ASTContext.h revision 19c8576b7328f4dc2d07682f5da552875c1912ef
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/Allocator.h"
32#include <vector>
33
34namespace llvm {
35  struct fltSemantics;
36}
37
38namespace clang {
39  class FileManager;
40  class ASTRecordLayout;
41  class BlockExpr;
42  class CharUnits;
43  class Expr;
44  class ExternalASTSource;
45  class IdentifierTable;
46  class SelectorTable;
47  class SourceManager;
48  class TargetInfo;
49  // Decls
50  class DeclContext;
51  class CXXMethodDecl;
52  class CXXRecordDecl;
53  class Decl;
54  class FieldDecl;
55  class ObjCIvarDecl;
56  class ObjCIvarRefExpr;
57  class ObjCPropertyDecl;
58  class RecordDecl;
59  class TagDecl;
60  class TemplateTypeParmDecl;
61  class TranslationUnitDecl;
62  class TypeDecl;
63  class TypedefDecl;
64  class UsingDecl;
65  class UsingShadowDecl;
66  class UnresolvedSetIterator;
67
68  namespace Builtin { class Context; }
69
70/// ASTContext - This class holds long-lived AST nodes (such as types and
71/// decls) that can be referred to throughout the semantic analysis of a file.
72class ASTContext {
73  std::vector<Type*> Types;
74  llvm::FoldingSet<ExtQuals> ExtQualNodes;
75  llvm::FoldingSet<ComplexType> ComplexTypes;
76  llvm::FoldingSet<PointerType> PointerTypes;
77  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
78  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
79  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
80  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
81  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
82  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
83  std::vector<VariableArrayType*> VariableArrayTypes;
84  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
85  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
86  llvm::FoldingSet<VectorType> VectorTypes;
87  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
88  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
89  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
90  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
91  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
92  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
93  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
94  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
95  llvm::FoldingSet<TypenameType> TypenameTypes;
96  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
97  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
98  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
99
100  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
101  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
102
103  /// \brief The set of nested name specifiers.
104  ///
105  /// This set is managed by the NestedNameSpecifier class.
106  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
107  NestedNameSpecifier *GlobalNestedNameSpecifier;
108  friend class NestedNameSpecifier;
109
110  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
111  ///  This is lazily created.  This is intentionally not serialized.
112  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
113  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
114
115  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
116  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
117
118  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
119  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
120
121  /// BuiltinVaListType - built-in va list type.
122  /// This is initially null and set by Sema::LazilyCreateBuiltin when
123  /// a builtin that takes a valist is encountered.
124  QualType BuiltinVaListType;
125
126  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
127  QualType ObjCIdTypedefType;
128
129  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
130  QualType ObjCSelTypedefType;
131
132  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
133  QualType ObjCProtoType;
134  const RecordType *ProtoStructType;
135
136  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
137  QualType ObjCClassTypedefType;
138
139  QualType ObjCConstantStringType;
140  RecordDecl *CFConstantStringTypeDecl;
141
142  RecordDecl *ObjCFastEnumerationStateTypeDecl;
143
144  /// \brief The type for the C FILE type.
145  TypeDecl *FILEDecl;
146
147  /// \brief The type for the C jmp_buf type.
148  TypeDecl *jmp_bufDecl;
149
150  /// \brief The type for the C sigjmp_buf type.
151  TypeDecl *sigjmp_bufDecl;
152
153  /// \brief Type for the Block descriptor for Blocks CodeGen.
154  RecordDecl *BlockDescriptorType;
155
156  /// \brief Type for the Block descriptor for Blocks CodeGen.
157  RecordDecl *BlockDescriptorExtendedType;
158
159  /// \brief Keeps track of all declaration attributes.
160  ///
161  /// Since so few decls have attrs, we keep them in a hash map instead of
162  /// wasting space in the Decl class.
163  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
164
165  /// \brief Keeps track of the static data member templates from which
166  /// static data members of class template specializations were instantiated.
167  ///
168  /// This data structure stores the mapping from instantiations of static
169  /// data members to the static data member representations within the
170  /// class template from which they were instantiated along with the kind
171  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
172  ///
173  /// Given the following example:
174  ///
175  /// \code
176  /// template<typename T>
177  /// struct X {
178  ///   static T value;
179  /// };
180  ///
181  /// template<typename T>
182  ///   T X<T>::value = T(17);
183  ///
184  /// int *x = &X<int>::value;
185  /// \endcode
186  ///
187  /// This mapping will contain an entry that maps from the VarDecl for
188  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
189  /// class template X) and will be marked TSK_ImplicitInstantiation.
190  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
191    InstantiatedFromStaticDataMember;
192
193  /// \brief Keeps track of the declaration from which a UsingDecl was
194  /// created during instantiation.  The source declaration is always
195  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
196  /// UnresolvedUsingTypenameDecl.
197  ///
198  /// For example:
199  /// \code
200  /// template<typename T>
201  /// struct A {
202  ///   void f();
203  /// };
204  ///
205  /// template<typename T>
206  /// struct B : A<T> {
207  ///   using A<T>::f;
208  /// };
209  ///
210  /// template struct B<int>;
211  /// \endcode
212  ///
213  /// This mapping will contain an entry that maps from the UsingDecl in
214  /// B<int> to the UnresolvedUsingDecl in B<T>.
