgs,
932                           const FunctionProtoType::ExtProtoInfo &EPI) const;
933
934  /// \brief Return the unique reference to the type for the specified type
935  /// declaration.
936  QualType getTypeDeclType(const TypeDecl *Decl,
937                           const TypeDecl *PrevDecl = 0) const {
938    assert(Decl && "Passed null for Decl param");
939    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
940
941    if (PrevDecl) {
942      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
943      Decl->TypeForDecl = PrevDecl->TypeForDecl;
944      return QualType(PrevDecl->TypeForDecl, 0);
945    }
946
947    return getTypeDeclTypeSlow(Decl);
948  }
949
950  /// \brief Return the unique reference to the type for the specified
951  /// typedef-name decl.
952  QualType getTypedefType(const TypedefNameDecl *Decl,
953                          QualType Canon = QualType()) const;
954
955  QualType getRecordType(const RecordDecl *Decl) const;
956
957  QualType getEnumType(const EnumDecl *Decl) const;
958
959  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
960
961  QualType getAttributedType(AttributedType::Kind attrKind,
962                             QualType modifiedType,
963                             QualType equivalentType);
964
965  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
966                                        QualType Replacement) const;
967  QualType getSubstTemplateTypeParmPackType(
968                                          const TemplateTypeParmType *Replaced,
969                                            const TemplateArgument &ArgPack);
970
971  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
972                                   bool ParameterPack,
973                                   TemplateTypeParmDecl *ParmDecl = 0) const;
974
975  QualType getTemplateSpecializationType(TemplateName T,
976                                         const TemplateArgument *Args,
977                                         unsigned NumArgs,
978                                         QualType Canon = QualType()) const;
979
980  QualType getCanonicalTemplateSpecializationType(TemplateName T,
981                                                  const TemplateArgument *Args,
982                                                  unsigned NumArgs) const;
983
984  QualType getTemplateSpecializationType(TemplateName T,
985                                         const TemplateArgumentListInfo &Args,
986                                         QualType Canon = QualType()) const;
987
988  TypeSourceInfo *
989  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
990                                    const TemplateArgumentListInfo &Args,
991                                    QualType Canon = QualType()) const;
992
993  QualType getParenType(QualType NamedType) const;
994
995  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
996                             NestedNameSpecifier *NNS,
997                             QualType NamedType) const;
998  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
999                                NestedNameSpecifier *NNS,
1000                                const IdentifierInfo *Name,
1001                                QualType Canon = QualType()) const;
1002
1003  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1004                                                  NestedNameSpecifier *NNS,
1005                                                  const IdentifierInfo *Name,
1006                                    const TemplateArgumentListInfo &Args) const;
1007  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1008                                                  NestedNameSpecifier *NNS,
1009                                                  const IdentifierInfo *Name,
1010                                                  unsigned NumArgs,
1011                                            const TemplateArgument *Args) const;
1012
1013  QualType getPackExpansionType(QualType Pattern,
1014                                llvm::Optional<unsigned> NumExpansions);
1015
1016  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1017                                ObjCInterfaceDecl *PrevDecl = 0) const;
1018
1019  QualType getObjCObjectType(QualType Base,
1020                             ObjCProtocolDecl * const *Protocols,
1021                             unsigned NumProtocols) const;
1022
1023  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1024  QualType getObjCObjectPointerType(QualType OIT) const;
1025
1026  /// \brief GCC extension.
1027  QualType getTypeOfExprType(Expr *e) const;
1028  QualType getTypeOfType(QualType t) const;
1029
1030  /// \brief C++11 decltype.
1031  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1032
1033  /// \brief Unary type transforms
1034  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1035                                 UnaryTransformType::UTTKind UKind) const;
1036
1037  /// \brief C++11 deduced auto type.
1038  QualType getAutoType(QualType DeducedType) const;
1039
1040  /// \brief C++11 deduction pattern for 'auto' type.
1041  QualType getAutoDeductType() const;
1042
1043  /// \brief C++11 deduction pattern for 'auto &&' type.
1044  QualType getAutoRRefDeductType() const;
1045
1046  /// \brief Return the unique reference to the type for the specified TagDecl
1047  /// (struct/union/class/enum) decl.
1048  QualType getTagDeclType(const TagDecl *Decl) const;
1049
1050  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1051  /// <stddef.h>.
1052  ///
1053  /// The sizeof operator requires this (C99 6.5.3.4p4).
1054  CanQualType getSizeType() const;
1055
1056  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1057  /// <stdint.h>.
1058  CanQualType getIntMaxType() const;
1059
1060  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1061  /// <stdint.h>.
1062  CanQualType getUIntMaxType() const;
1063
1064  /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1065  /// returns a type compatible with the type defined in <stddef.h> as defined
1066  /// by the target.
1067  QualType getWCharType() const { return WCharTy; }
1068
1069  /// \brief Return the type of "signed wchar_t".
1070  ///
1071  /// Used when in C++, as a GCC extension.
1072  QualType getSignedWCharType() const;
1073
1074  /// \brief Return the type of "unsigned wchar_t".
1075  ///
1076  /// Used when in C++, as a GCC extension.
1077  QualType getUnsignedWCharType() const;
1078
1079  /// \brief In C99, this returns a type compatible with the type
1080  /// defined in <stddef.h> as defined by the target.
