ASTContext.h revision 2deaea37a637dd01221d0cced343702a39d8132c
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/SourceLocation.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Bitcode/SerializationFwd.h"
29#include "llvm/Support/Allocator.h"
30#include <vector>
31
32namespace llvm {
33  struct fltSemantics;
34}
35
36namespace clang {
37  class FileManager;
38  class ASTRecordLayout;
39  class Expr;
40  class ExternalASTSource;
41  class IdentifierTable;
42  class SelectorTable;
43  class SourceManager;
44  class TargetInfo;
45  // Decls
46  class Decl;
47  class ObjCPropertyDecl;
48  class RecordDecl;
49  class TagDecl;
50  class TranslationUnitDecl;
51  class TypeDecl;
52  class TypedefDecl;
53  class TemplateTypeParmDecl;
54  class FieldDecl;
55  class ObjCIvarRefExpr;
56  class ObjCIvarDecl;
57
58/// ASTContext - This class holds long-lived AST nodes (such as types and
59/// decls) that can be referred to throughout the semantic analysis of a file.
60class ASTContext {
61  std::vector<Type*> Types;
62  llvm::FoldingSet<ExtQualType> ExtQualTypes;
63  llvm::FoldingSet<ComplexType> ComplexTypes;
64  llvm::FoldingSet<PointerType> PointerTypes;
65  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
66  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
67  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
68  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
69  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
70  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
71  std::vector<VariableArrayType*> VariableArrayTypes;
72  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
73  llvm::FoldingSet<VectorType> VectorTypes;
74  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
75  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
76  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
77  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
78  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
79  llvm::FoldingSet<TypenameType> TypenameTypes;
80  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
81  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
82
83  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
84  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
85
86  /// \brief The set of nested name specifiers.
87  ///
88  /// This set is managed by the NestedNameSpecifier class.
89  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
90  NestedNameSpecifier *GlobalNestedNameSpecifier;
91  friend class NestedNameSpecifier;
92
93  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
94  ///  This is lazily created.  This is intentionally not serialized.
95  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
96  llvm::DenseMap<const ObjCInterfaceDecl*,
97                 const ASTRecordLayout*> ASTObjCInterfaces;
98
99  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
100  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
101
102  // FIXME: ASTRecordForInterface/ASTFieldForIvarRef and addRecordToClass and
103  // getFieldDecl be part of the backend (i.e. CodeGenTypes)?
104  llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*> ASTRecordForInterface;
105
106  /// BuiltinVaListType - built-in va list type.
107  /// This is initially null and set by Sema::LazilyCreateBuiltin when
108  /// a builtin that takes a valist is encountered.
109  QualType BuiltinVaListType;
110
111  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
112  QualType ObjCIdType;
113  const RecordType *IdStructType;
114
115  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
116  QualType ObjCSelType;
117  const RecordType *SelStructType;
118
119  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
120  QualType ObjCProtoType;
121  const RecordType *ProtoStructType;
122
123  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
124  QualType ObjCClassType;
125  const RecordType *ClassStructType;
126
127  QualType ObjCConstantStringType;
128  RecordDecl *CFConstantStringTypeDecl;
129
130  RecordDecl *ObjCFastEnumerationStateTypeDecl;
131
132  TranslationUnitDecl *TUDecl;
133
134  /// SourceMgr - The associated SourceManager object.
135  SourceManager &SourceMgr;
136
137  /// LangOpts - The language options used to create the AST associated with
138  ///  this ASTContext object.
139  LangOptions LangOpts;
140
141  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
142  bool FreeMemory;
143  llvm::MallocAllocator MallocAlloc;
144  llvm::BumpPtrAllocator BumpAlloc;
145public:
146  TargetInfo &Target;
147  IdentifierTable &Idents;
148  SelectorTable &Selectors;
149  DeclarationNameTable DeclarationNames;
150  llvm::OwningPtr<ExternalASTSource> ExternalSource;
151
152  SourceManager& getSourceManager() { return SourceMgr; }
153  const SourceManager& getSourceManager() const { return SourceMgr; }
154  void *Allocate(unsigned Size, unsigned Align = 8) {
155    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
156                        BumpAlloc.Allocate(Size, Align);
157  }
158  void Deallocate(void *Ptr) {
159    if (FreeMemory)
160      MallocAlloc.Deallocate(Ptr);
161  }
162  const LangOptions& getLangOptions() const { return LangOpts; }
163
164  FullSourceLoc getFullLoc(SourceLocation Loc) const {
165    return FullSourceLoc(Loc,SourceMgr);
166  }
167
168  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
169
170  /// This is intentionally not serialized.  It is populated by the
171  /// ASTContext ctor, and there are no external pointers/references to
172  /// internal variables of BuiltinInfo.
