ASTContext.h revision 2390a72a3ebd37737fec5ba1385db9c3bb22fc59
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Attr.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/CanonicalType.h"
28#include "clang/AST/UsuallyTinyPtrVector.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/Support/Allocator.h"
34#include <vector>
35
36namespace llvm {
37  struct fltSemantics;
38  class raw_ostream;
39}
40
41namespace clang {
42  class FileManager;
43  class ASTRecordLayout;
44  class BlockExpr;
45  class CharUnits;
46  class Diagnostic;
47  class Expr;
48  class ExternalASTSource;
49  class IdentifierTable;
50  class SelectorTable;
51  class SourceManager;
52  class TargetInfo;
53  // Decls
54  class DeclContext;
55  class CXXMethodDecl;
56  class CXXRecordDecl;
57  class Decl;
58  class FieldDecl;
59  class ObjCIvarDecl;
60  class ObjCIvarRefExpr;
61  class ObjCPropertyDecl;
62  class RecordDecl;
63  class StoredDeclsMap;
64  class TagDecl;
65  class TemplateTypeParmDecl;
66  class TranslationUnitDecl;
67  class TypeDecl;
68  class TypedefDecl;
69  class UsingDecl;
70  class UsingShadowDecl;
71  class UnresolvedSetIterator;
72
73  namespace Builtin { class Context; }
74
75/// ASTContext - This class holds long-lived AST nodes (such as types and
76/// decls) that can be referred to throughout the semantic analysis of a file.
77class ASTContext {
78  std::vector<Type*> Types;
79  llvm::FoldingSet<ExtQuals> ExtQualNodes;
80  llvm::FoldingSet<ComplexType> ComplexTypes;
81  llvm::FoldingSet<PointerType> PointerTypes;
82  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
83  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
84  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
85  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
86  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
87  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
88  std::vector<VariableArrayType*> VariableArrayTypes;
89  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
90  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
91  llvm::FoldingSet<VectorType> VectorTypes;
92  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
93  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
94  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
95  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
96  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
97  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
98  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
99  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
100  llvm::FoldingSet<DependentNameType> DependentNameTypes;
101  llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
102  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
103
104  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
105  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
106
107  /// \brief The set of nested name specifiers.
108  ///
109  /// This set is managed by the NestedNameSpecifier class.
110  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
111  NestedNameSpecifier *GlobalNestedNameSpecifier;
112  friend class NestedNameSpecifier;
113
114  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
115  ///  This is lazily created.  This is intentionally not serialized.
116  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
117  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
118
119  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
120  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
121
122  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
123  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
124
125  /// BuiltinVaListType - built-in va list type.
126  /// This is initially null and set by Sema::LazilyCreateBuiltin when
127  /// a builtin that takes a valist is encountered.
128  QualType BuiltinVaListType;
129
130  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
131  QualType ObjCIdTypedefType;
132
133  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
134  QualType ObjCSelTypedefType;
135
136  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
137  QualType ObjCProtoType;
138  const RecordType *ProtoStructType;
139
140  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
141  QualType ObjCClassTypedefType;
142
143  QualType ObjCConstantStringType;
144  RecordDecl *CFConstantStringTypeDecl;
145
146  RecordDecl *NSConstantStringTypeDecl;
147
148  RecordDecl *ObjCFastEnumerationStateTypeDecl;
149
150  /// \brief The type for the C FILE type.
151  TypeDecl *FILEDecl;
152
153  /// \brief The type for the C jmp_buf type.
154  TypeDecl *jmp_bufDecl;
155
156  /// \brief The type for the C sigjmp_buf type.
157  TypeDecl *sigjmp_bufDecl;
158
159  /// \brief Type for the Block descriptor for Blocks CodeGen.
160  RecordDecl *BlockDescriptorType;
161
162  /// \brief Type for the Block descriptor for Blocks CodeGen.
163  RecordDecl *BlockDescriptorExtendedType;
164
165  /// \brief Keeps track of all declaration attributes.
166  ///
167  /// Since so few decls have attrs, we keep them in a hash map instead of
168  /// wasting space in the Decl class.
169  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
170
171  /// \brief Keeps track of the static data member templates from which
172  /// static data members of class template specializations were instantiated.
173  ///
174  /// This data structure stores the mapping from instantiations of static
175  /// data members to the static data member representations within the
176  /// class template from which they were instantiated along with the kind
177  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
178  ///
179  /// Given the following example:
180  ///
181  /// \code
182  /// template<typename T>
183  /// struct X {
184  ///   static T value;
185  /// };
186  ///
187  /// template<typename T>
188  ///   T X<T>::value = T(17);
189  ///
190  /// int *x = &X<int>::value;
191  /// \endcode
192  ///
193  /// This mapping will contain an entry that maps from the VarDecl for
194  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
195  /// class template X) and will be marked TSK_ImplicitInstantiation.
196  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
197    InstantiatedFromStaticDataMember;
198
199  /// \brief Keeps track of the declaration from which a UsingDecl was
200  /// created during instantiation.  The source declaration is always
201  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
202  /// UnresolvedUsingTypenameDecl.
203  ///
204  /// For example:
205  /// \code
206  /// template<typename T>
207  /// struct A {
208  ///   void f();
209  /// };
210  ///
211  /// template<typename T>
212  /// struct B : A<T> {
213  ///   using A<T>::f;
214  /// };
215  ///
216  /// template struct B<int>;
217  /// \endcode
218  ///
219  /// This mapping will contain an entry that maps from the UsingDecl in
220  /// B<int> to the UnresolvedUsingDecl in B<T>.
221  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
222
223  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
224    InstantiatedFromUsingShadowDecl;
225
226  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
227
228  /// \brief Mapping that stores the methods overridden by a given C++
229  /// member function.
