ASTContext.h revision 1b63e4f732dbc73d90abf886b4d21f8e3a165f6d
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/PrettyPrinter.h"
23#include "clang/AST/TemplateName.h"
24#include "clang/AST/Type.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Support/Allocator.h"
29#include <vector>
30
31namespace llvm {
32  struct fltSemantics;
33}
34
35namespace clang {
36  class FileManager;
37  class ASTRecordLayout;
38  class Expr;
39  class ExternalASTSource;
40  class IdentifierTable;
41  class SelectorTable;
42  class SourceManager;
43  class TargetInfo;
44  // Decls
45  class Decl;
46  class ObjCPropertyDecl;
47  class RecordDecl;
48  class TagDecl;
49  class TranslationUnitDecl;
50  class TypeDecl;
51  class TypedefDecl;
52  class TemplateTypeParmDecl;
53  class FieldDecl;
54  class ObjCIvarRefExpr;
55  class ObjCIvarDecl;
56
57  namespace Builtin { class Context; }
58
59/// ASTContext - This class holds long-lived AST nodes (such as types and
60/// decls) that can be referred to throughout the semantic analysis of a file.
61class ASTContext {
62  std::vector<Type*> Types;
63  llvm::FoldingSet<ExtQualType> ExtQualTypes;
64  llvm::FoldingSet<ComplexType> ComplexTypes;
65  llvm::FoldingSet<PointerType> PointerTypes;
66  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
67  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
68  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
69  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
70  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
71  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
72  std::vector<VariableArrayType*> VariableArrayTypes;
73  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
74  llvm::FoldingSet<VectorType> VectorTypes;
75  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
76  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
77  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
78  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
79  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
80  llvm::FoldingSet<TypenameType> TypenameTypes;
81  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
82  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
83
84  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
85  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
86
87  /// \brief The set of nested name specifiers.
88  ///
89  /// This set is managed by the NestedNameSpecifier class.
90  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
91  NestedNameSpecifier *GlobalNestedNameSpecifier;
92  friend class NestedNameSpecifier;
93
94  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
95  ///  This is lazily created.  This is intentionally not serialized.
96  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
97  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
98
99  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
100  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
101
102  /// BuiltinVaListType - built-in va list type.
103  /// This is initially null and set by Sema::LazilyCreateBuiltin when
104  /// a builtin that takes a valist is encountered.
105  QualType BuiltinVaListType;
106
107  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
108  QualType ObjCIdType;
109  const RecordType *IdStructType;
110
111  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
112  QualType ObjCSelType;
113  const RecordType *SelStructType;
114
115  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
116  QualType ObjCProtoType;
117  const RecordType *ProtoStructType;
118
119  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
120  QualType ObjCClassType;
121  const RecordType *ClassStructType;
122
123  QualType ObjCConstantStringType;
124  RecordDecl *CFConstantStringTypeDecl;
125
126  RecordDecl *ObjCFastEnumerationStateTypeDecl;
127
128  TranslationUnitDecl *TUDecl;
129
130  /// SourceMgr - The associated SourceManager object.
131  SourceManager &SourceMgr;
132
133  /// LangOpts - The language options used to create the AST associated with
134  ///  this ASTContext object.
135  LangOptions LangOpts;
136
137  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
138  bool FreeMemory;
139  llvm::MallocAllocator MallocAlloc;
140  llvm::BumpPtrAllocator BumpAlloc;
141public:
142  TargetInfo &Target;
143  IdentifierTable &Idents;
144  SelectorTable &Selectors;
145  Builtin::Context &BuiltinInfo;
146  DeclarationNameTable DeclarationNames;
147  llvm::OwningPtr<ExternalASTSource> ExternalSource;
148  clang::PrintingPolicy PrintingPolicy;
149
150  SourceManager& getSourceManager() { return SourceMgr; }
151  const SourceManager& getSourceManager() const { return SourceMgr; }
152  void *Allocate(unsigned Size, unsigned Align = 8) {
153    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
154                        BumpAlloc.Allocate(Size, Align);
155  }
156  void Deallocate(void *Ptr) {
157    if (FreeMemory)
158      MallocAlloc.Deallocate(Ptr);
159  }
160  const LangOptions& getLangOptions() const { return LangOpts; }
161
162  FullSourceLoc getFullLoc(SourceLocation Loc) const {
163    return FullSourceLoc(Loc,SourceMgr);
164  }
165
166  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
167
168
169  // Builtin Types.