173  // FIXME: PCH does serialize this information, so that we don't have to
174  // construct it again when the PCH is loaded.
175  Builtin::Context BuiltinInfo;
176
177  // Builtin Types.
178  QualType VoidTy;
179  QualType BoolTy;
180  QualType CharTy;
181  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
182  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy;
183  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
184  QualType UnsignedLongLongTy;
185  QualType FloatTy, DoubleTy, LongDoubleTy;
186  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
187  QualType VoidPtrTy;
188  QualType OverloadTy;
189  QualType DependentTy;
190
191  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
192             IdentifierTable &idents, SelectorTable &sels,
193             bool FreeMemory = true, unsigned size_reserve=0,
194             bool InitializeBuiltins = true);
195
196  ~ASTContext();
197
198  /// \brief Initialize builtins.
199  ///
200  /// Typically, this routine will be called automatically by the
201  /// constructor. However, in certain cases (e.g., when there is a
202  /// PCH file to be loaded), the constructor does not perform
203  /// initialization for builtins. This routine can be called to
204  /// perform the initialization.
205  void InitializeBuiltins(IdentifierTable &idents);
206
207  /// \brief Attach an external AST source to the AST context.
208  ///
209  /// The external AST source provides the ability to load parts of
210  /// the abstract syntax tree as needed from some external storage,
211  /// e.g., a precompiled header.
212  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
213
214  /// \brief Retrieve a pointer to the external AST source associated
215  /// with this AST context, if any.
216  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
217
218  void PrintStats() const;
219  const std::vector<Type*>& getTypes() const { return Types; }
220
221  //===--------------------------------------------------------------------===//
222  //                           Type Constructors
223  //===--------------------------------------------------------------------===//
224
225  /// getAddSpaceQualType - Return the uniqued reference to the type for an
226  /// address space qualified type with the specified type and address space.
227  /// The resulting type has a union of the qualifiers from T and the address
228  /// space. If T already has an address space specifier, it is silently
229  /// replaced.
230  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
231
232  /// getObjCGCQualType - Returns the uniqued reference to the type for an
233  /// objc gc qualified type. The retulting type has a union of the qualifiers
234  /// from T and the gc attribute.
235  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
236
237  /// getComplexType - Return the uniqued reference to the type for a complex
238  /// number with the specified element type.
239  QualType getComplexType(QualType T);
240
241  /// getPointerType - Return the uniqued reference to the type for a pointer to
242  /// the specified type.
243  QualType getPointerType(QualType T);
244
245  /// getBlockPointerType - Return the uniqued reference to the type for a block
246  /// of the specified type.
247  QualType getBlockPointerType(QualType T);
248
249  /// getLValueReferenceType - Return the uniqued reference to the type for an
250  /// lvalue reference to the specified type.
251  QualType getLValueReferenceType(QualType T);
252
253  /// getRValueReferenceType - Return the uniqued reference to the type for an
254  /// rvalue reference to the specified type.
255  QualType getRValueReferenceType(QualType T);
256
257  /// getMemberPointerType - Return the uniqued reference to the type for a
258  /// member pointer to the specified type in the specified class. The class
259  /// is a Type because it could be a dependent name.
260  QualType getMemberPointerType(QualType T, const Type *Cls);
261
262  /// getVariableArrayType - Returns a non-unique reference to the type for a
263  /// variable array of the specified element type.
264  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
265                                ArrayType::ArraySizeModifier ASM,
266                                unsigned EltTypeQuals);
267
268  /// getDependentSizedArrayType - Returns a non-unique reference to
269  /// the type for a dependently-sized array of the specified element
270  /// type. FIXME: We will need these to be uniqued, or at least
271  /// comparable, at some point.
272  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
273                                      ArrayType::ArraySizeModifier ASM,
274                                      unsigned EltTypeQuals);
275
276  /// getIncompleteArrayType - Returns a unique reference to the type for a
277  /// incomplete array of the specified element type.