1081  QualType getWIntType() const { return WIntTy; }
1082
1083  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1084  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1085  QualType getPointerDiffType() const;
1086
1087  /// \brief Return the C structure type used to represent constant CFStrings.
1088  QualType getCFConstantStringType() const;
1089
1090  /// Get the structure type used to representation CFStrings, or NULL
1091  /// if it hasn't yet been built.
1092  QualType getRawCFConstantStringType() const {
1093    if (CFConstantStringTypeDecl)
1094      return getTagDeclType(CFConstantStringTypeDecl);
1095    return QualType();
1096  }
1097  void setCFConstantStringType(QualType T);
1098
1099  // This setter/getter represents the ObjC type for an NSConstantString.
1100  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1101  QualType getObjCConstantStringInterface() const {
1102    return ObjCConstantStringType;
1103  }
1104
1105  QualType getObjCNSStringType() const {
1106    return ObjCNSStringType;
1107  }
1108
1109  void setObjCNSStringType(QualType T) {
1110    ObjCNSStringType = T;
1111  }
1112
1113  /// \brief Retrieve the type that \c id has been defined to, which may be
1114  /// different from the built-in \c id if \c id has been typedef'd.
1115  QualType getObjCIdRedefinitionType() const {
1116    if (ObjCIdRedefinitionType.isNull())
1117      return getObjCIdType();
1118    return ObjCIdRedefinitionType;
1119  }
1120
1121  /// \brief Set the user-written type that redefines \c id.
1122  void setObjCIdRedefinitionType(QualType RedefType) {
1123    ObjCIdRedefinitionType = RedefType;
1124  }
1125
1126  /// \brief Retrieve the type that \c Class has been defined to, which may be
1127  /// different from the built-in \c Class if \c Class has been typedef'd.
1128  QualType getObjCClassRedefinitionType() const {
1129    if (ObjCClassRedefinitionType.isNull())
1130      return getObjCClassType();
1131    return ObjCClassRedefinitionType;
1132  }
1133
1134  /// \brief Set the user-written type that redefines 'SEL'.
1135  void setObjCClassRedefinitionType(QualType RedefType) {
1136    ObjCClassRedefinitionType = RedefType;
1137  }
1138
1139  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1140  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1141  QualType getObjCSelRedefinitionType() const {
1142    if (ObjCSelRedefinitionType.isNull())
1143      return getObjCSelType();
1144    return ObjCSelRedefinitionType;
1145  }
1146
1147
1148  /// \brief Set the user-written type that redefines 'SEL'.
1149  void setObjCSelRedefinitionType(QualType RedefType) {
1150    ObjCSelRedefinitionType = RedefType;
1151  }
1152
1153  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1154  /// otherwise, returns a NULL type;
1155  QualType getObjCInstanceType() {
1156    return getTypeDeclType(getObjCInstanceTypeDecl());
1157  }
1158
1159  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1160  /// "instancetype" type.
1161  TypedefDecl *getObjCInstanceTypeDecl();
1162
1163  /// \brief Set the type for the C FILE type.
1164  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1165
1166  /// \brief Retrieve the C FILE type.
1167  QualType getFILEType() const {
1168    if (FILEDecl)
1169      return getTypeDeclType(FILEDecl);
1170    return QualType();
1171  }
1172
1173  /// \brief Set the type for the C jmp_buf type.
1174  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1175    this->jmp_bufDecl = jmp_bufDecl;
1176  }
1177
1178  /// \brief Retrieve the C jmp_buf type.
1179  QualType getjmp_bufType() const {
1180    if (jmp_bufDecl)
1181      return getTypeDeclType(jmp_bufDecl);
1182    return QualType();
1183  }
1184
1185  /// \brief Set the type for the C sigjmp_buf type.
1186  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1187    this->sigjmp_bufDecl = sigjmp_bufDecl;
1188  }
1189
1190  /// \brief Retrieve the C sigjmp_buf type.
1191  QualType getsigjmp_bufType() const {
1192    if (sigjmp_bufDecl)
1193      return getTypeDeclType(sigjmp_bufDecl);
1194    return QualType();
1195  }
1196
1197  /// \brief Set the type for the C ucontext_t type.
1198  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1199    this->ucontext_tDecl = ucontext_tDecl;
1200  }
1201
1202  /// \brief Retrieve the C ucontext_t type.
1203  QualType getucontext_tType() const {
1204    if (ucontext_tDecl)
1205      return getTypeDeclType(ucontext_tDecl);
1206    return QualType();
1207  }
1208
1209  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1210  QualType getLogicalOperationType() const {
1211    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1212  }
1213
1214  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1215  /// \p S.
1216  ///
1217  /// If \p Field is specified then record field names are also encoded.
1218  void getObjCEncodingForType(QualType T, std::string &S,
1219                              const FieldDecl *Field=0) const;
1220
1221  void getLegacyIntegralTypeEncoding(QualType &t) const;
1222
1223  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1224  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1225                                       std::string &S) const;
1226
1227  /// \brief Emit the encoded type for the function \p Decl into \p S.
1228  ///
1229  /// This is in the same format as Objective-C method encodings.
1230  ///
1231  /// \returns true if an error occurred (e.g., because one of the parameter
1232  /// types is incomplete), false otherwise.
1233  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1234
1235  /// \brief Emit the encoded type for the method declaration \p Decl into
1236  /// \p S.
1237  ///
1238  /// \returns true if an error occurred (e.g., because one of the parameter
1239  /// types is incomplete), false otherwise.
