ASTContext.h revision 2577743c5650c646fb705df01403707e94f2df04
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Attr.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/CanonicalType.h"
28#include "clang/AST/UsuallyTinyPtrVector.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/OwningPtr.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/Support/Allocator.h"
34#include <vector>
35
36namespace llvm {
37  struct fltSemantics;
38  class raw_ostream;
39}
40
41namespace clang {
42  class FileManager;
43  class ASTRecordLayout;
44  class BlockExpr;
45  class CharUnits;
46  class Diagnostic;
47  class Expr;
48  class ExternalASTSource;
49  class IdentifierTable;
50  class SelectorTable;
51  class SourceManager;
52  class TargetInfo;
53  // Decls
54  class DeclContext;
55  class CXXMethodDecl;
56  class CXXRecordDecl;
57  class Decl;
58  class FieldDecl;
59  class ObjCIvarDecl;
60  class ObjCIvarRefExpr;
61  class ObjCPropertyDecl;
62  class RecordDecl;
63  class StoredDeclsMap;
64  class TagDecl;
65  class TemplateTemplateParmDecl;
66  class TemplateTypeParmDecl;
67  class TranslationUnitDecl;
68  class TypeDecl;
69  class TypedefDecl;
70  class UsingDecl;
71  class UsingShadowDecl;
72  class UnresolvedSetIterator;
73
74  namespace Builtin { class Context; }
75
76/// ASTContext - This class holds long-lived AST nodes (such as types and
77/// decls) that can be referred to throughout the semantic analysis of a file.
78class ASTContext {
79  ASTContext &this_() { return *this; }
80
81  std::vector<Type*> Types;
82  llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  llvm::FoldingSet<ComplexType> ComplexTypes;
84  llvm::FoldingSet<PointerType> PointerTypes;
85  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
86  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
87  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
88  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
89  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
90  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
91  std::vector<VariableArrayType*> VariableArrayTypes;
92  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
93  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
94  llvm::FoldingSet<VectorType> VectorTypes;
95  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
96  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
97  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
98  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
99  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
100  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
101  llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
102    TemplateSpecializationTypes;
103  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
104  llvm::FoldingSet<DependentNameType> DependentNameTypes;
105  llvm::ContextualFoldingSet<DependentTemplateSpecializationType, ASTContext&>
106    DependentTemplateSpecializationTypes;
107  llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
108  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
109
110  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
111  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
112
113  /// \brief The set of nested name specifiers.
114  ///
115  /// This set is managed by the NestedNameSpecifier class.
116  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
117  NestedNameSpecifier *GlobalNestedNameSpecifier;
118  friend class NestedNameSpecifier;
119
120  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
121  ///  This is lazily created.  This is intentionally not serialized.
122  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
123  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
124
125  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
126  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
127
128  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
129  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
130
131  /// \brief Representation of a "canonical" template template parameter that
132  /// is used in canonical template names.
133  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
134    TemplateTemplateParmDecl *Parm;
135
136  public:
137    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
138      : Parm(Parm) { }
139
140    TemplateTemplateParmDecl *getParam() const { return Parm; }
141
142    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
143
144    static void Profile(llvm::FoldingSetNodeID &ID,
145                        TemplateTemplateParmDecl *Parm);
146  };
147  llvm::FoldingSet<CanonicalTemplateTemplateParm> CanonTemplateTemplateParms;
148
149  TemplateTemplateParmDecl *getCanonicalTemplateTemplateParmDecl(
150                                               TemplateTemplateParmDecl *TTP);
151
152  /// \brief Whether __[u]int128_t identifier is installed.
153  bool IsInt128Installed;
154
155  /// BuiltinVaListType - built-in va list type.
156  /// This is initially null and set by Sema::LazilyCreateBuiltin when
157  /// a builtin that takes a valist is encountered.
158  QualType BuiltinVaListType;
159
160  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
161  QualType ObjCIdTypedefType;
162
163  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
164  QualType ObjCSelTypedefType;
165
166  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
167  QualType ObjCProtoType;
168  const RecordType *ProtoStructType;
169
170  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
171  QualType ObjCClassTypedefType;
172
173  QualType ObjCConstantStringType;
174  RecordDecl *CFConstantStringTypeDecl;
175
176  RecordDecl *NSConstantStringTypeDecl;
177
178  RecordDecl *ObjCFastEnumerationStateTypeDecl;
179
180  /// \brief The type for the C FILE type.
181  TypeDecl *FILEDecl;
182
183  /// \brief The type for the C jmp_buf type.
184  TypeDecl *jmp_bufDecl;
185
186  /// \brief The type for the C sigjmp_buf type.
187  TypeDecl *sigjmp_bufDecl;
188
189  /// \brief Type for the Block descriptor for Blocks CodeGen.
190  RecordDecl *BlockDescriptorType;
191
192  /// \brief Type for the Block descriptor for Blocks CodeGen.
193  RecordDecl *BlockDescriptorExtendedType;
194
195  TypeSourceInfo NullTypeSourceInfo;
196
197  /// \brief Keeps track of all declaration attributes.
198  ///
199  /// Since so few decls have attrs, we keep them in a hash map instead of
200  /// wasting space in the Decl class.
201  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
202
203  /// \brief Keeps track of the static data member templates from which
204  /// static data members of class template specializations were instantiated.
205  ///
206  /// This data structure stores the mapping from instantiations of static
207  /// data members to the static data member representations within the
208  /// class template from which they were instantiated along with the kind
209  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
210  ///
211  /// Given the following example:
212  ///
213  /// \code
214  /// template<typename T>
215  /// struct X {
216  ///   static T value;
217  /// };
218  ///
219  /// template<typename T>
220  ///   T X<T>::value = T(17);
221  ///
222  /// int *x = &X<int>::value;
223  /// \endcode
224  ///
225  /// This mapping will contain an entry that maps from the VarDecl for
226  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
227  /// class template X) and will be marked TSK_ImplicitInstantiation.
228  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
229    InstantiatedFromStaticDataMember;
230
231  /// \brief Keeps track of the declaration from which a UsingDecl was
232  /// created during instantiation.  The source declaration is always
233  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
234  /// UnresolvedUsingTypenameDecl.