170  QualType VoidTy;
171  QualType BoolTy;
172  QualType CharTy;
173  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
174  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
175  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
176  QualType UnsignedLongLongTy, UnsignedInt128Ty;
177  QualType FloatTy, DoubleTy, LongDoubleTy;
178  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
179  QualType VoidPtrTy, NullPtrTy;
180  QualType OverloadTy;
181  QualType DependentTy;
182
183  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
184             IdentifierTable &idents, SelectorTable &sels,
185             Builtin::Context &builtins,
186             bool FreeMemory = true, unsigned size_reserve=0);
187
188  ~ASTContext();
189
190  /// \brief Attach an external AST source to the AST context.
191  ///
192  /// The external AST source provides the ability to load parts of
193  /// the abstract syntax tree as needed from some external storage,
194  /// e.g., a precompiled header.
195  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
196
197  /// \brief Retrieve a pointer to the external AST source associated
198  /// with this AST context, if any.
199  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
200
201  void PrintStats() const;
202  const std::vector<Type*>& getTypes() const { return Types; }
203
204  //===--------------------------------------------------------------------===//
205  //                           Type Constructors
206  //===--------------------------------------------------------------------===//
207
208  /// getAddSpaceQualType - Return the uniqued reference to the type for an
209  /// address space qualified type with the specified type and address space.
210  /// The resulting type has a union of the qualifiers from T and the address
211  /// space. If T already has an address space specifier, it is silently
212  /// replaced.
213  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
214
215  /// getObjCGCQualType - Returns the uniqued reference to the type for an
216  /// objc gc qualified type. The retulting type has a union of the qualifiers
217  /// from T and the gc attribute.
218  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
219
220  /// getComplexType - Return the uniqued reference to the type for a complex
221  /// number with the specified element type.
222  QualType getComplexType(QualType T);
223
224  /// getPointerType - Return the uniqued reference to the type for a pointer to
225  /// the specified type.
226  QualType getPointerType(QualType T);
227
228  /// getBlockPointerType - Return the uniqued reference to the type for a block
229  /// of the specified type.
230  QualType getBlockPointerType(QualType T);
231
232  /// getLValueReferenceType - Return the uniqued reference to the type for an
233  /// lvalue reference to the specified type.
234  QualType getLValueReferenceType(QualType T);
235
236  /// getRValueReferenceType - Return the uniqued reference to the type for an
237  /// rvalue reference to the specified type.
238  QualType getRValueReferenceType(QualType T);
239
240  /// getMemberPointerType - Return the uniqued reference to the type for a
241  /// member pointer to the specified type in the specified class. The class
242  /// is a Type because it could be a dependent name.
243  QualType getMemberPointerType(QualType T, const Type *Cls);
244
245  /// getVariableArrayType - Returns a non-unique reference to the type for a
246  /// variable array of the specified element type.
247  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
248                                ArrayType::ArraySizeModifier ASM,
249                                unsigned EltTypeQuals);
250
251  /// getDependentSizedArrayType - Returns a non-unique reference to
252  /// the type for a dependently-sized array of the specified element
253  /// type. FIXME: We will need these to be uniqued, or at least
254  /// comparable, at some point.
255  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
256                                      ArrayType::ArraySizeModifier ASM,
257                                      unsigned EltTypeQuals);
258
259  /// getIncompleteArrayType - Returns a unique reference to the type for a
260  /// incomplete array of the specified element type.
261  QualType getIncompleteArrayType(QualType EltTy,
262                                  ArrayType::ArraySizeModifier ASM,
263                                  unsigned EltTypeQuals);
264
265  /// getConstantArrayType - Return the unique reference to the type for a
266  /// constant array of the specified element type.