215  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
216
217  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
218    InstantiatedFromUsingShadowDecl;
219
220  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
221
222  TranslationUnitDecl *TUDecl;
223
224  /// SourceMgr - The associated SourceManager object.
225  SourceManager &SourceMgr;
226
227  /// LangOpts - The language options used to create the AST associated with
228  ///  this ASTContext object.
229  LangOptions LangOpts;
230
231  /// \brief Whether we have already loaded comment source ranges from an
232  /// external source.
233  bool LoadedExternalComments;
234
235  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
236  bool FreeMemory;
237  llvm::MallocAllocator MallocAlloc;
238  llvm::BumpPtrAllocator BumpAlloc;
239
240  /// \brief Mapping from declarations to their comments, once we have
241  /// already looked up the comment associated with a given declaration.
242  llvm::DenseMap<const Decl *, std::string> DeclComments;
243
244public:
245  const TargetInfo &Target;
246  IdentifierTable &Idents;
247  SelectorTable &Selectors;
248  Builtin::Context &BuiltinInfo;
249  DeclarationNameTable DeclarationNames;
250  llvm::OwningPtr<ExternalASTSource> ExternalSource;
251  clang::PrintingPolicy PrintingPolicy;
252
253  // Typedefs which may be provided defining the structure of Objective-C
254  // pseudo-builtins
255  QualType ObjCIdRedefinitionType;
256  QualType ObjCClassRedefinitionType;
257  QualType ObjCSelRedefinitionType;
258
259  /// \brief Source ranges for all of the comments in the source file,
260  /// sorted in order of appearance in the translation unit.
261  std::vector<SourceRange> Comments;
262
263  SourceManager& getSourceManager() { return SourceMgr; }
264  const SourceManager& getSourceManager() const { return SourceMgr; }
265  void *Allocate(unsigned Size, unsigned Align = 8) {
266    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
267                        BumpAlloc.Allocate(Size, Align);
268  }
269  void Deallocate(void *Ptr) {
270    if (FreeMemory)
271      MallocAlloc.Deallocate(Ptr);
272  }
273  const LangOptions& getLangOptions() const { return LangOpts; }
274
275  FullSourceLoc getFullLoc(SourceLocation Loc) const {
276    return FullSourceLoc(Loc,SourceMgr);
277  }
278
279  /// \brief Retrieve the attributes for the given declaration.
280  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
281
282  /// \brief Erase the attributes corresponding to the given declaration.
283  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
284
285  /// \brief If this variable is an instantiated static data member of a
286  /// class template specialization, returns the templated static data member
287  /// from which it was instantiated.
288  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
289                                                           const VarDecl *Var);
290
291  /// \brief Note that the static data member \p Inst is an instantiation of
292  /// the static data member template \p Tmpl of a class template.
293  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
294                                           TemplateSpecializationKind TSK);
295
296  /// \brief If the given using decl is an instantiation of a
297  /// (possibly unresolved) using decl from a template instantiation,
298  /// return it.
299  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
300
301  /// \brief Remember that the using decl \p Inst is an instantiation
302  /// of the using decl \p Pattern of a class template.
303  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
304
305  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
306                                          UsingShadowDecl *Pattern);
307  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
308
309  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
310
311  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
312
313  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
314
315
316  const char *getCommentForDecl(const Decl *D);
317
318  // Builtin Types.
319  CanQualType VoidTy;
320  CanQualType BoolTy;
321  CanQualType CharTy;
322  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
323  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
324  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
325  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
326  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
327  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
328  CanQualType FloatTy, DoubleTy, LongDoubleTy;
329  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
330  CanQualType VoidPtrTy, NullPtrTy;
331  CanQualType OverloadTy;
332  CanQualType DependentTy;
333  CanQualType UndeducedAutoTy;
334  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
335
336  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
337             IdentifierTable &idents, SelectorTable &sels,
338             Builtin::Context &builtins,
339             bool FreeMemory = true, unsigned size_reserve=0);
340
341  ~ASTContext();
342
343  /// \brief Attach an external AST source to the AST context.
344  ///
345  /// The external AST source provides the ability to load parts of
346  /// the abstract syntax tree as needed from some external storage,
347  /// e.g., a precompiled header.
348  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
349
350  /// \brief Retrieve a pointer to the external AST source associated
351  /// with this AST context, if any.
352  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
353
354  void PrintStats() const;
355  const std::vector<Type*>& getTypes() const { return Types; }
356
357  //===--------------------------------------------------------------------===//
358  //                           Type Constructors
359  //===--------------------------------------------------------------------===//
360
361private:
362  /// getExtQualType - Return a type with extended qualifiers.
363  QualType getExtQualType(const Type *Base, Qualifiers Quals);
364
365public:
366  /// getAddSpaceQualType - Return the uniqued reference to the type for an
367  /// address space qualified type with the specified type and address space.
368  /// The resulting type has a union of the qualifiers from T and the address
369  /// space. If T already has an address space specifier, it is silently
370  /// replaced.
371  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
372
373  /// getObjCGCQualType - Returns the uniqued reference to the type for an
374  /// objc gc qualified type. The retulting type has a union of the qualifiers
375  /// from T and the gc attribute.
376  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
377
378  /// getRestrictType - Returns the uniqued reference to the type for a
379  /// 'restrict' qualified type.  The resulting type has a union of the
380  /// qualifiers from T and 'restrict'.
