ASTContext.h revision 2bb5ddaff86ee73d2cea7ec1835978afc88a83f0
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Attr.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/CanonicalType.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/Allocator.h"
33#include <vector>
34
35namespace llvm {
36  struct fltSemantics;
37  class raw_ostream;
38}
39
40namespace clang {
41  class FileManager;
42  class ASTRecordLayout;
43  class BlockExpr;
44  class CharUnits;
45  class Diagnostic;
46  class Expr;
47  class ExternalASTSource;
48  class IdentifierTable;
49  class SelectorTable;
50  class SourceManager;
51  class TargetInfo;
52  // Decls
53  class DeclContext;
54  class CXXMethodDecl;
55  class CXXRecordDecl;
56  class Decl;
57  class FieldDecl;
58  class ObjCIvarDecl;
59  class ObjCIvarRefExpr;
60  class ObjCPropertyDecl;
61  class RecordDecl;
62  class StoredDeclsMap;
63  class TagDecl;
64  class TemplateTypeParmDecl;
65  class TranslationUnitDecl;
66  class TypeDecl;
67  class TypedefDecl;
68  class UsingDecl;
69  class UsingShadowDecl;
70  class UnresolvedSetIterator;
71
72  namespace Builtin { class Context; }
73
74/// \brief A vector of C++ member functions that is optimized for
75/// storing a single method.
76class CXXMethodVector {
77  /// \brief Storage for the vector.
78  ///
79  /// When the low bit is zero, this is a const CXXMethodDecl *. When the
80  /// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
81  mutable uintptr_t Storage;
82
83  typedef std::vector<const CXXMethodDecl *> vector_type;
84
85public:
86  CXXMethodVector() : Storage(0) { }
87
88  typedef const CXXMethodDecl **iterator;
89  iterator begin() const;
90  iterator end() const;
91
92  void push_back(const CXXMethodDecl *Method);
93  void Destroy();
94};
95
96/// ASTContext - This class holds long-lived AST nodes (such as types and
97/// decls) that can be referred to throughout the semantic analysis of a file.
98class ASTContext {
99  std::vector<Type*> Types;
100  llvm::FoldingSet<ExtQuals> ExtQualNodes;
101  llvm::FoldingSet<ComplexType> ComplexTypes;
102  llvm::FoldingSet<PointerType> PointerTypes;
103  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
104  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
105  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
106  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
107  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
108  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
109  std::vector<VariableArrayType*> VariableArrayTypes;
110  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
111  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
112  llvm::FoldingSet<VectorType> VectorTypes;
113  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
114  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
115  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
116  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
117  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
118  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
119  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
120  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
121  llvm::FoldingSet<DependentNameType> DependentNameTypes;
122  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
123  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
124  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
125
126  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
127  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
128
129  /// \brief The set of nested name specifiers.
130  ///
131  /// This set is managed by the NestedNameSpecifier class.
132  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
133  NestedNameSpecifier *GlobalNestedNameSpecifier;
134  friend class NestedNameSpecifier;
135
136  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
137  ///  This is lazily created.  This is intentionally not serialized.
138  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
139  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
140
141  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
142  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
143
144  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
145  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
146
147  /// BuiltinVaListType - built-in va list type.
148  /// This is initially null and set by Sema::LazilyCreateBuiltin when
149  /// a builtin that takes a valist is encountered.
150  QualType BuiltinVaListType;
151
152  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
153  QualType ObjCIdTypedefType;
154
155  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
156  QualType ObjCSelTypedefType;
157
158  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
159  QualType ObjCProtoType;
160  const RecordType *ProtoStructType;
161
162  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
163  QualType ObjCClassTypedefType;
164
165  QualType ObjCConstantStringType;
166  RecordDecl *CFConstantStringTypeDecl;
167
168  RecordDecl *NSConstantStringTypeDecl;
169
170  RecordDecl *ObjCFastEnumerationStateTypeDecl;
171
172  /// \brief The type for the C FILE type.
173  TypeDecl *FILEDecl;
174
175  /// \brief The type for the C jmp_buf type.
176  TypeDecl *jmp_bufDecl;
177
178  /// \brief The type for the C sigjmp_buf type.
179  TypeDecl *sigjmp_bufDecl;
180
181  /// \brief Type for the Block descriptor for Blocks CodeGen.
182  RecordDecl *BlockDescriptorType;
183
184  /// \brief Type for the Block descriptor for Blocks CodeGen.
185  RecordDecl *BlockDescriptorExtendedType;
186
187  /// \brief Keeps track of all declaration attributes.
188  ///
189  /// Since so few decls have attrs, we keep them in a hash map instead of
190  /// wasting space in the Decl class.
191  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
192
193  /// \brief Keeps track of the static data member templates from which
194  /// static data members of class template specializations were instantiated.
195  ///
196  /// This data structure stores the mapping from instantiations of static
197  /// data members to the static data member representations within the
198  /// class template from which they were instantiated along with the kind
199  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
200  ///
201  /// Given the following example:
202  ///
203  /// \code
204  /// template<typename T>
205  /// struct X {
206  ///   static T value;
207  /// };
208  ///
209  /// template<typename T>
210  ///   T X<T>::value = T(17);
211  ///
212  /// int *x = &X<int>::value;
213  /// \endcode
214  ///
215  /// This mapping will contain an entry that maps from the VarDecl for
216  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
217  /// class template X) and will be marked TSK_ImplicitInstantiation.
218  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
219    InstantiatedFromStaticDataMember;
220
221  /// \brief Keeps track of the declaration from which a UsingDecl was
222  /// created during instantiation.  The source declaration is always
223  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
224  /// UnresolvedUsingTypenameDecl.
