ASTContext.h revision 1eef85246b411b55c493098266746d0d83c241ea
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/RawCommentList.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/Basic/AddressSpaces.h"
28#include "clang/Basic/IdentifierTable.h"
29#include "clang/Basic/LangOptions.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/VersionTuple.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/FoldingSet.h"
35#include "llvm/ADT/IntrusiveRefCntPtr.h"
36#include "llvm/ADT/OwningPtr.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/TinyPtrVector.h"
39#include "llvm/Support/Allocator.h"
40#include <vector>
41
42namespace llvm {
43  struct fltSemantics;
44}
45
46namespace clang {
47  class FileManager;
48  class AtomicExpr;
49  class ASTRecordLayout;
50  class BlockExpr;
51  class CharUnits;
52  class DiagnosticsEngine;
53  class Expr;
54  class ExternalASTSource;
55  class ASTMutationListener;
56  class IdentifierTable;
57  class MaterializeTemporaryExpr;
58  class SelectorTable;
59  class TargetInfo;
60  class CXXABI;
61  class MangleNumberingContext;
62  // Decls
63  class MangleContext;
64  class ObjCIvarDecl;
65  class ObjCPropertyDecl;
66  class UnresolvedSetIterator;
67  class UsingDecl;
68  class UsingShadowDecl;
69
70  namespace Builtin { class Context; }
71
72  namespace comments {
73    class FullComment;
74  }
75
76/// \brief Holds long-lived AST nodes (such as types and decls) that can be
77/// referred to throughout the semantic analysis of a file.
78class ASTContext : public RefCountedBase<ASTContext> {
79  ASTContext &this_() { return *this; }
80
81  mutable SmallVector<Type *, 0> Types;
82  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
84  mutable llvm::FoldingSet<PointerType> PointerTypes;
85  mutable llvm::FoldingSet<DecayedType> DecayedTypes;
86  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92  mutable std::vector<VariableArrayType*> VariableArrayTypes;
93  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94  mutable llvm::FoldingSet<DependentSizedExtVectorType>
95    DependentSizedExtVectorTypes;
96  mutable llvm::FoldingSet<VectorType> VectorTypes;
97  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
98  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
99    FunctionProtoTypes;
100  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
101  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
102  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
103  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
104    SubstTemplateTypeParmTypes;
105  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
106    SubstTemplateTypeParmPackTypes;
107  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
108    TemplateSpecializationTypes;
109  mutable llvm::FoldingSet<ParenType> ParenTypes;
110  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
111  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
112  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
113                                     ASTContext&>
114    DependentTemplateSpecializationTypes;
115  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
116  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
117  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
118  mutable llvm::FoldingSet<AutoType> AutoTypes;
119  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
120  llvm::FoldingSet<AttributedType> AttributedTypes;
121
122  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
123  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
124  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
125    SubstTemplateTemplateParms;
126  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
127                                     ASTContext&>
128    SubstTemplateTemplateParmPacks;
129
130  /// \brief The set of nested name specifiers.
131  ///
132  /// This set is managed by the NestedNameSpecifier class.
133  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
134  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
135  friend class NestedNameSpecifier;
136
137  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
138  ///
139  /// This is lazily created.  This is intentionally not serialized.
140  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
141    ASTRecordLayouts;
142  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
143    ObjCLayouts;
144
145  /// \brief A cache from types to size and alignment information.
146  typedef llvm::DenseMap<const Type*,
147                         std::pair<uint64_t, unsigned> > TypeInfoMap;
148  mutable TypeInfoMap MemoizedTypeInfo;
149
150  /// \brief A cache mapping from CXXRecordDecls to key functions.
151  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
152
153  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
154  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
155
156  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
157  /// interface.
158  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
159
160  /// \brief Mapping from __block VarDecls to their copy initialization expr.
161  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
162
163  /// \brief Mapping from class scope functions specialization to their
164  /// template patterns.
165  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
166    ClassScopeSpecializationPattern;
167
168  /// \brief Mapping from materialized temporaries with static storage duration
169  /// that appear in constant initializers to their evaluated values.
170  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
171    MaterializedTemporaryValues;
172
173  /// \brief Representation of a "canonical" template template parameter that
174  /// is used in canonical template names.
175  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176    TemplateTemplateParmDecl *Parm;
177
178  public:
179    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180      : Parm(Parm) { }
181
182    TemplateTemplateParmDecl *getParam() const { return Parm; }
183
184    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185
186    static void Profile(llvm::FoldingSetNodeID &ID,
187                        TemplateTemplateParmDecl *Parm);
188  };
189  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190    CanonTemplateTemplateParms;
191
192  TemplateTemplateParmDecl *
193    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194
195  /// \brief The typedef for the __int128_t type.
196  mutable TypedefDecl *Int128Decl;
197
198  /// \brief The typedef for the __uint128_t type.
199  mutable TypedefDecl *UInt128Decl;
200
201  /// \brief The typedef for the __float128 stub type.
202  mutable TypeDecl *Float128StubDecl;
203
204  /// \brief The typedef for the target specific predefined
205  /// __builtin_va_list type.
206  mutable TypedefDecl *BuiltinVaListDecl;
207
208  /// \brief The typedef for the predefined \c id type.
209  mutable TypedefDecl *ObjCIdDecl;
210
211  /// \brief The typedef for the predefined \c SEL type.
212  mutable TypedefDecl *ObjCSelDecl;
213
214  /// \brief The typedef for the predefined \c Class type.
215  mutable TypedefDecl *ObjCClassDecl;
216
217  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
218  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
219
220  /// \brief The typedef for the predefined 'BOOL' type.
221  mutable TypedefDecl *BOOLDecl;
222
223  // Typedefs which may be provided defining the structure of Objective-C
224  // pseudo-builtins
225  QualType ObjCIdRedefinitionType;
226  QualType ObjCClassRedefinitionType;
227  QualType ObjCSelRedefinitionType;
228
229  QualType ObjCConstantStringType;
230  mutable RecordDecl *CFConstantStringTypeDecl;
231
232  mutable QualType ObjCSuperType;
233
234  QualType ObjCNSStringType;
235
236  /// \brief The typedef declaration for the Objective-C "instancetype" type.
237  TypedefDecl *ObjCInstanceTypeDecl;
238
239  /// \brief The type for the C FILE type.
240  TypeDecl *FILEDecl;
241
242  /// \brief The type for the C jmp_buf type.
243  TypeDecl *jmp_bufDecl;
244
245  /// \brief The type for the C sigjmp_buf type.
246  TypeDecl *sigjmp_bufDecl;
247
248  /// \brief The type for the C ucontext_t type.
249  TypeDecl *ucontext_tDecl;
250
251  /// \brief Type for the Block descriptor for Blocks CodeGen.
252  ///
253  /// Since this is only used for generation of debug info, it is not
254  /// serialized.
255  mutable RecordDecl *BlockDescriptorType;
256
257  /// \brief Type for the Block descriptor for Blocks CodeGen.
258  ///
259  /// Since this is only used for generation of debug info, it is not
260  /// serialized.
261  mutable RecordDecl *BlockDescriptorExtendedType;
262
263  /// \brief Declaration for the CUDA cudaConfigureCall function.
264  FunctionDecl *cudaConfigureCallDecl;
265
266  TypeSourceInfo NullTypeSourceInfo;
267
268  /// \brief Keeps track of all declaration attributes.
269  ///
270  /// Since so few decls have attrs, we keep them in a hash map instead of
271  /// wasting space in the Decl class.
272  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
273
274public:
275  /// \brief A type synonym for the TemplateOrInstantiation mapping.
276  typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
277  TemplateOrSpecializationInfo;
278
279private:
280
281  /// \brief A mapping to contain the template or declaration that
282  /// a variable declaration describes or was instantiated from,
283  /// respectively.
284  ///
285  /// For non-templates, this value will be NULL. For variable
286  /// declarations that describe a variable template, this will be a
287  /// pointer to a VarTemplateDecl. For static data members
288  /// of class template specializations, this will be the
289  /// MemberSpecializationInfo referring to the member variable that was
290  /// instantiated or specialized. Thus, the mapping will keep track of
291  /// the static data member templates from which static data members of
292  /// class template specializations were instantiated.
293  ///
294  /// Given the following example:
295  ///
296  /// \code
297  /// template<typename T>
298  /// struct X {
299  ///   static T value;
300  /// };
301  ///
302  /// template<typename T>
303  ///   T X<T>::value = T(17);
304  ///
305  /// int *x = &X<int>::value;
306  /// \endcode
307  ///
308  /// This mapping will contain an entry that maps from the VarDecl for
309  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
310  /// class template X) and will be marked TSK_ImplicitInstantiation.
311  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
312  TemplateOrInstantiation;
313
314  /// \brief Keeps track of the declaration from which a UsingDecl was
315  /// created during instantiation.
316  ///
317  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
318  /// or an UnresolvedUsingTypenameDecl.
319  ///
320  /// For example:
321  /// \code
322  /// template<typename T>
323  /// struct A {
324  ///   void f();
325  /// };
326  ///
327  /// template<typename T>
328  /// struct B : A<T> {
329  ///   using A<T>::f;
330  /// };
331  ///
332  /// template struct B<int>;
333  /// \endcode
334  ///
335  /// This mapping will contain an entry that maps from the UsingDecl in
336  /// B<int> to the UnresolvedUsingDecl in B<T>.
337  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
338
339  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
340    InstantiatedFromUsingShadowDecl;
341
342  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
343
344  /// \brief Mapping that stores the methods overridden by a given C++
345  /// member function.