381  QualType getRestrictType(QualType T) {
382    return T.withFastQualifiers(Qualifiers::Restrict);
383  }
384
385  /// getVolatileType - Returns the uniqued reference to the type for a
386  /// 'volatile' qualified type.  The resulting type has a union of the
387  /// qualifiers from T and 'volatile'.
388  QualType getVolatileType(QualType T);
389
390  /// getConstType - Returns the uniqued reference to the type for a
391  /// 'const' qualified type.  The resulting type has a union of the
392  /// qualifiers from T and 'const'.
393  ///
394  /// It can be reasonably expected that this will always be
395  /// equivalent to calling T.withConst().
396  QualType getConstType(QualType T) { return T.withConst(); }
397
398  /// getNoReturnType - Add or remove the noreturn attribute to the given type
399  /// which must be a FunctionType or a pointer to an allowable type or a
400  /// BlockPointer.
401  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
402
403  /// getCallConvType - Adds the specified calling convention attribute to
404  /// the given type, which must be a FunctionType or a pointer to an
405  /// allowable type.
406  QualType getCallConvType(QualType T, CallingConv CallConv);
407
408  /// getComplexType - Return the uniqued reference to the type for a complex
409  /// number with the specified element type.
410  QualType getComplexType(QualType T);
411  CanQualType getComplexType(CanQualType T) {
412    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
413  }
414
415  /// getPointerType - Return the uniqued reference to the type for a pointer to
416  /// the specified type.
417  QualType getPointerType(QualType T);
418  CanQualType getPointerType(CanQualType T) {
419    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
420  }
421
422  /// getBlockPointerType - Return the uniqued reference to the type for a block
423  /// of the specified type.
424  QualType getBlockPointerType(QualType T);
425
426  /// This gets the struct used to keep track of the descriptor for pointer to
427  /// blocks.
428  QualType getBlockDescriptorType();
429
430  // Set the type for a Block descriptor type.
431  void setBlockDescriptorType(QualType T);
432  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
433  QualType getRawBlockdescriptorType() {
434    if (BlockDescriptorType)
435      return getTagDeclType(BlockDescriptorType);
436    return QualType();
437  }
438
439  /// This gets the struct used to keep track of the extended descriptor for
440  /// pointer to blocks.
441  QualType getBlockDescriptorExtendedType();
442
443  // Set the type for a Block descriptor extended type.
444  void setBlockDescriptorExtendedType(QualType T);
445  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
446  /// built.
447  QualType getRawBlockdescriptorExtendedType() {
448    if (BlockDescriptorExtendedType)
449      return getTagDeclType(BlockDescriptorExtendedType);
450    return QualType();
451  }
452
453  /// This gets the struct used to keep track of pointer to blocks, complete
454  /// with captured variables.
455  QualType getBlockParmType(bool BlockHasCopyDispose,
456                            llvm::SmallVector<const Expr *, 8> &BDRDs);
457
458  /// This builds the struct used for __block variables.
459  QualType BuildByRefType(const char *DeclName, QualType Ty);
460
461  /// Returns true iff we need copy/dispose helpers for the given type.
462  bool BlockRequiresCopying(QualType Ty);
463
464  /// getLValueReferenceType - Return the uniqued reference to the type for an
465  /// lvalue reference to the specified type.
466  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
467
468  /// getRValueReferenceType - Return the uniqued reference to the type for an
469  /// rvalue reference to the specified type.
470  QualType getRValueReferenceType(QualType T);
471
472  /// getMemberPointerType - Return the uniqued reference to the type for a
473  /// member pointer to the specified type in the specified class. The class
474  /// is a Type because it could be a dependent name.
475  QualType getMemberPointerType(QualType T, const Type *Cls);
476
477  /// getVariableArrayType - Returns a non-unique reference to the type for a
478  /// variable array of the specified element type.
479  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
480                                ArrayType::ArraySizeModifier ASM,
481                                unsigned EltTypeQuals,
482                                SourceRange Brackets);
483
484  /// getDependentSizedArrayType - Returns a non-unique reference to
485  /// the type for a dependently-sized array of the specified element
486  /// type. FIXME: We will need these to be uniqued, or at least
487  /// comparable, at some point.
488  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
489                                      ArrayType::ArraySizeModifier ASM,
490                                      unsigned EltTypeQuals,
491                                      SourceRange Brackets);
492
493  /// getIncompleteArrayType - Returns a unique reference to the type for a
494  /// incomplete array of the specified element type.
495  QualType getIncompleteArrayType(QualType EltTy,
496                                  ArrayType::ArraySizeModifier ASM,
497                                  unsigned EltTypeQuals);
498
499  /// getConstantArrayType - Return the unique reference to the type for a
500  /// constant array of the specified element type.
501  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
502                                ArrayType::ArraySizeModifier ASM,
503                                unsigned EltTypeQuals);
504
505  /// getVectorType - Return the unique reference to a vector type of
506  /// the specified element type and size. VectorType must be a built-in type.
507  QualType getVectorType(QualType VectorType, unsigned NumElts,
508                         bool AltiVec, bool IsPixel);
509
510  /// getExtVectorType - Return the unique reference to an extended vector type
511  /// of the specified element type and size.  VectorType must be a built-in
512  /// type.
513  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
514
515  /// getDependentSizedExtVectorType - Returns a non-unique reference to
516  /// the type for a dependently-sized vector of the specified element
517  /// type. FIXME: We will need these to be uniqued, or at least
518  /// comparable, at some point.