225  ///
226  /// For example:
227  /// \code
228  /// template<typename T>
229  /// struct A {
230  ///   void f();
231  /// };
232  ///
233  /// template<typename T>
234  /// struct B : A<T> {
235  ///   using A<T>::f;
236  /// };
237  ///
238  /// template struct B<int>;
239  /// \endcode
240  ///
241  /// This mapping will contain an entry that maps from the UsingDecl in
242  /// B<int> to the UnresolvedUsingDecl in B<T>.
243  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
244
245  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
246    InstantiatedFromUsingShadowDecl;
247
248  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
249
250  /// \brief Mapping that stores the methods overridden by a given C++
251  /// member function.
252  ///
253  /// Since most C++ member functions aren't virtual and therefore
254  /// don't override anything, we store the overridden functions in
255  /// this map on the side rather than within the CXXMethodDecl structure.
256  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
257
258  TranslationUnitDecl *TUDecl;
259
260  /// SourceMgr - The associated SourceManager object.
261  SourceManager &SourceMgr;
262
263  /// LangOpts - The language options used to create the AST associated with
264  ///  this ASTContext object.
265  LangOptions LangOpts;
266
267  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
268  bool FreeMemory;
269  llvm::MallocAllocator MallocAlloc;
270  llvm::BumpPtrAllocator BumpAlloc;
271
272  /// \brief Allocator for partial diagnostics.
273  PartialDiagnostic::StorageAllocator DiagAllocator;
274
275public:
276  const TargetInfo &Target;
277  IdentifierTable &Idents;
278  SelectorTable &Selectors;
279  Builtin::Context &BuiltinInfo;
280  DeclarationNameTable DeclarationNames;
281  llvm::OwningPtr<ExternalASTSource> ExternalSource;
282  clang::PrintingPolicy PrintingPolicy;
283
284  // Typedefs which may be provided defining the structure of Objective-C
285  // pseudo-builtins
286  QualType ObjCIdRedefinitionType;
287  QualType ObjCClassRedefinitionType;
288  QualType ObjCSelRedefinitionType;
289
290  SourceManager& getSourceManager() { return SourceMgr; }
291  const SourceManager& getSourceManager() const { return SourceMgr; }
292  void *Allocate(unsigned Size, unsigned Align = 8) {
293    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
294                        BumpAlloc.Allocate(Size, Align);
295  }
296  void Deallocate(void *Ptr) {
297    if (FreeMemory)
298      MallocAlloc.Deallocate(Ptr);
299  }
300
301  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
302    return DiagAllocator;
303  }
304
305  const LangOptions& getLangOptions() const { return LangOpts; }
306
307  FullSourceLoc getFullLoc(SourceLocation Loc) const {
308    return FullSourceLoc(Loc,SourceMgr);
309  }
310
311  /// \brief Retrieve the attributes for the given declaration.
312  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
313
314  /// \brief Erase the attributes corresponding to the given declaration.
315  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
316
317  /// \brief If this variable is an instantiated static data member of a
318  /// class template specialization, returns the templated static data member
319  /// from which it was instantiated.
320  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
321                                                           const VarDecl *Var);
322
323  /// \brief Note that the static data member \p Inst is an instantiation of
324  /// the static data member template \p Tmpl of a class template.
325  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
326                                           TemplateSpecializationKind TSK);
327
328  /// \brief If the given using decl is an instantiation of a
329  /// (possibly unresolved) using decl from a template instantiation,
330  /// return it.
331  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
332
333  /// \brief Remember that the using decl \p Inst is an instantiation
334  /// of the using decl \p Pattern of a class template.
335  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
336
337  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
338                                          UsingShadowDecl *Pattern);
339  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
340
341  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
342
343  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
344
345  // Access to the set of methods overridden by the given C++ method.
346  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
347  overridden_cxx_method_iterator
348  overridden_methods_begin(const CXXMethodDecl *Method) const;
349
350  overridden_cxx_method_iterator
351  overridden_methods_end(const CXXMethodDecl *Method) const;
352
353  /// \brief Note that the given C++ \p Method overrides the given \p
354  /// Overridden method.
355  void addOverriddenMethod(const CXXMethodDecl *Method,
356                           const CXXMethodDecl *Overridden);
357
358  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
359
360
361  // Builtin Types.
362  CanQualType VoidTy;
363  CanQualType BoolTy;
364  CanQualType CharTy;
365  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
366  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
367  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
368  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
369  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
370  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
371  CanQualType FloatTy, DoubleTy, LongDoubleTy;
372  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
373  CanQualType VoidPtrTy, NullPtrTy;
374  CanQualType OverloadTy;
375  CanQualType DependentTy;
376  CanQualType UndeducedAutoTy;
377  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
378
379  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
380             IdentifierTable &idents, SelectorTable &sels,
381             Builtin::Context &builtins,
382             bool FreeMemory = true, unsigned size_reserve=0);
383
384  ~ASTContext();
385
386  /// \brief Attach an external AST source to the AST context.
387  ///
388  /// The external AST source provides the ability to load parts of
389  /// the abstract syntax tree as needed from some external storage,
390  /// e.g., a precompiled header.
391  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
392
393  /// \brief Retrieve a pointer to the external AST source associated
394  /// with this AST context, if any.
395  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
396
397  void PrintStats() const;
398  const std::vector<Type*>& getTypes() const { return Types; }
399
400  //===--------------------------------------------------------------------===//
401  //                           Type Constructors
402  //===--------------------------------------------------------------------===//
403
404private:
405  /// getExtQualType - Return a type with extended qualifiers.
406  QualType getExtQualType(const Type *Base, Qualifiers Quals);
407
408  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
409
410public:
411  /// getAddSpaceQualType - Return the uniqued reference to the type for an
412  /// address space qualified type with the specified type and address space.