1240  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1241                                    bool Extended = false)
1242    const;
1243
1244  /// \brief Return the encoded type for this block declaration.
1245  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1246
1247  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1248  /// this method declaration. If non-NULL, Container must be either
1249  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1250  /// only be NULL when getting encodings for protocol properties.
1251  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1252                                      const Decl *Container,
1253                                      std::string &S) const;
1254
1255  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1256                                      ObjCProtocolDecl *rProto) const;
1257
1258  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1259  /// in characters.
1260  CharUnits getObjCEncodingTypeSize(QualType T) const;
1261
1262  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1263  /// in Objective-C.
1264  TypedefDecl *getObjCIdDecl() const;
1265
1266  /// \brief Represents the Objective-CC \c id type.
1267  ///
1268  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1269  /// pointer type, a pointer to a struct.
1270  QualType getObjCIdType() const {
1271    return getTypeDeclType(getObjCIdDecl());
1272  }
1273
1274  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1275  /// in Objective-C.
1276  TypedefDecl *getObjCSelDecl() const;
1277
1278  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1279  /// 'SEL' type.
1280  QualType getObjCSelType() const {
1281    return getTypeDeclType(getObjCSelDecl());
1282  }
1283
1284  /// \brief Retrieve the typedef declaration corresponding to the predefined
1285  /// Objective-C 'Class' type.
1286  TypedefDecl *getObjCClassDecl() const;
1287
1288  /// \brief Represents the Objective-C \c Class type.
1289  ///
1290  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1291  /// pointer type, a pointer to a struct.
1292  QualType getObjCClassType() const {
1293    return getTypeDeclType(getObjCClassDecl());
1294  }
1295
1296  /// \brief Retrieve the Objective-C class declaration corresponding to
1297  /// the predefined \c Protocol class.
1298  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1299
1300  /// \brief Retrieve declaration of 'BOOL' typedef
1301  TypedefDecl *getBOOLDecl() const {
1302    return BOOLDecl;
1303  }
1304
1305  /// \brief Save declaration of 'BOOL' typedef
1306  void setBOOLDecl(TypedefDecl *TD) {
1307    BOOLDecl = TD;
1308  }
1309
1310  /// \brief type of 'BOOL' type.
1311  QualType getBOOLType() const {
1312    return getTypeDeclType(getBOOLDecl());
1313  }
1314
1315  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1316  QualType getObjCProtoType() const {
1317    return getObjCInterfaceType(getObjCProtocolDecl());
1318  }
1319
1320  /// \brief Retrieve the C type declaration corresponding to the predefined
1321  /// \c __builtin_va_list type.
1322  TypedefDecl *getBuiltinVaListDecl() const;
1323
1324  /// \brief Retrieve the type of the \c __builtin_va_list type.
1325  QualType getBuiltinVaListType() const {
1326    return getTypeDeclType(getBuiltinVaListDecl());
1327  }
1328
1329  /// \brief Retrieve the C type declaration corresponding to the predefined
1330  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1331  /// for some targets.
1332  QualType getVaListTagType() const;
1333
1334  /// \brief Return a type with additional \c const, \c volatile, or
1335  /// \c restrict qualifiers.
1336  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1337    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1338  }
1339
1340  /// \brief Un-split a SplitQualType.
1341  QualType getQualifiedType(SplitQualType split) const {
1342    return getQualifiedType(split.Ty, split.Quals);
1343  }
1344
1345  /// \brief Return a type with additional qualifiers.
1346  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1347    if (!Qs.hasNonFastQualifiers())
1348      return T.withFastQualifiers(Qs.getFastQualifiers());
1349    QualifierCollector Qc(Qs);
1350    const Type *Ptr = Qc.strip(T);
1351    return getExtQualType(Ptr, Qc);
1352  }
1353
1354  /// \brief Return a type with additional qualifiers.
1355  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1356    if (!Qs.hasNonFastQualifiers())
1357      return QualType(T, Qs.getFastQualifiers());
1358    return getExtQualType(T, Qs);
1359  }
1360
1361  /// \brief Return a type with the given lifetime qualifier.
1362  ///
1363  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1364  QualType getLifetimeQualifiedType(QualType type,
1365                                    Qualifiers::ObjCLifetime lifetime) {
1366    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1367    assert(lifetime != Qualifiers::OCL_None);
1368
1369    Qualifiers qs;
1370    qs.addObjCLifetime(lifetime);
1371    return getQualifiedType(type, qs);
1372  }
1373
1374  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1375                                         SourceLocation NameLoc) const;
1376
1377  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1378                                         UnresolvedSetIterator End) const;
1379
1380  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1381                                        bool TemplateKeyword,
1382                                        TemplateDecl *Template) const;
1383
1384  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1385                                        const IdentifierInfo *Name) const;
1386  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1387                                        OverloadedOperatorKind Operator) const;
1388  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1389                                            TemplateName replacement) const;
1390  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1391                                        const TemplateArgument &ArgPack) const;
1392
1393  enum GetBuiltinTypeError {
1394    GE_None,              ///< No error
1395    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1396    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1397    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1398  };
1399
1400  /// \brief Return the type for the specified builtin.
1401  ///
1402  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1403  /// arguments to the builtin that are required to be integer constant
1404  /// expressions.