230  ///
231  /// Since most C++ member functions aren't virtual and therefore
232  /// don't override anything, we store the overridden functions in
233  /// this map on the side rather than within the CXXMethodDecl structure.
234  typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
235  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
236
237  TranslationUnitDecl *TUDecl;
238
239  /// SourceMgr - The associated SourceManager object.
240  SourceManager &SourceMgr;
241
242  /// LangOpts - The language options used to create the AST associated with
243  ///  this ASTContext object.
244  LangOptions LangOpts;
245
246  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
247  bool FreeMemory;
248  llvm::MallocAllocator MallocAlloc;
249  llvm::BumpPtrAllocator BumpAlloc;
250
251  /// \brief Allocator for partial diagnostics.
252  PartialDiagnostic::StorageAllocator DiagAllocator;
253
254public:
255  const TargetInfo &Target;
256  IdentifierTable &Idents;
257  SelectorTable &Selectors;
258  Builtin::Context &BuiltinInfo;
259  DeclarationNameTable DeclarationNames;
260  llvm::OwningPtr<ExternalASTSource> ExternalSource;
261  clang::PrintingPolicy PrintingPolicy;
262
263  // Typedefs which may be provided defining the structure of Objective-C
264  // pseudo-builtins
265  QualType ObjCIdRedefinitionType;
266  QualType ObjCClassRedefinitionType;
267  QualType ObjCSelRedefinitionType;
268
269  SourceManager& getSourceManager() { return SourceMgr; }
270  const SourceManager& getSourceManager() const { return SourceMgr; }
271  void *Allocate(unsigned Size, unsigned Align = 8) {
272    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
273                        BumpAlloc.Allocate(Size, Align);
274  }
275  void Deallocate(void *Ptr) {
276    if (FreeMemory)
277      MallocAlloc.Deallocate(Ptr);
278  }
279
280  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
281    return DiagAllocator;
282  }
283
284  const LangOptions& getLangOptions() const { return LangOpts; }
285
286  FullSourceLoc getFullLoc(SourceLocation Loc) const {
287    return FullSourceLoc(Loc,SourceMgr);
288  }
289
290  /// \brief Retrieve the attributes for the given declaration.
291  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
292
293  /// \brief Erase the attributes corresponding to the given declaration.
294  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
295
296  /// \brief If this variable is an instantiated static data member of a
297  /// class template specialization, returns the templated static data member
298  /// from which it was instantiated.
299  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
300                                                           const VarDecl *Var);
301
302  /// \brief Note that the static data member \p Inst is an instantiation of
303  /// the static data member template \p Tmpl of a class template.
304  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
305                                           TemplateSpecializationKind TSK);
306
307  /// \brief If the given using decl is an instantiation of a
308  /// (possibly unresolved) using decl from a template instantiation,
309  /// return it.
310  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
311
312  /// \brief Remember that the using decl \p Inst is an instantiation
313  /// of the using decl \p Pattern of a class template.
314  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
315
316  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
317                                          UsingShadowDecl *Pattern);
318  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
319
320  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
321
322  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
323
324  // Access to the set of methods overridden by the given C++ method.
325  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
326  overridden_cxx_method_iterator
327  overridden_methods_begin(const CXXMethodDecl *Method) const;
328
329  overridden_cxx_method_iterator
330  overridden_methods_end(const CXXMethodDecl *Method) const;
331
332  /// \brief Note that the given C++ \p Method overrides the given \p
333  /// Overridden method.
334  void addOverriddenMethod(const CXXMethodDecl *Method,
335                           const CXXMethodDecl *Overridden);
336
337  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
338
339
340  // Builtin Types.
341  CanQualType VoidTy;
342  CanQualType BoolTy;
343  CanQualType CharTy;
344  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
345  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
346  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
347  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
348  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
349  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
350  CanQualType FloatTy, DoubleTy, LongDoubleTy;
351  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
352  CanQualType VoidPtrTy, NullPtrTy;
353  CanQualType OverloadTy;
354  CanQualType DependentTy;
355  CanQualType UndeducedAutoTy;
356  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
357
358  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
359             IdentifierTable &idents, SelectorTable &sels,
360             Builtin::Context &builtins,
361             bool FreeMemory = true, unsigned size_reserve=0);
362
363  ~ASTContext();
364
365  /// \brief Attach an external AST source to the AST context.
366  ///
367  /// The external AST source provides the ability to load parts of
368  /// the abstract syntax tree as needed from some external storage,
369  /// e.g., a precompiled header.
370  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
371
372  /// \brief Retrieve a pointer to the external AST source associated
373  /// with this AST context, if any.
374  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
375
376  void PrintStats() const;
377  const std::vector<Type*>& getTypes() const { return Types; }
378
379  //===--------------------------------------------------------------------===//
380  //                           Type Constructors
381  //===--------------------------------------------------------------------===//
382
383private:
384  /// getExtQualType - Return a type with extended qualifiers.
385  QualType getExtQualType(const Type *Base, Qualifiers Quals);
386
387  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
388
389public:
390  /// getAddSpaceQualType - Return the uniqued reference to the type for an
391  /// address space qualified type with the specified type and address space.
392  /// The resulting type has a union of the qualifiers from T and the address
393  /// space. If T already has an address space specifier, it is silently
394  /// replaced.
395  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
396
397  /// getObjCGCQualType - Returns the uniqued reference to the type for an
398  /// objc gc qualified type. The retulting type has a union of the qualifiers
399  /// from T and the gc attribute.