413  /// The resulting type has a union of the qualifiers from T and the address
414  /// space. If T already has an address space specifier, it is silently
415  /// replaced.
416  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
417
418  /// getObjCGCQualType - Returns the uniqued reference to the type for an
419  /// objc gc qualified type. The retulting type has a union of the qualifiers
420  /// from T and the gc attribute.
421  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
422
423  /// getRestrictType - Returns the uniqued reference to the type for a
424  /// 'restrict' qualified type.  The resulting type has a union of the
425  /// qualifiers from T and 'restrict'.
426  QualType getRestrictType(QualType T) {
427    return T.withFastQualifiers(Qualifiers::Restrict);
428  }
429
430  /// getVolatileType - Returns the uniqued reference to the type for a
431  /// 'volatile' qualified type.  The resulting type has a union of the
432  /// qualifiers from T and 'volatile'.
433  QualType getVolatileType(QualType T);
434
435  /// getConstType - Returns the uniqued reference to the type for a
436  /// 'const' qualified type.  The resulting type has a union of the
437  /// qualifiers from T and 'const'.
438  ///
439  /// It can be reasonably expected that this will always be
440  /// equivalent to calling T.withConst().
441  QualType getConstType(QualType T) { return T.withConst(); }
442
443  /// getNoReturnType - Add or remove the noreturn attribute to the given type
444  /// which must be a FunctionType or a pointer to an allowable type or a
445  /// BlockPointer.
446  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
447
448  /// getCallConvType - Adds the specified calling convention attribute to
449  /// the given type, which must be a FunctionType or a pointer to an
450  /// allowable type.
451  QualType getCallConvType(QualType T, CallingConv CallConv);
452
453  /// getRegParmType - Sets the specified regparm attribute to
454  /// the given type, which must be a FunctionType or a pointer to an
455  /// allowable type.
456  QualType getRegParmType(QualType T, unsigned RegParm);
457
458  /// getComplexType - Return the uniqued reference to the type for a complex
459  /// number with the specified element type.
460  QualType getComplexType(QualType T);
461  CanQualType getComplexType(CanQualType T) {
462    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
463  }
464
465  /// getPointerType - Return the uniqued reference to the type for a pointer to
466  /// the specified type.
467  QualType getPointerType(QualType T);
468  CanQualType getPointerType(CanQualType T) {
469    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
470  }
471
472  /// getBlockPointerType - Return the uniqued reference to the type for a block
473  /// of the specified type.
474  QualType getBlockPointerType(QualType T);
475
476  /// This gets the struct used to keep track of the descriptor for pointer to
477  /// blocks.
478  QualType getBlockDescriptorType();
479
480  // Set the type for a Block descriptor type.
481  void setBlockDescriptorType(QualType T);
482  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
483  QualType getRawBlockdescriptorType() {
484    if (BlockDescriptorType)
485      return getTagDeclType(BlockDescriptorType);
486    return QualType();
487  }
488
489  /// This gets the struct used to keep track of the extended descriptor for
490  /// pointer to blocks.
491  QualType getBlockDescriptorExtendedType();
492
493  // Set the type for a Block descriptor extended type.
494  void setBlockDescriptorExtendedType(QualType T);
495  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
496  /// built.
497  QualType getRawBlockdescriptorExtendedType() {
498    if (BlockDescriptorExtendedType)
499      return getTagDeclType(BlockDescriptorExtendedType);
500    return QualType();
501  }
502
503  /// This gets the struct used to keep track of pointer to blocks, complete
504  /// with captured variables.
505  QualType getBlockParmType(bool BlockHasCopyDispose,
506                            llvm::SmallVector<const Expr *, 8> &BDRDs);
507
508  /// This builds the struct used for __block variables.
509  QualType BuildByRefType(const char *DeclName, QualType Ty);
510
511  /// Returns true iff we need copy/dispose helpers for the given type.
512  bool BlockRequiresCopying(QualType Ty);
513
514  /// getLValueReferenceType - Return the uniqued reference to the type for an
515  /// lvalue reference to the specified type.
516  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
517
518  /// getRValueReferenceType - Return the uniqued reference to the type for an
519  /// rvalue reference to the specified type.
520  QualType getRValueReferenceType(QualType T);
521
522  /// getMemberPointerType - Return the uniqued reference to the type for a
523  /// member pointer to the specified type in the specified class. The class
524  /// is a Type because it could be a dependent name.
525  QualType getMemberPointerType(QualType T, const Type *Cls);
526
527  /// getVariableArrayType - Returns a non-unique reference to the type for a
528  /// variable array of the specified element type.
529  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
530                                ArrayType::ArraySizeModifier ASM,
531                                unsigned EltTypeQuals,
532                                SourceRange Brackets);
533
534  /// getDependentSizedArrayType - Returns a non-unique reference to
535  /// the type for a dependently-sized array of the specified element
536  /// type. FIXME: We will need these to be uniqued, or at least
537  /// comparable, at some point.
538  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
539                                      ArrayType::ArraySizeModifier ASM,
540                                      unsigned EltTypeQuals,
541                                      SourceRange Brackets);
542
543  /// getIncompleteArrayType - Returns a unique reference to the type for a
544  /// incomplete array of the specified element type.
545  QualType getIncompleteArrayType(QualType EltTy,
546                                  ArrayType::ArraySizeModifier ASM,
547                                  unsigned EltTypeQuals);
548
549  /// getConstantArrayType - Return the unique reference to the type for a
550  /// constant array of the specified element type.
551  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
552                                ArrayType::ArraySizeModifier ASM,
553                                unsigned EltTypeQuals);
554
555  /// getVectorType - Return the unique reference to a vector type of
556  /// the specified element type and size. VectorType must be a built-in type.
