ASTContext.h revision 2a984cad5ac3fdceeff2bd99daa7b90979313475
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "clang/AST/UsuallyTinyPtrVector.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/Allocator.h"
33#include <vector>
34
35namespace llvm {
36  struct fltSemantics;
37  class raw_ostream;
38}
39
40namespace clang {
41  class FileManager;
42  class ASTRecordLayout;
43  class BlockExpr;
44  class CharUnits;
45  class Diagnostic;
46  class Expr;
47  class ExternalASTSource;
48  class IdentifierTable;
49  class SelectorTable;
50  class SourceManager;
51  class TargetInfo;
52  class CXXABI;
53  // Decls
54  class DeclContext;
55  class CXXMethodDecl;
56  class CXXRecordDecl;
57  class Decl;
58  class FieldDecl;
59  class ObjCIvarDecl;
60  class ObjCIvarRefExpr;
61  class ObjCPropertyDecl;
62  class RecordDecl;
63  class StoredDeclsMap;
64  class TagDecl;
65  class TemplateTemplateParmDecl;
66  class TemplateTypeParmDecl;
67  class TranslationUnitDecl;
68  class TypeDecl;
69  class TypedefDecl;
70  class UsingDecl;
71  class UsingShadowDecl;
72  class UnresolvedSetIterator;
73
74  namespace Builtin { class Context; }
75
76/// ASTContext - This class holds long-lived AST nodes (such as types and
77/// decls) that can be referred to throughout the semantic analysis of a file.
78class ASTContext {
79  ASTContext &this_() { return *this; }
80
81  std::vector<Type*> Types;
82  llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  llvm::FoldingSet<ComplexType> ComplexTypes;
84  llvm::FoldingSet<PointerType> PointerTypes;
85  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
86  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
87  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
88  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
89  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
90  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
91  std::vector<VariableArrayType*> VariableArrayTypes;
92  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
93  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
94  llvm::FoldingSet<VectorType> VectorTypes;
95  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
96  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
97  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
98  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
99  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
100  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
101  llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
102    TemplateSpecializationTypes;
103  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
104  llvm::FoldingSet<DependentNameType> DependentNameTypes;
105  llvm::ContextualFoldingSet<DependentTemplateSpecializationType, ASTContext&>
106    DependentTemplateSpecializationTypes;
107  llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
108  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
109
110  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
111  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
112
113  /// \brief The set of nested name specifiers.
114  ///
115  /// This set is managed by the NestedNameSpecifier class.
116  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
117  NestedNameSpecifier *GlobalNestedNameSpecifier;
118  friend class NestedNameSpecifier;
119
120  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
121  ///  This is lazily created.  This is intentionally not serialized.
122  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
123  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
124
125  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
126  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
127
128  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
129  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
130
131  /// \brief Representation of a "canonical" template template parameter that
132  /// is used in canonical template names.
133  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
134    TemplateTemplateParmDecl *Parm;
135
136  public:
137    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
138      : Parm(Parm) { }
139
140    TemplateTemplateParmDecl *getParam() const { return Parm; }
141
142    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
143
144    static void Profile(llvm::FoldingSetNodeID &ID,
145                        TemplateTemplateParmDecl *Parm);
146  };
147  llvm::FoldingSet<CanonicalTemplateTemplateParm> CanonTemplateTemplateParms;
148
149  TemplateTemplateParmDecl *getCanonicalTemplateTemplateParmDecl(
150                                               TemplateTemplateParmDecl *TTP);
151
152  /// \brief Whether __[u]int128_t identifier is installed.
153  bool IsInt128Installed;
154
155  /// BuiltinVaListType - built-in va list type.
156  /// This is initially null and set by Sema::LazilyCreateBuiltin when
157  /// a builtin that takes a valist is encountered.
158  QualType BuiltinVaListType;
159
160  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
161  QualType ObjCIdTypedefType;
162
163  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
164  QualType ObjCSelTypedefType;
165
166  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
167  QualType ObjCProtoType;
168  const RecordType *ProtoStructType;
169
170  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
171  QualType ObjCClassTypedefType;
172
173  QualType ObjCConstantStringType;
174  RecordDecl *CFConstantStringTypeDecl;
175
176  RecordDecl *NSConstantStringTypeDecl;
177
178  RecordDecl *ObjCFastEnumerationStateTypeDecl;
179
180  /// \brief The type for the C FILE type.
181  TypeDecl *FILEDecl;
182
183  /// \brief The type for the C jmp_buf type.
184  TypeDecl *jmp_bufDecl;
185
186  /// \brief The type for the C sigjmp_buf type.
187  TypeDecl *sigjmp_bufDecl;
188
189  /// \brief Type for the Block descriptor for Blocks CodeGen.
190  RecordDecl *BlockDescriptorType;
191
192  /// \brief Type for the Block descriptor for Blocks CodeGen.
193  RecordDecl *BlockDescriptorExtendedType;
194
195  TypeSourceInfo NullTypeSourceInfo;
196
197  /// \brief Keeps track of all declaration attributes.
198  ///
199  /// Since so few decls have attrs, we keep them in a hash map instead of
200  /// wasting space in the Decl class.
201  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
202
203  /// \brief Keeps track of the static data member templates from which
204  /// static data members of class template specializations were instantiated.
205  ///
206  /// This data structure stores the mapping from instantiations of static
207  /// data members to the static data member representations within the
208  /// class template from which they were instantiated along with the kind
209  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
210  ///
211  /// Given the following example:
212  ///
213  /// \code
214  /// template<typename T>
215  /// struct X {
216  ///   static T value;
217  /// };
218  ///
219  /// template<typename T>
220  ///   T X<T>::value = T(17);
221  ///
222  /// int *x = &X<int>::value;
223  /// \endcode
224  ///
225  /// This mapping will contain an entry that maps from the VarDecl for
226  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
227  /// class template X) and will be marked TSK_ImplicitInstantiation.
228  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
229    InstantiatedFromStaticDataMember;
230
231  /// \brief Keeps track of the declaration from which a UsingDecl was
232  /// created during instantiation.  The source declaration is always
233  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
234  /// UnresolvedUsingTypenameDecl.