267  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
268                                ArrayType::ArraySizeModifier ASM,
269                                unsigned EltTypeQuals);
270
271  /// getVectorType - Return the unique reference to a vector type of
272  /// the specified element type and size. VectorType must be a built-in type.
273  QualType getVectorType(QualType VectorType, unsigned NumElts);
274
275  /// getExtVectorType - Return the unique reference to an extended vector type
276  /// of the specified element type and size.  VectorType must be a built-in
277  /// type.
278  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
279
280  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
281  ///
282  QualType getFunctionNoProtoType(QualType ResultTy);
283
284  /// getFunctionType - Return a normal function type with a typed argument
285  /// list.  isVariadic indicates whether the argument list includes '...'.
286  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
287                           unsigned NumArgs, bool isVariadic,
288                           unsigned TypeQuals, bool hasExceptionSpec = false,
289                           bool hasAnyExceptionSpec = false,
290                           unsigned NumExs = 0, const QualType *ExArray = 0);
291
292  /// getTypeDeclType - Return the unique reference to the type for
293  /// the specified type declaration.
294  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
295
296  /// getTypedefType - Return the unique reference to the type for the
297  /// specified typename decl.
298  QualType getTypedefType(TypedefDecl *Decl);
299  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
300
301  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
302                                   IdentifierInfo *Name = 0);
303
304  QualType getTemplateSpecializationType(TemplateName T,
305                                         const TemplateArgument *Args,
306                                         unsigned NumArgs,
307                                         QualType Canon = QualType());
308
309  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
310                                QualType NamedType);
311  QualType getTypenameType(NestedNameSpecifier *NNS,
312                           const IdentifierInfo *Name,
313                           QualType Canon = QualType());
314  QualType getTypenameType(NestedNameSpecifier *NNS,
315                           const TemplateSpecializationType *TemplateId,
316                           QualType Canon = QualType());
317
318  /// getObjCQualifiedInterfaceType - Return a
319  /// ObjCQualifiedInterfaceType type for the given interface decl and
320  /// the conforming protocol list.
321  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
322                                         ObjCProtocolDecl **ProtocolList,
323                                         unsigned NumProtocols);
324
325  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
326  /// given 'id' and conforming protocol list.
327  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
328                                  unsigned NumProtocols);
329
330
331  /// getTypeOfType - GCC extension.
332  QualType getTypeOfExprType(Expr *e);
333  QualType getTypeOfType(QualType t);
334
335  /// getTagDeclType - Return the unique reference to the type for the
336  /// specified TagDecl (struct/union/class/enum) decl.
337  QualType getTagDeclType(TagDecl *Decl);
338
339  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
340  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
341  QualType getSizeType() const;
342
343  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
344  /// returns a type compatible with the type defined in <stddef.h> as defined
345  /// by the target.
346  QualType getWCharType() const { return WCharTy; }
347
348  /// getSignedWCharType - Return the type of "signed wchar_t".
349  /// Used when in C++, as a GCC extension.
350  QualType getSignedWCharType() const;
351
352  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
353  /// Used when in C++, as a GCC extension.
354  QualType getUnsignedWCharType() const;
355
356  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
357  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
358  QualType getPointerDiffType() const;
359
360  // getCFConstantStringType - Return the C structure type used to represent
361  // constant CFStrings.
362  QualType getCFConstantStringType();
363
364  /// Get the structure type used to representation CFStrings, or NULL
365  /// if it hasn't yet been built.
366  QualType getRawCFConstantStringType() {
367    if (CFConstantStringTypeDecl)
368      return getTagDeclType(CFConstantStringTypeDecl);
369    return QualType();
370  }
371  void setCFConstantStringType(QualType T);
372
373  // This setter/getter represents the ObjC type for an NSConstantString.
374  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
375  QualType getObjCConstantStringInterface() const {
376    return ObjCConstantStringType;
377  }
378
379  //// This gets the struct used to keep track of fast enumerations.
380  QualType getObjCFastEnumerationStateType();
381
382  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
383  /// been built.