400  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
401
402  /// getRestrictType - Returns the uniqued reference to the type for a
403  /// 'restrict' qualified type.  The resulting type has a union of the
404  /// qualifiers from T and 'restrict'.
405  QualType getRestrictType(QualType T) {
406    return T.withFastQualifiers(Qualifiers::Restrict);
407  }
408
409  /// getVolatileType - Returns the uniqued reference to the type for a
410  /// 'volatile' qualified type.  The resulting type has a union of the
411  /// qualifiers from T and 'volatile'.
412  QualType getVolatileType(QualType T);
413
414  /// getConstType - Returns the uniqued reference to the type for a
415  /// 'const' qualified type.  The resulting type has a union of the
416  /// qualifiers from T and 'const'.
417  ///
418  /// It can be reasonably expected that this will always be
419  /// equivalent to calling T.withConst().
420  QualType getConstType(QualType T) { return T.withConst(); }
421
422  /// getNoReturnType - Add or remove the noreturn attribute to the given type
423  /// which must be a FunctionType or a pointer to an allowable type or a
424  /// BlockPointer.
425  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
426
427  /// getCallConvType - Adds the specified calling convention attribute to
428  /// the given type, which must be a FunctionType or a pointer to an
429  /// allowable type.
430  QualType getCallConvType(QualType T, CallingConv CallConv);
431
432  /// getRegParmType - Sets the specified regparm attribute to
433  /// the given type, which must be a FunctionType or a pointer to an
434  /// allowable type.
435  QualType getRegParmType(QualType T, unsigned RegParm);
436
437  /// getComplexType - Return the uniqued reference to the type for a complex
438  /// number with the specified element type.
439  QualType getComplexType(QualType T);
440  CanQualType getComplexType(CanQualType T) {
441    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
442  }
443
444  /// getPointerType - Return the uniqued reference to the type for a pointer to
445  /// the specified type.
446  QualType getPointerType(QualType T);
447  CanQualType getPointerType(CanQualType T) {
448    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
449  }
450
451  /// getBlockPointerType - Return the uniqued reference to the type for a block
452  /// of the specified type.
453  QualType getBlockPointerType(QualType T);
454
455  /// This gets the struct used to keep track of the descriptor for pointer to
456  /// blocks.
457  QualType getBlockDescriptorType();
458
459  // Set the type for a Block descriptor type.
460  void setBlockDescriptorType(QualType T);
461  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
462  QualType getRawBlockdescriptorType() {
463    if (BlockDescriptorType)
464      return getTagDeclType(BlockDescriptorType);
465    return QualType();
466  }
467
468  /// This gets the struct used to keep track of the extended descriptor for
469  /// pointer to blocks.
470  QualType getBlockDescriptorExtendedType();
471
472  // Set the type for a Block descriptor extended type.
473  void setBlockDescriptorExtendedType(QualType T);
474  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
475  /// built.
476  QualType getRawBlockdescriptorExtendedType() {
477    if (BlockDescriptorExtendedType)
478      return getTagDeclType(BlockDescriptorExtendedType);
479    return QualType();
480  }
481
482  /// This gets the struct used to keep track of pointer to blocks, complete
483  /// with captured variables.
484  QualType getBlockParmType(bool BlockHasCopyDispose,
485                            llvm::SmallVector<const Expr *, 8> &BDRDs);
486
487  /// This builds the struct used for __block variables.
488  QualType BuildByRefType(const char *DeclName, QualType Ty);
489
490  /// Returns true iff we need copy/dispose helpers for the given type.
491  bool BlockRequiresCopying(QualType Ty);
492
493  /// getLValueReferenceType - Return the uniqued reference to the type for an
494  /// lvalue reference to the specified type.
495  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
496
497  /// getRValueReferenceType - Return the uniqued reference to the type for an
498  /// rvalue reference to the specified type.
499  QualType getRValueReferenceType(QualType T);
500
501  /// getMemberPointerType - Return the uniqued reference to the type for a
502  /// member pointer to the specified type in the specified class. The class
503  /// is a Type because it could be a dependent name.
504  QualType getMemberPointerType(QualType T, const Type *Cls);
505
506  /// getVariableArrayType - Returns a non-unique reference to the type for a
507  /// variable array of the specified element type.
508  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
509                                ArrayType::ArraySizeModifier ASM,
510                                unsigned EltTypeQuals,
511                                SourceRange Brackets);
512
513  /// getDependentSizedArrayType - Returns a non-unique reference to
514  /// the type for a dependently-sized array of the specified element
515  /// type. FIXME: We will need these to be uniqued, or at least
516  /// comparable, at some point.
517  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
518                                      ArrayType::ArraySizeModifier ASM,
519                                      unsigned EltTypeQuals,
520                                      SourceRange Brackets);
521
522  /// getIncompleteArrayType - Returns a unique reference to the type for a
523  /// incomplete array of the specified element type.
524  QualType getIncompleteArrayType(QualType EltTy,
525                                  ArrayType::ArraySizeModifier ASM,
526                                  unsigned EltTypeQuals);
527
528  /// getConstantArrayType - Return the unique reference to the type for a
529  /// constant array of the specified element type.
530  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
531                                ArrayType::ArraySizeModifier ASM,
532                                unsigned EltTypeQuals);
533
534  /// getVectorType - Return the unique reference to a vector type of
535  /// the specified element type and size. VectorType must be a built-in type.
536  QualType getVectorType(QualType VectorType, unsigned NumElts,
537                         bool AltiVec, bool IsPixel);
538
539  /// getExtVectorType - Return the unique reference to an extended vector type
540  /// of the specified element type and size.  VectorType must be a built-in
541  /// type.