235  ///
236  /// For example:
237  /// \code
238  /// template<typename T>
239  /// struct A {
240  ///   void f();
241  /// };
242  ///
243  /// template<typename T>
244  /// struct B : A<T> {
245  ///   using A<T>::f;
246  /// };
247  ///
248  /// template struct B<int>;
249  /// \endcode
250  ///
251  /// This mapping will contain an entry that maps from the UsingDecl in
252  /// B<int> to the UnresolvedUsingDecl in B<T>.
253  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
254
255  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
256    InstantiatedFromUsingShadowDecl;
257
258  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
259
260  /// \brief Mapping that stores the methods overridden by a given C++
261  /// member function.
262  ///
263  /// Since most C++ member functions aren't virtual and therefore
264  /// don't override anything, we store the overridden functions in
265  /// this map on the side rather than within the CXXMethodDecl structure.
266  typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
267  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
268
269  TranslationUnitDecl *TUDecl;
270
271  /// SourceMgr - The associated SourceManager object.
272  SourceManager &SourceMgr;
273
274  /// LangOpts - The language options used to create the AST associated with
275  ///  this ASTContext object.
276  LangOptions LangOpts;
277
278  /// \brief The allocator used to create AST objects.
279  ///
280  /// AST objects are never destructed; rather, all memory associated with the
281  /// AST objects will be released when the ASTContext itself is destroyed.
282  llvm::BumpPtrAllocator BumpAlloc;
283
284  /// \brief Allocator for partial diagnostics.
285  PartialDiagnostic::StorageAllocator DiagAllocator;
286
287  /// \brief The current C++ ABI.
288  llvm::OwningPtr<CXXABI> ABI;
289  CXXABI *createCXXABI(const TargetInfo &T);
290
291public:
292  const TargetInfo &Target;
293  IdentifierTable &Idents;
294  SelectorTable &Selectors;
295  Builtin::Context &BuiltinInfo;
296  DeclarationNameTable DeclarationNames;
297  llvm::OwningPtr<ExternalASTSource> ExternalSource;
298  clang::PrintingPolicy PrintingPolicy;
299
300  // Typedefs which may be provided defining the structure of Objective-C
301  // pseudo-builtins
302  QualType ObjCIdRedefinitionType;
303  QualType ObjCClassRedefinitionType;
304  QualType ObjCSelRedefinitionType;
305
306  SourceManager& getSourceManager() { return SourceMgr; }
307  const SourceManager& getSourceManager() const { return SourceMgr; }
308  void *Allocate(unsigned Size, unsigned Align = 8) {
309    return BumpAlloc.Allocate(Size, Align);
310  }
311  void Deallocate(void *Ptr) { }
312
313  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
314    return DiagAllocator;
315  }
316
317  const LangOptions& getLangOptions() const { return LangOpts; }
318
319  Diagnostic &getDiagnostics() const;
320
321  FullSourceLoc getFullLoc(SourceLocation Loc) const {
322    return FullSourceLoc(Loc,SourceMgr);
323  }
324
325  /// \brief Retrieve the attributes for the given declaration.
326  AttrVec& getDeclAttrs(const Decl *D);
327
328  /// \brief Erase the attributes corresponding to the given declaration.
329  void eraseDeclAttrs(const Decl *D);
330
331  /// \brief If this variable is an instantiated static data member of a
332  /// class template specialization, returns the templated static data member
333  /// from which it was instantiated.
334  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
335                                                           const VarDecl *Var);
336
337  /// \brief Note that the static data member \p Inst is an instantiation of
338  /// the static data member template \p Tmpl of a class template.
339  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
340                                           TemplateSpecializationKind TSK,
341                        SourceLocation PointOfInstantiation = SourceLocation());
342
343  /// \brief If the given using decl is an instantiation of a
344  /// (possibly unresolved) using decl from a template instantiation,
345  /// return it.
346  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
347
348  /// \brief Remember that the using decl \p Inst is an instantiation
349  /// of the using decl \p Pattern of a class template.
350  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
351
352  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
353                                          UsingShadowDecl *Pattern);
354  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
355
356  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
357
358  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
359
360  // Access to the set of methods overridden by the given C++ method.
361  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
362  overridden_cxx_method_iterator
363  overridden_methods_begin(const CXXMethodDecl *Method) const;
364
365  overridden_cxx_method_iterator
366  overridden_methods_end(const CXXMethodDecl *Method) const;
367
368  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
369
370  /// \brief Note that the given C++ \p Method overrides the given \p
371  /// Overridden method.
372  void addOverriddenMethod(const CXXMethodDecl *Method,
373                           const CXXMethodDecl *Overridden);
374
375  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
376
377
378  // Builtin Types.
379  CanQualType VoidTy;
380  CanQualType BoolTy;
381  CanQualType CharTy;
382  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
383  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
384  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
385  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
386  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
387  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
388  CanQualType FloatTy, DoubleTy, LongDoubleTy;
389  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
390  CanQualType VoidPtrTy, NullPtrTy;
391  CanQualType OverloadTy, UndeducedAutoTy;
392  CanQualType DependentTy;
393  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
394
395  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
396             IdentifierTable &idents, SelectorTable &sels,
397             Builtin::Context &builtins,
398             unsigned size_reserve);
399
400  ~ASTContext();
401
402  /// \brief Attach an external AST source to the AST context.
403  ///
404  /// The external AST source provides the ability to load parts of
405  /// the abstract syntax tree as needed from some external storage,
406  /// e.g., a precompiled header.
407  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
408
409  /// \brief Retrieve a pointer to the external AST source associated
410  /// with this AST context, if any.
411  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
412
413  void PrintStats() const;
414  const std::vector<Type*>& getTypes() const { return Types; }
415
416  //===--------------------------------------------------------------------===//
417  //                           Type Constructors
418  //===--------------------------------------------------------------------===//
419
420private:
421  /// getExtQualType - Return a type with extended qualifiers.
422  QualType getExtQualType(const Type *Base, Qualifiers Quals);
423
424  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
425
426public:
427  /// getAddSpaceQualType - Return the uniqued reference to the type for an
428  /// address space qualified type with the specified type and address space.
429  /// The resulting type has a union of the qualifiers from T and the address
430  /// space. If T already has an address space specifier, it is silently
431  /// replaced.
432  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
433
434  /// getObjCGCQualType - Returns the uniqued reference to the type for an
435  /// objc gc qualified type. The retulting type has a union of the qualifiers
436  /// from T and the gc attribute.