557  QualType getVectorType(QualType VectorType, unsigned NumElts,
558                         bool AltiVec, bool IsPixel);
559
560  /// getExtVectorType - Return the unique reference to an extended vector type
561  /// of the specified element type and size.  VectorType must be a built-in
562  /// type.
563  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
564
565  /// getDependentSizedExtVectorType - Returns a non-unique reference to
566  /// the type for a dependently-sized vector of the specified element
567  /// type. FIXME: We will need these to be uniqued, or at least
568  /// comparable, at some point.
569  QualType getDependentSizedExtVectorType(QualType VectorType,
570                                          Expr *SizeExpr,
571                                          SourceLocation AttrLoc);
572
573  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
574  ///
575  QualType getFunctionNoProtoType(QualType ResultTy,
576                                  const FunctionType::ExtInfo &Info);
577
578  QualType getFunctionNoProtoType(QualType ResultTy) {
579    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
580  }
581
582  /// getFunctionType - Return a normal function type with a typed argument
583  /// list.  isVariadic indicates whether the argument list includes '...'.
584  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
585                           unsigned NumArgs, bool isVariadic,
586                           unsigned TypeQuals, bool hasExceptionSpec,
587                           bool hasAnyExceptionSpec,
588                           unsigned NumExs, const QualType *ExArray,
589                           const FunctionType::ExtInfo &Info);
590
591  /// getTypeDeclType - Return the unique reference to the type for
592  /// the specified type declaration.
593  QualType getTypeDeclType(const TypeDecl *Decl,
594                           const TypeDecl *PrevDecl = 0) {
595    assert(Decl && "Passed null for Decl param");
596    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
597
598    if (PrevDecl) {
599      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
600      Decl->TypeForDecl = PrevDecl->TypeForDecl;
601      return QualType(PrevDecl->TypeForDecl, 0);
602    }
603
604    return getTypeDeclTypeSlow(Decl);
605  }
606
607  /// getTypedefType - Return the unique reference to the type for the
608  /// specified typename decl.
609  QualType getTypedefType(const TypedefDecl *Decl);
610
611  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
612
613  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
614                                        QualType Replacement);
615
616  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
617                                   bool ParameterPack,
618                                   IdentifierInfo *Name = 0);
619
620  QualType getTemplateSpecializationType(TemplateName T,
621                                         const TemplateArgument *Args,
622                                         unsigned NumArgs,
623                                         QualType Canon = QualType());
624
625  QualType getTemplateSpecializationType(TemplateName T,
626                                         const TemplateArgumentListInfo &Args,
627                                         QualType Canon = QualType());
628
629  TypeSourceInfo *
630  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
631                                    const TemplateArgumentListInfo &Args,
632                                    QualType Canon = QualType());
633
634  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
635                                QualType NamedType);
636  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
637                                NestedNameSpecifier *NNS,
638                                const IdentifierInfo *Name,
639                                QualType Canon = QualType());
640  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
641                                NestedNameSpecifier *NNS,
642                                const TemplateSpecializationType *TemplateId,
643                                QualType Canon = QualType());
644  QualType getElaboratedType(QualType UnderlyingType,
645                             ElaboratedType::TagKind Tag);
646
647  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
648                                ObjCProtocolDecl **Protocols = 0,
649                                unsigned NumProtocols = 0);
650
651  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
652  /// given interface decl and the conforming protocol list.
653  QualType getObjCObjectPointerType(QualType OIT,
654                                    ObjCProtocolDecl **ProtocolList = 0,
655                                    unsigned NumProtocols = 0,
656                                    unsigned Quals = 0);
657
658  /// getTypeOfType - GCC extension.
659  QualType getTypeOfExprType(Expr *e);
660  QualType getTypeOfType(QualType t);
661
662  /// getDecltypeType - C++0x decltype.
663  QualType getDecltypeType(Expr *e);
664
665  /// getTagDeclType - Return the unique reference to the type for the
666  /// specified TagDecl (struct/union/class/enum) decl.
667  QualType getTagDeclType(const TagDecl *Decl);
668
669  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
670  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
671  CanQualType getSizeType() const;
672
673  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
674  /// returns a type compatible with the type defined in <stddef.h> as defined
675  /// by the target.
676  QualType getWCharType() const { return WCharTy; }
677
678  /// getSignedWCharType - Return the type of "signed wchar_t".
679  /// Used when in C++, as a GCC extension.
680  QualType getSignedWCharType() const;
681
682  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
683  /// Used when in C++, as a GCC extension.
684  QualType getUnsignedWCharType() const;
685
686  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
687  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
688  QualType getPointerDiffType() const;
689
690  // getCFConstantStringType - Return the C structure type used to represent
691  // constant CFStrings.
692  QualType getCFConstantStringType();
693
694  // getNSConstantStringType - Return the C structure type used to represent
695  // constant NSStrings.
696  QualType getNSConstantStringType();
697  /// Get the structure type used to representation NSStrings, or NULL
698  /// if it hasn't yet been built.
699  QualType getRawNSConstantStringType() {
700    if (NSConstantStringTypeDecl)
701      return getTagDeclType(NSConstantStringTypeDecl);
702    return QualType();
703  }
704  void setNSConstantStringType(QualType T);
705
706
707  /// Get the structure type used to representation CFStrings, or NULL
708  /// if it hasn't yet been built.
709  QualType getRawCFConstantStringType() {
710    if (CFConstantStringTypeDecl)
711      return getTagDeclType(CFConstantStringTypeDecl);
712    return QualType();
713  }
714  void setCFConstantStringType(QualType T);
715
716  // This setter/getter represents the ObjC type for an NSConstantString.
717  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
718  QualType getObjCConstantStringInterface() const {
719    return ObjCConstantStringType;
720  }
721
722  //// This gets the struct used to keep track of fast enumerations.