542  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
543
544  /// getDependentSizedExtVectorType - Returns a non-unique reference to
545  /// the type for a dependently-sized vector of the specified element
546  /// type. FIXME: We will need these to be uniqued, or at least
547  /// comparable, at some point.
548  QualType getDependentSizedExtVectorType(QualType VectorType,
549                                          Expr *SizeExpr,
550                                          SourceLocation AttrLoc);
551
552  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
553  ///
554  QualType getFunctionNoProtoType(QualType ResultTy,
555                                  const FunctionType::ExtInfo &Info);
556
557  QualType getFunctionNoProtoType(QualType ResultTy) {
558    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
559  }
560
561  /// getFunctionType - Return a normal function type with a typed argument
562  /// list.  isVariadic indicates whether the argument list includes '...'.
563  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
564                           unsigned NumArgs, bool isVariadic,
565                           unsigned TypeQuals, bool hasExceptionSpec,
566                           bool hasAnyExceptionSpec,
567                           unsigned NumExs, const QualType *ExArray,
568                           const FunctionType::ExtInfo &Info);
569
570  /// getTypeDeclType - Return the unique reference to the type for
571  /// the specified type declaration.
572  QualType getTypeDeclType(const TypeDecl *Decl,
573                           const TypeDecl *PrevDecl = 0) {
574    assert(Decl && "Passed null for Decl param");
575    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
576
577    if (PrevDecl) {
578      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
579      Decl->TypeForDecl = PrevDecl->TypeForDecl;
580      return QualType(PrevDecl->TypeForDecl, 0);
581    }
582
583    return getTypeDeclTypeSlow(Decl);
584  }
585
586  /// getTypedefType - Return the unique reference to the type for the
587  /// specified typename decl.
588  QualType getTypedefType(const TypedefDecl *Decl);
589
590  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
591
592  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
593                                        QualType Replacement);
594
595  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
596                                   bool ParameterPack,
597                                   IdentifierInfo *Name = 0);
598
599  QualType getTemplateSpecializationType(TemplateName T,
600                                         const TemplateArgument *Args,
601                                         unsigned NumArgs,
602                                         QualType Canon = QualType(),
603                                         bool IsCurrentInstantiation = false);
604
605  QualType getTemplateSpecializationType(TemplateName T,
606                                         const TemplateArgumentListInfo &Args,
607                                         QualType Canon = QualType(),
608                                         bool IsCurrentInstantiation = false);
609
610  TypeSourceInfo *
611  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
612                                    const TemplateArgumentListInfo &Args,
613                                    QualType Canon = QualType());
614
615  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
616                             NestedNameSpecifier *NNS,
617                             QualType NamedType);
618  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
619                                NestedNameSpecifier *NNS,
620                                const IdentifierInfo *Name,
621                                QualType Canon = QualType());
622  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
623                                NestedNameSpecifier *NNS,
624                                const TemplateSpecializationType *TemplateId,
625                                QualType Canon = QualType());
626
627  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
628
629  QualType getObjCObjectType(QualType Base,
630                             ObjCProtocolDecl * const *Protocols,
631                             unsigned NumProtocols);
632
633  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
634  /// for the given ObjCObjectType.
635  QualType getObjCObjectPointerType(QualType OIT);
636
637  /// getTypeOfType - GCC extension.
638  QualType getTypeOfExprType(Expr *e);
639  QualType getTypeOfType(QualType t);
640
641  /// getDecltypeType - C++0x decltype.
642  QualType getDecltypeType(Expr *e);
643
644  /// getTagDeclType - Return the unique reference to the type for the
645  /// specified TagDecl (struct/union/class/enum) decl.
646  QualType getTagDeclType(const TagDecl *Decl);
647
648  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
649  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
650  CanQualType getSizeType() const;
651
652  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
653  /// returns a type compatible with the type defined in <stddef.h> as defined
654  /// by the target.
655  QualType getWCharType() const { return WCharTy; }
656
657  /// getSignedWCharType - Return the type of "signed wchar_t".
658  /// Used when in C++, as a GCC extension.
659  QualType getSignedWCharType() const;
660
661  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
662  /// Used when in C++, as a GCC extension.
663  QualType getUnsignedWCharType() const;
664
665  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
666  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
667  QualType getPointerDiffType() const;
668
669  // getCFConstantStringType - Return the C structure type used to represent
670  // constant CFStrings.
671  QualType getCFConstantStringType();
672
673  // getNSConstantStringType - Return the C structure type used to represent
674  // constant NSStrings.
675  QualType getNSConstantStringType();
676  /// Get the structure type used to representation NSStrings, or NULL
677  /// if it hasn't yet been built.
678  QualType getRawNSConstantStringType() {
679    if (NSConstantStringTypeDecl)
680      return getTagDeclType(NSConstantStringTypeDecl);
681    return QualType();
682  }
683  void setNSConstantStringType(QualType T);
684
685
686  /// Get the structure type used to representation CFStrings, or NULL
687  /// if it hasn't yet been built.
688  QualType getRawCFConstantStringType() {
689    if (CFConstantStringTypeDecl)
690      return getTagDeclType(CFConstantStringTypeDecl);
691    return QualType();
692  }
693  void setCFConstantStringType(QualType T);
694
695  // This setter/getter represents the ObjC type for an NSConstantString.
696  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
697  QualType getObjCConstantStringInterface() const {
698    return ObjCConstantStringType;
699  }
700
701  //// This gets the struct used to keep track of fast enumerations.
702  QualType getObjCFastEnumerationStateType();
703
704  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
705  /// been built.
706  QualType getRawObjCFastEnumerationStateType() {
707    if (ObjCFastEnumerationStateTypeDecl)
708      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
709    return QualType();
710  }
711
712  void setObjCFastEnumerationStateType(QualType T);
713
714  /// \brief Set the type for the C FILE type.