437  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
438
439  /// getRestrictType - Returns the uniqued reference to the type for a
440  /// 'restrict' qualified type.  The resulting type has a union of the
441  /// qualifiers from T and 'restrict'.
442  QualType getRestrictType(QualType T) {
443    return T.withFastQualifiers(Qualifiers::Restrict);
444  }
445
446  /// getVolatileType - Returns the uniqued reference to the type for a
447  /// 'volatile' qualified type.  The resulting type has a union of the
448  /// qualifiers from T and 'volatile'.
449  QualType getVolatileType(QualType T);
450
451  /// getConstType - Returns the uniqued reference to the type for a
452  /// 'const' qualified type.  The resulting type has a union of the
453  /// qualifiers from T and 'const'.
454  ///
455  /// It can be reasonably expected that this will always be
456  /// equivalent to calling T.withConst().
457  QualType getConstType(QualType T) { return T.withConst(); }
458
459  /// getNoReturnType - Add or remove the noreturn attribute to the given type
460  /// which must be a FunctionType or a pointer to an allowable type or a
461  /// BlockPointer.
462  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
463
464  /// getCallConvType - Adds the specified calling convention attribute to
465  /// the given type, which must be a FunctionType or a pointer to an
466  /// allowable type.
467  QualType getCallConvType(QualType T, CallingConv CallConv);
468
469  /// getRegParmType - Sets the specified regparm attribute to
470  /// the given type, which must be a FunctionType or a pointer to an
471  /// allowable type.
472  QualType getRegParmType(QualType T, unsigned RegParm);
473
474  /// getComplexType - Return the uniqued reference to the type for a complex
475  /// number with the specified element type.
476  QualType getComplexType(QualType T);
477  CanQualType getComplexType(CanQualType T) {
478    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
479  }
480
481  /// getPointerType - Return the uniqued reference to the type for a pointer to
482  /// the specified type.
483  QualType getPointerType(QualType T);
484  CanQualType getPointerType(CanQualType T) {
485    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
486  }
487
488  /// getBlockPointerType - Return the uniqued reference to the type for a block
489  /// of the specified type.
490  QualType getBlockPointerType(QualType T);
491
492  /// This gets the struct used to keep track of the descriptor for pointer to
493  /// blocks.
494  QualType getBlockDescriptorType();
495
496  // Set the type for a Block descriptor type.
497  void setBlockDescriptorType(QualType T);
498  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
499  QualType getRawBlockdescriptorType() {
500    if (BlockDescriptorType)
501      return getTagDeclType(BlockDescriptorType);
502    return QualType();
503  }
504
505  /// This gets the struct used to keep track of the extended descriptor for
506  /// pointer to blocks.
507  QualType getBlockDescriptorExtendedType();
508
509  // Set the type for a Block descriptor extended type.
510  void setBlockDescriptorExtendedType(QualType T);
511  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
512  /// built.
513  QualType getRawBlockdescriptorExtendedType() {
514    if (BlockDescriptorExtendedType)
515      return getTagDeclType(BlockDescriptorExtendedType);
516    return QualType();
517  }
518
519  /// This gets the struct used to keep track of pointer to blocks, complete
520  /// with captured variables.
521  QualType getBlockParmType(bool BlockHasCopyDispose,
522                            llvm::SmallVectorImpl<const Expr *> &Layout);
523
524  /// This builds the struct used for __block variables.
525  QualType BuildByRefType(llvm::StringRef DeclName, QualType Ty);
526
527  /// Returns true iff we need copy/dispose helpers for the given type.
528  bool BlockRequiresCopying(QualType Ty);
529
530  /// getLValueReferenceType - Return the uniqued reference to the type for an
531  /// lvalue reference to the specified type.
532  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
533
534  /// getRValueReferenceType - Return the uniqued reference to the type for an
535  /// rvalue reference to the specified type.
536  QualType getRValueReferenceType(QualType T);
537
538  /// getMemberPointerType - Return the uniqued reference to the type for a
539  /// member pointer to the specified type in the specified class. The class
540  /// is a Type because it could be a dependent name.
541  QualType getMemberPointerType(QualType T, const Type *Cls);
542
543  /// getVariableArrayType - Returns a non-unique reference to the type for a
544  /// variable array of the specified element type.
545  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
546                                ArrayType::ArraySizeModifier ASM,
547                                unsigned EltTypeQuals,
548                                SourceRange Brackets);
549
550  /// getDependentSizedArrayType - Returns a non-unique reference to
551  /// the type for a dependently-sized array of the specified element
552  /// type. FIXME: We will need these to be uniqued, or at least
553  /// comparable, at some point.
554  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
555                                      ArrayType::ArraySizeModifier ASM,
556                                      unsigned EltTypeQuals,
557                                      SourceRange Brackets);
558
559  /// getIncompleteArrayType - Returns a unique reference to the type for a
560  /// incomplete array of the specified element type.
561  QualType getIncompleteArrayType(QualType EltTy,
562                                  ArrayType::ArraySizeModifier ASM,
563                                  unsigned EltTypeQuals);
564
565  /// getConstantArrayType - Return the unique reference to the type for a
566  /// constant array of the specified element type.
567  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
568                                ArrayType::ArraySizeModifier ASM,
569                                unsigned EltTypeQuals);
570
571  /// getUnknownSizeVariableArrayType - Return a variable array type with
572  /// all variable indices replaced with unknow [*] size.
573  QualType getUnknownSizeVariableArrayType(QualType Ty);
574
575  /// getVariableArrayDecayedType - Returns a vla type where known sizes
576  /// are replaced with [*]
577  QualType getVariableArrayDecayedType(QualType Ty);
578
579  /// getVectorType - Return the unique reference to a vector type of
580  /// the specified element type and size. VectorType must be a built-in type.
581  QualType getVectorType(QualType VectorType, unsigned NumElts,
582                         VectorType::AltiVecSpecific AltiVecSpec);
583
584  /// getExtVectorType - Return the unique reference to an extended vector type
585  /// of the specified element type and size.  VectorType must be a built-in
586  /// type.
587  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
588
589  /// getDependentSizedExtVectorType - Returns a non-unique reference to
590  /// the type for a dependently-sized vector of the specified element
591  /// type. FIXME: We will need these to be uniqued, or at least
592  /// comparable, at some point.