235  ///
236  /// For example:
237  /// \code
238  /// template<typename T>
239  /// struct A {
240  ///   void f();
241  /// };
242  ///
243  /// template<typename T>
244  /// struct B : A<T> {
245  ///   using A<T>::f;
246  /// };
247  ///
248  /// template struct B<int>;
249  /// \endcode
250  ///
251  /// This mapping will contain an entry that maps from the UsingDecl in
252  /// B<int> to the UnresolvedUsingDecl in B<T>.
253  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
254
255  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
256    InstantiatedFromUsingShadowDecl;
257
258  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
259
260  /// \brief Mapping that stores the methods overridden by a given C++
261  /// member function.
262  ///
263  /// Since most C++ member functions aren't virtual and therefore
264  /// don't override anything, we store the overridden functions in
265  /// this map on the side rather than within the CXXMethodDecl structure.
266  typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
267  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
268
269  TranslationUnitDecl *TUDecl;
270
271  /// SourceMgr - The associated SourceManager object.
272  SourceManager &SourceMgr;
273
274  /// LangOpts - The language options used to create the AST associated with
275  ///  this ASTContext object.
276  LangOptions LangOpts;
277
278  /// \brief The allocator used to create AST objects.
279  ///
280  /// AST objects are never destructed; rather, all memory associated with the
281  /// AST objects will be released when the ASTContext itself is destroyed.
282  llvm::BumpPtrAllocator BumpAlloc;
283
284  /// \brief Allocator for partial diagnostics.
285  PartialDiagnostic::StorageAllocator DiagAllocator;
286
287public:
288  const TargetInfo &Target;
289  IdentifierTable &Idents;
290  SelectorTable &Selectors;
291  Builtin::Context &BuiltinInfo;
292  DeclarationNameTable DeclarationNames;
293  llvm::OwningPtr<ExternalASTSource> ExternalSource;
294  clang::PrintingPolicy PrintingPolicy;
295
296  // Typedefs which may be provided defining the structure of Objective-C
297  // pseudo-builtins
298  QualType ObjCIdRedefinitionType;
299  QualType ObjCClassRedefinitionType;
300  QualType ObjCSelRedefinitionType;
301
302  SourceManager& getSourceManager() { return SourceMgr; }
303  const SourceManager& getSourceManager() const { return SourceMgr; }
304  void *Allocate(unsigned Size, unsigned Align = 8) {
305    return BumpAlloc.Allocate(Size, Align);
306  }
307  void Deallocate(void *Ptr) { }
308
309  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
310    return DiagAllocator;
311  }
312
313  const LangOptions& getLangOptions() const { return LangOpts; }
314
315  FullSourceLoc getFullLoc(SourceLocation Loc) const {
316    return FullSourceLoc(Loc,SourceMgr);
317  }
318
319  /// \brief Retrieve the attributes for the given declaration.
320  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
321
322  /// \brief Erase the attributes corresponding to the given declaration.
323  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
324
325  /// \brief If this variable is an instantiated static data member of a
326  /// class template specialization, returns the templated static data member
327  /// from which it was instantiated.
328  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
329                                                           const VarDecl *Var);
330
331  /// \brief Note that the static data member \p Inst is an instantiation of
332  /// the static data member template \p Tmpl of a class template.
333  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
334                                           TemplateSpecializationKind TSK,
335                        SourceLocation PointOfInstantiation = SourceLocation());
336
337  /// \brief If the given using decl is an instantiation of a
338  /// (possibly unresolved) using decl from a template instantiation,
339  /// return it.
340  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
341
342  /// \brief Remember that the using decl \p Inst is an instantiation
343  /// of the using decl \p Pattern of a class template.
344  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
345
346  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
347                                          UsingShadowDecl *Pattern);
348  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
349
350  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
351
352  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
353
354  // Access to the set of methods overridden by the given C++ method.
355  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
356  overridden_cxx_method_iterator
357  overridden_methods_begin(const CXXMethodDecl *Method) const;
358
359  overridden_cxx_method_iterator
360  overridden_methods_end(const CXXMethodDecl *Method) const;
361
362  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
363
364  /// \brief Note that the given C++ \p Method overrides the given \p
365  /// Overridden method.
366  void addOverriddenMethod(const CXXMethodDecl *Method,
367                           const CXXMethodDecl *Overridden);
368
369  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
370
371
372  // Builtin Types.
373  CanQualType VoidTy;
374  CanQualType BoolTy;
375  CanQualType CharTy;
376  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
377  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
378  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
379  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
380  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
381  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
382  CanQualType FloatTy, DoubleTy, LongDoubleTy;
383  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
384  CanQualType VoidPtrTy, NullPtrTy;
385  CanQualType OverloadTy;
386  CanQualType DependentTy;
387  CanQualType UndeducedAutoTy;
388  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
389
390  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
391             IdentifierTable &idents, SelectorTable &sels,
392             Builtin::Context &builtins,
393             unsigned size_reserve);
394
395  ~ASTContext();
396
397  /// \brief Attach an external AST source to the AST context.
398  ///
399  /// The external AST source provides the ability to load parts of
400  /// the abstract syntax tree as needed from some external storage,
401  /// e.g., a precompiled header.
402  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
403
404  /// \brief Retrieve a pointer to the external AST source associated
405  /// with this AST context, if any.
406  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
407
408  void PrintStats() const;
409  const std::vector<Type*>& getTypes() const { return Types; }
410
411  //===--------------------------------------------------------------------===//
412  //                           Type Constructors
413  //===--------------------------------------------------------------------===//
414
415private:
416  /// getExtQualType - Return a type with extended qualifiers.
417  QualType getExtQualType(const Type *Base, Qualifiers Quals);
418
419  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
420
421public:
422  /// getAddSpaceQualType - Return the uniqued reference to the type for an
423  /// address space qualified type with the specified type and address space.
424  /// The resulting type has a union of the qualifiers from T and the address
425  /// space. If T already has an address space specifier, it is silently
426  /// replaced.
427  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
428
429  /// getObjCGCQualType - Returns the uniqued reference to the type for an
430  /// objc gc qualified type. The retulting type has a union of the qualifiers
431  /// from T and the gc attribute.
432  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
433
434  /// getRestrictType - Returns the uniqued reference to the type for a
435  /// 'restrict' qualified type.  The resulting type has a union of the
436  /// qualifiers from T and 'restrict'.