1405  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1406                          unsigned *IntegerConstantArgs = 0) const;
1407
1408private:
1409  CanQualType getFromTargetType(unsigned Type) const;
1410  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1411
1412  //===--------------------------------------------------------------------===//
1413  //                         Type Predicates.
1414  //===--------------------------------------------------------------------===//
1415
1416public:
1417  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1418  /// collection attributes.
1419  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1420
1421  /// \brief Return true if the given vector types are of the same unqualified
1422  /// type or if they are equivalent to the same GCC vector type.
1423  ///
1424  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1425  /// types.
1426  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1427
1428  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1429  /// attribute set.
1430  static bool isObjCNSObjectType(QualType Ty) {
1431    return Ty->isObjCNSObjectType();
1432  }
1433
1434  //===--------------------------------------------------------------------===//
1435  //                         Type Sizing and Analysis
1436  //===--------------------------------------------------------------------===//
1437
1438  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1439  /// point type.
1440  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1441
1442  /// \brief Get the size and alignment of the specified complete type in bits.
1443  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1444  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1445    return getTypeInfo(T.getTypePtr());
1446  }
1447
1448  /// \brief Return the size of the specified (complete) type \p T, in bits.
1449  uint64_t getTypeSize(QualType T) const {
1450    return getTypeInfo(T).first;
1451  }
1452  uint64_t getTypeSize(const Type *T) const {
1453    return getTypeInfo(T).first;
1454  }
1455
1456  /// \brief Return the size of the character type, in bits.
1457  uint64_t getCharWidth() const {
1458    return getTypeSize(CharTy);
1459  }
1460
1461  /// \brief Convert a size in bits to a size in characters.
1462  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1463
1464  /// \brief Convert a size in characters to a size in bits.
1465  int64_t toBits(CharUnits CharSize) const;
1466
1467  /// \brief Return the size of the specified (complete) type \p T, in
1468  /// characters.
1469  CharUnits getTypeSizeInChars(QualType T) const;
1470  CharUnits getTypeSizeInChars(const Type *T) const;
1471
1472  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1473  /// bits.
1474  unsigned getTypeAlign(QualType T) const {
1475    return getTypeInfo(T).second;
1476  }
1477  unsigned getTypeAlign(const Type *T) const {
1478    return getTypeInfo(T).second;
1479  }
1480
1481  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1482  /// characters.
1483  CharUnits getTypeAlignInChars(QualType T) const;
1484  CharUnits getTypeAlignInChars(const Type *T) const;
1485
1486  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1487  // type is a record, its data size is returned.
1488  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1489
1490  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1491  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1492
1493  /// \brief Return the "preferred" alignment of the specified type \p T for
1494  /// the current target, in bits.
1495  ///
1496  /// This can be different than the ABI alignment in cases where it is
1497  /// beneficial for performance to overalign a data type.
1498  unsigned getPreferredTypeAlign(const Type *T) const;
1499
1500  /// \brief Return a conservative estimate of the alignment of the specified
1501  /// decl \p D.
1502  ///
1503  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1504  /// alignment.
1505  ///
1506  /// If \p RefAsPointee, references are treated like their underlying type
1507  /// (for alignof), else they're treated like pointers (for CodeGen).
1508  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1509
1510  /// \brief Get or compute information about the layout of the specified
1511  /// record (struct/union/class) \p D, which indicates its size and field
1512  /// position information.
1513  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1514
1515  /// \brief Get or compute information about the layout of the specified
1516  /// Objective-C interface.
1517  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1518    const;
1519
1520  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1521                        bool Simple = false) const;
1522
1523  /// \brief Get or compute information about the layout of the specified
1524  /// Objective-C implementation.
1525  ///
1526  /// This may differ from the interface if synthesized ivars are present.
1527  const ASTRecordLayout &
1528  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1529
1530  /// \brief Get the key function for the given record decl, or NULL if there
1531  /// isn't one.
1532  ///
1533  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1534  ///
1535  /// ...the first non-pure virtual function that is not inline at the point
1536  /// of class definition.
1537  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1538
1539  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1540  uint64_t getFieldOffset(const ValueDecl *FD) const;
1541
1542  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1543
1544  MangleContext *createMangleContext();
1545
1546  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1547                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1548
1549  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1550  void CollectInheritedProtocols(const Decl *CDecl,
1551                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1552
1553  //===--------------------------------------------------------------------===//
1554  //                            Type Operators
1555  //===--------------------------------------------------------------------===//
1556
1557  /// \brief Return the canonical (structural) type corresponding to the
1558  /// specified potentially non-canonical type \p T.
1559  ///
1560  /// The non-canonical version of a type may have many "decorated" versions of
1561  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1562  /// returned type is guaranteed to be free of any of these, allowing two
1563  /// canonical types to be compared for exact equality with a simple pointer
1564  /// comparison.
1565  CanQualType getCanonicalType(QualType T) const {
1566    return CanQualType::CreateUnsafe(T.getCanonicalType());
1567  }
1568
1569  const Type *getCanonicalType(const Type *T) const {
1570    return T->getCanonicalTypeInternal().getTypePtr();
1571  }
1572
1573  /// \brief Return the canonical parameter type corresponding to the specific
1574  /// potentially non-canonical one.
1575  ///
1576  /// Qualifiers are stripped off, functions are turned into function
1577  /// pointers, and arrays decay one level into pointers.