278  QualType getIncompleteArrayType(QualType EltTy,
279                                  ArrayType::ArraySizeModifier ASM,
280                                  unsigned EltTypeQuals);
281
282  /// getConstantArrayType - Return the unique reference to the type for a
283  /// constant array of the specified element type.
284  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
285                                ArrayType::ArraySizeModifier ASM,
286                                unsigned EltTypeQuals);
287
288  /// getVectorType - Return the unique reference to a vector type of
289  /// the specified element type and size. VectorType must be a built-in type.
290  QualType getVectorType(QualType VectorType, unsigned NumElts);
291
292  /// getExtVectorType - Return the unique reference to an extended vector type
293  /// of the specified element type and size.  VectorType must be a built-in
294  /// type.
295  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
296
297  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
298  ///
299  QualType getFunctionNoProtoType(QualType ResultTy);
300
301  /// getFunctionType - Return a normal function type with a typed argument
302  /// list.  isVariadic indicates whether the argument list includes '...'.
303  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
304                           unsigned NumArgs, bool isVariadic,
305                           unsigned TypeQuals);
306
307  /// getTypeDeclType - Return the unique reference to the type for
308  /// the specified type declaration.
309  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
310
311  /// getTypedefType - Return the unique reference to the type for the
312  /// specified typename decl.
313  QualType getTypedefType(TypedefDecl *Decl);
314  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
315
316  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
317                                   IdentifierInfo *Name = 0);
318
319  QualType getTemplateSpecializationType(TemplateName T,
320                                         const TemplateArgument *Args,
321                                         unsigned NumArgs,
322                                         QualType Canon = QualType());
323
324  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
325                                QualType NamedType);
326  QualType getTypenameType(NestedNameSpecifier *NNS,
327                           const IdentifierInfo *Name,
328                           QualType Canon = QualType());
329  QualType getTypenameType(NestedNameSpecifier *NNS,
330                           const TemplateSpecializationType *TemplateId,
331                           QualType Canon = QualType());
332
333  /// getObjCQualifiedInterfaceType - Return a
334  /// ObjCQualifiedInterfaceType type for the given interface decl and
335  /// the conforming protocol list.
336  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
337                                         ObjCProtocolDecl **ProtocolList,
338                                         unsigned NumProtocols);
339
340  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
341  /// given 'id' and conforming protocol list.
342  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
343                                  unsigned NumProtocols);
344
345
346  /// getTypeOfType - GCC extension.
347  QualType getTypeOfExprType(Expr *e);
348  QualType getTypeOfType(QualType t);
349
350  /// getTagDeclType - Return the unique reference to the type for the
351  /// specified TagDecl (struct/union/class/enum) decl.
352  QualType getTagDeclType(TagDecl *Decl);
353
354  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
355  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
356  QualType getSizeType() const;
357
358  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
359  /// returns a type compatible with the type defined in <stddef.h> as defined
360  /// by the target.
361  QualType getWCharType() const { return WCharTy; }
362
363  /// getSignedWCharType - Return the type of "signed wchar_t".
364  /// Used when in C++, as a GCC extension.
365  QualType getSignedWCharType() const;
366
367  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
368  /// Used when in C++, as a GCC extension.
369  QualType getUnsignedWCharType() const;
370
371  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
372  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
373  QualType getPointerDiffType() const;
374
375  // getCFConstantStringType - Return the C structure type used to represent
376  // constant CFStrings.
377  QualType getCFConstantStringType();
378
379  // This setter/getter represents the ObjC type for an NSConstantString.
380  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
381  QualType getObjCConstantStringInterface() const {
382    return ObjCConstantStringType;
383  }
384
385  //// This gets the struct used to keep track of fast enumerations.
386  QualType getObjCFastEnumerationStateType();
387
388  /// getObjCEncodingForType - Emit the ObjC type encoding for the
389  /// given type into \arg S. If \arg NameFields is specified then
390  /// record field names are also encoded.
391  void getObjCEncodingForType(QualType t, std::string &S,
392                              const FieldDecl *Field=0);
393
394  void getLegacyIntegralTypeEncoding(QualType &t) const;
395
396  // Put the string version of type qualifiers into S.
397  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
398                                       std::string &S) const;
399
400  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
401  /// declaration.