437  QualType getRestrictType(QualType T) {
438    return T.withFastQualifiers(Qualifiers::Restrict);
439  }
440
441  /// getVolatileType - Returns the uniqued reference to the type for a
442  /// 'volatile' qualified type.  The resulting type has a union of the
443  /// qualifiers from T and 'volatile'.
444  QualType getVolatileType(QualType T);
445
446  /// getConstType - Returns the uniqued reference to the type for a
447  /// 'const' qualified type.  The resulting type has a union of the
448  /// qualifiers from T and 'const'.
449  ///
450  /// It can be reasonably expected that this will always be
451  /// equivalent to calling T.withConst().
452  QualType getConstType(QualType T) { return T.withConst(); }
453
454  /// getNoReturnType - Add or remove the noreturn attribute to the given type
455  /// which must be a FunctionType or a pointer to an allowable type or a
456  /// BlockPointer.
457  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
458
459  /// getCallConvType - Adds the specified calling convention attribute to
460  /// the given type, which must be a FunctionType or a pointer to an
461  /// allowable type.
462  QualType getCallConvType(QualType T, CallingConv CallConv);
463
464  /// getRegParmType - Sets the specified regparm attribute to
465  /// the given type, which must be a FunctionType or a pointer to an
466  /// allowable type.
467  QualType getRegParmType(QualType T, unsigned RegParm);
468
469  /// getComplexType - Return the uniqued reference to the type for a complex
470  /// number with the specified element type.
471  QualType getComplexType(QualType T);
472  CanQualType getComplexType(CanQualType T) {
473    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
474  }
475
476  /// getPointerType - Return the uniqued reference to the type for a pointer to
477  /// the specified type.
478  QualType getPointerType(QualType T);
479  CanQualType getPointerType(CanQualType T) {
480    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
481  }
482
483  /// getBlockPointerType - Return the uniqued reference to the type for a block
484  /// of the specified type.
485  QualType getBlockPointerType(QualType T);
486
487  /// This gets the struct used to keep track of the descriptor for pointer to
488  /// blocks.
489  QualType getBlockDescriptorType();
490
491  // Set the type for a Block descriptor type.
492  void setBlockDescriptorType(QualType T);
493  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
494  QualType getRawBlockdescriptorType() {
495    if (BlockDescriptorType)
496      return getTagDeclType(BlockDescriptorType);
497    return QualType();
498  }
499
500  /// This gets the struct used to keep track of the extended descriptor for
501  /// pointer to blocks.
502  QualType getBlockDescriptorExtendedType();
503
504  // Set the type for a Block descriptor extended type.
505  void setBlockDescriptorExtendedType(QualType T);
506  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
507  /// built.
508  QualType getRawBlockdescriptorExtendedType() {
509    if (BlockDescriptorExtendedType)
510      return getTagDeclType(BlockDescriptorExtendedType);
511    return QualType();
512  }
513
514  /// This gets the struct used to keep track of pointer to blocks, complete
515  /// with captured variables.
516  QualType getBlockParmType(bool BlockHasCopyDispose,
517                            llvm::SmallVectorImpl<const Expr *> &Layout);
518
519  /// This builds the struct used for __block variables.
520  QualType BuildByRefType(const char *DeclName, QualType Ty);
521
522  /// Returns true iff we need copy/dispose helpers for the given type.
523  bool BlockRequiresCopying(QualType Ty);
524
525  /// getLValueReferenceType - Return the uniqued reference to the type for an
526  /// lvalue reference to the specified type.
527  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
528
529  /// getRValueReferenceType - Return the uniqued reference to the type for an
530  /// rvalue reference to the specified type.
531  QualType getRValueReferenceType(QualType T);
532
533  /// getMemberPointerType - Return the uniqued reference to the type for a
534  /// member pointer to the specified type in the specified class. The class
535  /// is a Type because it could be a dependent name.
536  QualType getMemberPointerType(QualType T, const Type *Cls);
537
538  /// getVariableArrayType - Returns a non-unique reference to the type for a
539  /// variable array of the specified element type.
540  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
541                                ArrayType::ArraySizeModifier ASM,
542                                unsigned EltTypeQuals,
543                                SourceRange Brackets);
544
545  /// getDependentSizedArrayType - Returns a non-unique reference to
546  /// the type for a dependently-sized array of the specified element
547  /// type. FIXME: We will need these to be uniqued, or at least
548  /// comparable, at some point.
549  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
550                                      ArrayType::ArraySizeModifier ASM,
551                                      unsigned EltTypeQuals,
552                                      SourceRange Brackets);
553
554  /// getIncompleteArrayType - Returns a unique reference to the type for a
555  /// incomplete array of the specified element type.
556  QualType getIncompleteArrayType(QualType EltTy,
557                                  ArrayType::ArraySizeModifier ASM,
558                                  unsigned EltTypeQuals);
559
560  /// getConstantArrayType - Return the unique reference to the type for a
561  /// constant array of the specified element type.
562  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
563                                ArrayType::ArraySizeModifier ASM,
564                                unsigned EltTypeQuals);
565
566  /// getVectorType - Return the unique reference to a vector type of
567  /// the specified element type and size. VectorType must be a built-in type.
568  QualType getVectorType(QualType VectorType, unsigned NumElts,
569                         VectorType::AltiVecSpecific AltiVecSpec);
570
571  /// getExtVectorType - Return the unique reference to an extended vector type
572  /// of the specified element type and size.  VectorType must be a built-in
573  /// type.
574  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
575
576  /// getDependentSizedExtVectorType - Returns a non-unique reference to
577  /// the type for a dependently-sized vector of the specified element
578  /// type. FIXME: We will need these to be uniqued, or at least
579  /// comparable, at some point.
580  QualType getDependentSizedExtVectorType(QualType VectorType,
581                                          Expr *SizeExpr,
582                                          SourceLocation AttrLoc);
583
584  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
585  ///
586  QualType getFunctionNoProtoType(QualType ResultTy,
587                                  const FunctionType::ExtInfo &Info);
588
589  QualType getFunctionNoProtoType(QualType ResultTy) {
590    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
591  }
592
593  /// getFunctionType - Return a normal function type with a typed argument
594  /// list.  isVariadic indicates whether the argument list includes '...'.