723  QualType getObjCFastEnumerationStateType();
724
725  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
726  /// been built.
727  QualType getRawObjCFastEnumerationStateType() {
728    if (ObjCFastEnumerationStateTypeDecl)
729      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
730    return QualType();
731  }
732
733  void setObjCFastEnumerationStateType(QualType T);
734
735  /// \brief Set the type for the C FILE type.
736  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
737
738  /// \brief Retrieve the C FILE type.
739  QualType getFILEType() {
740    if (FILEDecl)
741      return getTypeDeclType(FILEDecl);
742    return QualType();
743  }
744
745  /// \brief Set the type for the C jmp_buf type.
746  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
747    this->jmp_bufDecl = jmp_bufDecl;
748  }
749
750  /// \brief Retrieve the C jmp_buf type.
751  QualType getjmp_bufType() {
752    if (jmp_bufDecl)
753      return getTypeDeclType(jmp_bufDecl);
754    return QualType();
755  }
756
757  /// \brief Set the type for the C sigjmp_buf type.
758  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
759    this->sigjmp_bufDecl = sigjmp_bufDecl;
760  }
761
762  /// \brief Retrieve the C sigjmp_buf type.
763  QualType getsigjmp_bufType() {
764    if (sigjmp_bufDecl)
765      return getTypeDeclType(sigjmp_bufDecl);
766    return QualType();
767  }
768
769  /// getObjCEncodingForType - Emit the ObjC type encoding for the
770  /// given type into \arg S. If \arg NameFields is specified then
771  /// record field names are also encoded.
772  void getObjCEncodingForType(QualType t, std::string &S,
773                              const FieldDecl *Field=0);
774
775  void getLegacyIntegralTypeEncoding(QualType &t) const;
776
777  // Put the string version of type qualifiers into S.
778  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
779                                       std::string &S) const;
780
781  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
782  /// declaration.
783  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
784
785  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
786  /// declaration.
787  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
788
789  /// getObjCEncodingForPropertyDecl - Return the encoded type for
790  /// this method declaration. If non-NULL, Container must be either
791  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
792  /// only be NULL when getting encodings for protocol properties.
793  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
794                                      const Decl *Container,
795                                      std::string &S);
796
797  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
798                                      ObjCProtocolDecl *rProto);
799
800  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
801  /// purpose in characters.
802  CharUnits getObjCEncodingTypeSize(QualType t);
803
804  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
805  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
806  QualType getObjCIdType() const { return ObjCIdTypedefType; }
807  void setObjCIdType(QualType T);
808
809  void setObjCSelType(QualType T);
810  QualType getObjCSelType() const { return ObjCSelTypedefType; }
811
812  void setObjCProtoType(QualType QT);
813  QualType getObjCProtoType() const { return ObjCProtoType; }
814
815  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
816  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
817  /// struct.
818  QualType getObjCClassType() const { return ObjCClassTypedefType; }
819  void setObjCClassType(QualType T);
820
821  void setBuiltinVaListType(QualType T);
822  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
823
824  /// getCVRQualifiedType - Returns a type with additional const,
825  /// volatile, or restrict qualifiers.
826  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
827    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
828  }
829
830  /// getQualifiedType - Returns a type with additional qualifiers.
831  QualType getQualifiedType(QualType T, Qualifiers Qs) {
832    if (!Qs.hasNonFastQualifiers())
833      return T.withFastQualifiers(Qs.getFastQualifiers());
834    QualifierCollector Qc(Qs);
835    const Type *Ptr = Qc.strip(T);
836    return getExtQualType(Ptr, Qc);
837  }
838
839  /// getQualifiedType - Returns a type with additional qualifiers.
840  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
841    if (!Qs.hasNonFastQualifiers())
842      return QualType(T, Qs.getFastQualifiers());
843    return getExtQualType(T, Qs);
844  }
845
846  DeclarationName getNameForTemplate(TemplateName Name);
847
848  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
849                                         UnresolvedSetIterator End);
850
851  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
852                                        bool TemplateKeyword,
853                                        TemplateDecl *Template);
854
855  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
856                                        const IdentifierInfo *Name);
857  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
858                                        OverloadedOperatorKind Operator);
859
860  enum GetBuiltinTypeError {
861    GE_None,              //< No error
862    GE_Missing_stdio,     //< Missing a type from <stdio.h>
863    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
864  };
865
866  /// GetBuiltinType - Return the type for the specified builtin.
867  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
868
869private:
870  CanQualType getFromTargetType(unsigned Type) const;
871
872  //===--------------------------------------------------------------------===//
873  //                         Type Predicates.
874  //===--------------------------------------------------------------------===//
875
876public:
877  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
878  /// garbage collection attribute.
879  ///
880  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
881
882  /// isObjCNSObjectType - Return true if this is an NSObject object with
883  /// its NSObject attribute set.
884  bool isObjCNSObjectType(QualType Ty) const;
885
886  //===--------------------------------------------------------------------===//
887  //                         Type Sizing and Analysis
888  //===--------------------------------------------------------------------===//
889
890  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
891  /// scalar floating point type.
892  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
893
894  /// getTypeInfo - Get the size and alignment of the specified complete type in
895  /// bits.
896  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
897  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
898    return getTypeInfo(T.getTypePtr());
899  }
900
901  /// getTypeSize - Return the size of the specified type, in bits.  This method
902  /// does not work on incomplete types.
903  uint64_t getTypeSize(QualType T) {
904    return getTypeInfo(T).first;
905  }
906  uint64_t getTypeSize(const Type *T) {
907    return getTypeInfo(T).first;
908  }
909
910  /// getCharWidth - Return the size of the character type, in bits
911  uint64_t getCharWidth() {
912    return getTypeSize(CharTy);
913  }
914
915  /// getTypeSizeInChars - Return the size of the specified type, in characters.