715  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
716
717  /// \brief Retrieve the C FILE type.
718  QualType getFILEType() {
719    if (FILEDecl)
720      return getTypeDeclType(FILEDecl);
721    return QualType();
722  }
723
724  /// \brief Set the type for the C jmp_buf type.
725  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
726    this->jmp_bufDecl = jmp_bufDecl;
727  }
728
729  /// \brief Retrieve the C jmp_buf type.
730  QualType getjmp_bufType() {
731    if (jmp_bufDecl)
732      return getTypeDeclType(jmp_bufDecl);
733    return QualType();
734  }
735
736  /// \brief Set the type for the C sigjmp_buf type.
737  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
738    this->sigjmp_bufDecl = sigjmp_bufDecl;
739  }
740
741  /// \brief Retrieve the C sigjmp_buf type.
742  QualType getsigjmp_bufType() {
743    if (sigjmp_bufDecl)
744      return getTypeDeclType(sigjmp_bufDecl);
745    return QualType();
746  }
747
748  /// getObjCEncodingForType - Emit the ObjC type encoding for the
749  /// given type into \arg S. If \arg NameFields is specified then
750  /// record field names are also encoded.
751  void getObjCEncodingForType(QualType t, std::string &S,
752                              const FieldDecl *Field=0);
753
754  void getLegacyIntegralTypeEncoding(QualType &t) const;
755
756  // Put the string version of type qualifiers into S.
757  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
758                                       std::string &S) const;
759
760  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
761  /// declaration.
762  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
763
764  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
765  /// declaration.
766  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
767
768  /// getObjCEncodingForPropertyDecl - Return the encoded type for
769  /// this method declaration. If non-NULL, Container must be either
770  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
771  /// only be NULL when getting encodings for protocol properties.
772  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
773                                      const Decl *Container,
774                                      std::string &S);
775
776  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
777                                      ObjCProtocolDecl *rProto);
778
779  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
780  /// purpose in characters.
781  CharUnits getObjCEncodingTypeSize(QualType t);
782
783  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
784  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
785  QualType getObjCIdType() const { return ObjCIdTypedefType; }
786  void setObjCIdType(QualType T);
787
788  void setObjCSelType(QualType T);
789  QualType getObjCSelType() const { return ObjCSelTypedefType; }
790
791  void setObjCProtoType(QualType QT);
792  QualType getObjCProtoType() const { return ObjCProtoType; }
793
794  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
795  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
796  /// struct.
797  QualType getObjCClassType() const { return ObjCClassTypedefType; }
798  void setObjCClassType(QualType T);
799
800  void setBuiltinVaListType(QualType T);
801  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
802
803  /// getCVRQualifiedType - Returns a type with additional const,
804  /// volatile, or restrict qualifiers.
805  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
806    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
807  }
808
809  /// getQualifiedType - Returns a type with additional qualifiers.
810  QualType getQualifiedType(QualType T, Qualifiers Qs) {
811    if (!Qs.hasNonFastQualifiers())
812      return T.withFastQualifiers(Qs.getFastQualifiers());
813    QualifierCollector Qc(Qs);
814    const Type *Ptr = Qc.strip(T);
815    return getExtQualType(Ptr, Qc);
816  }
817
818  /// getQualifiedType - Returns a type with additional qualifiers.
819  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
820    if (!Qs.hasNonFastQualifiers())
821      return QualType(T, Qs.getFastQualifiers());
822    return getExtQualType(T, Qs);
823  }
824
825  DeclarationName getNameForTemplate(TemplateName Name);
826
827  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
828                                         UnresolvedSetIterator End);
829
830  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
831                                        bool TemplateKeyword,
832                                        TemplateDecl *Template);
833
834  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
835                                        const IdentifierInfo *Name);
836  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
837                                        OverloadedOperatorKind Operator);
838
839  enum GetBuiltinTypeError {
840    GE_None,              //< No error
841    GE_Missing_stdio,     //< Missing a type from <stdio.h>
842    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
843  };
844
845  /// GetBuiltinType - Return the type for the specified builtin.
846  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
847
848private:
849  CanQualType getFromTargetType(unsigned Type) const;
850
851  //===--------------------------------------------------------------------===//
852  //                         Type Predicates.
853  //===--------------------------------------------------------------------===//
854
855public:
856  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
857  /// garbage collection attribute.
858  ///
859  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
860
861  /// isObjCNSObjectType - Return true if this is an NSObject object with
862  /// its NSObject attribute set.
863  bool isObjCNSObjectType(QualType Ty) const;
864
865  //===--------------------------------------------------------------------===//
866  //                         Type Sizing and Analysis
867  //===--------------------------------------------------------------------===//
868
869  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
870  /// scalar floating point type.
871  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
872
873  /// getTypeInfo - Get the size and alignment of the specified complete type in
874  /// bits.
875  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
876  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
877    return getTypeInfo(T.getTypePtr());
878  }
879
880  /// getTypeSize - Return the size of the specified type, in bits.  This method
881  /// does not work on incomplete types.
882  uint64_t getTypeSize(QualType T) {
883    return getTypeInfo(T).first;
884  }
885  uint64_t getTypeSize(const Type *T) {
886    return getTypeInfo(T).first;
887  }
888
889  /// getCharWidth - Return the size of the character type, in bits
890  uint64_t getCharWidth() {
891    return getTypeSize(CharTy);
892  }
893
894  /// getTypeSizeInChars - Return the size of the specified type, in characters.
895  /// This method does not work on incomplete types.
896  CharUnits getTypeSizeInChars(QualType T);
897  CharUnits getTypeSizeInChars(const Type *T);
898
899  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
900  /// This method does not work on incomplete types.