595  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
596                           unsigned NumArgs, bool isVariadic,
597                           unsigned TypeQuals, bool hasExceptionSpec,
598                           bool hasAnyExceptionSpec,
599                           unsigned NumExs, const QualType *ExArray,
600                           const FunctionType::ExtInfo &Info);
601
602  /// getTypeDeclType - Return the unique reference to the type for
603  /// the specified type declaration.
604  QualType getTypeDeclType(const TypeDecl *Decl,
605                           const TypeDecl *PrevDecl = 0) {
606    assert(Decl && "Passed null for Decl param");
607    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
608
609    if (PrevDecl) {
610      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
611      Decl->TypeForDecl = PrevDecl->TypeForDecl;
612      return QualType(PrevDecl->TypeForDecl, 0);
613    }
614
615    return getTypeDeclTypeSlow(Decl);
616  }
617
618  /// getTypedefType - Return the unique reference to the type for the
619  /// specified typename decl.
620  QualType getTypedefType(const TypedefDecl *Decl, QualType Canon = QualType());
621
622  QualType getRecordType(const RecordDecl *Decl);
623
624  QualType getEnumType(const EnumDecl *Decl);
625
626  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
627
628  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
629                                        QualType Replacement);
630
631  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
632                                   bool ParameterPack,
633                                   IdentifierInfo *Name = 0);
634
635  QualType getTemplateSpecializationType(TemplateName T,
636                                         const TemplateArgument *Args,
637                                         unsigned NumArgs,
638                                         QualType Canon = QualType());
639
640  QualType getCanonicalTemplateSpecializationType(TemplateName T,
641                                                  const TemplateArgument *Args,
642                                                  unsigned NumArgs);
643
644  QualType getTemplateSpecializationType(TemplateName T,
645                                         const TemplateArgumentListInfo &Args,
646                                         QualType Canon = QualType());
647
648  TypeSourceInfo *
649  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
650                                    const TemplateArgumentListInfo &Args,
651                                    QualType Canon = QualType());
652
653  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
654                             NestedNameSpecifier *NNS,
655                             QualType NamedType);
656  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
657                                NestedNameSpecifier *NNS,
658                                const IdentifierInfo *Name,
659                                QualType Canon = QualType());
660
661  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
662                                                  NestedNameSpecifier *NNS,
663                                                  const IdentifierInfo *Name,
664                                          const TemplateArgumentListInfo &Args);
665  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
666                                                  NestedNameSpecifier *NNS,
667                                                  const IdentifierInfo *Name,
668                                                  unsigned NumArgs,
669                                                  const TemplateArgument *Args);
670
671  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
672
673  QualType getObjCObjectType(QualType Base,
674                             ObjCProtocolDecl * const *Protocols,
675                             unsigned NumProtocols);
676
677  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
678  /// for the given ObjCObjectType.
679  QualType getObjCObjectPointerType(QualType OIT);
680
681  /// getTypeOfType - GCC extension.
682  QualType getTypeOfExprType(Expr *e);
683  QualType getTypeOfType(QualType t);
684
685  /// getDecltypeType - C++0x decltype.
686  QualType getDecltypeType(Expr *e);
687
688  /// getTagDeclType - Return the unique reference to the type for the
689  /// specified TagDecl (struct/union/class/enum) decl.
690  QualType getTagDeclType(const TagDecl *Decl);
691
692  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
693  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
694  CanQualType getSizeType() const;
695
696  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
697  /// returns a type compatible with the type defined in <stddef.h> as defined
698  /// by the target.
699  QualType getWCharType() const { return WCharTy; }
700
701  /// getSignedWCharType - Return the type of "signed wchar_t".
702  /// Used when in C++, as a GCC extension.
703  QualType getSignedWCharType() const;
704
705  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
706  /// Used when in C++, as a GCC extension.
707  QualType getUnsignedWCharType() const;
708
709  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
710  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
711  QualType getPointerDiffType() const;
712
713  // getCFConstantStringType - Return the C structure type used to represent
714  // constant CFStrings.
715  QualType getCFConstantStringType();
716
717  // getNSConstantStringType - Return the C structure type used to represent
718  // constant NSStrings.
719  QualType getNSConstantStringType();
720  /// Get the structure type used to representation NSStrings, or NULL
721  /// if it hasn't yet been built.
722  QualType getRawNSConstantStringType() {
723    if (NSConstantStringTypeDecl)
724      return getTagDeclType(NSConstantStringTypeDecl);
725    return QualType();
726  }
727  void setNSConstantStringType(QualType T);
728
729
730  /// Get the structure type used to representation CFStrings, or NULL
731  /// if it hasn't yet been built.
732  QualType getRawCFConstantStringType() {
733    if (CFConstantStringTypeDecl)
734      return getTagDeclType(CFConstantStringTypeDecl);
735    return QualType();
736  }
737  void setCFConstantStringType(QualType T);
738
739  // This setter/getter represents the ObjC type for an NSConstantString.
740  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
741  QualType getObjCConstantStringInterface() const {
742    return ObjCConstantStringType;
743  }
744
745  //// This gets the struct used to keep track of fast enumerations.
746  QualType getObjCFastEnumerationStateType();
747
748  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
749  /// been built.
750  QualType getRawObjCFastEnumerationStateType() {
751    if (ObjCFastEnumerationStateTypeDecl)
752      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
753    return QualType();
754  }
755
756  void setObjCFastEnumerationStateType(QualType T);
757
758  /// \brief Set the type for the C FILE type.
759  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
760
761  /// \brief Retrieve the C FILE type.
762  QualType getFILEType() {
763    if (FILEDecl)
764      return getTypeDeclType(FILEDecl);
765    return QualType();
766  }
767
768  /// \brief Set the type for the C jmp_buf type.
769  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
770    this->jmp_bufDecl = jmp_bufDecl;
771  }
772
773  /// \brief Retrieve the C jmp_buf type.
774  QualType getjmp_bufType() {
775    if (jmp_bufDecl)
776      return getTypeDeclType(jmp_bufDecl);
777    return QualType();
778  }
779
780  /// \brief Set the type for the C sigjmp_buf type.
781  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
782    this->sigjmp_bufDecl = sigjmp_bufDecl;
783  }
784
785  /// \brief Retrieve the C sigjmp_buf type.