519  QualType getDependentSizedExtVectorType(QualType VectorType,
520                                          Expr *SizeExpr,
521                                          SourceLocation AttrLoc);
522
523  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
524  ///
525  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false,
526                                  CallingConv CallConv = CC_Default);
527
528  /// getFunctionType - Return a normal function type with a typed argument
529  /// list.  isVariadic indicates whether the argument list includes '...'.
530  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
531                           unsigned NumArgs, bool isVariadic,
532                           unsigned TypeQuals, bool hasExceptionSpec = false,
533                           bool hasAnyExceptionSpec = false,
534                           unsigned NumExs = 0, const QualType *ExArray = 0,
535                           bool NoReturn = false,
536                           CallingConv CallConv = CC_Default);
537
538  /// getTypeDeclType - Return the unique reference to the type for
539  /// the specified type declaration.
540  QualType getTypeDeclType(const TypeDecl *Decl, const TypeDecl* PrevDecl=0);
541
542  /// getTypedefType - Return the unique reference to the type for the
543  /// specified typename decl.
544  QualType getTypedefType(const TypedefDecl *Decl);
545
546  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
547                                        QualType Replacement);
548
549  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
550                                   bool ParameterPack,
551                                   IdentifierInfo *Name = 0);
552
553  QualType getTemplateSpecializationType(TemplateName T,
554                                         const TemplateArgument *Args,
555                                         unsigned NumArgs,
556                                         QualType Canon = QualType());
557
558  QualType getTemplateSpecializationType(TemplateName T,
559                                         const TemplateArgumentListInfo &Args,
560                                         QualType Canon = QualType());
561
562  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
563                                QualType NamedType);
564  QualType getTypenameType(NestedNameSpecifier *NNS,
565                           const IdentifierInfo *Name,
566                           QualType Canon = QualType());
567  QualType getTypenameType(NestedNameSpecifier *NNS,
568                           const TemplateSpecializationType *TemplateId,
569                           QualType Canon = QualType());
570  QualType getElaboratedType(QualType UnderlyingType,
571                             ElaboratedType::TagKind Tag);
572
573  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
574                                ObjCProtocolDecl **Protocols = 0,
575                                unsigned NumProtocols = 0);
576
577  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
578  /// given interface decl and the conforming protocol list.
579  QualType getObjCObjectPointerType(QualType OIT,
580                                    ObjCProtocolDecl **ProtocolList = 0,
581                                    unsigned NumProtocols = 0);
582
583  /// getTypeOfType - GCC extension.
584  QualType getTypeOfExprType(Expr *e);
585  QualType getTypeOfType(QualType t);
586
587  /// getDecltypeType - C++0x decltype.
588  QualType getDecltypeType(Expr *e);
589
590  /// getTagDeclType - Return the unique reference to the type for the
591  /// specified TagDecl (struct/union/class/enum) decl.
592  QualType getTagDeclType(const TagDecl *Decl);
593
594  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
595  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
596  CanQualType getSizeType() const;
597
598  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
599  /// returns a type compatible with the type defined in <stddef.h> as defined
600  /// by the target.
601  QualType getWCharType() const { return WCharTy; }
602
603  /// getSignedWCharType - Return the type of "signed wchar_t".
604  /// Used when in C++, as a GCC extension.
605  QualType getSignedWCharType() const;
606
607  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
608  /// Used when in C++, as a GCC extension.
609  QualType getUnsignedWCharType() const;
610
611  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
612  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
613  QualType getPointerDiffType() const;
614
615  // getCFConstantStringType - Return the C structure type used to represent
616  // constant CFStrings.
617  QualType getCFConstantStringType();
618
619  /// Get the structure type used to representation CFStrings, or NULL
620  /// if it hasn't yet been built.
621  QualType getRawCFConstantStringType() {
622    if (CFConstantStringTypeDecl)
623      return getTagDeclType(CFConstantStringTypeDecl);
624    return QualType();
625  }
626  void setCFConstantStringType(QualType T);
627
628  // This setter/getter represents the ObjC type for an NSConstantString.
629  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
630  QualType getObjCConstantStringInterface() const {
631    return ObjCConstantStringType;
632  }
633
634  //// This gets the struct used to keep track of fast enumerations.
635  QualType getObjCFastEnumerationStateType();
636
637  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
638  /// been built.
639  QualType getRawObjCFastEnumerationStateType() {
640    if (ObjCFastEnumerationStateTypeDecl)
641      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
642    return QualType();
643  }
644
645  void setObjCFastEnumerationStateType(QualType T);
646
647  /// \brief Set the type for the C FILE type.
648  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
649
650  /// \brief Retrieve the C FILE type.
651  QualType getFILEType() {
652    if (FILEDecl)
653      return getTypeDeclType(FILEDecl);
654    return QualType();
655  }
656
657  /// \brief Set the type for the C jmp_buf type.
658  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
659    this->jmp_bufDecl = jmp_bufDecl;
660  }
661
662  /// \brief Retrieve the C jmp_buf type.
663  QualType getjmp_bufType() {
664    if (jmp_bufDecl)
665      return getTypeDeclType(jmp_bufDecl);
666    return QualType();
667  }
668
669  /// \brief Set the type for the C sigjmp_buf type.
670  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
671    this->sigjmp_bufDecl = sigjmp_bufDecl;
672  }
673
674  /// \brief Retrieve the C sigjmp_buf type.