901  unsigned getTypeAlign(QualType T) {
902    return getTypeInfo(T).second;
903  }
904  unsigned getTypeAlign(const Type *T) {
905    return getTypeInfo(T).second;
906  }
907
908  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
909  /// characters. This method does not work on incomplete types.
910  CharUnits getTypeAlignInChars(QualType T);
911  CharUnits getTypeAlignInChars(const Type *T);
912
913  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
914  /// type for the current target in bits.  This can be different than the ABI
915  /// alignment in cases where it is beneficial for performance to overalign
916  /// a data type.
917  unsigned getPreferredTypeAlign(const Type *T);
918
919  /// getDeclAlign - Return a conservative estimate of the alignment of
920  /// the specified decl.  Note that bitfields do not have a valid alignment, so
921  /// this method will assert on them.
922  /// If @p RefAsPointee, references are treated like their underlying type
923  /// (for alignof), else they're treated like pointers (for CodeGen).
924  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
925
926  /// getASTRecordLayout - Get or compute information about the layout of the
927  /// specified record (struct/union/class), which indicates its size and field
928  /// position information.
929  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
930
931  /// getASTObjCInterfaceLayout - Get or compute information about the
932  /// layout of the specified Objective-C interface.
933  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
934
935  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
936
937  /// getASTObjCImplementationLayout - Get or compute information about
938  /// the layout of the specified Objective-C implementation. This may
939  /// differ from the interface if synthesized ivars are present.
940  const ASTRecordLayout &
941  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
942
943  /// getKeyFunction - Get the key function for the given record decl.
944  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
945  ///
946  /// ...the first non-pure virtual function that is not inline at the point
947  /// of class definition.
948  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
949
950  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
951                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
952
953  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
954                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
955  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
956                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
957  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
958  void CollectInheritedProtocols(const Decl *CDecl,
959                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
960
961  //===--------------------------------------------------------------------===//
962  //                            Type Operators
963  //===--------------------------------------------------------------------===//
964
965  /// getCanonicalType - Return the canonical (structural) type corresponding to
966  /// the specified potentially non-canonical type.  The non-canonical version
967  /// of a type may have many "decorated" versions of types.  Decorators can
968  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
969  /// to be free of any of these, allowing two canonical types to be compared
970  /// for exact equality with a simple pointer comparison.
971  CanQualType getCanonicalType(QualType T);
972  const Type *getCanonicalType(const Type *T) {
973    return T->getCanonicalTypeInternal().getTypePtr();
974  }
975
976  /// getCanonicalParamType - Return the canonical parameter type
977  /// corresponding to the specific potentially non-canonical one.
978  /// Qualifiers are stripped off, functions are turned into function
979  /// pointers, and arrays decay one level into pointers.
980  CanQualType getCanonicalParamType(QualType T);
981
982  /// \brief Determine whether the given types are equivalent.
983  bool hasSameType(QualType T1, QualType T2) {
984    return getCanonicalType(T1) == getCanonicalType(T2);
985  }
986
987  /// \brief Returns this type as a completely-unqualified array type,
988  /// capturing the qualifiers in Quals. This will remove the minimal amount of
989  /// sugaring from the types, similar to the behavior of
990  /// QualType::getUnqualifiedType().
991  ///
992  /// \param T is the qualified type, which may be an ArrayType
993  ///
994  /// \param Quals will receive the full set of qualifiers that were
995  /// applied to the array.
996  ///
997  /// \returns if this is an array type, the completely unqualified array type
998  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
999  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1000
1001  /// \brief Determine whether the given types are equivalent after
1002  /// cvr-qualifiers have been removed.
1003  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1004    CanQualType CT1 = getCanonicalType(T1);
1005    CanQualType CT2 = getCanonicalType(T2);
1006
1007    Qualifiers Quals;
1008    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1009    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1010    return UnqualT1 == UnqualT2;
1011  }
1012
1013  /// \brief Retrieves the "canonical" declaration of
1014
1015  /// \brief Retrieves the "canonical" nested name specifier for a
1016  /// given nested name specifier.
1017  ///
1018  /// The canonical nested name specifier is a nested name specifier
1019  /// that uniquely identifies a type or namespace within the type
1020  /// system. For example, given:
1021  ///
1022  /// \code
1023  /// namespace N {
1024  ///   struct S {
1025  ///     template<typename T> struct X { typename T* type; };
1026  ///   };
1027  /// }
1028  ///
1029  /// template<typename T> struct Y {
1030  ///   typename N::S::X<T>::type member;
1031  /// };
1032  /// \endcode
1033  ///
1034  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1035  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1036  /// by declarations in the type system and the canonical type for
1037  /// the template type parameter 'T' is template-param-0-0.
1038  NestedNameSpecifier *
1039  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1040
1041  /// \brief Retrieves the canonical representation of the given
1042  /// calling convention.
1043  CallingConv getCanonicalCallConv(CallingConv CC) {
1044    if (CC == CC_C)
1045      return CC_Default;
1046    return CC;
1047  }
1048
1049  /// \brief Determines whether two calling conventions name the same
1050  /// calling convention.
1051  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1052    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1053  }
1054
1055  /// \brief Retrieves the "canonical" template name that refers to a
1056  /// given template.
1057  ///
1058  /// The canonical template name is the simplest expression that can
1059  /// be used to refer to a given template. For most templates, this
1060  /// expression is just the template declaration itself. For example,
1061  /// the template std::vector can be referred to via a variety of
1062  /// names---std::vector, ::std::vector, vector (if vector is in
1063  /// scope), etc.---but all of these names map down to the same
1064  /// TemplateDecl, which is used to form the canonical template name.