786  QualType getsigjmp_bufType() {
787    if (sigjmp_bufDecl)
788      return getTypeDeclType(sigjmp_bufDecl);
789    return QualType();
790  }
791
792  /// getObjCEncodingForType - Emit the ObjC type encoding for the
793  /// given type into \arg S. If \arg NameFields is specified then
794  /// record field names are also encoded.
795  void getObjCEncodingForType(QualType t, std::string &S,
796                              const FieldDecl *Field=0);
797
798  void getLegacyIntegralTypeEncoding(QualType &t) const;
799
800  // Put the string version of type qualifiers into S.
801  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
802                                       std::string &S) const;
803
804  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
805  /// declaration.
806  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
807
808  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
809  /// declaration.
810  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
811
812  /// getObjCEncodingForPropertyDecl - Return the encoded type for
813  /// this method declaration. If non-NULL, Container must be either
814  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
815  /// only be NULL when getting encodings for protocol properties.
816  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
817                                      const Decl *Container,
818                                      std::string &S);
819
820  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
821                                      ObjCProtocolDecl *rProto);
822
823  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
824  /// purpose in characters.
825  CharUnits getObjCEncodingTypeSize(QualType t);
826
827  /// \brief Whether __[u]int128_t identifier is installed.
828  bool isInt128Installed() const { return IsInt128Installed; }
829  void setInt128Installed() { IsInt128Installed = true; }
830
831  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
832  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
833  QualType getObjCIdType() const { return ObjCIdTypedefType; }
834  void setObjCIdType(QualType T);
835
836  void setObjCSelType(QualType T);
837  QualType getObjCSelType() const { return ObjCSelTypedefType; }
838
839  void setObjCProtoType(QualType QT);
840  QualType getObjCProtoType() const { return ObjCProtoType; }
841
842  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
843  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
844  /// struct.
845  QualType getObjCClassType() const { return ObjCClassTypedefType; }
846  void setObjCClassType(QualType T);
847
848  void setBuiltinVaListType(QualType T);
849  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
850
851  /// getCVRQualifiedType - Returns a type with additional const,
852  /// volatile, or restrict qualifiers.
853  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
854    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
855  }
856
857  /// getQualifiedType - Returns a type with additional qualifiers.
858  QualType getQualifiedType(QualType T, Qualifiers Qs) {
859    if (!Qs.hasNonFastQualifiers())
860      return T.withFastQualifiers(Qs.getFastQualifiers());
861    QualifierCollector Qc(Qs);
862    const Type *Ptr = Qc.strip(T);
863    return getExtQualType(Ptr, Qc);
864  }
865
866  /// getQualifiedType - Returns a type with additional qualifiers.
867  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
868    if (!Qs.hasNonFastQualifiers())
869      return QualType(T, Qs.getFastQualifiers());
870    return getExtQualType(T, Qs);
871  }
872
873  DeclarationNameInfo getNameForTemplate(TemplateName Name,
874                                         SourceLocation NameLoc);
875
876  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
877                                         UnresolvedSetIterator End);
878
879  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
880                                        bool TemplateKeyword,
881                                        TemplateDecl *Template);
882
883  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
884                                        const IdentifierInfo *Name);
885  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
886                                        OverloadedOperatorKind Operator);
887
888  enum GetBuiltinTypeError {
889    GE_None,              //< No error
890    GE_Missing_stdio,     //< Missing a type from <stdio.h>
891    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
892  };
893
894  /// GetBuiltinType - Return the type for the specified builtin.
895  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
896
897private:
898  CanQualType getFromTargetType(unsigned Type) const;
899
900  //===--------------------------------------------------------------------===//
901  //                         Type Predicates.
902  //===--------------------------------------------------------------------===//
903
904public:
905  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
906  /// garbage collection attribute.
907  ///
908  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
909
910  /// areCompatibleVectorTypes - Return true if the given vector types either
911  /// are of the same unqualified type or if one is GCC and other - equivalent
912  /// AltiVec vector type.
913  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
914
915  /// isObjCNSObjectType - Return true if this is an NSObject object with
916  /// its NSObject attribute set.
917  bool isObjCNSObjectType(QualType Ty) const;
918
919  //===--------------------------------------------------------------------===//
920  //                         Type Sizing and Analysis
921  //===--------------------------------------------------------------------===//
922
923  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
924  /// scalar floating point type.
925  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
926
927  /// getTypeInfo - Get the size and alignment of the specified complete type in
928  /// bits.
929  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
930  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
931    return getTypeInfo(T.getTypePtr());
932  }
933
934  /// getTypeSize - Return the size of the specified type, in bits.  This method
935  /// does not work on incomplete types.
936  uint64_t getTypeSize(QualType T) {
937    return getTypeInfo(T).first;
938  }
939  uint64_t getTypeSize(const Type *T) {
940    return getTypeInfo(T).first;
941  }
942
943  /// getCharWidth - Return the size of the character type, in bits
944  uint64_t getCharWidth() {
945    return getTypeSize(CharTy);
946  }
947
948  /// getTypeSizeInChars - Return the size of the specified type, in characters.
949  /// This method does not work on incomplete types.
950  CharUnits getTypeSizeInChars(QualType T);
951  CharUnits getTypeSizeInChars(const Type *T);
952
953  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
954  /// This method does not work on incomplete types.
955  unsigned getTypeAlign(QualType T) {
956    return getTypeInfo(T).second;
957  }
958  unsigned getTypeAlign(const Type *T) {
959    return getTypeInfo(T).second;
960  }
961
962  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
963  /// characters. This method does not work on incomplete types.
964  CharUnits getTypeAlignInChars(QualType T);
965  CharUnits getTypeAlignInChars(const Type *T);
966
967  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T);
968  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T);
969
970  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
971  /// type for the current target in bits.  This can be different than the ABI
972  /// alignment in cases where it is beneficial for performance to overalign
973  /// a data type.
974  unsigned getPreferredTypeAlign(const Type *T);
975
976  /// getDeclAlign - Return a conservative estimate of the alignment of
977  /// the specified decl.  Note that bitfields do not have a valid alignment, so
978  /// this method will assert on them.