675  QualType getsigjmp_bufType() {
676    if (sigjmp_bufDecl)
677      return getTypeDeclType(sigjmp_bufDecl);
678    return QualType();
679  }
680
681  /// getObjCEncodingForType - Emit the ObjC type encoding for the
682  /// given type into \arg S. If \arg NameFields is specified then
683  /// record field names are also encoded.
684  void getObjCEncodingForType(QualType t, std::string &S,
685                              const FieldDecl *Field=0);
686
687  void getLegacyIntegralTypeEncoding(QualType &t) const;
688
689  // Put the string version of type qualifiers into S.
690  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
691                                       std::string &S) const;
692
693  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
694  /// declaration.
695  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
696
697  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
698  /// declaration.
699  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
700
701  /// getObjCEncodingForPropertyDecl - Return the encoded type for
702  /// this method declaration. If non-NULL, Container must be either
703  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
704  /// only be NULL when getting encodings for protocol properties.
705  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
706                                      const Decl *Container,
707                                      std::string &S);
708
709  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
710                                      ObjCProtocolDecl *rProto);
711
712  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
713  /// purpose in characters.
714  CharUnits getObjCEncodingTypeSize(QualType t);
715
716  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
717  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
718  QualType getObjCIdType() const { return ObjCIdTypedefType; }
719  void setObjCIdType(QualType T);
720
721  void setObjCSelType(QualType T);
722  QualType getObjCSelType() const { return ObjCSelTypedefType; }
723
724  void setObjCProtoType(QualType QT);
725  QualType getObjCProtoType() const { return ObjCProtoType; }
726
727  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
728  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
729  /// struct.
730  QualType getObjCClassType() const { return ObjCClassTypedefType; }
731  void setObjCClassType(QualType T);
732
733  void setBuiltinVaListType(QualType T);
734  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
735
736  /// getCVRQualifiedType - Returns a type with additional const,
737  /// volatile, or restrict qualifiers.
738  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
739    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
740  }
741
742  /// getQualifiedType - Returns a type with additional qualifiers.
743  QualType getQualifiedType(QualType T, Qualifiers Qs) {
744    if (!Qs.hasNonFastQualifiers())
745      return T.withFastQualifiers(Qs.getFastQualifiers());
746    QualifierCollector Qc(Qs);
747    const Type *Ptr = Qc.strip(T);
748    return getExtQualType(Ptr, Qc);
749  }
750
751  /// getQualifiedType - Returns a type with additional qualifiers.
752  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
753    if (!Qs.hasNonFastQualifiers())
754      return QualType(T, Qs.getFastQualifiers());
755    return getExtQualType(T, Qs);
756  }
757
758  DeclarationName getNameForTemplate(TemplateName Name);
759
760  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
761                                         UnresolvedSetIterator End);
762
763  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
764                                        bool TemplateKeyword,
765                                        TemplateDecl *Template);
766
767  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
768                                        const IdentifierInfo *Name);
769  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
770                                        OverloadedOperatorKind Operator);
771
772  enum GetBuiltinTypeError {
773    GE_None,              //< No error
774    GE_Missing_stdio,     //< Missing a type from <stdio.h>
775    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
776  };
777
778  /// GetBuiltinType - Return the type for the specified builtin.
779  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
780
781private:
782  CanQualType getFromTargetType(unsigned Type) const;
783
784  //===--------------------------------------------------------------------===//
785  //                         Type Predicates.
786  //===--------------------------------------------------------------------===//
787
788public:
789  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
790  /// garbage collection attribute.
791  ///
792  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
793
794  /// isObjCNSObjectType - Return true if this is an NSObject object with
795  /// its NSObject attribute set.
796  bool isObjCNSObjectType(QualType Ty) const;
797
798  //===--------------------------------------------------------------------===//
799  //                         Type Sizing and Analysis
800  //===--------------------------------------------------------------------===//
801
802  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
803  /// scalar floating point type.
804  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
805
806  /// getTypeInfo - Get the size and alignment of the specified complete type in
807  /// bits.
808  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
809  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
810    return getTypeInfo(T.getTypePtr());
811  }
812
813  /// getTypeSize - Return the size of the specified type, in bits.  This method
814  /// does not work on incomplete types.
815  uint64_t getTypeSize(QualType T) {
816    return getTypeInfo(T).first;
817  }
818  uint64_t getTypeSize(const Type *T) {
819    return getTypeInfo(T).first;
820  }
821
822  /// getCharWidth - Return the size of the character type, in bits
823  uint64_t getCharWidth() {
824    return getTypeSize(CharTy);
825  }
826
827  /// getTypeSizeInChars - Return the size of the specified type, in characters.
828  /// This method does not work on incomplete types.
829  CharUnits getTypeSizeInChars(QualType T);
830  CharUnits getTypeSizeInChars(const Type *T);
831
832  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
833  /// This method does not work on incomplete types.
834  unsigned getTypeAlign(QualType T) {
835    return getTypeInfo(T).second;
836  }
837  unsigned getTypeAlign(const Type *T) {
838    return getTypeInfo(T).second;
839  }
840
841  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
842  /// characters. This method does not work on incomplete types.
843  CharUnits getTypeAlignInChars(QualType T);
844  CharUnits getTypeAlignInChars(const Type *T);
845
846  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
847  /// type for the current target in bits.  This can be different than the ABI
848  /// alignment in cases where it is beneficial for performance to overalign
849  /// a data type.