346  ///
347  /// Since most C++ member functions aren't virtual and therefore
348  /// don't override anything, we store the overridden functions in
349  /// this map on the side rather than within the CXXMethodDecl structure.
350  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
351  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
352
353  /// \brief Mapping from each declaration context to its corresponding
354  /// mangling numbering context (used for constructs like lambdas which
355  /// need to be consistently numbered for the mangler).
356  llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
357      MangleNumberingContexts;
358
359  /// \brief Side-table of mangling numbers for declarations which rarely
360  /// need them (like static local vars).
361  llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
362
363  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
364  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
365  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
366  ParameterIndexTable ParamIndices;
367
368  ImportDecl *FirstLocalImport;
369  ImportDecl *LastLocalImport;
370
371  TranslationUnitDecl *TUDecl;
372
373  /// \brief The associated SourceManager object.a
374  SourceManager &SourceMgr;
375
376  /// \brief The language options used to create the AST associated with
377  ///  this ASTContext object.
378  LangOptions &LangOpts;
379
380  /// \brief The allocator used to create AST objects.
381  ///
382  /// AST objects are never destructed; rather, all memory associated with the
383  /// AST objects will be released when the ASTContext itself is destroyed.
384  mutable llvm::BumpPtrAllocator BumpAlloc;
385
386  /// \brief Allocator for partial diagnostics.
387  PartialDiagnostic::StorageAllocator DiagAllocator;
388
389  /// \brief The current C++ ABI.
390  OwningPtr<CXXABI> ABI;
391  CXXABI *createCXXABI(const TargetInfo &T);
392
393  /// \brief The logical -> physical address space map.
394  const LangAS::Map *AddrSpaceMap;
395
396  /// \brief Address space map mangling must be used with language specific
397  /// address spaces (e.g. OpenCL/CUDA)
398  bool AddrSpaceMapMangling;
399
400  friend class ASTDeclReader;
401  friend class ASTReader;
402  friend class ASTWriter;
403  friend class CXXRecordDecl;
404
405  const TargetInfo *Target;
406  clang::PrintingPolicy PrintingPolicy;
407
408public:
409  IdentifierTable &Idents;
410  SelectorTable &Selectors;
411  Builtin::Context &BuiltinInfo;
412  mutable DeclarationNameTable DeclarationNames;
413  OwningPtr<ExternalASTSource> ExternalSource;
414  ASTMutationListener *Listener;
415
416  /// \brief Contains parents of a node.
417  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
418
419  /// \brief Maps from a node to its parents.
420  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
421
422  /// \brief Returns the parents of the given node.
423  ///
424  /// Note that this will lazily compute the parents of all nodes
425  /// and store them for later retrieval. Thus, the first call is O(n)
426  /// in the number of AST nodes.
427  ///
428  /// Caveats and FIXMEs:
429  /// Calculating the parent map over all AST nodes will need to load the
430  /// full AST. This can be undesirable in the case where the full AST is
431  /// expensive to create (for example, when using precompiled header
432  /// preambles). Thus, there are good opportunities for optimization here.
433  /// One idea is to walk the given node downwards, looking for references
434  /// to declaration contexts - once a declaration context is found, compute
435  /// the parent map for the declaration context; if that can satisfy the
436  /// request, loading the whole AST can be avoided. Note that this is made
437  /// more complex by statements in templates having multiple parents - those
438  /// problems can be solved by building closure over the templated parts of
439  /// the AST, which also avoids touching large parts of the AST.
440  /// Additionally, we will want to add an interface to already give a hint
441  /// where to search for the parents, for example when looking at a statement
442  /// inside a certain function.
443  ///
444  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
445  /// NestedNameSpecifier or NestedNameSpecifierLoc.
446  template <typename NodeT>
447  ParentVector getParents(const NodeT &Node) {
448    return getParents(ast_type_traits::DynTypedNode::create(Node));
449  }
450
451  ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
452
453  const clang::PrintingPolicy &getPrintingPolicy() const {
454    return PrintingPolicy;
455  }
456
457  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
458    PrintingPolicy = Policy;
459  }
460
461  SourceManager& getSourceManager() { return SourceMgr; }
462  const SourceManager& getSourceManager() const { return SourceMgr; }
463
464  llvm::BumpPtrAllocator &getAllocator() const {
465    return BumpAlloc;
466  }
467
468  void *Allocate(size_t Size, unsigned Align = 8) const {
469    return BumpAlloc.Allocate(Size, Align);
470  }
471  void Deallocate(void *Ptr) const { }
472
473  /// Return the total amount of physical memory allocated for representing
474  /// AST nodes and type information.
475  size_t getASTAllocatedMemory() const {
476    return BumpAlloc.getTotalMemory();
477  }
478  /// Return the total memory used for various side tables.
479  size_t getSideTableAllocatedMemory() const;
480
481  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
482    return DiagAllocator;
483  }
484
485  const TargetInfo &getTargetInfo() const { return *Target; }
486
487  /// getIntTypeForBitwidth -
488  /// sets integer QualTy according to specified details:
489  /// bitwidth, signed/unsigned.
490  /// Returns empty type if there is no appropriate target types.
491  QualType getIntTypeForBitwidth(unsigned DestWidth,
492                                 unsigned Signed) const;
493  /// getRealTypeForBitwidth -
494  /// sets floating point QualTy according to specified bitwidth.
495  /// Returns empty type if there is no appropriate target types.
496  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
497
498  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
499
500  const LangOptions& getLangOpts() const { return LangOpts; }
501
502  DiagnosticsEngine &getDiagnostics() const;
503
504  FullSourceLoc getFullLoc(SourceLocation Loc) const {
505    return FullSourceLoc(Loc,SourceMgr);
506  }
507
508  /// \brief All comments in this translation unit.
509  RawCommentList Comments;
510
511  /// \brief True if comments are already loaded from ExternalASTSource.
512  mutable bool CommentsLoaded;
513
514  class RawCommentAndCacheFlags {
515  public:
516    enum Kind {
517      /// We searched for a comment attached to the particular declaration, but
518      /// didn't find any.
519      ///
520      /// getRaw() == 0.
521      NoCommentInDecl = 0,
522
523      /// We have found a comment attached to this particular declaration.
524      ///
525      /// getRaw() != 0.
526      FromDecl,
527
528      /// This declaration does not have an attached comment, and we have
529      /// searched the redeclaration chain.
530      ///
531      /// If getRaw() == 0, the whole redeclaration chain does not have any
532      /// comments.
533      ///
534      /// If getRaw() != 0, it is a comment propagated from other
535      /// redeclaration.
536      FromRedecl
537    };
538
539    Kind getKind() const LLVM_READONLY {
540      return Data.getInt();
541    }
542
543    void setKind(Kind K) {
544      Data.setInt(K);
545    }
546
547    const RawComment *getRaw() const LLVM_READONLY {
548      return Data.getPointer();
549    }
550
551    void setRaw(const RawComment *RC) {
552      Data.setPointer(RC);
553    }
554
555    const Decl *getOriginalDecl() const LLVM_READONLY {
556      return OriginalDecl;
557    }
558
559    void setOriginalDecl(const Decl *Orig) {
560      OriginalDecl = Orig;
561    }
562
563  private:
564    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
565    const Decl *OriginalDecl;
566  };
567
568  /// \brief Mapping from declarations to comments attached to any
569  /// redeclaration.
570  ///
571  /// Raw comments are owned by Comments list.  This mapping is populated
572  /// lazily.
573  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
574
575  /// \brief Mapping from declarations to parsed comments attached to any
576  /// redeclaration.
577  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
578
579  /// \brief Return the documentation comment attached to a given declaration,
580  /// without looking into cache.
581  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
582
583public:
584  RawCommentList &getRawCommentList() {
585    return Comments;
586  }
587
588  void addComment(const RawComment &RC) {
589    assert(LangOpts.RetainCommentsFromSystemHeaders ||
590           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
591    Comments.addComment(RC, BumpAlloc);
592  }
593
594  /// \brief Return the documentation comment attached to a given declaration.
595  /// Returns NULL if no comment is attached.
596  ///
597  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
598  /// the comment, if the comment we found comes from a redeclaration.
599  const RawComment *getRawCommentForAnyRedecl(
600                                      const Decl *D,
601                                      const Decl **OriginalDecl = NULL) const;
602
603  /// Return parsed documentation comment attached to a given declaration.
604  /// Returns NULL if no comment is attached.
605  ///
606  /// \param PP the Preprocessor used with this TU.  Could be NULL if
607  /// preprocessor is not available.
608  comments::FullComment *getCommentForDecl(const Decl *D,
609                                           const Preprocessor *PP) const;
610
611  /// Return parsed documentation comment attached to a given declaration.
612  /// Returns NULL if no comment is attached. Does not look at any
613  /// redeclarations of the declaration.
614  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
615
616  comments::FullComment *cloneFullComment(comments::FullComment *FC,
617                                         const Decl *D) const;
618
619private:
620  mutable comments::CommandTraits CommentCommandTraits;
621
622public:
623  comments::CommandTraits &getCommentCommandTraits() const {
624    return CommentCommandTraits;
625  }
626
627  /// \brief Retrieve the attributes for the given declaration.
628  AttrVec& getDeclAttrs(const Decl *D);
629
630  /// \brief Erase the attributes corresponding to the given declaration.
631  void eraseDeclAttrs(const Decl *D);
632
633  /// \brief If this variable is an instantiated static data member of a
634  /// class template specialization, returns the templated static data member
635  /// from which it was instantiated.
636  // FIXME: Remove ?