1578  CanQualType getCanonicalParamType(QualType T) const;
1579
1580  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1581  bool hasSameType(QualType T1, QualType T2) const {
1582    return getCanonicalType(T1) == getCanonicalType(T2);
1583  }
1584
1585  /// \brief Return this type as a completely-unqualified array type,
1586  /// capturing the qualifiers in \p Quals.
1587  ///
1588  /// This will remove the minimal amount of sugaring from the types, similar
1589  /// to the behavior of QualType::getUnqualifiedType().
1590  ///
1591  /// \param T is the qualified type, which may be an ArrayType
1592  ///
1593  /// \param Quals will receive the full set of qualifiers that were
1594  /// applied to the array.
1595  ///
1596  /// \returns if this is an array type, the completely unqualified array type
1597  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1598  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1599
1600  /// \brief Determine whether the given types are equivalent after
1601  /// cvr-qualifiers have been removed.
1602  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1603    return getCanonicalType(T1).getTypePtr() ==
1604           getCanonicalType(T2).getTypePtr();
1605  }
1606
1607  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1608
1609  /// \brief Retrieves the "canonical" nested name specifier for a
1610  /// given nested name specifier.
1611  ///
1612  /// The canonical nested name specifier is a nested name specifier
1613  /// that uniquely identifies a type or namespace within the type
1614  /// system. For example, given:
1615  ///
1616  /// \code
1617  /// namespace N {
1618  ///   struct S {
1619  ///     template<typename T> struct X { typename T* type; };
1620  ///   };
1621  /// }
1622  ///
1623  /// template<typename T> struct Y {
1624  ///   typename N::S::X<T>::type member;
1625  /// };
1626  /// \endcode
1627  ///
1628  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1629  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1630  /// by declarations in the type system and the canonical type for
1631  /// the template type parameter 'T' is template-param-0-0.
1632  NestedNameSpecifier *
1633  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1634
1635  /// \brief Retrieves the default calling convention to use for
1636  /// C++ instance methods.
1637  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1638
1639  /// \brief Retrieves the canonical representation of the given
1640  /// calling convention.
1641  CallingConv getCanonicalCallConv(CallingConv CC) const;
1642
1643  /// \brief Determines whether two calling conventions name the same
1644  /// calling convention.
1645  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1646    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1647  }
1648
1649  /// \brief Retrieves the "canonical" template name that refers to a
1650  /// given template.
1651  ///
1652  /// The canonical template name is the simplest expression that can
1653  /// be used to refer to a given template. For most templates, this
1654  /// expression is just the template declaration itself. For example,
1655  /// the template std::vector can be referred to via a variety of
1656  /// names---std::vector, \::std::vector, vector (if vector is in
1657  /// scope), etc.---but all of these names map down to the same
1658  /// TemplateDecl, which is used to form the canonical template name.
1659  ///
1660  /// Dependent template names are more interesting. Here, the
1661  /// template name could be something like T::template apply or
1662  /// std::allocator<T>::template rebind, where the nested name
1663  /// specifier itself is dependent. In this case, the canonical
1664  /// template name uses the shortest form of the dependent
1665  /// nested-name-specifier, which itself contains all canonical
1666  /// types, values, and templates.
1667  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1668
1669  /// \brief Determine whether the given template names refer to the same
1670  /// template.
1671  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1672
1673  /// \brief Retrieve the "canonical" template argument.
1674  ///
1675  /// The canonical template argument is the simplest template argument
1676  /// (which may be a type, value, expression, or declaration) that
1677  /// expresses the value of the argument.
1678  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1679    const;
1680
1681  /// Type Query functions.  If the type is an instance of the specified class,
1682  /// return the Type pointer for the underlying maximally pretty type.  This
1683  /// is a member of ASTContext because this may need to do some amount of
1684  /// canonicalization, e.g. to move type qualifiers into the element type.
1685  const ArrayType *getAsArrayType(QualType T) const;
1686  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1687    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1688  }
1689  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1690    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1691  }
1692  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1693    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1694  }
1695  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1696    const {
1697    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1698  }
1699
1700  /// \brief Return the innermost element type of an array type.
1701  ///
1702  /// For example, will return "int" for int[m][n]
1703  QualType getBaseElementType(const ArrayType *VAT) const;
1704
1705  /// \brief Return the innermost element type of a type (which needn't
1706  /// actually be an array type).
1707  QualType getBaseElementType(QualType QT) const;
1708
1709  /// \brief Return number of constant array elements.
1710  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1711
1712  /// \brief Perform adjustment on the parameter type of a function.
1713  ///
1714  /// This routine adjusts the given parameter type @p T to the actual
1715  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1716  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1717  QualType getAdjustedParameterType(QualType T) const;
1718
1719  /// \brief Retrieve the parameter type as adjusted for use in the signature
1720  /// of a function, decaying array and function types and removing top-level
1721  /// cv-qualifiers.
1722  QualType getSignatureParameterType(QualType T) const;
1723
1724  /// \brief Return the properly qualified result of decaying the specified
1725  /// array type to a pointer.
1726  ///
1727  /// This operation is non-trivial when handling typedefs etc.  The canonical
1728  /// type of \p T must be an array type, this returns a pointer to a properly
1729  /// qualified element of the array.
1730  ///
1731  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1732  QualType getArrayDecayedType(QualType T) const;
1733
1734  /// \brief Return the type that \p PromotableType will promote to: C99
1735  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1736  QualType getPromotedIntegerType(QualType PromotableType) const;
1737
1738  /// \brief Recurses in pointer/array types until it finds an Objective-C
1739  /// retainable type and returns its ownership.