850  unsigned getPreferredTypeAlign(const Type *T);
851
852  /// getDeclAlign - Return a conservative estimate of the alignment of
853  /// the specified decl.  Note that bitfields do not have a valid alignment, so
854  /// this method will assert on them.
855  /// If @p RefAsPointee, references are treated like their underlying type
856  /// (for alignof), else they're treated like pointers (for CodeGen).
857  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
858
859  /// getASTRecordLayout - Get or compute information about the layout of the
860  /// specified record (struct/union/class), which indicates its size and field
861  /// position information.
862  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
863
864  /// getASTObjCInterfaceLayout - Get or compute information about the
865  /// layout of the specified Objective-C interface.
866  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
867
868  /// getASTObjCImplementationLayout - Get or compute information about
869  /// the layout of the specified Objective-C implementation. This may
870  /// differ from the interface if synthesized ivars are present.
871  const ASTRecordLayout &
872  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
873
874  /// getKeyFunction - Get the key function for the given record decl.
875  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
876  ///
877  /// ...the first non-pure virtual function that is not inline at the point
878  /// of class definition.
879  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
880
881  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
882                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
883
884  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
885                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
886                               bool CollectSynthesized = true);
887  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
888                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
889  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
890                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
891  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
892  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
893  void CollectInheritedProtocols(const Decl *CDecl,
894                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
895
896  //===--------------------------------------------------------------------===//
897  //                            Type Operators
898  //===--------------------------------------------------------------------===//
899
900  /// getCanonicalType - Return the canonical (structural) type corresponding to
901  /// the specified potentially non-canonical type.  The non-canonical version
902  /// of a type may have many "decorated" versions of types.  Decorators can
903  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
904  /// to be free of any of these, allowing two canonical types to be compared
905  /// for exact equality with a simple pointer comparison.
906  CanQualType getCanonicalType(QualType T);
907  const Type *getCanonicalType(const Type *T) {
908    return T->getCanonicalTypeInternal().getTypePtr();
909  }
910
911  /// getCanonicalParamType - Return the canonical parameter type
912  /// corresponding to the specific potentially non-canonical one.
913  /// Qualifiers are stripped off, functions are turned into function
914  /// pointers, and arrays decay one level into pointers.
915  CanQualType getCanonicalParamType(QualType T);
916
917  /// \brief Determine whether the given types are equivalent.
918  bool hasSameType(QualType T1, QualType T2) {
919    return getCanonicalType(T1) == getCanonicalType(T2);
920  }
921
922  /// \brief Returns this type as a completely-unqualified array type,
923  /// capturing the qualifiers in Quals. This will remove the minimal amount of
924  /// sugaring from the types, similar to the behavior of
925  /// QualType::getUnqualifiedType().
926  ///
927  /// \param T is the qualified type, which may be an ArrayType
928  ///
929  /// \param Quals will receive the full set of qualifiers that were
930  /// applied to the array.
931  ///
932  /// \returns if this is an array type, the completely unqualified array type
933  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
934  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
935
936  /// \brief Determine whether the given types are equivalent after
937  /// cvr-qualifiers have been removed.
938  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
939    CanQualType CT1 = getCanonicalType(T1);
940    CanQualType CT2 = getCanonicalType(T2);
941
942    Qualifiers Quals;
943    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
944    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
945    return UnqualT1 == UnqualT2;
946  }
947
948  /// \brief Retrieves the "canonical" declaration of
949
950  /// \brief Retrieves the "canonical" nested name specifier for a
951  /// given nested name specifier.
952  ///
953  /// The canonical nested name specifier is a nested name specifier
954  /// that uniquely identifies a type or namespace within the type
955  /// system. For example, given:
956  ///
957  /// \code
958  /// namespace N {
959  ///   struct S {
960  ///     template<typename T> struct X { typename T* type; };
961  ///   };
962  /// }
963  ///
964  /// template<typename T> struct Y {
965  ///   typename N::S::X<T>::type member;
966  /// };
967  /// \endcode
968  ///
969  /// Here, the nested-name-specifier for N::S::X<T>:: will be
970  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
971  /// by declarations in the type system and the canonical type for
972  /// the template type parameter 'T' is template-param-0-0.
973  NestedNameSpecifier *
974  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
975
976  /// \brief Retrieves the canonical representation of the given
977  /// calling convention.
978  CallingConv getCanonicalCallConv(CallingConv CC) {
979    if (CC == CC_C)
980      return CC_Default;
981    return CC;
982  }
983
984  /// \brief Determines whether two calling conventions name the same
985  /// calling convention.
986  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
987    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
988  }
989
990  /// \brief Retrieves the "canonical" template name that refers to a
991  /// given template.
992  ///
993  /// The canonical template name is the simplest expression that can
994  /// be used to refer to a given template. For most templates, this
995  /// expression is just the template declaration itself. For example,
996  /// the template std::vector can be referred to via a variety of
997  /// names---std::vector, ::std::vector, vector (if vector is in
998  /// scope), etc.---but all of these names map down to the same
999  /// TemplateDecl, which is used to form the canonical template name.
1000  ///
1001  /// Dependent template names are more interesting. Here, the
1002  /// template name could be something like T::template apply or
1003  /// std::allocator<T>::template rebind, where the nested name
1004  /// specifier itself is dependent. In this case, the canonical
1005  /// template name uses the shortest form of the dependent
1006  /// nested-name-specifier, which itself contains all canonical
1007  /// types, values, and templates.