1065  ///
1066  /// Dependent template names are more interesting. Here, the
1067  /// template name could be something like T::template apply or
1068  /// std::allocator<T>::template rebind, where the nested name
1069  /// specifier itself is dependent. In this case, the canonical
1070  /// template name uses the shortest form of the dependent
1071  /// nested-name-specifier, which itself contains all canonical
1072  /// types, values, and templates.
1073  TemplateName getCanonicalTemplateName(TemplateName Name);
1074
1075  /// \brief Determine whether the given template names refer to the same
1076  /// template.
1077  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1078
1079  /// \brief Retrieve the "canonical" template argument.
1080  ///
1081  /// The canonical template argument is the simplest template argument
1082  /// (which may be a type, value, expression, or declaration) that
1083  /// expresses the value of the argument.
1084  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1085
1086  /// Type Query functions.  If the type is an instance of the specified class,
1087  /// return the Type pointer for the underlying maximally pretty type.  This
1088  /// is a member of ASTContext because this may need to do some amount of
1089  /// canonicalization, e.g. to move type qualifiers into the element type.
1090  const ArrayType *getAsArrayType(QualType T);
1091  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1092    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1093  }
1094  const VariableArrayType *getAsVariableArrayType(QualType T) {
1095    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1096  }
1097  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1098    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1099  }
1100  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1101    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1102  }
1103
1104  /// getBaseElementType - Returns the innermost element type of an array type.
1105  /// For example, will return "int" for int[m][n]
1106  QualType getBaseElementType(const ArrayType *VAT);
1107
1108  /// getBaseElementType - Returns the innermost element type of a type
1109  /// (which needn't actually be an array type).
1110  QualType getBaseElementType(QualType QT);
1111
1112  /// getConstantArrayElementCount - Returns number of constant array elements.
1113  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1114
1115  /// getArrayDecayedType - Return the properly qualified result of decaying the
1116  /// specified array type to a pointer.  This operation is non-trivial when
1117  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1118  /// this returns a pointer to a properly qualified element of the array.
1119  ///
1120  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1121  QualType getArrayDecayedType(QualType T);
1122
1123  /// getPromotedIntegerType - Returns the type that Promotable will
1124  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1125  /// integer type.
1126  QualType getPromotedIntegerType(QualType PromotableType);
1127
1128  /// \brief Whether this is a promotable bitfield reference according
1129  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1130  ///
1131  /// \returns the type this bit-field will promote to, or NULL if no
1132  /// promotion occurs.
1133  QualType isPromotableBitField(Expr *E);
1134
1135  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1136  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1137  /// LHS < RHS, return -1.
1138  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1139
1140  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1141  /// point types, ignoring the domain of the type (i.e. 'double' ==
1142  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1143  /// LHS < RHS, return -1.
1144  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1145
1146  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1147  /// point or a complex type (based on typeDomain/typeSize).
1148  /// 'typeDomain' is a real floating point or complex type.
1149  /// 'typeSize' is a real floating point or complex type.
1150  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1151                                             QualType typeDomain) const;
1152
1153private:
1154  // Helper for integer ordering
1155  unsigned getIntegerRank(Type* T);
1156
1157public:
1158
1159  //===--------------------------------------------------------------------===//
1160  //                    Type Compatibility Predicates
1161  //===--------------------------------------------------------------------===//
1162
1163  /// Compatibility predicates used to check assignment expressions.
1164  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1165
1166  bool typesAreBlockPointerCompatible(QualType, QualType);
1167
1168  bool isObjCIdType(QualType T) const {
1169    return T == ObjCIdTypedefType;
1170  }
1171  bool isObjCClassType(QualType T) const {
1172    return T == ObjCClassTypedefType;
1173  }
1174  bool isObjCSelType(QualType T) const {
1175    return T == ObjCSelTypedefType;
1176  }
1177  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1178  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1179                                         bool ForCompare);
1180
1181  // Check the safety of assignment from LHS to RHS
1182  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1183                               const ObjCObjectPointerType *RHSOPT);
1184  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1185                               const ObjCObjectType *RHS);
1186  bool canAssignObjCInterfacesInBlockPointer(
1187                                          const ObjCObjectPointerType *LHSOPT,
1188                                          const ObjCObjectPointerType *RHSOPT);
1189  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1190  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1191                                   const ObjCObjectPointerType *RHSOPT);
1192
1193  // Functions for calculating composite types
1194  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1195  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1196
1197  QualType mergeObjCGCQualifiers(QualType, QualType);
1198
1199  /// UsualArithmeticConversionsType - handles the various conversions
1200  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1201  /// and returns the result type of that conversion.
1202  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1203
1204  //===--------------------------------------------------------------------===//
1205  //                    Integer Predicates
1206  //===--------------------------------------------------------------------===//
1207
1208  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1209  // of bits in an integer type excluding any padding bits.
1210  unsigned getIntWidth(QualType T);
1211
1212  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1213  // unsigned integer type.  This method takes a signed type, and returns the
1214  // corresponding unsigned integer type.
1215  QualType getCorrespondingUnsignedType(QualType T);
1216
1217  //===--------------------------------------------------------------------===//
1218  //                    Type Iterators.
1219  //===--------------------------------------------------------------------===//
1220
1221  typedef std::vector<Type*>::iterator       type_iterator;
1222  typedef std::vector<Type*>::const_iterator const_type_iterator;
1223
1224  type_iterator types_begin() { return Types.begin(); }
1225  type_iterator types_end() { return Types.end(); }
1226  const_type_iterator types_begin() const { return Types.begin(); }
1227  const_type_iterator types_end() const { return Types.end(); }
1228
1229  //===--------------------------------------------------------------------===//
1230  //                    Integer Values
1231  //===--------------------------------------------------------------------===//
1232
1233  /// MakeIntValue - Make an APSInt of the appropriate width and
1234  /// signedness for the given \arg Value and integer \arg Type.