402  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
403
404  /// getObjCEncodingForPropertyDecl - Return the encoded type for
405  /// this method declaration. If non-NULL, Container must be either
406  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
407  /// only be NULL when getting encodings for protocol properties.
408  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
409                                      const Decl *Container,
410                                      std::string &S);
411
412  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
413  /// purpose.
414  int getObjCEncodingTypeSize(QualType t);
415
416  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
417  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
418  QualType getObjCIdType() const { return ObjCIdType; }
419  void setObjCIdType(TypedefDecl *Decl);
420
421  void setObjCSelType(TypedefDecl *Decl);
422  QualType getObjCSelType() const { return ObjCSelType; }
423
424  void setObjCProtoType(QualType QT);
425  QualType getObjCProtoType() const { return ObjCProtoType; }
426
427  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
428  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
429  /// struct.
430  QualType getObjCClassType() const { return ObjCClassType; }
431  void setObjCClassType(TypedefDecl *Decl);
432
433  void setBuiltinVaListType(QualType T);
434  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
435
436  QualType getFixedWidthIntType(unsigned Width, bool Signed);
437
438  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
439                                        bool TemplateKeyword,
440                                        TemplateDecl *Template);
441
442  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
443                                        const IdentifierInfo *Name);
444
445private:
446  QualType getFromTargetType(unsigned Type) const;
447
448  //===--------------------------------------------------------------------===//
449  //                         Type Predicates.
450  //===--------------------------------------------------------------------===//
451
452public:
453  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
454  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
455  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
456  /// ID type).
457  bool isObjCObjectPointerType(QualType Ty) const;
458
459  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
460  /// garbage collection attribute.
461  ///
462  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
463
464  /// isObjCNSObjectType - Return true if this is an NSObject object with
465  /// its NSObject attribute set.
466  bool isObjCNSObjectType(QualType Ty) const;
467
468  //===--------------------------------------------------------------------===//
469  //                         Type Sizing and Analysis
470  //===--------------------------------------------------------------------===//
471
472  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
473  /// scalar floating point type.
474  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
475
476  /// getTypeInfo - Get the size and alignment of the specified complete type in
477  /// bits.
478  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
479  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
480    return getTypeInfo(T.getTypePtr());
481  }
482
483  /// getTypeSize - Return the size of the specified type, in bits.  This method
484  /// does not work on incomplete types.
485  uint64_t getTypeSize(QualType T) {
486    return getTypeInfo(T).first;
487  }
488  uint64_t getTypeSize(const Type *T) {
489    return getTypeInfo(T).first;
490  }
491
492  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
493  /// This method does not work on incomplete types.
494  unsigned getTypeAlign(QualType T) {
495    return getTypeInfo(T).second;
496  }
497  unsigned getTypeAlign(const Type *T) {
498    return getTypeInfo(T).second;
499  }
500
501  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
502  /// type for the current target in bits.  This can be different than the ABI
503  /// alignment in cases where it is beneficial for performance to overalign
504  /// a data type.
505  unsigned getPreferredTypeAlign(const Type *T);
506
507  /// getDeclAlignInBytes - Return the alignment of the specified decl
508  /// that should be returned by __alignof().  Note that bitfields do
509  /// not have a valid alignment, so this method will assert on them.
510  unsigned getDeclAlignInBytes(const Decl *D);
511
512  /// getASTRecordLayout - Get or compute information about the layout of the
513  /// specified record (struct/union/class), which indicates its size and field
514  /// position information.
515  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
516
517  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
518  const RecordDecl *addRecordToClass(const ObjCInterfaceDecl *D);
519  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
520                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
521
522  //===--------------------------------------------------------------------===//
523  //                            Type Operators
524  //===--------------------------------------------------------------------===//
525
526  /// getCanonicalType - Return the canonical (structural) type corresponding to
527  /// the specified potentially non-canonical type.  The non-canonical version
528  /// of a type may have many "decorated" versions of types.  Decorators can
529  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
530  /// to be free of any of these, allowing two canonical types to be compared
531  /// for exact equality with a simple pointer comparison.
532  QualType getCanonicalType(QualType T);
533  const Type *getCanonicalType(const Type *T) {
534    return T->getCanonicalTypeInternal().getTypePtr();
535  }
536
537  /// \brief Determine whether the given types are equivalent.