384  QualType getRawObjCFastEnumerationStateType() {
385    if (ObjCFastEnumerationStateTypeDecl)
386      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
387    return QualType();
388  }
389
390  void setObjCFastEnumerationStateType(QualType T);
391
392  /// getObjCEncodingForType - Emit the ObjC type encoding for the
393  /// given type into \arg S. If \arg NameFields is specified then
394  /// record field names are also encoded.
395  void getObjCEncodingForType(QualType t, std::string &S,
396                              const FieldDecl *Field=0);
397
398  void getLegacyIntegralTypeEncoding(QualType &t) const;
399
400  // Put the string version of type qualifiers into S.
401  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
402                                       std::string &S) const;
403
404  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
405  /// declaration.
406  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
407
408  /// getObjCEncodingForPropertyDecl - Return the encoded type for
409  /// this method declaration. If non-NULL, Container must be either
410  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
411  /// only be NULL when getting encodings for protocol properties.
412  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
413                                      const Decl *Container,
414                                      std::string &S);
415
416  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
417  /// purpose.
418  int getObjCEncodingTypeSize(QualType t);
419
420  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
421  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
422  QualType getObjCIdType() const { return ObjCIdType; }
423  void setObjCIdType(QualType T);
424
425  void setObjCSelType(QualType T);
426  QualType getObjCSelType() const { return ObjCSelType; }
427
428  void setObjCProtoType(QualType QT);
429  QualType getObjCProtoType() const { return ObjCProtoType; }
430
431  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
432  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
433  /// struct.
434  QualType getObjCClassType() const { return ObjCClassType; }
435  void setObjCClassType(QualType T);
436
437  void setBuiltinVaListType(QualType T);
438  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
439
440  QualType getFixedWidthIntType(unsigned Width, bool Signed);
441
442  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
443                                        bool TemplateKeyword,
444                                        TemplateDecl *Template);
445
446  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
447                                        const IdentifierInfo *Name);
448
449  enum GetBuiltinTypeError {
450    GE_None,        //< No error
451    GE_Missing_FILE //< Missing the FILE type from <stdio.h>
452  };
453
454  /// GetBuiltinType - Return the type for the specified builtin.
455  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
456
457private:
458  QualType getFromTargetType(unsigned Type) const;
459
460  //===--------------------------------------------------------------------===//
461  //                         Type Predicates.
462  //===--------------------------------------------------------------------===//
463
464public:
465  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
466  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
467  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
468  /// ID type).
469  bool isObjCObjectPointerType(QualType Ty) const;
470
471  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
472  /// garbage collection attribute.
473  ///
474  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
475
476  /// isObjCNSObjectType - Return true if this is an NSObject object with
477  /// its NSObject attribute set.
478  bool isObjCNSObjectType(QualType Ty) const;
479
480  //===--------------------------------------------------------------------===//
481  //                         Type Sizing and Analysis
482  //===--------------------------------------------------------------------===//
483
484  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
485  /// scalar floating point type.
486  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
487
488  /// getTypeInfo - Get the size and alignment of the specified complete type in
489  /// bits.
490  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
491  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
492    return getTypeInfo(T.getTypePtr());
493  }
494
495  /// getTypeSize - Return the size of the specified type, in bits.  This method
496  /// does not work on incomplete types.
497  uint64_t getTypeSize(QualType T) {
498    return getTypeInfo(T).first;
499  }
500  uint64_t getTypeSize(const Type *T) {
501    return getTypeInfo(T).first;
502  }
503
504  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
505  /// This method does not work on incomplete types.
506  unsigned getTypeAlign(QualType T) {
507    return getTypeInfo(T).second;
508  }
509  unsigned getTypeAlign(const Type *T) {
510    return getTypeInfo(T).second;
511  }
512
513  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
514  /// type for the current target in bits.  This can be different than the ABI
515  /// alignment in cases where it is beneficial for performance to overalign
516  /// a data type.
517  unsigned getPreferredTypeAlign(const Type *T);
518
519  /// getDeclAlignInBytes - Return the alignment of the specified decl
520  /// that should be returned by __alignof().  Note that bitfields do
521  /// not have a valid alignment, so this method will assert on them.