1235  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1236    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1237    Res = Value;
1238    return Res;
1239  }
1240
1241  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1242  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1243  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1244  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1245
1246  /// \brief Set the implementation of ObjCInterfaceDecl.
1247  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1248                             ObjCImplementationDecl *ImplD);
1249  /// \brief Set the implementation of ObjCCategoryDecl.
1250  void setObjCImplementation(ObjCCategoryDecl *CatD,
1251                             ObjCCategoryImplDecl *ImplD);
1252
1253  /// \brief Allocate an uninitialized TypeSourceInfo.
1254  ///
1255  /// The caller should initialize the memory held by TypeSourceInfo using
1256  /// the TypeLoc wrappers.
1257  ///
1258  /// \param T the type that will be the basis for type source info. This type
1259  /// should refer to how the declarator was written in source code, not to
1260  /// what type semantic analysis resolved the declarator to.
1261  ///
1262  /// \param Size the size of the type info to create, or 0 if the size
1263  /// should be calculated based on the type.
1264  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1265
1266  /// \brief Allocate a TypeSourceInfo where all locations have been
1267  /// initialized to a given location, which defaults to the empty
1268  /// location.
1269  TypeSourceInfo *
1270  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1271
1272private:
1273  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1274  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1275
1276  void InitBuiltinTypes();
1277  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1278
1279  // Return the ObjC type encoding for a given type.
1280  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1281                                  bool ExpandPointedToStructures,
1282                                  bool ExpandStructures,
1283                                  const FieldDecl *Field,
1284                                  bool OutermostType = false,
1285                                  bool EncodingProperty = false);
1286
1287  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1288                                       const ObjCImplementationDecl *Impl);
1289
1290private:
1291  // FIXME: This currently contains the set of StoredDeclMaps used
1292  // by DeclContext objects.  This probably should not be in ASTContext,
1293  // but we include it here so that ASTContext can quickly deallocate them.
1294  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1295  friend class DeclContext;
1296  friend class DeclarationNameTable;
1297  void ReleaseDeclContextMaps();
1298};
1299
1300/// @brief Utility function for constructing a nullary selector.
1301static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1302  IdentifierInfo* II = &Ctx.Idents.get(name);
1303  return Ctx.Selectors.getSelector(0, &II);
1304}
1305
1306/// @brief Utility function for constructing an unary selector.
1307static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1308  IdentifierInfo* II = &Ctx.Idents.get(name);
1309  return Ctx.Selectors.getSelector(1, &II);
1310}
1311
1312}  // end namespace clang
1313
1314// operator new and delete aren't allowed inside namespaces.
1315// The throw specifications are mandated by the standard.
1316/// @brief Placement new for using the ASTContext's allocator.
1317///
1318/// This placement form of operator new uses the ASTContext's allocator for
1319/// obtaining memory. It is a non-throwing new, which means that it returns
1320/// null on error. (If that is what the allocator does. The current does, so if
1321/// this ever changes, this operator will have to be changed, too.)
1322/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1323/// @code
1324/// // Default alignment (8)
1325/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1326/// // Specific alignment
1327/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1328/// @endcode
1329/// Please note that you cannot use delete on the pointer; it must be
1330/// deallocated using an explicit destructor call followed by
1331/// @c Context.Deallocate(Ptr).
1332///
1333/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1334/// @param C The ASTContext that provides the allocator.
1335/// @param Alignment The alignment of the allocated memory (if the underlying
1336///                  allocator supports it).
1337/// @return The allocated memory. Could be NULL.
1338inline void *operator new(size_t Bytes, clang::ASTContext &C,
1339                          size_t Alignment) throw () {
1340  return C.Allocate(Bytes, Alignment);
1341}
1342/// @brief Placement delete companion to the new above.
1343///
1344/// This operator is just a companion to the new above. There is no way of
1345/// invoking it directly; see the new operator for more details. This operator
1346/// is called implicitly by the compiler if a placement new expression using
1347/// the ASTContext throws in the object constructor.
1348inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1349              throw () {
1350  C.Deallocate(Ptr);
1351}
1352
1353/// This placement form of operator new[] uses the ASTContext's allocator for
1354/// obtaining memory. It is a non-throwing new[], which means that it returns
1355/// null on error.
1356/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1357/// @code
1358/// // Default alignment (8)
1359/// char *data = new (Context) char[10];
1360/// // Specific alignment
1361/// char *data = new (Context, 4) char[10];
1362/// @endcode
1363/// Please note that you cannot use delete on the pointer; it must be
1364/// deallocated using an explicit destructor call followed by
1365/// @c Context.Deallocate(Ptr).
1366///
1367/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1368/// @param C The ASTContext that provides the allocator.
1369/// @param Alignment The alignment of the allocated memory (if the underlying
1370///                  allocator supports it).
1371/// @return The allocated memory. Could be NULL.
1372inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1373                            size_t Alignment = 8) throw () {
1374  return C.Allocate(Bytes, Alignment);
1375}
1376
1377/// @brief Placement delete[] companion to the new[] above.
1378///
1379/// This operator is just a companion to the new[] above. There is no way of
1380/// invoking it directly; see the new[] operator for more details. This operator
1381/// is called implicitly by the compiler if a placement new[] expression using
1382/// the ASTContext throws in the object constructor.
1383inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1384              throw () {
1385  C.Deallocate(Ptr);
1386}
1387
1388#endif
1389