637  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
638                                                           const VarDecl *Var);
639
640  TemplateOrSpecializationInfo
641  getTemplateOrSpecializationInfo(const VarDecl *Var);
642
643  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
644
645  void setClassScopeSpecializationPattern(FunctionDecl *FD,
646                                          FunctionDecl *Pattern);
647
648  /// \brief Note that the static data member \p Inst is an instantiation of
649  /// the static data member template \p Tmpl of a class template.
650  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
651                                           TemplateSpecializationKind TSK,
652                        SourceLocation PointOfInstantiation = SourceLocation());
653
654  void setTemplateOrSpecializationInfo(VarDecl *Inst,
655                                       TemplateOrSpecializationInfo TSI);
656
657  /// \brief If the given using decl \p Inst is an instantiation of a
658  /// (possibly unresolved) using decl from a template instantiation,
659  /// return it.
660  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
661
662  /// \brief Remember that the using decl \p Inst is an instantiation
663  /// of the using decl \p Pattern of a class template.
664  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
665
666  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
667                                          UsingShadowDecl *Pattern);
668  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
669
670  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
671
672  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
673
674  // Access to the set of methods overridden by the given C++ method.
675  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
676  overridden_cxx_method_iterator
677  overridden_methods_begin(const CXXMethodDecl *Method) const;
678
679  overridden_cxx_method_iterator
680  overridden_methods_end(const CXXMethodDecl *Method) const;
681
682  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
683
684  /// \brief Note that the given C++ \p Method overrides the given \p
685  /// Overridden method.
686  void addOverriddenMethod(const CXXMethodDecl *Method,
687                           const CXXMethodDecl *Overridden);
688
689  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
690  ///
691  /// An ObjC method is considered to override any method in the class's
692  /// base classes, its protocols, or its categories' protocols, that has
693  /// the same selector and is of the same kind (class or instance).
694  /// A method in an implementation is not considered as overriding the same
695  /// method in the interface or its categories.
696  void getOverriddenMethods(
697                        const NamedDecl *Method,
698                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
699
700  /// \brief Notify the AST context that a new import declaration has been
701  /// parsed or implicitly created within this translation unit.
702  void addedLocalImportDecl(ImportDecl *Import);
703
704  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
705    return Import->NextLocalImport;
706  }
707
708  /// \brief Iterator that visits import declarations.
709  class import_iterator {
710    ImportDecl *Import;
711
712  public:
713    typedef ImportDecl               *value_type;
714    typedef ImportDecl               *reference;
715    typedef ImportDecl               *pointer;
716    typedef int                       difference_type;
717    typedef std::forward_iterator_tag iterator_category;
718
719    import_iterator() : Import() { }
720    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
721
722    reference operator*() const { return Import; }
723    pointer operator->() const { return Import; }
724
725    import_iterator &operator++() {
726      Import = ASTContext::getNextLocalImport(Import);
727      return *this;
728    }
729
730    import_iterator operator++(int) {
731      import_iterator Other(*this);
732      ++(*this);
733      return Other;
734    }
735
736    friend bool operator==(import_iterator X, import_iterator Y) {
737      return X.Import == Y.Import;
738    }
739
740    friend bool operator!=(import_iterator X, import_iterator Y) {
741      return X.Import != Y.Import;
742    }
743  };
744
745  import_iterator local_import_begin() const {
746    return import_iterator(FirstLocalImport);
747  }
748  import_iterator local_import_end() const { return import_iterator(); }
749
750  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
751
752
753  // Builtin Types.
754  CanQualType VoidTy;
755  CanQualType BoolTy;
756  CanQualType CharTy;
757  CanQualType WCharTy;  // [C++ 3.9.1p5].
758  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
759  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
760  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
761  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
762  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
763  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
764  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
765  CanQualType FloatTy, DoubleTy, LongDoubleTy;
766  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
767  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
768  CanQualType VoidPtrTy, NullPtrTy;
769  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
770  CanQualType BuiltinFnTy;
771  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
772  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
773  CanQualType ObjCBuiltinBoolTy;
774  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
775  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
776  CanQualType OCLImage3dTy;
777  CanQualType OCLSamplerTy, OCLEventTy;
778
779  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
780  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
781  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
782
783  // Type used to help define __builtin_va_list for some targets.
784  // The type is built when constructing 'BuiltinVaListDecl'.
785  mutable QualType VaListTagTy;
786
787  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
788             IdentifierTable &idents, SelectorTable &sels,
789             Builtin::Context &builtins,
790             unsigned size_reserve,
791             bool DelayInitialization = false);
792
793  ~ASTContext();
794
795  /// \brief Attach an external AST source to the AST context.
796  ///
797  /// The external AST source provides the ability to load parts of
798  /// the abstract syntax tree as needed from some external storage,
799  /// e.g., a precompiled header.
800  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
801
802  /// \brief Retrieve a pointer to the external AST source associated
803  /// with this AST context, if any.
804  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
805
806  /// \brief Attach an AST mutation listener to the AST context.
807  ///
808  /// The AST mutation listener provides the ability to track modifications to
809  /// the abstract syntax tree entities committed after they were initially
810  /// created.
811  void setASTMutationListener(ASTMutationListener *Listener) {
812    this->Listener = Listener;
813  }
814
815  /// \brief Retrieve a pointer to the AST mutation listener associated
816  /// with this AST context, if any.
817  ASTMutationListener *getASTMutationListener() const { return Listener; }
818
819  void PrintStats() const;
820  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
821
822  /// \brief Retrieve the declaration for the 128-bit signed integer type.
823  TypedefDecl *getInt128Decl() const;
824
825  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
826  TypedefDecl *getUInt128Decl() const;
827
828  /// \brief Retrieve the declaration for a 128-bit float stub type.
829  TypeDecl *getFloat128StubType() const;
830
831  //===--------------------------------------------------------------------===//
832  //                           Type Constructors
833  //===--------------------------------------------------------------------===//
834
835private:
836  /// \brief Return a type with extended qualifiers.
837  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
838
839  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
840
841public:
842  /// \brief Return the uniqued reference to the type for an address space
843  /// qualified type with the specified type and address space.
844  ///
845  /// The resulting type has a union of the qualifiers from T and the address
846  /// space. If T already has an address space specifier, it is silently
847  /// replaced.
848  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
849
850  /// \brief Return the uniqued reference to the type for an Objective-C
851  /// gc-qualified type.
852  ///
853  /// The retulting type has a union of the qualifiers from T and the gc
854  /// attribute.
855  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
856
857  /// \brief Return the uniqued reference to the type for a \c restrict
858  /// qualified type.
859  ///
860  /// The resulting type has a union of the qualifiers from \p T and
861  /// \c restrict.
862  QualType getRestrictType(QualType T) const {
863    return T.withFastQualifiers(Qualifiers::Restrict);
864  }
865
866  /// \brief Return the uniqued reference to the type for a \c volatile
867  /// qualified type.
868  ///
869  /// The resulting type has a union of the qualifiers from \p T and
870  /// \c volatile.
871  QualType getVolatileType(QualType T) const {
872    return T.withFastQualifiers(Qualifiers::Volatile);
873  }
874
875  /// \brief Return the uniqued reference to the type for a \c const
876  /// qualified type.
877  ///
878  /// The resulting type has a union of the qualifiers from \p T and \c const.
879  ///
880  /// It can be reasonably expected that this will always be equivalent to
881  /// calling T.withConst().
882  QualType getConstType(QualType T) const { return T.withConst(); }
883
884  /// \brief Change the ExtInfo on a function type.
885  const FunctionType *adjustFunctionType(const FunctionType *Fn,
886                                         FunctionType::ExtInfo EInfo);
887
888  /// \brief Change the result type of a function type once it is deduced.
889  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
890
891  /// \brief Return the uniqued reference to the type for a complex
892  /// number with the specified element type.
893  QualType getComplexType(QualType T) const;
894  CanQualType getComplexType(CanQualType T) const {
895    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
896  }
897
898  /// \brief Return the uniqued reference to the type for a pointer to
899  /// the specified type.
900  QualType getPointerType(QualType T) const;
901  CanQualType getPointerType(CanQualType T) const {
902    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
903  }
904
905  /// \brief Return the uniqued reference to the decayed version of the given
906  /// type.  Can only be called on array and function types which decay to
907  /// pointer types.
908  QualType getDecayedType(QualType T) const;
909  CanQualType getDecayedType(CanQualType T) const {
910    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
911  }
912
913  /// \brief Return the uniqued reference to the atomic type for the specified
914  /// type.
915  QualType getAtomicType(QualType T) const;
916
917  /// \brief Return the uniqued reference to the type for a block of the
918  /// specified type.
919  QualType getBlockPointerType(QualType T) const;
920
921  /// Gets the struct used to keep track of the descriptor for pointer to
922  /// blocks.
923  QualType getBlockDescriptorType() const;
924
925  /// Gets the struct used to keep track of the extended descriptor for
926  /// pointer to blocks.
927  QualType getBlockDescriptorExtendedType() const;
928
929  void setcudaConfigureCallDecl(FunctionDecl *FD) {
930    cudaConfigureCallDecl = FD;
931  }
932  FunctionDecl *getcudaConfigureCallDecl() {
933    return cudaConfigureCallDecl;
934  }
935
936  /// Returns true iff we need copy/dispose helpers for the given type.
937  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
938
939
940  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
941  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
942  /// has extended lifetime.
943  bool getByrefLifetime(QualType Ty,
944                        Qualifiers::ObjCLifetime &Lifetime,
945                        bool &HasByrefExtendedLayout) const;
946
947  /// \brief Return the uniqued reference to the type for an lvalue reference
948  /// to the specified type.