1740  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1741
1742  /// \brief Whether this is a promotable bitfield reference according
1743  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1744  ///
1745  /// \returns the type this bit-field will promote to, or NULL if no
1746  /// promotion occurs.
1747  QualType isPromotableBitField(Expr *E) const;
1748
1749  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1750  ///
1751  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1752  /// \p LHS < \p RHS, return -1.
1753  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1754
1755  /// \brief Compare the rank of the two specified floating point types,
1756  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1757  ///
1758  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1759  /// \p LHS < \p RHS, return -1.
1760  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1761
1762  /// \brief Return a real floating point or a complex type (based on
1763  /// \p typeDomain/\p typeSize).
1764  ///
1765  /// \param typeDomain a real floating point or complex type.
1766  /// \param typeSize a real floating point or complex type.
1767  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1768                                             QualType typeDomain) const;
1769
1770  unsigned getTargetAddressSpace(QualType T) const {
1771    return getTargetAddressSpace(T.getQualifiers());
1772  }
1773
1774  unsigned getTargetAddressSpace(Qualifiers Q) const {
1775    return getTargetAddressSpace(Q.getAddressSpace());
1776  }
1777
1778  unsigned getTargetAddressSpace(unsigned AS) const {
1779    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1780      return AS;
1781    else
1782      return (*AddrSpaceMap)[AS - LangAS::Offset];
1783  }
1784
1785private:
1786  // Helper for integer ordering
1787  unsigned getIntegerRank(const Type *T) const;
1788
1789public:
1790
1791  //===--------------------------------------------------------------------===//
1792  //                    Type Compatibility Predicates
1793  //===--------------------------------------------------------------------===//
1794
1795  /// Compatibility predicates used to check assignment expressions.
1796  bool typesAreCompatible(QualType T1, QualType T2,
1797                          bool CompareUnqualified = false); // C99 6.2.7p1
1798
1799  bool propertyTypesAreCompatible(QualType, QualType);
1800  bool typesAreBlockPointerCompatible(QualType, QualType);
1801
1802  bool isObjCIdType(QualType T) const {
1803    return T == getObjCIdType();
1804  }
1805  bool isObjCClassType(QualType T) const {
1806    return T == getObjCClassType();
1807  }
1808  bool isObjCSelType(QualType T) const {
1809    return T == getObjCSelType();
1810  }
1811  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1812  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1813                                         bool ForCompare);
1814
1815  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1816
1817  // Check the safety of assignment from LHS to RHS
1818  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1819                               const ObjCObjectPointerType *RHSOPT);
1820  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1821                               const ObjCObjectType *RHS);
1822  bool canAssignObjCInterfacesInBlockPointer(
1823                                          const ObjCObjectPointerType *LHSOPT,
1824                                          const ObjCObjectPointerType *RHSOPT,
1825                                          bool BlockReturnType);
1826  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1827  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1828                                   const ObjCObjectPointerType *RHSOPT);
1829  bool canBindObjCObjectType(QualType To, QualType From);
1830
1831  // Functions for calculating composite types
1832  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1833                      bool Unqualified = false, bool BlockReturnType = false);
1834  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1835                              bool Unqualified = false);
1836  QualType mergeFunctionArgumentTypes(QualType, QualType,
1837                                      bool OfBlockPointer=false,
1838                                      bool Unqualified = false);
1839  QualType mergeTransparentUnionType(QualType, QualType,
1840                                     bool OfBlockPointer=false,
1841                                     bool Unqualified = false);
1842
1843  QualType mergeObjCGCQualifiers(QualType, QualType);
1844
1845  bool FunctionTypesMatchOnNSConsumedAttrs(
1846         const FunctionProtoType *FromFunctionType,
1847         const FunctionProtoType *ToFunctionType);
1848
1849  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1850    ObjCLayouts[CD] = 0;
1851  }
1852
1853  //===--------------------------------------------------------------------===//
1854  //                    Integer Predicates
1855  //===--------------------------------------------------------------------===//
1856
1857  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1858  // of bits in an integer type excluding any padding bits.
1859  unsigned getIntWidth(QualType T) const;
1860
1861  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1862  // unsigned integer type.  This method takes a signed type, and returns the
1863  // corresponding unsigned integer type.
1864  QualType getCorrespondingUnsignedType(QualType T) const;
1865
1866  //===--------------------------------------------------------------------===//
1867  //                    Type Iterators.
1868  //===--------------------------------------------------------------------===//
1869
1870  typedef std::vector<Type*>::iterator       type_iterator;
1871  typedef std::vector<Type*>::const_iterator const_type_iterator;
1872
1873  type_iterator types_begin() { return Types.begin(); }
1874  type_iterator types_end() { return Types.end(); }
1875  const_type_iterator types_begin() const { return Types.begin(); }
1876  const_type_iterator types_end() const { return Types.end(); }
1877
1878  //===--------------------------------------------------------------------===//
1879  //                    Integer Values
1880  //===--------------------------------------------------------------------===//
1881
1882  /// \brief Make an APSInt of the appropriate width and signedness for the
1883  /// given \p Value and integer \p Type.
1884  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1885    llvm::APSInt Res(getIntWidth(Type),
1886                     !Type->isSignedIntegerOrEnumerationType());
1887    Res = Value;
1888    return Res;
1889  }
1890
1891  bool isSentinelNullExpr(const Expr *E);
1892
1893  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1894  /// none exists.