522  unsigned getDeclAlignInBytes(const Decl *D);
523
524  /// getASTRecordLayout - Get or compute information about the layout of the
525  /// specified record (struct/union/class), which indicates its size and field
526  /// position information.
527  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
528
529  /// getASTObjCInterfaceLayout - Get or compute information about the
530  /// layout of the specified Objective-C interface.
531  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
532
533  /// getASTObjCImplementationLayout - Get or compute information about
534  /// the layout of the specified Objective-C implementation. This may
535  /// differ from the interface if synthesized ivars are present.
536  const ASTRecordLayout &
537  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
538
539  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
540                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
541
542  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
543                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
544                               bool CollectSynthesized = true);
545  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
546                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
547  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
548                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
549  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
550  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
551
552  //===--------------------------------------------------------------------===//
553  //                            Type Operators
554  //===--------------------------------------------------------------------===//
555
556  /// getCanonicalType - Return the canonical (structural) type corresponding to
557  /// the specified potentially non-canonical type.  The non-canonical version
558  /// of a type may have many "decorated" versions of types.  Decorators can
559  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
560  /// to be free of any of these, allowing two canonical types to be compared
561  /// for exact equality with a simple pointer comparison.
562  QualType getCanonicalType(QualType T);
563  const Type *getCanonicalType(const Type *T) {
564    return T->getCanonicalTypeInternal().getTypePtr();
565  }
566
567  /// \brief Determine whether the given types are equivalent.
568  bool hasSameType(QualType T1, QualType T2) {
569    return getCanonicalType(T1) == getCanonicalType(T2);
570  }
571
572  /// \brief Determine whether the given types are equivalent after
573  /// cvr-qualifiers have been removed.
574  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
575    T1 = getCanonicalType(T1);
576    T2 = getCanonicalType(T2);
577    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
578  }
579
580  /// \brief Retrieves the "canonical" declaration of the given declaration.
581  Decl *getCanonicalDecl(Decl *D);
582
583  /// \brief Retrieves the "canonical" declaration of the given tag
584  /// declaration.
585  ///
586  /// The canonical declaration for the given tag declaration is
587  /// either the definition of the tag (if it is a complete type) or
588  /// the first declaration of that tag.
589  TagDecl *getCanonicalDecl(TagDecl *Tag) {
590    return cast<TagDecl>(getCanonicalDecl((Decl *)Tag));
591  }
592
593  /// \brief Retrieves the "canonical" declaration of
594
595  /// \brief Retrieves the "canonical" nested name specifier for a
596  /// given nested name specifier.
597  ///
598  /// The canonical nested name specifier is a nested name specifier
599  /// that uniquely identifies a type or namespace within the type
600  /// system. For example, given:
601  ///
602  /// \code
603  /// namespace N {
604  ///   struct S {
605  ///     template<typename T> struct X { typename T* type; };
606  ///   };
607  /// }
608  ///
609  /// template<typename T> struct Y {
610  ///   typename N::S::X<T>::type member;
611  /// };
612  /// \endcode
613  ///
614  /// Here, the nested-name-specifier for N::S::X<T>:: will be
615  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
616  /// by declarations in the type system and the canonical type for
617  /// the template type parameter 'T' is template-param-0-0.
618  NestedNameSpecifier *
619  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
620
621  /// \brief Retrieves the "canonical" template name that refers to a
622  /// given template.
623  ///
624  /// The canonical template name is the simplest expression that can
625  /// be used to refer to a given template. For most templates, this
626  /// expression is just the template declaration itself. For example,
627  /// the template std::vector can be referred to via a variety of
628  /// names---std::vector, ::std::vector, vector (if vector is in
629  /// scope), etc.---but all of these names map down to the same
630  /// TemplateDecl, which is used to form the canonical template name.