949  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
950    const;
951
952  /// \brief Return the uniqued reference to the type for an rvalue reference
953  /// to the specified type.
954  QualType getRValueReferenceType(QualType T) const;
955
956  /// \brief Return the uniqued reference to the type for a member pointer to
957  /// the specified type in the specified class.
958  ///
959  /// The class \p Cls is a \c Type because it could be a dependent name.
960  QualType getMemberPointerType(QualType T, const Type *Cls) const;
961
962  /// \brief Return a non-unique reference to the type for a variable array of
963  /// the specified element type.
964  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
965                                ArrayType::ArraySizeModifier ASM,
966                                unsigned IndexTypeQuals,
967                                SourceRange Brackets) const;
968
969  /// \brief Return a non-unique reference to the type for a dependently-sized
970  /// array of the specified element type.
971  ///
972  /// FIXME: We will need these to be uniqued, or at least comparable, at some
973  /// point.
974  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
975                                      ArrayType::ArraySizeModifier ASM,
976                                      unsigned IndexTypeQuals,
977                                      SourceRange Brackets) const;
978
979  /// \brief Return a unique reference to the type for an incomplete array of
980  /// the specified element type.
981  QualType getIncompleteArrayType(QualType EltTy,
982                                  ArrayType::ArraySizeModifier ASM,
983                                  unsigned IndexTypeQuals) const;
984
985  /// \brief Return the unique reference to the type for a constant array of
986  /// the specified element type.
987  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
988                                ArrayType::ArraySizeModifier ASM,
989                                unsigned IndexTypeQuals) const;
990
991  /// \brief Returns a vla type where known sizes are replaced with [*].
992  QualType getVariableArrayDecayedType(QualType Ty) const;
993
994  /// \brief Return the unique reference to a vector type of the specified
995  /// element type and size.
996  ///
997  /// \pre \p VectorType must be a built-in type.
998  QualType getVectorType(QualType VectorType, unsigned NumElts,
999                         VectorType::VectorKind VecKind) const;
1000
1001  /// \brief Return the unique reference to an extended vector type
1002  /// of the specified element type and size.
1003  ///
1004  /// \pre \p VectorType must be a built-in type.
1005  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1006
1007  /// \pre Return a non-unique reference to the type for a dependently-sized
1008  /// vector of the specified element type.
1009  ///
1010  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1011  /// point.
1012  QualType getDependentSizedExtVectorType(QualType VectorType,
1013                                          Expr *SizeExpr,
1014                                          SourceLocation AttrLoc) const;
1015
1016  /// \brief Return a K&R style C function type like 'int()'.
1017  QualType getFunctionNoProtoType(QualType ResultTy,
1018                                  const FunctionType::ExtInfo &Info) const;
1019
1020  QualType getFunctionNoProtoType(QualType ResultTy) const {
1021    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1022  }
1023
1024  /// \brief Return a normal function type with a typed argument list.
1025  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1026                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1027
1028  /// \brief Return the unique reference to the type for the specified type
1029  /// declaration.
1030  QualType getTypeDeclType(const TypeDecl *Decl,
1031                           const TypeDecl *PrevDecl = 0) const {
1032    assert(Decl && "Passed null for Decl param");
1033    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1034
1035    if (PrevDecl) {
1036      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1037      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1038      return QualType(PrevDecl->TypeForDecl, 0);
1039    }
1040
1041    return getTypeDeclTypeSlow(Decl);
1042  }
1043
1044  /// \brief Return the unique reference to the type for the specified
1045  /// typedef-name decl.
1046  QualType getTypedefType(const TypedefNameDecl *Decl,
1047                          QualType Canon = QualType()) const;
1048
1049  QualType getRecordType(const RecordDecl *Decl) const;
1050
1051  QualType getEnumType(const EnumDecl *Decl) const;
1052
1053  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1054
1055  QualType getAttributedType(AttributedType::Kind attrKind,
1056                             QualType modifiedType,
1057                             QualType equivalentType);
1058
1059  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1060                                        QualType Replacement) const;
1061  QualType getSubstTemplateTypeParmPackType(
1062                                          const TemplateTypeParmType *Replaced,
1063                                            const TemplateArgument &ArgPack);
1064
1065  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1066                                   bool ParameterPack,
1067                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1068
1069  QualType getTemplateSpecializationType(TemplateName T,
1070                                         const TemplateArgument *Args,
1071                                         unsigned NumArgs,
1072                                         QualType Canon = QualType()) const;
1073
1074  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1075                                                  const TemplateArgument *Args,
1076                                                  unsigned NumArgs) const;
1077
1078  QualType getTemplateSpecializationType(TemplateName T,
1079                                         const TemplateArgumentListInfo &Args,
1080                                         QualType Canon = QualType()) const;
1081
1082  TypeSourceInfo *
1083  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1084                                    const TemplateArgumentListInfo &Args,
1085                                    QualType Canon = QualType()) const;
1086
1087  QualType getParenType(QualType NamedType) const;
1088
1089  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1090                             NestedNameSpecifier *NNS,
1091                             QualType NamedType) const;
1092  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1093                                NestedNameSpecifier *NNS,
1094                                const IdentifierInfo *Name,
1095                                QualType Canon = QualType()) const;
1096
1097  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1098                                                  NestedNameSpecifier *NNS,
1099                                                  const IdentifierInfo *Name,
1100                                    const TemplateArgumentListInfo &Args) const;
1101  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1102                                                  NestedNameSpecifier *NNS,
1103                                                  const IdentifierInfo *Name,
1104                                                  unsigned NumArgs,
1105                                            const TemplateArgument *Args) const;
1106
1107  QualType getPackExpansionType(QualType Pattern,
1108                                Optional<unsigned> NumExpansions);
1109
1110  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1111                                ObjCInterfaceDecl *PrevDecl = 0) const;
1112
1113  QualType getObjCObjectType(QualType Base,
1114                             ObjCProtocolDecl * const *Protocols,
1115                             unsigned NumProtocols) const;
1116
1117  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1118  QualType getObjCObjectPointerType(QualType OIT) const;
1119
1120  /// \brief GCC extension.
1121  QualType getTypeOfExprType(Expr *e) const;
1122  QualType getTypeOfType(QualType t) const;
1123
1124  /// \brief C++11 decltype.
1125  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1126
1127  /// \brief Unary type transforms
1128  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1129                                 UnaryTransformType::UTTKind UKind) const;
1130
1131  /// \brief C++11 deduced auto type.
1132  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1133                       bool IsDependent = false) const;
1134
1135  /// \brief C++11 deduction pattern for 'auto' type.
1136  QualType getAutoDeductType() const;
1137
1138  /// \brief C++11 deduction pattern for 'auto &&' type.
1139  QualType getAutoRRefDeductType() const;
1140
1141  /// \brief Return the unique reference to the type for the specified TagDecl
1142  /// (struct/union/class/enum) decl.
1143  QualType getTagDeclType(const TagDecl *Decl) const;
1144
1145  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1146  /// <stddef.h>.
1147  ///
1148  /// The sizeof operator requires this (C99 6.5.3.4p4).
1149  CanQualType getSizeType() const;
1150
1151  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1152  /// <stdint.h>.
1153  CanQualType getIntMaxType() const;
1154
1155  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1156  /// <stdint.h>.
1157  CanQualType getUIntMaxType() const;
1158
1159  /// \brief Return the unique wchar_t type available in C++ (and available as
1160  /// __wchar_t as a Microsoft extension).
1161  QualType getWCharType() const { return WCharTy; }
1162
1163  /// \brief Return the type of wide characters. In C++, this returns the
1164  /// unique wchar_t type. In C99, this returns a type compatible with the type
1165  /// defined in <stddef.h> as defined by the target.
1166  QualType getWideCharType() const { return WideCharTy; }
1167
1168  /// \brief Return the type of "signed wchar_t".
1169  ///
1170  /// Used when in C++, as a GCC extension.
1171  QualType getSignedWCharType() const;
1172
1173  /// \brief Return the type of "unsigned wchar_t".
1174  ///
1175  /// Used when in C++, as a GCC extension.
1176  QualType getUnsignedWCharType() const;
1177
1178  /// \brief In C99, this returns a type compatible with the type
1179  /// defined in <stddef.h> as defined by the target.
1180  QualType getWIntType() const { return WIntTy; }
1181
1182  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1183  /// as defined by the target.
1184  QualType getIntPtrType() const;
1185
1186  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1187  /// as defined by the target.
1188  QualType getUIntPtrType() const;
1189
1190  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1191  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1192  QualType getPointerDiffType() const;
1193
1194  /// \brief Return the unique type for "pid_t" defined in
1195  /// <sys/types.h>. We need this to compute the correct type for vfork().
1196  QualType getProcessIDType() const;
1197
1198  /// \brief Return the C structure type used to represent constant CFStrings.
1199  QualType getCFConstantStringType() const;
1200
1201  /// \brief Returns the C struct type for objc_super
1202  QualType getObjCSuperType() const;
1203  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1204
1205  /// Get the structure type used to representation CFStrings, or NULL
1206  /// if it hasn't yet been built.
1207  QualType getRawCFConstantStringType() const {
1208    if (CFConstantStringTypeDecl)
1209      return getTagDeclType(CFConstantStringTypeDecl);
1210    return QualType();
1211  }
1212  void setCFConstantStringType(QualType T);
1213
1214  // This setter/getter represents the ObjC type for an NSConstantString.