538  bool hasSameType(QualType T1, QualType T2) {
539    return getCanonicalType(T1) == getCanonicalType(T2);
540  }
541
542  /// \brief Determine whether the given types are equivalent after
543  /// cvr-qualifiers have been removed.
544  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
545    T1 = getCanonicalType(T1);
546    T2 = getCanonicalType(T2);
547    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
548  }
549
550  /// \brief Retrieves the "canonical" declaration of the given tag
551  /// declaration.
552  ///
553  /// The canonical declaration for the given tag declaration is
554  /// either the definition of the tag (if it is a complete type) or
555  /// the first declaration of that tag.
556  TagDecl *getCanonicalDecl(TagDecl *Tag) {
557    QualType T = getTagDeclType(Tag);
558    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
559                           ->getDecl());
560  }
561
562  /// \brief Retrieves the "canonical" nested name specifier for a
563  /// given nested name specifier.
564  ///
565  /// The canonical nested name specifier is a nested name specifier
566  /// that uniquely identifies a type or namespace within the type
567  /// system. For example, given:
568  ///
569  /// \code
570  /// namespace N {
571  ///   struct S {
572  ///     template<typename T> struct X { typename T* type; };
573  ///   };
574  /// }
575  ///
576  /// template<typename T> struct Y {
577  ///   typename N::S::X<T>::type member;
578  /// };
579  /// \endcode
580  ///
581  /// Here, the nested-name-specifier for N::S::X<T>:: will be
582  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
583  /// by declarations in the type system and the canonical type for
584  /// the template type parameter 'T' is template-param-0-0.
585  NestedNameSpecifier *
586  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
587
588  /// Type Query functions.  If the type is an instance of the specified class,
589  /// return the Type pointer for the underlying maximally pretty type.  This
590  /// is a member of ASTContext because this may need to do some amount of
591  /// canonicalization, e.g. to move type qualifiers into the element type.
592  const ArrayType *getAsArrayType(QualType T);
593  const ConstantArrayType *getAsConstantArrayType(QualType T) {
594    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
595  }
596  const VariableArrayType *getAsVariableArrayType(QualType T) {
597    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
598  }
599  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
600    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
601  }
602
603  /// getBaseElementType - Returns the innermost element type of a variable
604  /// length array type. For example, will return "int" for int[m][n]
605  QualType getBaseElementType(const VariableArrayType *VAT);
606
607  /// getArrayDecayedType - Return the properly qualified result of decaying the
608  /// specified array type to a pointer.  This operation is non-trivial when
609  /// handling typedefs etc.  The canonical type of "T" must be an array type,
610  /// this returns a pointer to a properly qualified element of the array.
611  ///
612  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
613  QualType getArrayDecayedType(QualType T);
614
615  /// getIntegerTypeOrder - Returns the highest ranked integer type:
616  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
617  /// LHS < RHS, return -1.
618  int getIntegerTypeOrder(QualType LHS, QualType RHS);
619
620  /// getFloatingTypeOrder - Compare the rank of the two specified floating
621  /// point types, ignoring the domain of the type (i.e. 'double' ==
622  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
623  /// LHS < RHS, return -1.
624  int getFloatingTypeOrder(QualType LHS, QualType RHS);
625
626  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
627  /// point or a complex type (based on typeDomain/typeSize).
628  /// 'typeDomain' is a real floating point or complex type.
629  /// 'typeSize' is a real floating point or complex type.
630  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
631                                             QualType typeDomain) const;
632
633private:
634  // Helper for integer ordering
635  unsigned getIntegerRank(Type* T);
636
637public:
638
639  //===--------------------------------------------------------------------===//
640  //                    Type Compatibility Predicates
641  //===--------------------------------------------------------------------===//
642
643  /// Compatibility predicates used to check assignment expressions.