631  ///
632  /// Dependent template names are more interesting. Here, the
633  /// template name could be something like T::template apply or
634  /// std::allocator<T>::template rebind, where the nested name
635  /// specifier itself is dependent. In this case, the canonical
636  /// template name uses the shortest form of the dependent
637  /// nested-name-specifier, which itself contains all canonical
638  /// types, values, and templates.
639  TemplateName getCanonicalTemplateName(TemplateName Name);
640
641  /// Type Query functions.  If the type is an instance of the specified class,
642  /// return the Type pointer for the underlying maximally pretty type.  This
643  /// is a member of ASTContext because this may need to do some amount of
644  /// canonicalization, e.g. to move type qualifiers into the element type.
645  const ArrayType *getAsArrayType(QualType T);
646  const ConstantArrayType *getAsConstantArrayType(QualType T) {
647    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
648  }
649  const VariableArrayType *getAsVariableArrayType(QualType T) {
650    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
651  }
652  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
653    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
654  }
655
656  /// getBaseElementType - Returns the innermost element type of a variable
657  /// length array type. For example, will return "int" for int[m][n]
658  QualType getBaseElementType(const VariableArrayType *VAT);
659
660  /// getArrayDecayedType - Return the properly qualified result of decaying the
661  /// specified array type to a pointer.  This operation is non-trivial when
662  /// handling typedefs etc.  The canonical type of "T" must be an array type,
663  /// this returns a pointer to a properly qualified element of the array.
664  ///
665  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
666  QualType getArrayDecayedType(QualType T);
667
668  /// getIntegerTypeOrder - Returns the highest ranked integer type:
669  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
670  /// LHS < RHS, return -1.
671  int getIntegerTypeOrder(QualType LHS, QualType RHS);
672
673  /// getFloatingTypeOrder - Compare the rank of the two specified floating
674  /// point types, ignoring the domain of the type (i.e. 'double' ==
675  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
676  /// LHS < RHS, return -1.
677  int getFloatingTypeOrder(QualType LHS, QualType RHS);
678
679  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
680  /// point or a complex type (based on typeDomain/typeSize).
681  /// 'typeDomain' is a real floating point or complex type.
682  /// 'typeSize' is a real floating point or complex type.
683  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
684                                             QualType typeDomain) const;
685
686private:
687  // Helper for integer ordering
688  unsigned getIntegerRank(Type* T);
689
690public:
691
692  //===--------------------------------------------------------------------===//
693  //                    Type Compatibility Predicates
694  //===--------------------------------------------------------------------===//
695
696  /// Compatibility predicates used to check assignment expressions.
697  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
698
699  bool isObjCIdType(QualType T) const {
700    return T == ObjCIdType;
701  }
702  bool isObjCIdStructType(QualType T) const {
703    if (!IdStructType) // ObjC isn't enabled
704      return false;
705    return T->getAsStructureType() == IdStructType;
706  }
707  bool isObjCClassType(QualType T) const {
708    return T == ObjCClassType;
709  }
710  bool isObjCClassStructType(QualType T) const {
711    if (!ClassStructType) // ObjC isn't enabled
712      return false;
713    return T->getAsStructureType() == ClassStructType;
714  }
715  bool isObjCSelType(QualType T) const {
716    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
717    return T->getAsStructureType() == SelStructType;
718  }
719
720  // Check the safety of assignment from LHS to RHS
721  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
722                               const ObjCInterfaceType *RHS);
723  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
724
725  // Functions for calculating composite types
726  QualType mergeTypes(QualType, QualType);
727  QualType mergeFunctionTypes(QualType, QualType);
728
729  //===--------------------------------------------------------------------===//
730  //                    Integer Predicates
731  //===--------------------------------------------------------------------===//
732
733  // The width of an integer, as defined in C99 6.2.6.2. This is the number
734  // of bits in an integer type excluding any padding bits.
735  unsigned getIntWidth(QualType T);
736
737  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
738  // unsigned integer type.  This method takes a signed type, and returns the
739  // corresponding unsigned integer type.
740  QualType getCorrespondingUnsignedType(QualType T);
741
742  //===--------------------------------------------------------------------===//
743  //                    Type Iterators.