1215  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1216  QualType getObjCConstantStringInterface() const {
1217    return ObjCConstantStringType;
1218  }
1219
1220  QualType getObjCNSStringType() const {
1221    return ObjCNSStringType;
1222  }
1223
1224  void setObjCNSStringType(QualType T) {
1225    ObjCNSStringType = T;
1226  }
1227
1228  /// \brief Retrieve the type that \c id has been defined to, which may be
1229  /// different from the built-in \c id if \c id has been typedef'd.
1230  QualType getObjCIdRedefinitionType() const {
1231    if (ObjCIdRedefinitionType.isNull())
1232      return getObjCIdType();
1233    return ObjCIdRedefinitionType;
1234  }
1235
1236  /// \brief Set the user-written type that redefines \c id.
1237  void setObjCIdRedefinitionType(QualType RedefType) {
1238    ObjCIdRedefinitionType = RedefType;
1239  }
1240
1241  /// \brief Retrieve the type that \c Class has been defined to, which may be
1242  /// different from the built-in \c Class if \c Class has been typedef'd.
1243  QualType getObjCClassRedefinitionType() const {
1244    if (ObjCClassRedefinitionType.isNull())
1245      return getObjCClassType();
1246    return ObjCClassRedefinitionType;
1247  }
1248
1249  /// \brief Set the user-written type that redefines 'SEL'.
1250  void setObjCClassRedefinitionType(QualType RedefType) {
1251    ObjCClassRedefinitionType = RedefType;
1252  }
1253
1254  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1255  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1256  QualType getObjCSelRedefinitionType() const {
1257    if (ObjCSelRedefinitionType.isNull())
1258      return getObjCSelType();
1259    return ObjCSelRedefinitionType;
1260  }
1261
1262
1263  /// \brief Set the user-written type that redefines 'SEL'.
1264  void setObjCSelRedefinitionType(QualType RedefType) {
1265    ObjCSelRedefinitionType = RedefType;
1266  }
1267
1268  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1269  /// otherwise, returns a NULL type;
1270  QualType getObjCInstanceType() {
1271    return getTypeDeclType(getObjCInstanceTypeDecl());
1272  }
1273
1274  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1275  /// "instancetype" type.
1276  TypedefDecl *getObjCInstanceTypeDecl();
1277
1278  /// \brief Set the type for the C FILE type.
1279  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1280
1281  /// \brief Retrieve the C FILE type.
1282  QualType getFILEType() const {
1283    if (FILEDecl)
1284      return getTypeDeclType(FILEDecl);
1285    return QualType();
1286  }
1287
1288  /// \brief Set the type for the C jmp_buf type.
1289  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1290    this->jmp_bufDecl = jmp_bufDecl;
1291  }
1292
1293  /// \brief Retrieve the C jmp_buf type.
1294  QualType getjmp_bufType() const {
1295    if (jmp_bufDecl)
1296      return getTypeDeclType(jmp_bufDecl);
1297    return QualType();
1298  }
1299
1300  /// \brief Set the type for the C sigjmp_buf type.
1301  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1302    this->sigjmp_bufDecl = sigjmp_bufDecl;
1303  }
1304
1305  /// \brief Retrieve the C sigjmp_buf type.
1306  QualType getsigjmp_bufType() const {
1307    if (sigjmp_bufDecl)
1308      return getTypeDeclType(sigjmp_bufDecl);
1309    return QualType();
1310  }
1311
1312  /// \brief Set the type for the C ucontext_t type.
1313  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1314    this->ucontext_tDecl = ucontext_tDecl;
1315  }
1316
1317  /// \brief Retrieve the C ucontext_t type.
1318  QualType getucontext_tType() const {
1319    if (ucontext_tDecl)
1320      return getTypeDeclType(ucontext_tDecl);
1321    return QualType();
1322  }
1323
1324  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1325  QualType getLogicalOperationType() const {
1326    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1327  }
1328
1329  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1330  /// \p S.
1331  ///
1332  /// If \p Field is specified then record field names are also encoded.
1333  void getObjCEncodingForType(QualType T, std::string &S,
1334                              const FieldDecl *Field=0) const;
1335
1336  void getLegacyIntegralTypeEncoding(QualType &t) const;
1337
1338  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1339  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1340                                       std::string &S) const;
1341
1342  /// \brief Emit the encoded type for the function \p Decl into \p S.
1343  ///
1344  /// This is in the same format as Objective-C method encodings.
1345  ///
1346  /// \returns true if an error occurred (e.g., because one of the parameter
1347  /// types is incomplete), false otherwise.
1348  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1349
1350  /// \brief Emit the encoded type for the method declaration \p Decl into
1351  /// \p S.
1352  ///
1353  /// \returns true if an error occurred (e.g., because one of the parameter
1354  /// types is incomplete), false otherwise.
1355  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1356                                    bool Extended = false)
1357    const;
1358
1359  /// \brief Return the encoded type for this block declaration.
1360  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1361
1362  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1363  /// this method declaration. If non-NULL, Container must be either
1364  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1365  /// only be NULL when getting encodings for protocol properties.
1366  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1367                                      const Decl *Container,
1368                                      std::string &S) const;
1369
1370  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1371                                      ObjCProtocolDecl *rProto) const;
1372
1373  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1374  /// in characters.
1375  CharUnits getObjCEncodingTypeSize(QualType T) const;
1376
1377  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1378  /// in Objective-C.
1379  TypedefDecl *getObjCIdDecl() const;
1380
1381  /// \brief Represents the Objective-CC \c id type.
1382  ///
1383  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1384  /// pointer type, a pointer to a struct.
1385  QualType getObjCIdType() const {
1386    return getTypeDeclType(getObjCIdDecl());
1387  }
1388
1389  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1390  /// in Objective-C.
1391  TypedefDecl *getObjCSelDecl() const;
1392
1393  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1394  /// 'SEL' type.
1395  QualType getObjCSelType() const {
1396    return getTypeDeclType(getObjCSelDecl());
1397  }
1398
1399  /// \brief Retrieve the typedef declaration corresponding to the predefined
1400  /// Objective-C 'Class' type.
1401  TypedefDecl *getObjCClassDecl() const;
1402
1403  /// \brief Represents the Objective-C \c Class type.
1404  ///
1405  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1406  /// pointer type, a pointer to a struct.
1407  QualType getObjCClassType() const {
1408    return getTypeDeclType(getObjCClassDecl());
1409  }
1410
1411  /// \brief Retrieve the Objective-C class declaration corresponding to
1412  /// the predefined \c Protocol class.
1413  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1414
1415  /// \brief Retrieve declaration of 'BOOL' typedef
1416  TypedefDecl *getBOOLDecl() const {
1417    return BOOLDecl;
1418  }
1419
1420  /// \brief Save declaration of 'BOOL' typedef
1421  void setBOOLDecl(TypedefDecl *TD) {
1422    BOOLDecl = TD;
1423  }
1424
1425  /// \brief type of 'BOOL' type.
1426  QualType getBOOLType() const {
1427    return getTypeDeclType(getBOOLDecl());
1428  }
1429
1430  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1431  QualType getObjCProtoType() const {
1432    return getObjCInterfaceType(getObjCProtocolDecl());
1433  }
1434
1435  /// \brief Retrieve the C type declaration corresponding to the predefined
1436  /// \c __builtin_va_list type.
1437  TypedefDecl *getBuiltinVaListDecl() const;
1438
1439  /// \brief Retrieve the type of the \c __builtin_va_list type.
1440  QualType getBuiltinVaListType() const {
1441    return getTypeDeclType(getBuiltinVaListDecl());
1442  }
1443
1444  /// \brief Retrieve the C type declaration corresponding to the predefined
1445  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1446  /// for some targets.
1447  QualType getVaListTagType() const;
1448
1449  /// \brief Return a type with additional \c const, \c volatile, or
1450  /// \c restrict qualifiers.
1451  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1452    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1453  }
1454
1455  /// \brief Un-split a SplitQualType.
1456  QualType getQualifiedType(SplitQualType split) const {
1457    return getQualifiedType(split.Ty, split.Quals);
1458  }
1459
1460  /// \brief Return a type with additional qualifiers.
1461  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1462    if (!Qs.hasNonFastQualifiers())
1463      return T.withFastQualifiers(Qs.getFastQualifiers());
1464    QualifierCollector Qc(Qs);
1465    const Type *Ptr = Qc.strip(T);
1466    return getExtQualType(Ptr, Qc);
1467  }
1468
1469  /// \brief Return a type with additional qualifiers.
1470  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1471    if (!Qs.hasNonFastQualifiers())
1472      return QualType(T, Qs.getFastQualifiers());
1473    return getExtQualType(T, Qs);
1474  }
1475
1476  /// \brief Return a type with the given lifetime qualifier.
1477  ///
1478  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1479  QualType getLifetimeQualifiedType(QualType type,
1480                                    Qualifiers::ObjCLifetime lifetime) {
1481    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1482    assert(lifetime != Qualifiers::OCL_None);
1483
1484    Qualifiers qs;
1485    qs.addObjCLifetime(lifetime);
1486    return getQualifiedType(type, qs);
1487  }
1488
1489  /// getUnqualifiedObjCPointerType - Returns version of
1490  /// Objective-C pointer type with lifetime qualifier removed.