979  /// If @p RefAsPointee, references are treated like their underlying type
980  /// (for alignof), else they're treated like pointers (for CodeGen).
981  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
982
983  /// getASTRecordLayout - Get or compute information about the layout of the
984  /// specified record (struct/union/class), which indicates its size and field
985  /// position information.
986  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
987
988  /// getASTObjCInterfaceLayout - Get or compute information about the
989  /// layout of the specified Objective-C interface.
990  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
991
992  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
993
994  /// getASTObjCImplementationLayout - Get or compute information about
995  /// the layout of the specified Objective-C implementation. This may
996  /// differ from the interface if synthesized ivars are present.
997  const ASTRecordLayout &
998  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
999
1000  /// getKeyFunction - Get the key function for the given record decl, or NULL
1001  /// if there isn't one.  The key function is, according to the Itanium C++ ABI
1002  /// section 5.2.3:
1003  ///
1004  /// ...the first non-pure virtual function that is not inline at the point
1005  /// of class definition.
1006  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1007
1008  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
1009                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
1010
1011  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1012                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
1013  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
1014                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
1015  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
1016  void CollectInheritedProtocols(const Decl *CDecl,
1017                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1018
1019  //===--------------------------------------------------------------------===//
1020  //                            Type Operators
1021  //===--------------------------------------------------------------------===//
1022
1023  /// getCanonicalType - Return the canonical (structural) type corresponding to
1024  /// the specified potentially non-canonical type.  The non-canonical version
1025  /// of a type may have many "decorated" versions of types.  Decorators can
1026  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1027  /// to be free of any of these, allowing two canonical types to be compared
1028  /// for exact equality with a simple pointer comparison.
1029  CanQualType getCanonicalType(QualType T);
1030  const Type *getCanonicalType(const Type *T) {
1031    return T->getCanonicalTypeInternal().getTypePtr();
1032  }
1033
1034  /// getCanonicalParamType - Return the canonical parameter type
1035  /// corresponding to the specific potentially non-canonical one.
1036  /// Qualifiers are stripped off, functions are turned into function
1037  /// pointers, and arrays decay one level into pointers.
1038  CanQualType getCanonicalParamType(QualType T);
1039
1040  /// \brief Determine whether the given types are equivalent.
1041  bool hasSameType(QualType T1, QualType T2) {
1042    return getCanonicalType(T1) == getCanonicalType(T2);
1043  }
1044
1045  /// \brief Returns this type as a completely-unqualified array type,
1046  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1047  /// sugaring from the types, similar to the behavior of
1048  /// QualType::getUnqualifiedType().
1049  ///
1050  /// \param T is the qualified type, which may be an ArrayType
1051  ///
1052  /// \param Quals will receive the full set of qualifiers that were
1053  /// applied to the array.
1054  ///
1055  /// \returns if this is an array type, the completely unqualified array type
1056  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1057  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1058
1059  /// \brief Determine whether the given types are equivalent after
1060  /// cvr-qualifiers have been removed.
1061  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1062    CanQualType CT1 = getCanonicalType(T1);
1063    CanQualType CT2 = getCanonicalType(T2);
1064
1065    Qualifiers Quals;
1066    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1067    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1068    return UnqualT1 == UnqualT2;
1069  }
1070
1071  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1072
1073  /// \brief Retrieves the "canonical" declaration of
1074
1075  /// \brief Retrieves the "canonical" nested name specifier for a
1076  /// given nested name specifier.
1077  ///
1078  /// The canonical nested name specifier is a nested name specifier
1079  /// that uniquely identifies a type or namespace within the type
1080  /// system. For example, given:
1081  ///
1082  /// \code
1083  /// namespace N {
1084  ///   struct S {
1085  ///     template<typename T> struct X { typename T* type; };
1086  ///   };
1087  /// }
1088  ///
1089  /// template<typename T> struct Y {
1090  ///   typename N::S::X<T>::type member;
1091  /// };
1092  /// \endcode
1093  ///
1094  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1095  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1096  /// by declarations in the type system and the canonical type for
1097  /// the template type parameter 'T' is template-param-0-0.
1098  NestedNameSpecifier *
1099  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1100
1101  /// \brief Retrieves the canonical representation of the given
1102  /// calling convention.
1103  CallingConv getCanonicalCallConv(CallingConv CC) {
1104    if (CC == CC_C)
1105      return CC_Default;
1106    return CC;
1107  }
1108
1109  /// \brief Determines whether two calling conventions name the same
1110  /// calling convention.
1111  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1112    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1113  }
1114
1115  /// \brief Retrieves the "canonical" template name that refers to a
1116  /// given template.
1117  ///
1118  /// The canonical template name is the simplest expression that can
1119  /// be used to refer to a given template. For most templates, this
1120  /// expression is just the template declaration itself. For example,
1121  /// the template std::vector can be referred to via a variety of
1122  /// names---std::vector, ::std::vector, vector (if vector is in
1123  /// scope), etc.---but all of these names map down to the same
1124  /// TemplateDecl, which is used to form the canonical template name.
1125  ///
1126  /// Dependent template names are more interesting. Here, the
1127  /// template name could be something like T::template apply or
1128  /// std::allocator<T>::template rebind, where the nested name
1129  /// specifier itself is dependent. In this case, the canonical
1130  /// template name uses the shortest form of the dependent
1131  /// nested-name-specifier, which itself contains all canonical
1132  /// types, values, and templates.
1133  TemplateName getCanonicalTemplateName(TemplateName Name);
1134
1135  /// \brief Determine whether the given template names refer to the same
1136  /// template.
1137  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1138
1139  /// \brief Retrieve the "canonical" template argument.
1140  ///
1141  /// The canonical template argument is the simplest template argument
1142  /// (which may be a type, value, expression, or declaration) that
1143  /// expresses the value of the argument.
1144  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1145
1146  /// Type Query functions.  If the type is an instance of the specified class,
1147  /// return the Type pointer for the underlying maximally pretty type.  This
1148  /// is a member of ASTContext because this may need to do some amount of
1149  /// canonicalization, e.g. to move type qualifiers into the element type.
1150  const ArrayType *getAsArrayType(QualType T);
1151  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1152    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1153  }
1154  const VariableArrayType *getAsVariableArrayType(QualType T) {
1155    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1156  }
1157  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1158    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1159  }
1160  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1161    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1162  }
1163
1164  /// getBaseElementType - Returns the innermost element type of an array type.