1895  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1896  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1897  /// none exists.
1898  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1899
1900  /// \brief Return true if there is at least one \@implementation in the TU.
1901  bool AnyObjCImplementation() {
1902    return !ObjCImpls.empty();
1903  }
1904
1905  /// \brief Set the implementation of ObjCInterfaceDecl.
1906  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1907                             ObjCImplementationDecl *ImplD);
1908  /// \brief Set the implementation of ObjCCategoryDecl.
1909  void setObjCImplementation(ObjCCategoryDecl *CatD,
1910                             ObjCCategoryImplDecl *ImplD);
1911
1912  /// \brief Get the duplicate declaration of a ObjCMethod in the same
1913  /// interface, or null if none exists.
1914  const ObjCMethodDecl *getObjCMethodRedeclaration(
1915                                               const ObjCMethodDecl *MD) const {
1916    return ObjCMethodRedecls.lookup(MD);
1917  }
1918
1919  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1920                                  const ObjCMethodDecl *Redecl) {
1921    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
1922    ObjCMethodRedecls[MD] = Redecl;
1923  }
1924
1925  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
1926  /// an Objective-C method/property/ivar etc. that is part of an interface,
1927  /// otherwise returns null.
1928  ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1929
1930  /// \brief Set the copy inialization expression of a block var decl.
1931  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1932  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
1933  /// NULL if none exists.
1934  Expr *getBlockVarCopyInits(const VarDecl* VD);
1935
1936  /// \brief Allocate an uninitialized TypeSourceInfo.
1937  ///
1938  /// The caller should initialize the memory held by TypeSourceInfo using
1939  /// the TypeLoc wrappers.
1940  ///
1941  /// \param T the type that will be the basis for type source info. This type
1942  /// should refer to how the declarator was written in source code, not to
1943  /// what type semantic analysis resolved the declarator to.
1944  ///
1945  /// \param Size the size of the type info to create, or 0 if the size
1946  /// should be calculated based on the type.
1947  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1948
1949  /// \brief Allocate a TypeSourceInfo where all locations have been
1950  /// initialized to a given location, which defaults to the empty
1951  /// location.
1952  TypeSourceInfo *
1953  getTrivialTypeSourceInfo(QualType T,
1954                           SourceLocation Loc = SourceLocation()) const;
1955
1956  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1957
1958  /// \brief Add a deallocation callback that will be invoked when the
1959  /// ASTContext is destroyed.
1960  ///
1961  /// \param Callback A callback function that will be invoked on destruction.
1962  ///
1963  /// \param Data Pointer data that will be provided to the callback function
1964  /// when it is called.
1965  void AddDeallocation(void (*Callback)(void*), void *Data);
1966
1967  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1968  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1969
1970  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1971  /// lazily, only when used; this is only relevant for function or file scoped
1972  /// var definitions.
1973  ///
1974  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1975  /// it is not used.
1976  bool DeclMustBeEmitted(const Decl *D);
1977
1978  /// \brief Retrieve the lambda mangling number for a lambda expression.
1979  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
1980
1981  /// \brief Used by ParmVarDecl to store on the side the
1982  /// index of the parameter when it exceeds the size of the normal bitfield.
1983  void setParameterIndex(const ParmVarDecl *D, unsigned index);
1984
1985  /// \brief Used by ParmVarDecl to retrieve on the side the
1986  /// index of the parameter when it exceeds the size of the normal bitfield.
1987  unsigned getParameterIndex(const ParmVarDecl *D) const;
1988
1989  //===--------------------------------------------------------------------===//
1990  //                    Statistics
1991  //===--------------------------------------------------------------------===//
1992
1993  /// \brief The number of implicitly-declared default constructors.
1994  static unsigned NumImplicitDefaultConstructors;
1995
1996  /// \brief The number of implicitly-declared default constructors for
1997  /// which declarations were built.
1998  static unsigned NumImplicitDefaultConstructorsDeclared;
1999
2000  /// \brief The number of implicitly-declared copy constructors.
2001  static unsigned NumImplicitCopyConstructors;
2002
2003  /// \brief The number of implicitly-declared copy constructors for
2004  /// which declarations were built.
2005  static unsigned NumImplicitCopyConstructorsDeclared;
2006
2007  /// \brief The number of implicitly-declared move constructors.
2008  static unsigned NumImplicitMoveConstructors;
2009
2010  /// \brief The number of implicitly-declared move constructors for
2011  /// which declarations were built.
2012  static unsigned NumImplicitMoveConstructorsDeclared;
2013
2014  /// \brief The number of implicitly-declared copy assignment operators.
2015  static unsigned NumImplicitCopyAssignmentOperators;
2016
2017  /// \brief The number of implicitly-declared copy assignment operators for
2018  /// which declarations were built.
2019  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2020
2021  /// \brief The number of implicitly-declared move assignment operators.
2022  static unsigned NumImplicitMoveAssignmentOperators;
2023
2024  /// \brief The number of implicitly-declared move assignment operators for
2025  /// which declarations were built.
2026  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2027
2028  /// \brief The number of implicitly-declared destructors.
2029  static unsigned NumImplicitDestructors;
2030
2031  /// \brief The number of implicitly-declared destructors for which
2032  /// declarations were built.
2033  static unsigned NumImplicitDestructorsDeclared;
2034
2035private:
2036  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2037  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2038
2039public:
2040  /// \brief Initialize built-in types.