1491  QualType getUnqualifiedObjCPointerType(QualType type) const {
1492    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1493        !type.getQualifiers().hasObjCLifetime())
1494      return type;
1495    Qualifiers Qs = type.getQualifiers();
1496    Qs.removeObjCLifetime();
1497    return getQualifiedType(type.getUnqualifiedType(), Qs);
1498  }
1499
1500  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1501                                         SourceLocation NameLoc) const;
1502
1503  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1504                                         UnresolvedSetIterator End) const;
1505
1506  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1507                                        bool TemplateKeyword,
1508                                        TemplateDecl *Template) const;
1509
1510  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1511                                        const IdentifierInfo *Name) const;
1512  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1513                                        OverloadedOperatorKind Operator) const;
1514  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1515                                            TemplateName replacement) const;
1516  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1517                                        const TemplateArgument &ArgPack) const;
1518
1519  enum GetBuiltinTypeError {
1520    GE_None,              ///< No error
1521    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1522    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1523    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1524  };
1525
1526  /// \brief Return the type for the specified builtin.
1527  ///
1528  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1529  /// arguments to the builtin that are required to be integer constant
1530  /// expressions.
1531  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1532                          unsigned *IntegerConstantArgs = 0) const;
1533
1534private:
1535  CanQualType getFromTargetType(unsigned Type) const;
1536  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1537
1538  //===--------------------------------------------------------------------===//
1539  //                         Type Predicates.
1540  //===--------------------------------------------------------------------===//
1541
1542public:
1543  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1544  /// collection attributes.
1545  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1546
1547  /// \brief Return true if the given vector types are of the same unqualified
1548  /// type or if they are equivalent to the same GCC vector type.
1549  ///
1550  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1551  /// types.
1552  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1553
1554  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1555  /// attribute set.
1556  static bool isObjCNSObjectType(QualType Ty) {
1557    return Ty->isObjCNSObjectType();
1558  }
1559
1560  //===--------------------------------------------------------------------===//
1561  //                         Type Sizing and Analysis
1562  //===--------------------------------------------------------------------===//
1563
1564  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1565  /// point type.
1566  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1567
1568  /// \brief Get the size and alignment of the specified complete type in bits.
1569  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1570  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1571    return getTypeInfo(T.getTypePtr());
1572  }
1573
1574  /// \brief Return the size of the specified (complete) type \p T, in bits.
1575  uint64_t getTypeSize(QualType T) const {
1576    return getTypeInfo(T).first;
1577  }
1578  uint64_t getTypeSize(const Type *T) const {
1579    return getTypeInfo(T).first;
1580  }
1581
1582  /// \brief Return the size of the character type, in bits.
1583  uint64_t getCharWidth() const {
1584    return getTypeSize(CharTy);
1585  }
1586
1587  /// \brief Convert a size in bits to a size in characters.
1588  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1589
1590  /// \brief Convert a size in characters to a size in bits.
1591  int64_t toBits(CharUnits CharSize) const;
1592
1593  /// \brief Return the size of the specified (complete) type \p T, in
1594  /// characters.
1595  CharUnits getTypeSizeInChars(QualType T) const;
1596  CharUnits getTypeSizeInChars(const Type *T) const;
1597
1598  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1599  /// bits.
1600  unsigned getTypeAlign(QualType T) const {
1601    return getTypeInfo(T).second;
1602  }
1603  unsigned getTypeAlign(const Type *T) const {
1604    return getTypeInfo(T).second;
1605  }
1606
1607  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1608  /// characters.
1609  CharUnits getTypeAlignInChars(QualType T) const;
1610  CharUnits getTypeAlignInChars(const Type *T) const;
1611
1612  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1613  // type is a record, its data size is returned.
1614  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1615
1616  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1617  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1618
1619  /// \brief Return the "preferred" alignment of the specified type \p T for
1620  /// the current target, in bits.
1621  ///
1622  /// This can be different than the ABI alignment in cases where it is
1623  /// beneficial for performance to overalign a data type.
1624  unsigned getPreferredTypeAlign(const Type *T) const;
1625
1626  /// \brief Return the alignment in bits that should be given to a
1627  /// global variable with type \p T.
1628  unsigned getAlignOfGlobalVar(QualType T) const;
1629
1630  /// \brief Return the alignment in characters that should be given to a
1631  /// global variable with type \p T.
1632  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1633
1634  /// \brief Return a conservative estimate of the alignment of the specified
1635  /// decl \p D.
1636  ///
1637  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1638  /// alignment.
1639  ///
1640  /// If \p ForAlignof, references are treated like their underlying type
1641  /// and  large arrays don't get any special treatment. If not \p ForAlignof
1642  /// it computes the value expected by CodeGen: references are treated like
1643  /// pointers and large arrays get extra alignment.
1644  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
1645
1646  /// \brief Get or compute information about the layout of the specified
1647  /// record (struct/union/class) \p D, which indicates its size and field
1648  /// position information.
1649  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1650
1651  /// \brief Get or compute information about the layout of the specified
1652  /// Objective-C interface.
1653  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1654    const;
1655
1656  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1657                        bool Simple = false) const;
1658
1659  /// \brief Get or compute information about the layout of the specified
1660  /// Objective-C implementation.
1661  ///
1662  /// This may differ from the interface if synthesized ivars are present.
1663  const ASTRecordLayout &
1664  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1665
1666  /// \brief Get our current best idea for the key function of the
1667  /// given record decl, or NULL if there isn't one.
1668  ///
1669  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1670  ///   ...the first non-pure virtual function that is not inline at the
1671  ///   point of class definition.
1672  ///
1673  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1674  /// virtual functions that are defined 'inline', which means that
1675  /// the result of this computation can change.
1676  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1677
1678  /// \brief Observe that the given method cannot be a key function.
1679  /// Checks the key-function cache for the method's class and clears it
1680  /// if matches the given declaration.
1681  ///
1682  /// This is used in ABIs where out-of-line definitions marked
1683  /// inline are not considered to be key functions.
1684  ///
1685  /// \param method should be the declaration from the class definition
1686  void setNonKeyFunction(const CXXMethodDecl *method);
1687
1688  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1689  uint64_t getFieldOffset(const ValueDecl *FD) const;
1690
1691  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1692
1693  MangleContext *createMangleContext();
1694
1695  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1696                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1697
1698  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1699  void CollectInheritedProtocols(const Decl *CDecl,
1700                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1701
1702  //===--------------------------------------------------------------------===//
1703  //                            Type Operators
1704  //===--------------------------------------------------------------------===//
1705
1706  /// \brief Return the canonical (structural) type corresponding to the
1707  /// specified potentially non-canonical type \p T.
1708  ///
1709  /// The non-canonical version of a type may have many "decorated" versions of
1710  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1711  /// returned type is guaranteed to be free of any of these, allowing two
1712  /// canonical types to be compared for exact equality with a simple pointer
1713  /// comparison.
1714  CanQualType getCanonicalType(QualType T) const {
1715    return CanQualType::CreateUnsafe(T.getCanonicalType());
1716  }
1717
1718  const Type *getCanonicalType(const Type *T) const {
1719    return T->getCanonicalTypeInternal().getTypePtr();
1720  }
1721
1722  /// \brief Return the canonical parameter type corresponding to the specific
1723  /// potentially non-canonical one.
1724  ///
1725  /// Qualifiers are stripped off, functions are turned into function
1726  /// pointers, and arrays decay one level into pointers.
1727  CanQualType getCanonicalParamType(QualType T) const;
1728
1729  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1730  bool hasSameType(QualType T1, QualType T2) const {
1731    return getCanonicalType(T1) == getCanonicalType(T2);
1732  }
1733
1734  /// \brief Return this type as a completely-unqualified array type,
1735  /// capturing the qualifiers in \p Quals.
1736  ///
1737  /// This will remove the minimal amount of sugaring from the types, similar
1738  /// to the behavior of QualType::getUnqualifiedType().
1739  ///
1740  /// \param T is the qualified type, which may be an ArrayType
1741  ///
1742  /// \param Quals will receive the full set of qualifiers that were
1743  /// applied to the array.
1744  ///
1745  /// \returns if this is an array type, the completely unqualified array type
1746  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1747  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1748
1749  /// \brief Determine whether the given types are equivalent after
1750  /// cvr-qualifiers have been removed.
1751  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1752    return getCanonicalType(T1).getTypePtr() ==
1753           getCanonicalType(T2).getTypePtr();
1754  }
1755
1756  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
1757                           const ObjCMethodDecl *MethodImp);
1758
1759  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1760
1761  /// \brief Retrieves the "canonical" nested name specifier for a
1762  /// given nested name specifier.
1763  ///
1764  /// The canonical nested name specifier is a nested name specifier
1765  /// that uniquely identifies a type or namespace within the type
1766  /// system. For example, given:
1767  ///
1768  /// \code
1769  /// namespace N {
1770  ///   struct S {
1771  ///     template<typename T> struct X { typename T* type; };
1772  ///   };
1773  /// }
1774  ///
1775  /// template<typename T> struct Y {
1776  ///   typename N::S::X<T>::type member;
1777  /// };
1778  /// \endcode
1779  ///
1780  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1781  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1782  /// by declarations in the type system and the canonical type for
1783  /// the template type parameter 'T' is template-param-0-0.
1784  NestedNameSpecifier *
1785  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1786
1787  /// \brief Retrieves the default calling convention for the current target.
1788  CallingConv getDefaultCallingConvention(bool isVariadic,
1789                                          bool IsCXXMethod) const;
1790
1791  /// \brief Retrieves the "canonical" template name that refers to a
1792  /// given template.
1793  ///
1794  /// The canonical template name is the simplest expression that can
1795  /// be used to refer to a given template. For most templates, this
1796  /// expression is just the template declaration itself. For example,
1797  /// the template std::vector can be referred to via a variety of
1798  /// names---std::vector, \::std::vector, vector (if vector is in
1799  /// scope), etc.---but all of these names map down to the same
1800  /// TemplateDecl, which is used to form the canonical template name.