916  /// This method does not work on incomplete types.
917  CharUnits getTypeSizeInChars(QualType T);
918  CharUnits getTypeSizeInChars(const Type *T);
919
920  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
921  /// This method does not work on incomplete types.
922  unsigned getTypeAlign(QualType T) {
923    return getTypeInfo(T).second;
924  }
925  unsigned getTypeAlign(const Type *T) {
926    return getTypeInfo(T).second;
927  }
928
929  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
930  /// characters. This method does not work on incomplete types.
931  CharUnits getTypeAlignInChars(QualType T);
932  CharUnits getTypeAlignInChars(const Type *T);
933
934  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
935  /// type for the current target in bits.  This can be different than the ABI
936  /// alignment in cases where it is beneficial for performance to overalign
937  /// a data type.
938  unsigned getPreferredTypeAlign(const Type *T);
939
940  /// getDeclAlign - Return a conservative estimate of the alignment of
941  /// the specified decl.  Note that bitfields do not have a valid alignment, so
942  /// this method will assert on them.
943  /// If @p RefAsPointee, references are treated like their underlying type
944  /// (for alignof), else they're treated like pointers (for CodeGen).
945  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
946
947  /// getASTRecordLayout - Get or compute information about the layout of the
948  /// specified record (struct/union/class), which indicates its size and field
949  /// position information.
950  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
951
952  /// getASTObjCInterfaceLayout - Get or compute information about the
953  /// layout of the specified Objective-C interface.
954  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
955
956  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
957
958  /// getASTObjCImplementationLayout - Get or compute information about
959  /// the layout of the specified Objective-C implementation. This may
960  /// differ from the interface if synthesized ivars are present.
961  const ASTRecordLayout &
962  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
963
964  /// getKeyFunction - Get the key function for the given record decl.
965  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
966  ///
967  /// ...the first non-pure virtual function that is not inline at the point
968  /// of class definition.
969  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
970
971  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
972                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
973
974  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
975                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
976  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
977                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
978  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
979  void CollectInheritedProtocols(const Decl *CDecl,
980                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
981
982  //===--------------------------------------------------------------------===//
983  //                            Type Operators
984  //===--------------------------------------------------------------------===//
985
986  /// getCanonicalType - Return the canonical (structural) type corresponding to
987  /// the specified potentially non-canonical type.  The non-canonical version
988  /// of a type may have many "decorated" versions of types.  Decorators can
989  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
990  /// to be free of any of these, allowing two canonical types to be compared
991  /// for exact equality with a simple pointer comparison.
992  CanQualType getCanonicalType(QualType T);
993  const Type *getCanonicalType(const Type *T) {
994    return T->getCanonicalTypeInternal().getTypePtr();
995  }
996
997  /// getCanonicalParamType - Return the canonical parameter type
998  /// corresponding to the specific potentially non-canonical one.
999  /// Qualifiers are stripped off, functions are turned into function
1000  /// pointers, and arrays decay one level into pointers.
1001  CanQualType getCanonicalParamType(QualType T);
1002
1003  /// \brief Determine whether the given types are equivalent.
1004  bool hasSameType(QualType T1, QualType T2) {
1005    return getCanonicalType(T1) == getCanonicalType(T2);
1006  }
1007
1008  /// \brief Returns this type as a completely-unqualified array type,
1009  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1010  /// sugaring from the types, similar to the behavior of
1011  /// QualType::getUnqualifiedType().
1012  ///
1013  /// \param T is the qualified type, which may be an ArrayType
1014  ///
1015  /// \param Quals will receive the full set of qualifiers that were
1016  /// applied to the array.
1017  ///
1018  /// \returns if this is an array type, the completely unqualified array type
1019  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1020  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1021
1022  /// \brief Determine whether the given types are equivalent after
1023  /// cvr-qualifiers have been removed.
1024  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1025    CanQualType CT1 = getCanonicalType(T1);
1026    CanQualType CT2 = getCanonicalType(T2);
1027
1028    Qualifiers Quals;
1029    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1030    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1031    return UnqualT1 == UnqualT2;
1032  }
1033
1034  /// \brief Retrieves the "canonical" declaration of
1035
1036  /// \brief Retrieves the "canonical" nested name specifier for a
1037  /// given nested name specifier.
1038  ///
1039  /// The canonical nested name specifier is a nested name specifier
1040  /// that uniquely identifies a type or namespace within the type
1041  /// system. For example, given:
1042  ///
1043  /// \code
1044  /// namespace N {
1045  ///   struct S {
1046  ///     template<typename T> struct X { typename T* type; };
1047  ///   };
1048  /// }
1049  ///
1050  /// template<typename T> struct Y {
1051  ///   typename N::S::X<T>::type member;
1052  /// };
1053  /// \endcode
1054  ///
1055  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1056  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1057  /// by declarations in the type system and the canonical type for
1058  /// the template type parameter 'T' is template-param-0-0.
1059  NestedNameSpecifier *
1060  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1061
1062  /// \brief Retrieves the canonical representation of the given
1063  /// calling convention.
1064  CallingConv getCanonicalCallConv(CallingConv CC) {
1065    if (CC == CC_C)
1066      return CC_Default;
1067    return CC;
1068  }
1069
1070  /// \brief Determines whether two calling conventions name the same
1071  /// calling convention.
1072  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1073    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1074  }
1075
1076  /// \brief Retrieves the "canonical" template name that refers to a
1077  /// given template.