593  QualType getDependentSizedExtVectorType(QualType VectorType,
594                                          Expr *SizeExpr,
595                                          SourceLocation AttrLoc);
596
597  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
598  ///
599  QualType getFunctionNoProtoType(QualType ResultTy,
600                                  const FunctionType::ExtInfo &Info);
601
602  QualType getFunctionNoProtoType(QualType ResultTy) {
603    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
604  }
605
606  /// getFunctionType - Return a normal function type with a typed argument
607  /// list.  isVariadic indicates whether the argument list includes '...'.
608  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
609                           unsigned NumArgs, bool isVariadic,
610                           unsigned TypeQuals, bool hasExceptionSpec,
611                           bool hasAnyExceptionSpec,
612                           unsigned NumExs, const QualType *ExArray,
613                           const FunctionType::ExtInfo &Info);
614
615  /// getTypeDeclType - Return the unique reference to the type for
616  /// the specified type declaration.
617  QualType getTypeDeclType(const TypeDecl *Decl,
618                           const TypeDecl *PrevDecl = 0) {
619    assert(Decl && "Passed null for Decl param");
620    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
621
622    if (PrevDecl) {
623      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
624      Decl->TypeForDecl = PrevDecl->TypeForDecl;
625      return QualType(PrevDecl->TypeForDecl, 0);
626    }
627
628    return getTypeDeclTypeSlow(Decl);
629  }
630
631  /// getTypedefType - Return the unique reference to the type for the
632  /// specified typename decl.
633  QualType getTypedefType(const TypedefDecl *Decl, QualType Canon = QualType());
634
635  QualType getRecordType(const RecordDecl *Decl);
636
637  QualType getEnumType(const EnumDecl *Decl);
638
639  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
640
641  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
642                                        QualType Replacement);
643
644  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
645                                   bool ParameterPack,
646                                   IdentifierInfo *Name = 0);
647
648  QualType getTemplateSpecializationType(TemplateName T,
649                                         const TemplateArgument *Args,
650                                         unsigned NumArgs,
651                                         QualType Canon = QualType());
652
653  QualType getCanonicalTemplateSpecializationType(TemplateName T,
654                                                  const TemplateArgument *Args,
655                                                  unsigned NumArgs);
656
657  QualType getTemplateSpecializationType(TemplateName T,
658                                         const TemplateArgumentListInfo &Args,
659                                         QualType Canon = QualType());
660
661  TypeSourceInfo *
662  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
663                                    const TemplateArgumentListInfo &Args,
664                                    QualType Canon = QualType());
665
666  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
667                             NestedNameSpecifier *NNS,
668                             QualType NamedType);
669  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
670                                NestedNameSpecifier *NNS,
671                                const IdentifierInfo *Name,
672                                QualType Canon = QualType());
673
674  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
675                                                  NestedNameSpecifier *NNS,
676                                                  const IdentifierInfo *Name,
677                                          const TemplateArgumentListInfo &Args);
678  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
679                                                  NestedNameSpecifier *NNS,
680                                                  const IdentifierInfo *Name,
681                                                  unsigned NumArgs,
682                                                  const TemplateArgument *Args);
683
684  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
685
686  QualType getObjCObjectType(QualType Base,
687                             ObjCProtocolDecl * const *Protocols,
688                             unsigned NumProtocols);
689
690  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
691  /// for the given ObjCObjectType.
692  QualType getObjCObjectPointerType(QualType OIT);
693
694  /// getTypeOfType - GCC extension.
695  QualType getTypeOfExprType(Expr *e);
696  QualType getTypeOfType(QualType t);
697
698  /// getDecltypeType - C++0x decltype.
699  QualType getDecltypeType(Expr *e);
700
701  /// getTagDeclType - Return the unique reference to the type for the
702  /// specified TagDecl (struct/union/class/enum) decl.
703  QualType getTagDeclType(const TagDecl *Decl);
704
705  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
706  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
707  CanQualType getSizeType() const;
708
709  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
710  /// returns a type compatible with the type defined in <stddef.h> as defined
711  /// by the target.
712  QualType getWCharType() const { return WCharTy; }
713
714  /// getSignedWCharType - Return the type of "signed wchar_t".
715  /// Used when in C++, as a GCC extension.
716  QualType getSignedWCharType() const;
717
718  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
719  /// Used when in C++, as a GCC extension.
720  QualType getUnsignedWCharType() const;
721
722  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
723  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
724  QualType getPointerDiffType() const;
725
726  // getCFConstantStringType - Return the C structure type used to represent
727  // constant CFStrings.
728  QualType getCFConstantStringType();
729
730  // getNSConstantStringType - Return the C structure type used to represent
731  // constant NSStrings.
732  QualType getNSConstantStringType();
733  /// Get the structure type used to representation NSStrings, or NULL
734  /// if it hasn't yet been built.
735  QualType getRawNSConstantStringType() {
736    if (NSConstantStringTypeDecl)
737      return getTagDeclType(NSConstantStringTypeDecl);
738    return QualType();
739  }
740  void setNSConstantStringType(QualType T);
741
742
743  /// Get the structure type used to representation CFStrings, or NULL
744  /// if it hasn't yet been built.
745  QualType getRawCFConstantStringType() {
746    if (CFConstantStringTypeDecl)
747      return getTagDeclType(CFConstantStringTypeDecl);
748    return QualType();
749  }
750  void setCFConstantStringType(QualType T);
751
752  // This setter/getter represents the ObjC type for an NSConstantString.
753  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
754  QualType getObjCConstantStringInterface() const {
755    return ObjCConstantStringType;
756  }
757
758  //// This gets the struct used to keep track of fast enumerations.
759  QualType getObjCFastEnumerationStateType();
760
761  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
762  /// been built.
763  QualType getRawObjCFastEnumerationStateType() {
764    if (ObjCFastEnumerationStateTypeDecl)
765      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
766    return QualType();
767  }
768
769  void setObjCFastEnumerationStateType(QualType T);
770
771  /// \brief Set the type for the C FILE type.
772  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
773
774  /// \brief Retrieve the C FILE type.
775  QualType getFILEType() {
776    if (FILEDecl)
777      return getTypeDeclType(FILEDecl);
778    return QualType();
779  }
780
781  /// \brief Set the type for the C jmp_buf type.
782  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
783    this->jmp_bufDecl = jmp_bufDecl;
784  }
785
786  /// \brief Retrieve the C jmp_buf type.