1801  ///
1802  /// Dependent template names are more interesting. Here, the
1803  /// template name could be something like T::template apply or
1804  /// std::allocator<T>::template rebind, where the nested name
1805  /// specifier itself is dependent. In this case, the canonical
1806  /// template name uses the shortest form of the dependent
1807  /// nested-name-specifier, which itself contains all canonical
1808  /// types, values, and templates.
1809  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1810
1811  /// \brief Determine whether the given template names refer to the same
1812  /// template.
1813  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1814
1815  /// \brief Retrieve the "canonical" template argument.
1816  ///
1817  /// The canonical template argument is the simplest template argument
1818  /// (which may be a type, value, expression, or declaration) that
1819  /// expresses the value of the argument.
1820  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1821    const;
1822
1823  /// Type Query functions.  If the type is an instance of the specified class,
1824  /// return the Type pointer for the underlying maximally pretty type.  This
1825  /// is a member of ASTContext because this may need to do some amount of
1826  /// canonicalization, e.g. to move type qualifiers into the element type.
1827  const ArrayType *getAsArrayType(QualType T) const;
1828  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1829    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1830  }
1831  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1832    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1833  }
1834  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1835    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1836  }
1837  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1838    const {
1839    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1840  }
1841
1842  /// \brief Return the innermost element type of an array type.
1843  ///
1844  /// For example, will return "int" for int[m][n]
1845  QualType getBaseElementType(const ArrayType *VAT) const;
1846
1847  /// \brief Return the innermost element type of a type (which needn't
1848  /// actually be an array type).
1849  QualType getBaseElementType(QualType QT) const;
1850
1851  /// \brief Return number of constant array elements.
1852  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1853
1854  /// \brief Perform adjustment on the parameter type of a function.
1855  ///
1856  /// This routine adjusts the given parameter type @p T to the actual
1857  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1858  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1859  QualType getAdjustedParameterType(QualType T) const;
1860
1861  /// \brief Retrieve the parameter type as adjusted for use in the signature
1862  /// of a function, decaying array and function types and removing top-level
1863  /// cv-qualifiers.
1864  QualType getSignatureParameterType(QualType T) const;
1865
1866  /// \brief Return the properly qualified result of decaying the specified
1867  /// array type to a pointer.
1868  ///
1869  /// This operation is non-trivial when handling typedefs etc.  The canonical
1870  /// type of \p T must be an array type, this returns a pointer to a properly
1871  /// qualified element of the array.
1872  ///
1873  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1874  QualType getArrayDecayedType(QualType T) const;
1875
1876  /// \brief Return the type that \p PromotableType will promote to: C99
1877  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1878  QualType getPromotedIntegerType(QualType PromotableType) const;
1879
1880  /// \brief Recurses in pointer/array types until it finds an Objective-C
1881  /// retainable type and returns its ownership.
1882  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1883
1884  /// \brief Whether this is a promotable bitfield reference according
1885  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1886  ///
1887  /// \returns the type this bit-field will promote to, or NULL if no
1888  /// promotion occurs.
1889  QualType isPromotableBitField(Expr *E) const;
1890
1891  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1892  ///
1893  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1894  /// \p LHS < \p RHS, return -1.
1895  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1896
1897  /// \brief Compare the rank of the two specified floating point types,
1898  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1899  ///
1900  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1901  /// \p LHS < \p RHS, return -1.
1902  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1903
1904  /// \brief Return a real floating point or a complex type (based on
1905  /// \p typeDomain/\p typeSize).
1906  ///
1907  /// \param typeDomain a real floating point or complex type.
1908  /// \param typeSize a real floating point or complex type.
1909  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1910                                             QualType typeDomain) const;
1911
1912  unsigned getTargetAddressSpace(QualType T) const {
1913    return getTargetAddressSpace(T.getQualifiers());
1914  }
1915
1916  unsigned getTargetAddressSpace(Qualifiers Q) const {
1917    return getTargetAddressSpace(Q.getAddressSpace());
1918  }
1919
1920  unsigned getTargetAddressSpace(unsigned AS) const {
1921    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1922      return AS;
1923    else
1924      return (*AddrSpaceMap)[AS - LangAS::Offset];
1925  }
1926
1927  bool addressSpaceMapManglingFor(unsigned AS) const {
1928    return AddrSpaceMapMangling ||
1929           AS < LangAS::Offset ||
1930           AS >= LangAS::Offset + LangAS::Count;
1931  }
1932
1933private:
1934  // Helper for integer ordering
1935  unsigned getIntegerRank(const Type *T) const;
1936
1937public:
1938
1939  //===--------------------------------------------------------------------===//
1940  //                    Type Compatibility Predicates
1941  //===--------------------------------------------------------------------===//
1942
1943  /// Compatibility predicates used to check assignment expressions.
1944  bool typesAreCompatible(QualType T1, QualType T2,
1945                          bool CompareUnqualified = false); // C99 6.2.7p1
1946
1947  bool propertyTypesAreCompatible(QualType, QualType);
1948  bool typesAreBlockPointerCompatible(QualType, QualType);
1949
1950  bool isObjCIdType(QualType T) const {
1951    return T == getObjCIdType();
1952  }
1953  bool isObjCClassType(QualType T) const {
1954    return T == getObjCClassType();
1955  }
1956  bool isObjCSelType(QualType T) const {
1957    return T == getObjCSelType();
1958  }
1959  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1960                                         bool ForCompare);
1961
1962  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1963
1964  // Check the safety of assignment from LHS to RHS
1965  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1966                               const ObjCObjectPointerType *RHSOPT);
1967  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1968                               const ObjCObjectType *RHS);
1969  bool canAssignObjCInterfacesInBlockPointer(
1970                                          const ObjCObjectPointerType *LHSOPT,
1971                                          const ObjCObjectPointerType *RHSOPT,
1972                                          bool BlockReturnType);
1973  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1974  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1975                                   const ObjCObjectPointerType *RHSOPT);
1976  bool canBindObjCObjectType(QualType To, QualType From);
1977
1978  // Functions for calculating composite types
1979  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1980                      bool Unqualified = false, bool BlockReturnType = false);
1981  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1982                              bool Unqualified = false);
1983  QualType mergeFunctionArgumentTypes(QualType, QualType,
1984                                      bool OfBlockPointer=false,
1985                                      bool Unqualified = false);
1986  QualType mergeTransparentUnionType(QualType, QualType,
1987                                     bool OfBlockPointer=false,
1988                                     bool Unqualified = false);
1989
1990  QualType mergeObjCGCQualifiers(QualType, QualType);
1991
1992  bool FunctionTypesMatchOnNSConsumedAttrs(
1993         const FunctionProtoType *FromFunctionType,
1994         const FunctionProtoType *ToFunctionType);
1995
1996  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1997    ObjCLayouts[CD] = 0;
1998  }
1999
2000  //===--------------------------------------------------------------------===//
2001  //                    Integer Predicates
2002  //===--------------------------------------------------------------------===//
2003
2004  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2005  // of bits in an integer type excluding any padding bits.
2006  unsigned getIntWidth(QualType T) const;
2007
2008  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2009  // unsigned integer type.  This method takes a signed type, and returns the
2010  // corresponding unsigned integer type.
2011  QualType getCorrespondingUnsignedType(QualType T) const;
2012
2013  //===--------------------------------------------------------------------===//
2014  //                    Type Iterators.
2015  //===--------------------------------------------------------------------===//
2016
2017  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
2018  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
2019
2020  type_iterator types_begin() { return Types.begin(); }
2021  type_iterator types_end() { return Types.end(); }
2022  const_type_iterator types_begin() const { return Types.begin(); }
2023  const_type_iterator types_end() const { return Types.end(); }
2024
2025  //===--------------------------------------------------------------------===//
2026  //                    Integer Values
2027  //===--------------------------------------------------------------------===//
2028
2029  /// \brief Make an APSInt of the appropriate width and signedness for the
2030  /// given \p Value and integer \p Type.
2031  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2032    llvm::APSInt Res(getIntWidth(Type),
2033                     !Type->isSignedIntegerOrEnumerationType());
2034    Res = Value;
2035    return Res;
2036  }
2037
2038  bool isSentinelNullExpr(const Expr *E);
2039
2040  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2041  /// none exists.
2042  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2043  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2044  /// none exists.
2045  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2046
2047  /// \brief Return true if there is at least one \@implementation in the TU.
2048  bool AnyObjCImplementation() {
2049    return !ObjCImpls.empty();
2050  }
2051
2052  /// \brief Set the implementation of ObjCInterfaceDecl.
2053  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2054                             ObjCImplementationDecl *ImplD);
2055  /// \brief Set the implementation of ObjCCategoryDecl.
2056  void setObjCImplementation(ObjCCategoryDecl *CatD,
2057                             ObjCCategoryImplDecl *ImplD);
2058
2059  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2060  /// interface, or null if none exists.
2061  const ObjCMethodDecl *getObjCMethodRedeclaration(
2062                                               const ObjCMethodDecl *MD) const {
2063    return ObjCMethodRedecls.lookup(MD);
2064  }
2065
2066  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2067                                  const ObjCMethodDecl *Redecl) {
2068    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2069    ObjCMethodRedecls[MD] = Redecl;
2070  }
2071
2072  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2073  /// an Objective-C method/property/ivar etc. that is part of an interface,
2074  /// otherwise returns null.
2075  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2076
2077  /// \brief Set the copy inialization expression of a block var decl.
2078  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2079  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2080  /// NULL if none exists.