1008  TemplateName getCanonicalTemplateName(TemplateName Name);
1009
1010  /// \brief Determine whether the given template names refer to the same
1011  /// template.
1012  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1013
1014  /// \brief Retrieve the "canonical" template argument.
1015  ///
1016  /// The canonical template argument is the simplest template argument
1017  /// (which may be a type, value, expression, or declaration) that
1018  /// expresses the value of the argument.
1019  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1020
1021  /// Type Query functions.  If the type is an instance of the specified class,
1022  /// return the Type pointer for the underlying maximally pretty type.  This
1023  /// is a member of ASTContext because this may need to do some amount of
1024  /// canonicalization, e.g. to move type qualifiers into the element type.
1025  const ArrayType *getAsArrayType(QualType T);
1026  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1027    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1028  }
1029  const VariableArrayType *getAsVariableArrayType(QualType T) {
1030    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1031  }
1032  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1033    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1034  }
1035  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1036    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1037  }
1038
1039  /// getBaseElementType - Returns the innermost element type of an array type.
1040  /// For example, will return "int" for int[m][n]
1041  QualType getBaseElementType(const ArrayType *VAT);
1042
1043  /// getBaseElementType - Returns the innermost element type of a type
1044  /// (which needn't actually be an array type).
1045  QualType getBaseElementType(QualType QT);
1046
1047  /// getConstantArrayElementCount - Returns number of constant array elements.
1048  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1049
1050  /// getArrayDecayedType - Return the properly qualified result of decaying the
1051  /// specified array type to a pointer.  This operation is non-trivial when
1052  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1053  /// this returns a pointer to a properly qualified element of the array.
1054  ///
1055  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1056  QualType getArrayDecayedType(QualType T);
1057
1058  /// getPromotedIntegerType - Returns the type that Promotable will
1059  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1060  /// integer type.
1061  QualType getPromotedIntegerType(QualType PromotableType);
1062
1063  /// \brief Whether this is a promotable bitfield reference according
1064  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1065  ///
1066  /// \returns the type this bit-field will promote to, or NULL if no
1067  /// promotion occurs.
1068  QualType isPromotableBitField(Expr *E);
1069
1070  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1071  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1072  /// LHS < RHS, return -1.
1073  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1074
1075  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1076  /// point types, ignoring the domain of the type (i.e. 'double' ==
1077  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1078  /// LHS < RHS, return -1.
1079  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1080
1081  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1082  /// point or a complex type (based on typeDomain/typeSize).
1083  /// 'typeDomain' is a real floating point or complex type.
1084  /// 'typeSize' is a real floating point or complex type.
1085  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1086                                             QualType typeDomain) const;
1087
1088private:
1089  // Helper for integer ordering
1090  unsigned getIntegerRank(Type* T);
1091
1092public:
1093
1094  //===--------------------------------------------------------------------===//
1095  //                    Type Compatibility Predicates
1096  //===--------------------------------------------------------------------===//
1097
1098  /// Compatibility predicates used to check assignment expressions.
1099  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1100
1101  bool isObjCIdType(QualType T) const {
1102    return T == ObjCIdTypedefType;
1103  }
1104  bool isObjCClassType(QualType T) const {
1105    return T == ObjCClassTypedefType;
1106  }
1107  bool isObjCSelType(QualType T) const {
1108    return T == ObjCSelTypedefType;
1109  }
1110  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1111  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1112                                         bool ForCompare);
1113
1114  // Check the safety of assignment from LHS to RHS
1115  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1116                               const ObjCObjectPointerType *RHSOPT);
1117  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1118                               const ObjCInterfaceType *RHS);
1119  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1120  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1121                                   const ObjCObjectPointerType *RHSOPT);
1122
1123  // Functions for calculating composite types
1124  QualType mergeTypes(QualType, QualType);
1125  QualType mergeFunctionTypes(QualType, QualType);
1126
1127  /// UsualArithmeticConversionsType - handles the various conversions
1128  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1129  /// and returns the result type of that conversion.
1130  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1131
1132  //===--------------------------------------------------------------------===//
1133  //                    Integer Predicates
1134  //===--------------------------------------------------------------------===//
1135
1136  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1137  // of bits in an integer type excluding any padding bits.
1138  unsigned getIntWidth(QualType T);
1139
1140  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1141  // unsigned integer type.  This method takes a signed type, and returns the
1142  // corresponding unsigned integer type.
1143  QualType getCorrespondingUnsignedType(QualType T);
1144
1145  //===--------------------------------------------------------------------===//
1146  //                    Type Iterators.
1147  //===--------------------------------------------------------------------===//
1148
1149  typedef std::vector<Type*>::iterator       type_iterator;
1150  typedef std::vector<Type*>::const_iterator const_type_iterator;
1151
1152  type_iterator types_begin() { return Types.begin(); }
1153  type_iterator types_end() { return Types.end(); }
1154  const_type_iterator types_begin() const { return Types.begin(); }
1155  const_type_iterator types_end() const { return Types.end(); }
1156
1157  //===--------------------------------------------------------------------===//
1158  //                    Integer Values
1159  //===--------------------------------------------------------------------===//
1160
1161  /// MakeIntValue - Make an APSInt of the appropriate width and
1162  /// signedness for the given \arg Value and integer \arg Type.