744  //===--------------------------------------------------------------------===//
745
746  typedef std::vector<Type*>::iterator       type_iterator;
747  typedef std::vector<Type*>::const_iterator const_type_iterator;
748
749  type_iterator types_begin() { return Types.begin(); }
750  type_iterator types_end() { return Types.end(); }
751  const_type_iterator types_begin() const { return Types.begin(); }
752  const_type_iterator types_end() const { return Types.end(); }
753
754  //===--------------------------------------------------------------------===//
755  //                    Integer Values
756  //===--------------------------------------------------------------------===//
757
758  /// MakeIntValue - Make an APSInt of the appropriate width and
759  /// signedness for the given \arg Value and integer \arg Type.
760  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
761    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
762    Res = Value;
763    return Res;
764  }
765
766private:
767  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
768  void operator=(const ASTContext&); // DO NOT IMPLEMENT
769
770  void InitBuiltinTypes();
771  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
772
773  // Return the ObjC type encoding for a given type.
774  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
775                                  bool ExpandPointedToStructures,
776                                  bool ExpandStructures,
777                                  const FieldDecl *Field,
778                                  bool OutermostType = false,
779                                  bool EncodingProperty = false);
780
781  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
782                                       const ObjCImplementationDecl *Impl);
783};
784
785}  // end namespace clang
786
787// operator new and delete aren't allowed inside namespaces.
788// The throw specifications are mandated by the standard.
789/// @brief Placement new for using the ASTContext's allocator.
790///
791/// This placement form of operator new uses the ASTContext's allocator for
792/// obtaining memory. It is a non-throwing new, which means that it returns
793/// null on error. (If that is what the allocator does. The current does, so if
794/// this ever changes, this operator will have to be changed, too.)
795/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
796/// @code
797/// // Default alignment (16)
798/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
799/// // Specific alignment
800/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
801/// @endcode
802/// Please note that you cannot use delete on the pointer; it must be
803/// deallocated using an explicit destructor call followed by
804/// @c Context.Deallocate(Ptr).
805///
806/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
807/// @param C The ASTContext that provides the allocator.
808/// @param Alignment The alignment of the allocated memory (if the underlying
809///                  allocator supports it).
810/// @return The allocated memory. Could be NULL.
811inline void *operator new(size_t Bytes, clang::ASTContext &C,
812                          size_t Alignment) throw () {
813  return C.Allocate(Bytes, Alignment);
814}
815/// @brief Placement delete companion to the new above.
816///
817/// This operator is just a companion to the new above. There is no way of
818/// invoking it directly; see the new operator for more details. This operator
819/// is called implicitly by the compiler if a placement new expression using
820/// the ASTContext throws in the object constructor.
821inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
822              throw () {
823  C.Deallocate(Ptr);
824}
825
826/// This placement form of operator new[] uses the ASTContext's allocator for
827/// obtaining memory. It is a non-throwing new[], which means that it returns
828/// null on error.
829/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
830/// @code
831/// // Default alignment (16)
832/// char *data = new (Context) char[10];
833/// // Specific alignment
834/// char *data = new (Context, 8) char[10];
835/// @endcode
836/// Please note that you cannot use delete on the pointer; it must be
837/// deallocated using an explicit destructor call followed by
838/// @c Context.Deallocate(Ptr).
839///
840/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
841/// @param C The ASTContext that provides the allocator.
842/// @param Alignment The alignment of the allocated memory (if the underlying
843///                  allocator supports it).
844/// @return The allocated memory. Could be NULL.
845inline void *operator new[](size_t Bytes, clang::ASTContext& C,
846                            size_t Alignment = 16) throw () {
847  return C.Allocate(Bytes, Alignment);
848}
849
850/// @brief Placement delete[] companion to the new[] above.
851///
852/// This operator is just a companion to the new[] above. There is no way of
853/// invoking it directly; see the new[] operator for more details. This operator
854/// is called implicitly by the compiler if a placement new[] expression using
855/// the ASTContext throws in the object constructor.
856inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
857  C.Deallocate(Ptr);
858}
859
860#endif
861