2081  Expr *getBlockVarCopyInits(const VarDecl* VD);
2082
2083  /// \brief Allocate an uninitialized TypeSourceInfo.
2084  ///
2085  /// The caller should initialize the memory held by TypeSourceInfo using
2086  /// the TypeLoc wrappers.
2087  ///
2088  /// \param T the type that will be the basis for type source info. This type
2089  /// should refer to how the declarator was written in source code, not to
2090  /// what type semantic analysis resolved the declarator to.
2091  ///
2092  /// \param Size the size of the type info to create, or 0 if the size
2093  /// should be calculated based on the type.
2094  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2095
2096  /// \brief Allocate a TypeSourceInfo where all locations have been
2097  /// initialized to a given location, which defaults to the empty
2098  /// location.
2099  TypeSourceInfo *
2100  getTrivialTypeSourceInfo(QualType T,
2101                           SourceLocation Loc = SourceLocation()) const;
2102
2103  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2104
2105  /// \brief Add a deallocation callback that will be invoked when the
2106  /// ASTContext is destroyed.
2107  ///
2108  /// \param Callback A callback function that will be invoked on destruction.
2109  ///
2110  /// \param Data Pointer data that will be provided to the callback function
2111  /// when it is called.
2112  void AddDeallocation(void (*Callback)(void*), void *Data);
2113
2114  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2115  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2116
2117  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2118  /// lazily, only when used; this is only relevant for function or file scoped
2119  /// var definitions.
2120  ///
2121  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2122  /// it is not used.
2123  bool DeclMustBeEmitted(const Decl *D);
2124
2125  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2126  unsigned getManglingNumber(const NamedDecl *ND) const;
2127
2128  /// \brief Retrieve the context for computing mangling numbers in the given
2129  /// DeclContext.
2130  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2131
2132  MangleNumberingContext *createMangleNumberingContext() const;
2133
2134  /// \brief Used by ParmVarDecl to store on the side the
2135  /// index of the parameter when it exceeds the size of the normal bitfield.
2136  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2137
2138  /// \brief Used by ParmVarDecl to retrieve on the side the
2139  /// index of the parameter when it exceeds the size of the normal bitfield.
2140  unsigned getParameterIndex(const ParmVarDecl *D) const;
2141
2142  /// \brief Get the storage for the constant value of a materialized temporary
2143  /// of static storage duration.
2144  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2145                                         bool MayCreate);
2146
2147  //===--------------------------------------------------------------------===//
2148  //                    Statistics
2149  //===--------------------------------------------------------------------===//
2150
2151  /// \brief The number of implicitly-declared default constructors.
2152  static unsigned NumImplicitDefaultConstructors;
2153
2154  /// \brief The number of implicitly-declared default constructors for
2155  /// which declarations were built.
2156  static unsigned NumImplicitDefaultConstructorsDeclared;
2157
2158  /// \brief The number of implicitly-declared copy constructors.
2159  static unsigned NumImplicitCopyConstructors;
2160
2161  /// \brief The number of implicitly-declared copy constructors for
2162  /// which declarations were built.
2163  static unsigned NumImplicitCopyConstructorsDeclared;
2164
2165  /// \brief The number of implicitly-declared move constructors.
2166  static unsigned NumImplicitMoveConstructors;
2167
2168  /// \brief The number of implicitly-declared move constructors for
2169  /// which declarations were built.
2170  static unsigned NumImplicitMoveConstructorsDeclared;
2171
2172  /// \brief The number of implicitly-declared copy assignment operators.
2173  static unsigned NumImplicitCopyAssignmentOperators;
2174
2175  /// \brief The number of implicitly-declared copy assignment operators for
2176  /// which declarations were built.
2177  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2178
2179  /// \brief The number of implicitly-declared move assignment operators.
2180  static unsigned NumImplicitMoveAssignmentOperators;
2181
2182  /// \brief The number of implicitly-declared move assignment operators for
2183  /// which declarations were built.
2184  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2185
2186  /// \brief The number of implicitly-declared destructors.
2187  static unsigned NumImplicitDestructors;
2188
2189  /// \brief The number of implicitly-declared destructors for which
2190  /// declarations were built.
2191  static unsigned NumImplicitDestructorsDeclared;
2192
2193private:
2194  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2195  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2196
2197public:
2198  /// \brief Initialize built-in types.
2199  ///
2200  /// This routine may only be invoked once for a given ASTContext object.
2201  /// It is normally invoked by the ASTContext constructor. However, the
2202  /// constructor can be asked to delay initialization, which places the burden
2203  /// of calling this function on the user of that object.
2204  ///
2205  /// \param Target The target
2206  void InitBuiltinTypes(const TargetInfo &Target);
2207
2208private:
2209  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2210
2211  // Return the Objective-C type encoding for a given type.
2212  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2213                                  bool ExpandPointedToStructures,
2214                                  bool ExpandStructures,
2215                                  const FieldDecl *Field,
2216                                  bool OutermostType = false,
2217                                  bool EncodingProperty = false,
2218                                  bool StructField = false,
2219                                  bool EncodeBlockParameters = false,
2220                                  bool EncodeClassNames = false,
2221                                  bool EncodePointerToObjCTypedef = false) const;
2222
2223  // Adds the encoding of the structure's members.
2224  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2225                                       const FieldDecl *Field,
2226                                       bool includeVBases = true) const;
2227
2228  // Adds the encoding of a method parameter or return type.
2229  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2230                                         QualType T, std::string& S,
2231                                         bool Extended) const;
2232
2233  const ASTRecordLayout &
2234  getObjCLayout(const ObjCInterfaceDecl *D,
2235                const ObjCImplementationDecl *Impl) const;
2236
2237private:
2238  /// \brief A set of deallocations that should be performed when the
2239  /// ASTContext is destroyed.
2240  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2241    DeallocationMap;
2242  DeallocationMap Deallocations;
2243
2244  // FIXME: This currently contains the set of StoredDeclMaps used
2245  // by DeclContext objects.  This probably should not be in ASTContext,
2246  // but we include it here so that ASTContext can quickly deallocate them.
2247  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2248
2249  friend class DeclContext;
2250  friend class DeclarationNameTable;
2251  void ReleaseDeclContextMaps();
2252
2253  llvm::OwningPtr<ParentMap> AllParents;
2254};
2255
2256/// \brief Utility function for constructing a nullary selector.
2257static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2258  IdentifierInfo* II = &Ctx.Idents.get(name);
2259  return Ctx.Selectors.getSelector(0, &II);
2260}
2261
2262/// \brief Utility function for constructing an unary selector.
2263static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2264  IdentifierInfo* II = &Ctx.Idents.get(name);
2265  return Ctx.Selectors.getSelector(1, &II);
2266}
2267
2268}  // end namespace clang
2269
2270// operator new and delete aren't allowed inside namespaces.
2271
2272/// @brief Placement new for using the ASTContext's allocator.
2273///
2274/// This placement form of operator new uses the ASTContext's allocator for
2275/// obtaining memory.
2276///
2277/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2278/// here need to also be made there.
2279///
2280/// We intentionally avoid using a nothrow specification here so that the calls
2281/// to this operator will not perform a null check on the result -- the
2282/// underlying allocator never returns null pointers.
2283///
2284/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2285/// @code
2286/// // Default alignment (8)
2287/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2288/// // Specific alignment
2289/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2290/// @endcode
2291/// Please note that you cannot use delete on the pointer; it must be
2292/// deallocated using an explicit destructor call followed by
2293/// @c Context.Deallocate(Ptr).
2294///
2295/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2296/// @param C The ASTContext that provides the allocator.
2297/// @param Alignment The alignment of the allocated memory (if the underlying
2298///                  allocator supports it).
2299/// @return The allocated memory. Could be NULL.
2300inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2301                          size_t Alignment) {
2302  return C.Allocate(Bytes, Alignment);
2303}
2304/// @brief Placement delete companion to the new above.
2305///
2306/// This operator is just a companion to the new above. There is no way of
2307/// invoking it directly; see the new operator for more details. This operator
2308/// is called implicitly by the compiler if a placement new expression using
2309/// the ASTContext throws in the object constructor.
2310inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2311  C.Deallocate(Ptr);
2312}
2313
2314/// This placement form of operator new[] uses the ASTContext's allocator for
2315/// obtaining memory.
2316///
2317/// We intentionally avoid using a nothrow specification here so that the calls
2318/// to this operator will not perform a null check on the result -- the
2319/// underlying allocator never returns null pointers.
2320///
2321/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2322/// @code
2323/// // Default alignment (8)
2324/// char *data = new (Context) char[10];
2325/// // Specific alignment
2326/// char *data = new (Context, 4) char[10];
2327/// @endcode
2328/// Please note that you cannot use delete on the pointer; it must be
2329/// deallocated using an explicit destructor call followed by
2330/// @c Context.Deallocate(Ptr).
2331///
2332/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2333/// @param C The ASTContext that provides the allocator.
2334/// @param Alignment The alignment of the allocated memory (if the underlying
2335///                  allocator supports it).
2336/// @return The allocated memory. Could be NULL.
2337inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2338                            size_t Alignment = 8) {
2339  return C.Allocate(Bytes, Alignment);
2340}
2341
2342/// @brief Placement delete[] companion to the new[] above.
2343///
2344/// This operator is just a companion to the new[] above. There is no way of
2345/// invoking it directly; see the new[] operator for more details. This operator
2346/// is called implicitly by the compiler if a placement new[] expression using
2347/// the ASTContext throws in the object constructor.
2348inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2349  C.Deallocate(Ptr);
2350}
2351
2352#endif
2353