1163  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1164    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1165    Res = Value;
1166    return Res;
1167  }
1168
1169  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1170  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1171  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1172  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1173
1174  /// \brief Set the implementation of ObjCInterfaceDecl.
1175  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1176                             ObjCImplementationDecl *ImplD);
1177  /// \brief Set the implementation of ObjCCategoryDecl.
1178  void setObjCImplementation(ObjCCategoryDecl *CatD,
1179                             ObjCCategoryImplDecl *ImplD);
1180
1181  /// \brief Allocate an uninitialized TypeSourceInfo.
1182  ///
1183  /// The caller should initialize the memory held by TypeSourceInfo using
1184  /// the TypeLoc wrappers.
1185  ///
1186  /// \param T the type that will be the basis for type source info. This type
1187  /// should refer to how the declarator was written in source code, not to
1188  /// what type semantic analysis resolved the declarator to.
1189  ///
1190  /// \param Size the size of the type info to create, or 0 if the size
1191  /// should be calculated based on the type.
1192  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1193
1194  /// \brief Allocate a TypeSourceInfo where all locations have been
1195  /// initialized to a given location, which defaults to the empty
1196  /// location.
1197  TypeSourceInfo *
1198  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1199
1200private:
1201  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1202  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1203
1204  void InitBuiltinTypes();
1205  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1206
1207  // Return the ObjC type encoding for a given type.
1208  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1209                                  bool ExpandPointedToStructures,
1210                                  bool ExpandStructures,
1211                                  const FieldDecl *Field,
1212                                  bool OutermostType = false,
1213                                  bool EncodingProperty = false);
1214
1215  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1216                                       const ObjCImplementationDecl *Impl);
1217
1218private:
1219  // FIXME: This currently contains the set of StoredDeclMaps used
1220  // by DeclContext objects.  This probably should not be in ASTContext,
1221  // but we include it here so that ASTContext can quickly deallocate them.
1222  std::vector<void*> SDMs;
1223  friend class DeclContext;
1224  void *CreateStoredDeclsMap();
1225  void ReleaseDeclContextMaps();
1226};
1227
1228/// @brief Utility function for constructing a nullary selector.
1229static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1230  IdentifierInfo* II = &Ctx.Idents.get(name);
1231  return Ctx.Selectors.getSelector(0, &II);
1232}
1233
1234/// @brief Utility function for constructing an unary selector.
1235static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1236  IdentifierInfo* II = &Ctx.Idents.get(name);
1237  return Ctx.Selectors.getSelector(1, &II);
1238}
1239
1240}  // end namespace clang
1241
1242// operator new and delete aren't allowed inside namespaces.
1243// The throw specifications are mandated by the standard.
1244/// @brief Placement new for using the ASTContext's allocator.
1245///
1246/// This placement form of operator new uses the ASTContext's allocator for
1247/// obtaining memory. It is a non-throwing new, which means that it returns
1248/// null on error. (If that is what the allocator does. The current does, so if
1249/// this ever changes, this operator will have to be changed, too.)
1250/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1251/// @code
1252/// // Default alignment (16)
1253/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1254/// // Specific alignment
1255/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
1256/// @endcode
1257/// Please note that you cannot use delete on the pointer; it must be
1258/// deallocated using an explicit destructor call followed by
1259/// @c Context.Deallocate(Ptr).
1260///
1261/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1262/// @param C The ASTContext that provides the allocator.
1263/// @param Alignment The alignment of the allocated memory (if the underlying
1264///                  allocator supports it).
1265/// @return The allocated memory. Could be NULL.
1266inline void *operator new(size_t Bytes, clang::ASTContext &C,
1267                          size_t Alignment) throw () {
1268  return C.Allocate(Bytes, Alignment);
1269}
1270/// @brief Placement delete companion to the new above.
1271///
1272/// This operator is just a companion to the new above. There is no way of
1273/// invoking it directly; see the new operator for more details. This operator
1274/// is called implicitly by the compiler if a placement new expression using
1275/// the ASTContext throws in the object constructor.
1276inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1277              throw () {
1278  C.Deallocate(Ptr);
1279}
1280
1281/// This placement form of operator new[] uses the ASTContext's allocator for
1282/// obtaining memory. It is a non-throwing new[], which means that it returns
1283/// null on error.
1284/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1285/// @code
1286/// // Default alignment (16)
1287/// char *data = new (Context) char[10];
1288/// // Specific alignment
1289/// char *data = new (Context, 8) char[10];
1290/// @endcode
1291/// Please note that you cannot use delete on the pointer; it must be
1292/// deallocated using an explicit destructor call followed by
1293/// @c Context.Deallocate(Ptr).
1294///
1295/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1296/// @param C The ASTContext that provides the allocator.
1297/// @param Alignment The alignment of the allocated memory (if the underlying
1298///                  allocator supports it).
1299/// @return The allocated memory. Could be NULL.
1300inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1301                            size_t Alignment = 16) throw () {
1302  return C.Allocate(Bytes, Alignment);
1303}
1304
1305/// @brief Placement delete[] companion to the new[] above.
1306///
1307/// This operator is just a companion to the new[] above. There is no way of
1308/// invoking it directly; see the new[] operator for more details. This operator
1309/// is called implicitly by the compiler if a placement new[] expression using
1310/// the ASTContext throws in the object constructor.
1311inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1312              throw () {
1313  C.Deallocate(Ptr);
1314}
1315
1316#endif
1317