1078  ///
1079  /// The canonical template name is the simplest expression that can
1080  /// be used to refer to a given template. For most templates, this
1081  /// expression is just the template declaration itself. For example,
1082  /// the template std::vector can be referred to via a variety of
1083  /// names---std::vector, ::std::vector, vector (if vector is in
1084  /// scope), etc.---but all of these names map down to the same
1085  /// TemplateDecl, which is used to form the canonical template name.
1086  ///
1087  /// Dependent template names are more interesting. Here, the
1088  /// template name could be something like T::template apply or
1089  /// std::allocator<T>::template rebind, where the nested name
1090  /// specifier itself is dependent. In this case, the canonical
1091  /// template name uses the shortest form of the dependent
1092  /// nested-name-specifier, which itself contains all canonical
1093  /// types, values, and templates.
1094  TemplateName getCanonicalTemplateName(TemplateName Name);
1095
1096  /// \brief Determine whether the given template names refer to the same
1097  /// template.
1098  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1099
1100  /// \brief Retrieve the "canonical" template argument.
1101  ///
1102  /// The canonical template argument is the simplest template argument
1103  /// (which may be a type, value, expression, or declaration) that
1104  /// expresses the value of the argument.
1105  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1106
1107  /// Type Query functions.  If the type is an instance of the specified class,
1108  /// return the Type pointer for the underlying maximally pretty type.  This
1109  /// is a member of ASTContext because this may need to do some amount of
1110  /// canonicalization, e.g. to move type qualifiers into the element type.
1111  const ArrayType *getAsArrayType(QualType T);
1112  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1113    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1114  }
1115  const VariableArrayType *getAsVariableArrayType(QualType T) {
1116    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1117  }
1118  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1119    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1120  }
1121  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1122    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1123  }
1124
1125  /// getBaseElementType - Returns the innermost element type of an array type.
1126  /// For example, will return "int" for int[m][n]
1127  QualType getBaseElementType(const ArrayType *VAT);
1128
1129  /// getBaseElementType - Returns the innermost element type of a type
1130  /// (which needn't actually be an array type).
1131  QualType getBaseElementType(QualType QT);
1132
1133  /// getConstantArrayElementCount - Returns number of constant array elements.
1134  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1135
1136  /// getArrayDecayedType - Return the properly qualified result of decaying the
1137  /// specified array type to a pointer.  This operation is non-trivial when
1138  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1139  /// this returns a pointer to a properly qualified element of the array.
1140  ///
1141  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1142  QualType getArrayDecayedType(QualType T);
1143
1144  /// getPromotedIntegerType - Returns the type that Promotable will
1145  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1146  /// integer type.
1147  QualType getPromotedIntegerType(QualType PromotableType);
1148
1149  /// \brief Whether this is a promotable bitfield reference according
1150  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1151  ///
1152  /// \returns the type this bit-field will promote to, or NULL if no
1153  /// promotion occurs.
1154  QualType isPromotableBitField(Expr *E);
1155
1156  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1157  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1158  /// LHS < RHS, return -1.
1159  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1160
1161  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1162  /// point types, ignoring the domain of the type (i.e. 'double' ==
1163  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1164  /// LHS < RHS, return -1.
1165  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1166
1167  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1168  /// point or a complex type (based on typeDomain/typeSize).
1169  /// 'typeDomain' is a real floating point or complex type.
1170  /// 'typeSize' is a real floating point or complex type.
1171  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1172                                             QualType typeDomain) const;
1173
1174private:
1175  // Helper for integer ordering
1176  unsigned getIntegerRank(Type* T);
1177
1178public:
1179
1180  //===--------------------------------------------------------------------===//
1181  //                    Type Compatibility Predicates
1182  //===--------------------------------------------------------------------===//
1183
1184  /// Compatibility predicates used to check assignment expressions.
1185  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1186
1187  bool typesAreBlockPointerCompatible(QualType, QualType);
1188
1189  bool isObjCIdType(QualType T) const {
1190    return T == ObjCIdTypedefType;
1191  }
1192  bool isObjCClassType(QualType T) const {
1193    return T == ObjCClassTypedefType;
1194  }
1195  bool isObjCSelType(QualType T) const {
1196    return T == ObjCSelTypedefType;
1197  }
1198  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1199  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1200                                         bool ForCompare);
1201
1202  // Check the safety of assignment from LHS to RHS
1203  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1204                               const ObjCObjectPointerType *RHSOPT);
1205  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1206                               const ObjCInterfaceType *RHS);
1207  bool canAssignObjCInterfacesInBlockPointer(
1208                                          const ObjCObjectPointerType *LHSOPT,
1209                                          const ObjCObjectPointerType *RHSOPT);
1210  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1211  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1212                                   const ObjCObjectPointerType *RHSOPT);
1213
1214  // Functions for calculating composite types
1215  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1216  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1217
1218  /// UsualArithmeticConversionsType - handles the various conversions
1219  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1220  /// and returns the result type of that conversion.
1221  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1222
1223  //===--------------------------------------------------------------------===//
1224  //                    Integer Predicates
1225  //===--------------------------------------------------------------------===//
1226
1227  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1228  // of bits in an integer type excluding any padding bits.
1229  unsigned getIntWidth(QualType T);
1230
1231  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1232  // unsigned integer type.  This method takes a signed type, and returns the
1233  // corresponding unsigned integer type.
1234  QualType getCorrespondingUnsignedType(QualType T);
1235
1236  //===--------------------------------------------------------------------===//
1237  //                    Type Iterators.