787  QualType getjmp_bufType() {
788    if (jmp_bufDecl)
789      return getTypeDeclType(jmp_bufDecl);
790    return QualType();
791  }
792
793  /// \brief Set the type for the C sigjmp_buf type.
794  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
795    this->sigjmp_bufDecl = sigjmp_bufDecl;
796  }
797
798  /// \brief Retrieve the C sigjmp_buf type.
799  QualType getsigjmp_bufType() {
800    if (sigjmp_bufDecl)
801      return getTypeDeclType(sigjmp_bufDecl);
802    return QualType();
803  }
804
805  /// getObjCEncodingForType - Emit the ObjC type encoding for the
806  /// given type into \arg S. If \arg NameFields is specified then
807  /// record field names are also encoded.
808  void getObjCEncodingForType(QualType t, std::string &S,
809                              const FieldDecl *Field=0);
810
811  void getLegacyIntegralTypeEncoding(QualType &t) const;
812
813  // Put the string version of type qualifiers into S.
814  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
815                                       std::string &S) const;
816
817  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
818  /// declaration.
819  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
820
821  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
822  /// declaration.
823  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
824
825  /// getObjCEncodingForPropertyDecl - Return the encoded type for
826  /// this method declaration. If non-NULL, Container must be either
827  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
828  /// only be NULL when getting encodings for protocol properties.
829  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
830                                      const Decl *Container,
831                                      std::string &S);
832
833  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
834                                      ObjCProtocolDecl *rProto);
835
836  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
837  /// purpose in characters.
838  CharUnits getObjCEncodingTypeSize(QualType t);
839
840  /// \brief Whether __[u]int128_t identifier is installed.
841  bool isInt128Installed() const { return IsInt128Installed; }
842  void setInt128Installed() { IsInt128Installed = true; }
843
844  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
845  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
846  QualType getObjCIdType() const { return ObjCIdTypedefType; }
847  void setObjCIdType(QualType T);
848
849  void setObjCSelType(QualType T);
850  QualType getObjCSelType() const { return ObjCSelTypedefType; }
851
852  void setObjCProtoType(QualType QT);
853  QualType getObjCProtoType() const { return ObjCProtoType; }
854
855  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
856  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
857  /// struct.
858  QualType getObjCClassType() const { return ObjCClassTypedefType; }
859  void setObjCClassType(QualType T);
860
861  void setBuiltinVaListType(QualType T);
862  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
863
864  /// getCVRQualifiedType - Returns a type with additional const,
865  /// volatile, or restrict qualifiers.
866  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
867    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
868  }
869
870  /// getQualifiedType - Returns a type with additional qualifiers.
871  QualType getQualifiedType(QualType T, Qualifiers Qs) {
872    if (!Qs.hasNonFastQualifiers())
873      return T.withFastQualifiers(Qs.getFastQualifiers());
874    QualifierCollector Qc(Qs);
875    const Type *Ptr = Qc.strip(T);
876    return getExtQualType(Ptr, Qc);
877  }
878
879  /// getQualifiedType - Returns a type with additional qualifiers.
880  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
881    if (!Qs.hasNonFastQualifiers())
882      return QualType(T, Qs.getFastQualifiers());
883    return getExtQualType(T, Qs);
884  }
885
886  DeclarationNameInfo getNameForTemplate(TemplateName Name,
887                                         SourceLocation NameLoc);
888
889  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
890                                         UnresolvedSetIterator End);
891
892  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
893                                        bool TemplateKeyword,
894                                        TemplateDecl *Template);
895
896  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
897                                        const IdentifierInfo *Name);
898  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
899                                        OverloadedOperatorKind Operator);
900
901  enum GetBuiltinTypeError {
902    GE_None,              //< No error
903    GE_Missing_stdio,     //< Missing a type from <stdio.h>
904    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
905  };
906
907  /// GetBuiltinType - Return the type for the specified builtin.  If
908  /// IntegerConstantArgs is non-null, it is filled in with a bitmask of
909  /// arguments to the builtin that are required to be integer constant
910  /// expressions.
911  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
912                          unsigned *IntegerConstantArgs = 0);
913
914private:
915  CanQualType getFromTargetType(unsigned Type) const;
916
917  //===--------------------------------------------------------------------===//
918  //                         Type Predicates.
919  //===--------------------------------------------------------------------===//
920
921public:
922  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
923  /// garbage collection attribute.
924  ///
925  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
926
927  /// areCompatibleVectorTypes - Return true if the given vector types either
928  /// are of the same unqualified type or if one is GCC and other - equivalent
929  /// AltiVec vector type.
930  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
931
932  /// isObjCNSObjectType - Return true if this is an NSObject object with
933  /// its NSObject attribute set.
934  bool isObjCNSObjectType(QualType Ty) const;
935
936  //===--------------------------------------------------------------------===//
937  //                         Type Sizing and Analysis
938  //===--------------------------------------------------------------------===//
939
940  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
941  /// scalar floating point type.
942  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
943
944  /// getTypeInfo - Get the size and alignment of the specified complete type in
945  /// bits.
946  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
947  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
948    return getTypeInfo(T.getTypePtr());
949  }
950
951  /// getTypeSize - Return the size of the specified type, in bits.  This method
952  /// does not work on incomplete types.
953  uint64_t getTypeSize(QualType T) {
954    return getTypeInfo(T).first;
955  }
956  uint64_t getTypeSize(const Type *T) {
957    return getTypeInfo(T).first;
958  }
959
960  /// getCharWidth - Return the size of the character type, in bits
961  uint64_t getCharWidth() {
962    return getTypeSize(CharTy);
963  }
964
965  /// getTypeSizeInChars - Return the size of the specified type, in characters.
966  /// This method does not work on incomplete types.
967  CharUnits getTypeSizeInChars(QualType T);
968  CharUnits getTypeSizeInChars(const Type *T);
969
970  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
971  /// This method does not work on incomplete types.
972  unsigned getTypeAlign(QualType T) {
973    return getTypeInfo(T).second;
974  }
975  unsigned getTypeAlign(const Type *T) {
976    return getTypeInfo(T).second;
977  }
978
979  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
980  /// characters. This method does not work on incomplete types.
981  CharUnits getTypeAlignInChars(QualType T);
982  CharUnits getTypeAlignInChars(const Type *T);
983
984  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T);
985  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T);
986
987  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
988  /// type for the current target in bits.  This can be different than the ABI
989  /// alignment in cases where it is beneficial for performance to overalign
990  /// a data type.