2041  ///
2042  /// This routine may only be invoked once for a given ASTContext object.
2043  /// It is normally invoked by the ASTContext constructor. However, the
2044  /// constructor can be asked to delay initialization, which places the burden
2045  /// of calling this function on the user of that object.
2046  ///
2047  /// \param Target The target
2048  void InitBuiltinTypes(const TargetInfo &Target);
2049
2050private:
2051  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2052
2053  // Return the Objective-C type encoding for a given type.
2054  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2055                                  bool ExpandPointedToStructures,
2056                                  bool ExpandStructures,
2057                                  const FieldDecl *Field,
2058                                  bool OutermostType = false,
2059                                  bool EncodingProperty = false,
2060                                  bool StructField = false,
2061                                  bool EncodeBlockParameters = false,
2062                                  bool EncodeClassNames = false) const;
2063
2064  // Adds the encoding of the structure's members.
2065  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2066                                       const FieldDecl *Field,
2067                                       bool includeVBases = true) const;
2068
2069  // Adds the encoding of a method parameter or return type.
2070  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2071                                         QualType T, std::string& S,
2072                                         bool Extended) const;
2073
2074  const ASTRecordLayout &
2075  getObjCLayout(const ObjCInterfaceDecl *D,
2076                const ObjCImplementationDecl *Impl) const;
2077
2078private:
2079  /// \brief A set of deallocations that should be performed when the
2080  /// ASTContext is destroyed.
2081  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2082
2083  // FIXME: This currently contains the set of StoredDeclMaps used
2084  // by DeclContext objects.  This probably should not be in ASTContext,
2085  // but we include it here so that ASTContext can quickly deallocate them.
2086  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2087
2088  /// \brief A counter used to uniquely identify "blocks".
2089  mutable unsigned int UniqueBlockByRefTypeID;
2090
2091  friend class DeclContext;
2092  friend class DeclarationNameTable;
2093  void ReleaseDeclContextMaps();
2094};
2095
2096/// \brief Utility function for constructing a nullary selector.
2097static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2098  IdentifierInfo* II = &Ctx.Idents.get(name);
2099  return Ctx.Selectors.getSelector(0, &II);
2100}
2101
2102/// \brief Utility function for constructing an unary selector.
2103static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2104  IdentifierInfo* II = &Ctx.Idents.get(name);
2105  return Ctx.Selectors.getSelector(1, &II);
2106}
2107
2108}  // end namespace clang
2109
2110// operator new and delete aren't allowed inside namespaces.
2111
2112/// @brief Placement new for using the ASTContext's allocator.
2113///
2114/// This placement form of operator new uses the ASTContext's allocator for
2115/// obtaining memory.
2116///
2117/// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
2118/// need to also be made there.
2119///
2120/// We intentionally avoid using a nothrow specification here so that the calls
2121/// to this operator will not perform a null check on the result -- the
2122/// underlying allocator never returns null pointers.
2123///
2124/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2125/// @code
2126/// // Default alignment (8)
2127/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2128/// // Specific alignment
2129/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2130/// @endcode
2131/// Please note that you cannot use delete on the pointer; it must be
2132/// deallocated using an explicit destructor call followed by
2133/// @c Context.Deallocate(Ptr).
2134///
2135/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2136/// @param C The ASTContext that provides the allocator.
2137/// @param Alignment The alignment of the allocated memory (if the underlying
2138///                  allocator supports it).
2139/// @return The allocated memory. Could be NULL.
2140inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2141                          size_t Alignment) {
2142  return C.Allocate(Bytes, Alignment);
2143}
2144/// @brief Placement delete companion to the new above.
2145///
2146/// This operator is just a companion to the new above. There is no way of
2147/// invoking it directly; see the new operator for more details. This operator
2148/// is called implicitly by the compiler if a placement new expression using
2149/// the ASTContext throws in the object constructor.
2150inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2151  C.Deallocate(Ptr);
2152}
2153
2154/// This placement form of operator new[] uses the ASTContext's allocator for
2155/// obtaining memory.
2156///
2157/// We intentionally avoid using a nothrow specification here so that the calls
2158/// to this operator will not perform a null check on the result -- the
2159/// underlying allocator never returns null pointers.
2160///
2161/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2162/// @code
2163/// // Default alignment (8)
2164/// char *data = new (Context) char[10];
2165/// // Specific alignment
2166/// char *data = new (Context, 4) char[10];
2167/// @endcode
2168/// Please note that you cannot use delete on the pointer; it must be
2169/// deallocated using an explicit destructor call followed by
2170/// @c Context.Deallocate(Ptr).
2171///
2172/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2173/// @param C The ASTContext that provides the allocator.
2174/// @param Alignment The alignment of the allocated memory (if the underlying
2175///                  allocator supports it).
2176/// @return The allocated memory. Could be NULL.
2177inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2178                            size_t Alignment = 8) {
2179  return C.Allocate(Bytes, Alignment);
2180}
2181
2182/// @brief Placement delete[] companion to the new[] above.
2183///
2184/// This operator is just a companion to the new[] above. There is no way of
2185/// invoking it directly; see the new[] operator for more details. This operator
2186/// is called implicitly by the compiler if a placement new[] expression using
2187/// the ASTContext throws in the object constructor.
2188inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2189  C.Deallocate(Ptr);
2190}
2191
2192#endif
2193