1165  /// For example, will return "int" for int[m][n]
1166  QualType getBaseElementType(const ArrayType *VAT);
1167
1168  /// getBaseElementType - Returns the innermost element type of a type
1169  /// (which needn't actually be an array type).
1170  QualType getBaseElementType(QualType QT);
1171
1172  /// getConstantArrayElementCount - Returns number of constant array elements.
1173  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1174
1175  /// getArrayDecayedType - Return the properly qualified result of decaying the
1176  /// specified array type to a pointer.  This operation is non-trivial when
1177  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1178  /// this returns a pointer to a properly qualified element of the array.
1179  ///
1180  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1181  QualType getArrayDecayedType(QualType T);
1182
1183  /// getPromotedIntegerType - Returns the type that Promotable will
1184  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1185  /// integer type.
1186  QualType getPromotedIntegerType(QualType PromotableType);
1187
1188  /// \brief Whether this is a promotable bitfield reference according
1189  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1190  ///
1191  /// \returns the type this bit-field will promote to, or NULL if no
1192  /// promotion occurs.
1193  QualType isPromotableBitField(Expr *E);
1194
1195  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1196  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1197  /// LHS < RHS, return -1.
1198  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1199
1200  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1201  /// point types, ignoring the domain of the type (i.e. 'double' ==
1202  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1203  /// LHS < RHS, return -1.
1204  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1205
1206  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1207  /// point or a complex type (based on typeDomain/typeSize).
1208  /// 'typeDomain' is a real floating point or complex type.
1209  /// 'typeSize' is a real floating point or complex type.
1210  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1211                                             QualType typeDomain) const;
1212
1213private:
1214  // Helper for integer ordering
1215  unsigned getIntegerRank(Type* T);
1216
1217public:
1218
1219  //===--------------------------------------------------------------------===//
1220  //                    Type Compatibility Predicates
1221  //===--------------------------------------------------------------------===//
1222
1223  /// Compatibility predicates used to check assignment expressions.
1224  bool typesAreCompatible(QualType T1, QualType T2,
1225                          bool CompareUnqualified = false); // C99 6.2.7p1
1226
1227  bool typesAreBlockPointerCompatible(QualType, QualType);
1228
1229  bool isObjCIdType(QualType T) const {
1230    return T == ObjCIdTypedefType;
1231  }
1232  bool isObjCClassType(QualType T) const {
1233    return T == ObjCClassTypedefType;
1234  }
1235  bool isObjCSelType(QualType T) const {
1236    return T == ObjCSelTypedefType;
1237  }
1238  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1239  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1240                                         bool ForCompare);
1241
1242  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1243
1244  // Check the safety of assignment from LHS to RHS
1245  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1246                               const ObjCObjectPointerType *RHSOPT);
1247  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1248                               const ObjCObjectType *RHS);
1249  bool canAssignObjCInterfacesInBlockPointer(
1250                                          const ObjCObjectPointerType *LHSOPT,
1251                                          const ObjCObjectPointerType *RHSOPT);
1252  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1253  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1254                                   const ObjCObjectPointerType *RHSOPT);
1255  bool canBindObjCObjectType(QualType To, QualType From);
1256
1257  // Functions for calculating composite types
1258  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1259                      bool Unqualified = false);
1260  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1261                              bool Unqualified = false);
1262
1263  QualType mergeObjCGCQualifiers(QualType, QualType);
1264
1265  /// UsualArithmeticConversionsType - handles the various conversions
1266  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1267  /// and returns the result type of that conversion.
1268  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1269
1270  //===--------------------------------------------------------------------===//
1271  //                    Integer Predicates
1272  //===--------------------------------------------------------------------===//
1273
1274  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1275  // of bits in an integer type excluding any padding bits.
1276  unsigned getIntWidth(QualType T);
1277
1278  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1279  // unsigned integer type.  This method takes a signed type, and returns the
1280  // corresponding unsigned integer type.
1281  QualType getCorrespondingUnsignedType(QualType T);
1282
1283  //===--------------------------------------------------------------------===//
1284  //                    Type Iterators.
1285  //===--------------------------------------------------------------------===//
1286
1287  typedef std::vector<Type*>::iterator       type_iterator;
1288  typedef std::vector<Type*>::const_iterator const_type_iterator;
1289
1290  type_iterator types_begin() { return Types.begin(); }
1291  type_iterator types_end() { return Types.end(); }
1292  const_type_iterator types_begin() const { return Types.begin(); }
1293  const_type_iterator types_end() const { return Types.end(); }
1294
1295  //===--------------------------------------------------------------------===//
1296  //                    Integer Values
1297  //===--------------------------------------------------------------------===//
1298
1299  /// MakeIntValue - Make an APSInt of the appropriate width and
1300  /// signedness for the given \arg Value and integer \arg Type.
1301  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1302    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1303    Res = Value;
1304    return Res;
1305  }
1306
1307  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1308  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1309  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1310  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1311
1312  /// \brief Set the implementation of ObjCInterfaceDecl.
1313  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1314                             ObjCImplementationDecl *ImplD);
1315  /// \brief Set the implementation of ObjCCategoryDecl.
1316  void setObjCImplementation(ObjCCategoryDecl *CatD,
1317                             ObjCCategoryImplDecl *ImplD);
1318
1319  /// \brief Allocate an uninitialized TypeSourceInfo.
1320  ///
1321  /// The caller should initialize the memory held by TypeSourceInfo using
1322  /// the TypeLoc wrappers.
1323  ///
1324  /// \param T the type that will be the basis for type source info. This type
1325  /// should refer to how the declarator was written in source code, not to
1326  /// what type semantic analysis resolved the declarator to.
1327  ///
1328  /// \param Size the size of the type info to create, or 0 if the size
1329  /// should be calculated based on the type.
1330  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1331
1332  /// \brief Allocate a TypeSourceInfo where all locations have been
1333  /// initialized to a given location, which defaults to the empty
1334  /// location.
1335  TypeSourceInfo *
1336  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1337
1338  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1339
1340  /// \brief Add a deallocation callback that will be invoked when the
1341  /// ASTContext is destroyed.