991  unsigned getPreferredTypeAlign(const Type *T);
992
993  /// getDeclAlign - Return a conservative estimate of the alignment of
994  /// the specified decl.  Note that bitfields do not have a valid alignment, so
995  /// this method will assert on them.
996  /// If @p RefAsPointee, references are treated like their underlying type
997  /// (for alignof), else they're treated like pointers (for CodeGen).
998  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
999
1000  /// getASTRecordLayout - Get or compute information about the layout of the
1001  /// specified record (struct/union/class), which indicates its size and field
1002  /// position information.
1003  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
1004
1005  /// getASTObjCInterfaceLayout - Get or compute information about the
1006  /// layout of the specified Objective-C interface.
1007  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
1008
1009  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
1010
1011  /// getASTObjCImplementationLayout - Get or compute information about
1012  /// the layout of the specified Objective-C implementation. This may
1013  /// differ from the interface if synthesized ivars are present.
1014  const ASTRecordLayout &
1015  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
1016
1017  /// getKeyFunction - Get the key function for the given record decl, or NULL
1018  /// if there isn't one.  The key function is, according to the Itanium C++ ABI
1019  /// section 5.2.3:
1020  ///
1021  /// ...the first non-pure virtual function that is not inline at the point
1022  /// of class definition.
1023  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1024
1025  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1026                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
1027
1028  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1029                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
1030
1031  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
1032  void CollectInheritedProtocols(const Decl *CDecl,
1033                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1034
1035  //===--------------------------------------------------------------------===//
1036  //                            Type Operators
1037  //===--------------------------------------------------------------------===//
1038
1039  /// getCanonicalType - Return the canonical (structural) type corresponding to
1040  /// the specified potentially non-canonical type.  The non-canonical version
1041  /// of a type may have many "decorated" versions of types.  Decorators can
1042  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1043  /// to be free of any of these, allowing two canonical types to be compared
1044  /// for exact equality with a simple pointer comparison.
1045  CanQualType getCanonicalType(QualType T);
1046  const Type *getCanonicalType(const Type *T) {
1047    return T->getCanonicalTypeInternal().getTypePtr();
1048  }
1049
1050  /// getCanonicalParamType - Return the canonical parameter type
1051  /// corresponding to the specific potentially non-canonical one.
1052  /// Qualifiers are stripped off, functions are turned into function
1053  /// pointers, and arrays decay one level into pointers.
1054  CanQualType getCanonicalParamType(QualType T);
1055
1056  /// \brief Determine whether the given types are equivalent.
1057  bool hasSameType(QualType T1, QualType T2) {
1058    return getCanonicalType(T1) == getCanonicalType(T2);
1059  }
1060
1061  /// \brief Returns this type as a completely-unqualified array type,
1062  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1063  /// sugaring from the types, similar to the behavior of
1064  /// QualType::getUnqualifiedType().
1065  ///
1066  /// \param T is the qualified type, which may be an ArrayType
1067  ///
1068  /// \param Quals will receive the full set of qualifiers that were
1069  /// applied to the array.
1070  ///
1071  /// \returns if this is an array type, the completely unqualified array type
1072  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1073  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1074
1075  /// \brief Determine whether the given types are equivalent after
1076  /// cvr-qualifiers have been removed.
1077  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1078    CanQualType CT1 = getCanonicalType(T1);
1079    CanQualType CT2 = getCanonicalType(T2);
1080
1081    Qualifiers Quals;
1082    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1083    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1084    return UnqualT1 == UnqualT2;
1085  }
1086
1087  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1088
1089  /// \brief Retrieves the "canonical" nested name specifier for a
1090  /// given nested name specifier.
1091  ///
1092  /// The canonical nested name specifier is a nested name specifier
1093  /// that uniquely identifies a type or namespace within the type
1094  /// system. For example, given:
1095  ///
1096  /// \code
1097  /// namespace N {
1098  ///   struct S {
1099  ///     template<typename T> struct X { typename T* type; };
1100  ///   };
1101  /// }
1102  ///
1103  /// template<typename T> struct Y {
1104  ///   typename N::S::X<T>::type member;
1105  /// };
1106  /// \endcode
1107  ///
1108  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1109  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1110  /// by declarations in the type system and the canonical type for
1111  /// the template type parameter 'T' is template-param-0-0.
1112  NestedNameSpecifier *
1113  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1114
1115  /// \brief Retrieves the canonical representation of the given
1116  /// calling convention.
1117  CallingConv getCanonicalCallConv(CallingConv CC) {
1118    if (CC == CC_C)
1119      return CC_Default;
1120    return CC;
1121  }
1122
1123  /// \brief Determines whether two calling conventions name the same
1124  /// calling convention.
1125  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1126    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1127  }
1128
1129  /// \brief Retrieves the "canonical" template name that refers to a
1130  /// given template.
1131  ///
1132  /// The canonical template name is the simplest expression that can
1133  /// be used to refer to a given template. For most templates, this
1134  /// expression is just the template declaration itself. For example,
1135  /// the template std::vector can be referred to via a variety of
1136  /// names---std::vector, ::std::vector, vector (if vector is in
1137  /// scope), etc.---but all of these names map down to the same
1138  /// TemplateDecl, which is used to form the canonical template name.
1139  ///
1140  /// Dependent template names are more interesting. Here, the
1141  /// template name could be something like T::template apply or
1142  /// std::allocator<T>::template rebind, where the nested name
1143  /// specifier itself is dependent. In this case, the canonical
1144  /// template name uses the shortest form of the dependent
1145  /// nested-name-specifier, which itself contains all canonical
1146  /// types, values, and templates.
1147  TemplateName getCanonicalTemplateName(TemplateName Name);
1148
1149  /// \brief Determine whether the given template names refer to the same
1150  /// template.
1151  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1152
1153  /// \brief Retrieve the "canonical" template argument.
1154  ///
1155  /// The canonical template argument is the simplest template argument
1156  /// (which may be a type, value, expression, or declaration) that
1157  /// expresses the value of the argument.
1158  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1159
1160  /// Type Query functions.  If the type is an instance of the specified class,
1161  /// return the Type pointer for the underlying maximally pretty type.  This
1162  /// is a member of ASTContext because this may need to do some amount of
1163  /// canonicalization, e.g. to move type qualifiers into the element type.