1238  //===--------------------------------------------------------------------===//
1239
1240  typedef std::vector<Type*>::iterator       type_iterator;
1241  typedef std::vector<Type*>::const_iterator const_type_iterator;
1242
1243  type_iterator types_begin() { return Types.begin(); }
1244  type_iterator types_end() { return Types.end(); }
1245  const_type_iterator types_begin() const { return Types.begin(); }
1246  const_type_iterator types_end() const { return Types.end(); }
1247
1248  //===--------------------------------------------------------------------===//
1249  //                    Integer Values
1250  //===--------------------------------------------------------------------===//
1251
1252  /// MakeIntValue - Make an APSInt of the appropriate width and
1253  /// signedness for the given \arg Value and integer \arg Type.
1254  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1255    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1256    Res = Value;
1257    return Res;
1258  }
1259
1260  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1261  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1262  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1263  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1264
1265  /// \brief Set the implementation of ObjCInterfaceDecl.
1266  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1267                             ObjCImplementationDecl *ImplD);
1268  /// \brief Set the implementation of ObjCCategoryDecl.
1269  void setObjCImplementation(ObjCCategoryDecl *CatD,
1270                             ObjCCategoryImplDecl *ImplD);
1271
1272  /// \brief Allocate an uninitialized TypeSourceInfo.
1273  ///
1274  /// The caller should initialize the memory held by TypeSourceInfo using
1275  /// the TypeLoc wrappers.
1276  ///
1277  /// \param T the type that will be the basis for type source info. This type
1278  /// should refer to how the declarator was written in source code, not to
1279  /// what type semantic analysis resolved the declarator to.
1280  ///
1281  /// \param Size the size of the type info to create, or 0 if the size
1282  /// should be calculated based on the type.
1283  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1284
1285  /// \brief Allocate a TypeSourceInfo where all locations have been
1286  /// initialized to a given location, which defaults to the empty
1287  /// location.
1288  TypeSourceInfo *
1289  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1290
1291private:
1292  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1293  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1294
1295  void InitBuiltinTypes();
1296  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1297
1298  // Return the ObjC type encoding for a given type.
1299  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1300                                  bool ExpandPointedToStructures,
1301                                  bool ExpandStructures,
1302                                  const FieldDecl *Field,
1303                                  bool OutermostType = false,
1304                                  bool EncodingProperty = false);
1305
1306  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1307                                       const ObjCImplementationDecl *Impl);
1308
1309private:
1310  // FIXME: This currently contains the set of StoredDeclMaps used
1311  // by DeclContext objects.  This probably should not be in ASTContext,
1312  // but we include it here so that ASTContext can quickly deallocate them.
1313  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1314  friend class DeclContext;
1315  void ReleaseDeclContextMaps();
1316};
1317
1318/// @brief Utility function for constructing a nullary selector.
1319static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1320  IdentifierInfo* II = &Ctx.Idents.get(name);
1321  return Ctx.Selectors.getSelector(0, &II);
1322}
1323
1324/// @brief Utility function for constructing an unary selector.
1325static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1326  IdentifierInfo* II = &Ctx.Idents.get(name);
1327  return Ctx.Selectors.getSelector(1, &II);
1328}
1329
1330}  // end namespace clang
1331
1332// operator new and delete aren't allowed inside namespaces.
1333// The throw specifications are mandated by the standard.
1334/// @brief Placement new for using the ASTContext's allocator.
1335///
1336/// This placement form of operator new uses the ASTContext's allocator for
1337/// obtaining memory. It is a non-throwing new, which means that it returns
1338/// null on error. (If that is what the allocator does. The current does, so if
1339/// this ever changes, this operator will have to be changed, too.)
1340/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1341/// @code
1342/// // Default alignment (8)
1343/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1344/// // Specific alignment
1345/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1346/// @endcode
1347/// Please note that you cannot use delete on the pointer; it must be
1348/// deallocated using an explicit destructor call followed by
1349/// @c Context.Deallocate(Ptr).
1350///
1351/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1352/// @param C The ASTContext that provides the allocator.
1353/// @param Alignment The alignment of the allocated memory (if the underlying
1354///                  allocator supports it).
1355/// @return The allocated memory. Could be NULL.
1356inline void *operator new(size_t Bytes, clang::ASTContext &C,
1357                          size_t Alignment) throw () {
1358  return C.Allocate(Bytes, Alignment);
1359}
1360/// @brief Placement delete companion to the new above.
1361///
1362/// This operator is just a companion to the new above. There is no way of
1363/// invoking it directly; see the new operator for more details. This operator
1364/// is called implicitly by the compiler if a placement new expression using
1365/// the ASTContext throws in the object constructor.
1366inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1367              throw () {
1368  C.Deallocate(Ptr);
1369}
1370
1371/// This placement form of operator new[] uses the ASTContext's allocator for
1372/// obtaining memory. It is a non-throwing new[], which means that it returns
1373/// null on error.
1374/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1375/// @code
1376/// // Default alignment (8)
1377/// char *data = new (Context) char[10];
1378/// // Specific alignment
1379/// char *data = new (Context, 4) char[10];
1380/// @endcode
1381/// Please note that you cannot use delete on the pointer; it must be
1382/// deallocated using an explicit destructor call followed by
1383/// @c Context.Deallocate(Ptr).
1384///
1385/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1386/// @param C The ASTContext that provides the allocator.
1387/// @param Alignment The alignment of the allocated memory (if the underlying
1388///                  allocator supports it).
1389/// @return The allocated memory. Could be NULL.
1390inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1391                            size_t Alignment = 8) throw () {
1392  return C.Allocate(Bytes, Alignment);
1393}
1394
1395/// @brief Placement delete[] companion to the new[] above.
1396///
1397/// This operator is just a companion to the new[] above. There is no way of
1398/// invoking it directly; see the new[] operator for more details. This operator
1399/// is called implicitly by the compiler if a placement new[] expression using
1400/// the ASTContext throws in the object constructor.
1401inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1402              throw () {
1403  C.Deallocate(Ptr);
1404}
1405
1406#endif
1407