1342  ///
1343  /// \brief Callback A callback function that will be invoked on destruction.
1344  ///
1345  /// \brief Data Pointer data that will be provided to the callback function
1346  /// when it is called.
1347  void AddDeallocation(void (*Callback)(void*), void *Data);
1348
1349  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1350  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1351
1352  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1353  /// lazily, only when used; this is only relevant for function or file scoped
1354  /// var definitions.
1355  ///
1356  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1357  /// it is not used.
1358  bool DeclMustBeEmitted(const Decl *D);
1359
1360  //===--------------------------------------------------------------------===//
1361  //                    Statistics
1362  //===--------------------------------------------------------------------===//
1363
1364  /// \brief The number of implicitly-declared default constructors.
1365  static unsigned NumImplicitDefaultConstructors;
1366
1367  /// \brief The number of implicitly-declared default constructors for
1368  /// which declarations were built.
1369  static unsigned NumImplicitDefaultConstructorsDeclared;
1370
1371  /// \brief The number of implicitly-declared copy constructors.
1372  static unsigned NumImplicitCopyConstructors;
1373
1374  /// \brief The number of implicitly-declared copy constructors for
1375  /// which declarations were built.
1376  static unsigned NumImplicitCopyConstructorsDeclared;
1377
1378  /// \brief The number of implicitly-declared copy assignment operators.
1379  static unsigned NumImplicitCopyAssignmentOperators;
1380
1381  /// \brief The number of implicitly-declared copy assignment operators for
1382  /// which declarations were built.
1383  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1384
1385  /// \brief The number of implicitly-declared destructors.
1386  static unsigned NumImplicitDestructors;
1387
1388  /// \brief The number of implicitly-declared destructors for which
1389  /// declarations were built.
1390  static unsigned NumImplicitDestructorsDeclared;
1391
1392private:
1393  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1394  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1395
1396  void InitBuiltinTypes();
1397  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1398
1399  // Return the ObjC type encoding for a given type.
1400  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1401                                  bool ExpandPointedToStructures,
1402                                  bool ExpandStructures,
1403                                  const FieldDecl *Field,
1404                                  bool OutermostType = false,
1405                                  bool EncodingProperty = false);
1406
1407  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1408                                       const ObjCImplementationDecl *Impl);
1409
1410private:
1411  /// \brief A set of deallocations that should be performed when the
1412  /// ASTContext is destroyed.
1413  llvm::SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1414
1415  // FIXME: This currently contains the set of StoredDeclMaps used
1416  // by DeclContext objects.  This probably should not be in ASTContext,
1417  // but we include it here so that ASTContext can quickly deallocate them.
1418  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1419
1420  /// \brief A counter used to uniquely identify "blocks".
1421  unsigned int UniqueBlockByRefTypeID;
1422  unsigned int UniqueBlockParmTypeID;
1423
1424  friend class DeclContext;
1425  friend class DeclarationNameTable;
1426  void ReleaseDeclContextMaps();
1427};
1428
1429/// @brief Utility function for constructing a nullary selector.
1430static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1431  IdentifierInfo* II = &Ctx.Idents.get(name);
1432  return Ctx.Selectors.getSelector(0, &II);
1433}
1434
1435/// @brief Utility function for constructing an unary selector.
1436static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1437  IdentifierInfo* II = &Ctx.Idents.get(name);
1438  return Ctx.Selectors.getSelector(1, &II);
1439}
1440
1441}  // end namespace clang
1442
1443// operator new and delete aren't allowed inside namespaces.
1444// The throw specifications are mandated by the standard.
1445/// @brief Placement new for using the ASTContext's allocator.
1446///
1447/// This placement form of operator new uses the ASTContext's allocator for
1448/// obtaining memory. It is a non-throwing new, which means that it returns
1449/// null on error. (If that is what the allocator does. The current does, so if
1450/// this ever changes, this operator will have to be changed, too.)
1451/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1452/// @code
1453/// // Default alignment (8)
1454/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1455/// // Specific alignment
1456/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1457/// @endcode
1458/// Please note that you cannot use delete on the pointer; it must be
1459/// deallocated using an explicit destructor call followed by
1460/// @c Context.Deallocate(Ptr).
1461///
1462/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1463/// @param C The ASTContext that provides the allocator.
1464/// @param Alignment The alignment of the allocated memory (if the underlying
1465///                  allocator supports it).
1466/// @return The allocated memory. Could be NULL.
1467inline void *operator new(size_t Bytes, clang::ASTContext &C,
1468                          size_t Alignment) throw () {
1469  return C.Allocate(Bytes, Alignment);
1470}
1471/// @brief Placement delete companion to the new above.
1472///
1473/// This operator is just a companion to the new above. There is no way of
1474/// invoking it directly; see the new operator for more details. This operator
1475/// is called implicitly by the compiler if a placement new expression using
1476/// the ASTContext throws in the object constructor.
1477inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1478              throw () {
1479  C.Deallocate(Ptr);
1480}
1481
1482/// This placement form of operator new[] uses the ASTContext's allocator for
1483/// obtaining memory. It is a non-throwing new[], which means that it returns
1484/// null on error.
1485/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1486/// @code
1487/// // Default alignment (8)
1488/// char *data = new (Context) char[10];
1489/// // Specific alignment
1490/// char *data = new (Context, 4) char[10];
1491/// @endcode
1492/// Please note that you cannot use delete on the pointer; it must be
1493/// deallocated using an explicit destructor call followed by
1494/// @c Context.Deallocate(Ptr).
1495///
1496/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1497/// @param C The ASTContext that provides the allocator.
1498/// @param Alignment The alignment of the allocated memory (if the underlying
1499///                  allocator supports it).
1500/// @return The allocated memory. Could be NULL.
1501inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1502                            size_t Alignment = 8) throw () {
1503  return C.Allocate(Bytes, Alignment);
1504}
1505
1506/// @brief Placement delete[] companion to the new[] above.
1507///
1508/// This operator is just a companion to the new[] above. There is no way of
1509/// invoking it directly; see the new[] operator for more details. This operator
1510/// is called implicitly by the compiler if a placement new[] expression using
1511/// the ASTContext throws in the object constructor.
1512inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1513              throw () {
1514  C.Deallocate(Ptr);
1515}
1516
1517#endif
1518