1164  const ArrayType *getAsArrayType(QualType T);
1165  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1166    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1167  }
1168  const VariableArrayType *getAsVariableArrayType(QualType T) {
1169    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1170  }
1171  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1172    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1173  }
1174  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1175    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1176  }
1177
1178  /// getBaseElementType - Returns the innermost element type of an array type.
1179  /// For example, will return "int" for int[m][n]
1180  QualType getBaseElementType(const ArrayType *VAT);
1181
1182  /// getBaseElementType - Returns the innermost element type of a type
1183  /// (which needn't actually be an array type).
1184  QualType getBaseElementType(QualType QT);
1185
1186  /// getConstantArrayElementCount - Returns number of constant array elements.
1187  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1188
1189  /// getArrayDecayedType - Return the properly qualified result of decaying the
1190  /// specified array type to a pointer.  This operation is non-trivial when
1191  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1192  /// this returns a pointer to a properly qualified element of the array.
1193  ///
1194  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1195  QualType getArrayDecayedType(QualType T);
1196
1197  /// getPromotedIntegerType - Returns the type that Promotable will
1198  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1199  /// integer type.
1200  QualType getPromotedIntegerType(QualType PromotableType);
1201
1202  /// \brief Whether this is a promotable bitfield reference according
1203  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1204  ///
1205  /// \returns the type this bit-field will promote to, or NULL if no
1206  /// promotion occurs.
1207  QualType isPromotableBitField(Expr *E);
1208
1209  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1210  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1211  /// LHS < RHS, return -1.
1212  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1213
1214  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1215  /// point types, ignoring the domain of the type (i.e. 'double' ==
1216  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1217  /// LHS < RHS, return -1.
1218  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1219
1220  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1221  /// point or a complex type (based on typeDomain/typeSize).
1222  /// 'typeDomain' is a real floating point or complex type.
1223  /// 'typeSize' is a real floating point or complex type.
1224  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1225                                             QualType typeDomain) const;
1226
1227private:
1228  // Helper for integer ordering
1229  unsigned getIntegerRank(Type* T);
1230
1231public:
1232
1233  //===--------------------------------------------------------------------===//
1234  //                    Type Compatibility Predicates
1235  //===--------------------------------------------------------------------===//
1236
1237  /// Compatibility predicates used to check assignment expressions.
1238  bool typesAreCompatible(QualType T1, QualType T2,
1239                          bool CompareUnqualified = false); // C99 6.2.7p1
1240
1241  bool typesAreBlockPointerCompatible(QualType, QualType);
1242
1243  bool isObjCIdType(QualType T) const {
1244    return T == ObjCIdTypedefType;
1245  }
1246  bool isObjCClassType(QualType T) const {
1247    return T == ObjCClassTypedefType;
1248  }
1249  bool isObjCSelType(QualType T) const {
1250    return T == ObjCSelTypedefType;
1251  }
1252  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1253  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1254                                         bool ForCompare);
1255
1256  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1257
1258  // Check the safety of assignment from LHS to RHS
1259  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1260                               const ObjCObjectPointerType *RHSOPT);
1261  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1262                               const ObjCObjectType *RHS);
1263  bool canAssignObjCInterfacesInBlockPointer(
1264                                          const ObjCObjectPointerType *LHSOPT,
1265                                          const ObjCObjectPointerType *RHSOPT);
1266  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1267  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1268                                   const ObjCObjectPointerType *RHSOPT);
1269  bool canBindObjCObjectType(QualType To, QualType From);
1270
1271  // Functions for calculating composite types
1272  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1273                      bool Unqualified = false);
1274  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1275                              bool Unqualified = false);
1276
1277  QualType mergeObjCGCQualifiers(QualType, QualType);
1278
1279  /// UsualArithmeticConversionsType - handles the various conversions
1280  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1281  /// and returns the result type of that conversion.
1282  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1283
1284  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1285    ObjCLayouts[CD] = 0;
1286  }
1287
1288  //===--------------------------------------------------------------------===//
1289  //                    Integer Predicates
1290  //===--------------------------------------------------------------------===//
1291
1292  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1293  // of bits in an integer type excluding any padding bits.
1294  unsigned getIntWidth(QualType T);
1295
1296  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1297  // unsigned integer type.  This method takes a signed type, and returns the
1298  // corresponding unsigned integer type.
1299  QualType getCorrespondingUnsignedType(QualType T);
1300
1301  //===--------------------------------------------------------------------===//
1302  //                    Type Iterators.
1303  //===--------------------------------------------------------------------===//
1304
1305  typedef std::vector<Type*>::iterator       type_iterator;
1306  typedef std::vector<Type*>::const_iterator const_type_iterator;
1307
1308  type_iterator types_begin() { return Types.begin(); }
1309  type_iterator types_end() { return Types.end(); }
1310  const_type_iterator types_begin() const { return Types.begin(); }
1311  const_type_iterator types_end() const { return Types.end(); }
1312
1313  //===--------------------------------------------------------------------===//
1314  //                    Integer Values
1315  //===--------------------------------------------------------------------===//
1316
1317  /// MakeIntValue - Make an APSInt of the appropriate width and
1318  /// signedness for the given \arg Value and integer \arg Type.
1319  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1320    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1321    Res = Value;
1322    return Res;
1323  }
1324
1325  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1326  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1327  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1328  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1329
1330  /// \brief Set the implementation of ObjCInterfaceDecl.
1331  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1332                             ObjCImplementationDecl *ImplD);
1333  /// \brief Set the implementation of ObjCCategoryDecl.
1334  void setObjCImplementation(ObjCCategoryDecl *CatD,
1335                             ObjCCategoryImplDecl *ImplD);
1336
1337  /// \brief Allocate an uninitialized TypeSourceInfo.
1338  ///
1339  /// The caller should initialize the memory held by TypeSourceInfo using
1340  /// the TypeLoc wrappers.
1341  ///
1342  /// \param T the type that will be the basis for type source info. This type
1343  /// should refer to how the declarator was written in source code, not to
1344  /// what type semantic analysis resolved the declarator to.
1345  ///
1346  /// \param Size the size of the type info to create, or 0 if the size
1347  /// should be calculated based on the type.
1348  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1349
1350  /// \brief Allocate a TypeSourceInfo where all locations have been
1351  /// initialized to a given location, which defaults to the empty
1352  /// location.
1353  TypeSourceInfo *
1354  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1355
1356  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1357
1358  /// \brief Add a deallocation callback that will be invoked when the
1359  /// ASTContext is destroyed.
1360  ///
1361  /// \brief Callback A callback function that will be invoked on destruction.
1362  ///
1363  /// \brief Data Pointer data that will be provided to the callback function
1364  /// when it is called.
1365  void AddDeallocation(void (*Callback)(void*), void *Data);
1366
1367  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1368  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1369
1370  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1371  /// lazily, only when used; this is only relevant for function or file scoped
1372  /// var definitions.
1373  ///
1374  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1375  /// it is not used.
1376  bool DeclMustBeEmitted(const Decl *D);
1377
1378  //===--------------------------------------------------------------------===//
1379  //                    Statistics
1380  //===--------------------------------------------------------------------===//
1381
1382  /// \brief The number of implicitly-declared default constructors.
1383  static unsigned NumImplicitDefaultConstructors;
1384
1385  /// \brief The number of implicitly-declared default constructors for
1386  /// which declarations were built.
1387  static unsigned NumImplicitDefaultConstructorsDeclared;
1388
1389  /// \brief The number of implicitly-declared copy constructors.
1390  static unsigned NumImplicitCopyConstructors;
1391
1392  /// \brief The number of implicitly-declared copy constructors for
1393  /// which declarations were built.
1394  static unsigned NumImplicitCopyConstructorsDeclared;
1395
1396  /// \brief The number of implicitly-declared copy assignment operators.
1397  static unsigned NumImplicitCopyAssignmentOperators;
1398
1399  /// \brief The number of implicitly-declared copy assignment operators for
1400  /// which declarations were built.
1401  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1402
1403  /// \brief The number of implicitly-declared destructors.
1404  static unsigned NumImplicitDestructors;
1405
1406  /// \brief The number of implicitly-declared destructors for which
1407  /// declarations were built.
1408  static unsigned NumImplicitDestructorsDeclared;
1409
1410private:
1411  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1412  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1413
1414  void InitBuiltinTypes();
1415  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1416
1417  // Return the ObjC type encoding for a given type.
1418  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1419                                  bool ExpandPointedToStructures,
1420                                  bool ExpandStructures,
1421                                  const FieldDecl *Field,
1422                                  bool OutermostType = false,
1423                                  bool EncodingProperty = false);
1424
1425  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1426                                       const ObjCImplementationDecl *Impl);
1427
1428private:
1429  /// \brief A set of deallocations that should be performed when the
1430  /// ASTContext is destroyed.
1431  llvm::SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1432
1433  // FIXME: This currently contains the set of StoredDeclMaps used
1434  // by DeclContext objects.  This probably should not be in ASTContext,
1435  // but we include it here so that ASTContext can quickly deallocate them.
1436  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1437
1438  /// \brief A counter used to uniquely identify "blocks".
1439  unsigned int UniqueBlockByRefTypeID;
1440  unsigned int UniqueBlockParmTypeID;
1441
1442  friend class DeclContext;
1443  friend class DeclarationNameTable;
1444  void ReleaseDeclContextMaps();
1445};
1446
1447/// @brief Utility function for constructing a nullary selector.
1448static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1449  IdentifierInfo* II = &Ctx.Idents.get(name);
1450  return Ctx.Selectors.getSelector(0, &II);
1451}
1452
1453/// @brief Utility function for constructing an unary selector.
1454static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1455  IdentifierInfo* II = &Ctx.Idents.get(name);
1456  return Ctx.Selectors.getSelector(1, &II);
1457}
1458
1459}  // end namespace clang
1460
1461// operator new and delete aren't allowed inside namespaces.
1462// The throw specifications are mandated by the standard.
1463/// @brief Placement new for using the ASTContext's allocator.
1464///
1465/// This placement form of operator new uses the ASTContext's allocator for
1466/// obtaining memory. It is a non-throwing new, which means that it returns
1467/// null on error. (If that is what the allocator does. The current does, so if
1468/// this ever changes, this operator will have to be changed, too.)
1469/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1470/// @code
1471/// // Default alignment (8)
1472/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1473/// // Specific alignment
1474/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1475/// @endcode
1476/// Please note that you cannot use delete on the pointer; it must be
1477/// deallocated using an explicit destructor call followed by
1478/// @c Context.Deallocate(Ptr).
1479///
1480/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1481/// @param C The ASTContext that provides the allocator.
1482/// @param Alignment The alignment of the allocated memory (if the underlying
1483///                  allocator supports it).
1484/// @return The allocated memory. Could be NULL.
1485inline void *operator new(size_t Bytes, clang::ASTContext &C,
1486                          size_t Alignment) throw () {
1487  return C.Allocate(Bytes, Alignment);
1488}
1489/// @brief Placement delete companion to the new above.
1490///
1491/// This operator is just a companion to the new above. There is no way of
1492/// invoking it directly; see the new operator for more details. This operator
1493/// is called implicitly by the compiler if a placement new expression using
1494/// the ASTContext throws in the object constructor.
1495inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1496              throw () {
1497  C.Deallocate(Ptr);
1498}
1499
1500/// This placement form of operator new[] uses the ASTContext's allocator for
1501/// obtaining memory. It is a non-throwing new[], which means that it returns
1502/// null on error.
1503/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1504/// @code
1505/// // Default alignment (8)
1506/// char *data = new (Context) char[10];
1507/// // Specific alignment
1508/// char *data = new (Context, 4) char[10];
1509/// @endcode
1510/// Please note that you cannot use delete on the pointer; it must be
1511/// deallocated using an explicit destructor call followed by
1512/// @c Context.Deallocate(Ptr).
1513///
1514/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1515/// @param C The ASTContext that provides the allocator.
1516/// @param Alignment The alignment of the allocated memory (if the underlying
1517///                  allocator supports it).
1518/// @return The allocated memory. Could be NULL.
1519inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1520                            size_t Alignment = 8) throw () {
1521  return C.Allocate(Bytes, Alignment);
1522}
1523
1524/// @brief Placement delete[] companion to the new[] above.
1525///
1526/// This operator is just a companion to the new[] above. There is no way of
1527/// invoking it directly; see the new[] operator for more details. This operator
1528/// is called implicitly by the compiler if a placement new[] expression using
1529/// the ASTContext throws in the object constructor.
1530inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1531              throw () {
1532  C.Deallocate(Ptr);
1533}
1534
1535#endif
1536