644  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
645  bool typesAreBlockCompatible(QualType lhs, QualType rhs);
646
647  bool isObjCIdType(QualType T) const {
648    return T == ObjCIdType;
649  }
650  bool isObjCIdStructType(QualType T) const {
651    if (!IdStructType) // ObjC isn't enabled
652      return false;
653    return T->getAsStructureType() == IdStructType;
654  }
655  bool isObjCClassType(QualType T) const {
656    return T == ObjCClassType;
657  }
658  bool isObjCClassStructType(QualType T) const {
659    if (!ClassStructType) // ObjC isn't enabled
660      return false;
661    return T->getAsStructureType() == ClassStructType;
662  }
663  bool isObjCSelType(QualType T) const {
664    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
665    return T->getAsStructureType() == SelStructType;
666  }
667
668  // Check the safety of assignment from LHS to RHS
669  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
670                               const ObjCInterfaceType *RHS);
671  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
672
673  // Functions for calculating composite types
674  QualType mergeTypes(QualType, QualType);
675  QualType mergeFunctionTypes(QualType, QualType);
676
677  //===--------------------------------------------------------------------===//
678  //                    Integer Predicates
679  //===--------------------------------------------------------------------===//
680
681  // The width of an integer, as defined in C99 6.2.6.2. This is the number
682  // of bits in an integer type excluding any padding bits.
683  unsigned getIntWidth(QualType T);
684
685  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
686  // unsigned integer type.  This method takes a signed type, and returns the
687  // corresponding unsigned integer type.
688  QualType getCorrespondingUnsignedType(QualType T);
689
690  //===--------------------------------------------------------------------===//
691  //                    Type Iterators.
692  //===--------------------------------------------------------------------===//
693
694  typedef std::vector<Type*>::iterator       type_iterator;
695  typedef std::vector<Type*>::const_iterator const_type_iterator;
696
697  type_iterator types_begin() { return Types.begin(); }
698  type_iterator types_end() { return Types.end(); }
699  const_type_iterator types_begin() const { return Types.begin(); }
700  const_type_iterator types_end() const { return Types.end(); }
701
702  //===--------------------------------------------------------------------===//
703  //                    Serialization
704  //===--------------------------------------------------------------------===//
705
706  void EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const;
707  static ASTContext *ReadASTBitcodeBuffer(llvm::MemoryBuffer &MBuffer,
708                                          FileManager &FMgr);
709
710  void Emit(llvm::Serializer& S) const;
711  static ASTContext *Create(llvm::Deserializer& D);
712
713  //===--------------------------------------------------------------------===//
714  //                    Integer Values
715  //===--------------------------------------------------------------------===//
716
717  /// MakeIntValue - Make an APSInt of the appropriate width and
718  /// signedness for the given \arg Value and integer \arg Type.
719  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
720    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
721    Res = Value;
722    return Res;
723  }
724
725private:
726  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
727  void operator=(const ASTContext&); // DO NOT IMPLEMENT
728
729  void InitBuiltinTypes();
730  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
731
732  // Return the ObjC type encoding for a given type.
733  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
734                                  bool ExpandPointedToStructures,
735                                  bool ExpandStructures,
736                                  const FieldDecl *Field,
737                                  bool OutermostType = false,
738                                  bool EncodingProperty = false);
739
740};
741
742}  // end namespace clang
743
744// operator new and delete aren't allowed inside namespaces.
745// The throw specifications are mandated by the standard.
746/// @brief Placement new for using the ASTContext's allocator.
747///
748/// This placement form of operator new uses the ASTContext's allocator for
749/// obtaining memory. It is a non-throwing new, which means that it returns
750/// null on error. (If that is what the allocator does. The current does, so if
751/// this ever changes, this operator will have to be changed, too.)
752/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
753/// @code
754/// // Default alignment (16)
755/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
756/// // Specific alignment
757/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
758/// @endcode
759/// Please note that you cannot use delete on the pointer; it must be
760/// deallocated using an explicit destructor call followed by
761/// @c Context.Deallocate(Ptr).
762///
763/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
764/// @param C The ASTContext that provides the allocator.
765/// @param Alignment The alignment of the allocated memory (if the underlying
766///                  allocator supports it).
767/// @return The allocated memory. Could be NULL.
768inline void *operator new(size_t Bytes, clang::ASTContext &C,
769                          size_t Alignment = 16) throw () {
770  return C.Allocate(Bytes, Alignment);
771}
772/// @brief Placement delete companion to the new above.
773///
774/// This operator is just a companion to the new above. There is no way of
775/// invoking it directly; see the new operator for more details. This operator
776/// is called implicitly by the compiler if a placement new expression using
777/// the ASTContext throws in the object constructor.
778inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
779              throw () {
780  C.Deallocate(Ptr);
781}
782
783/// This placement form of operator new[] uses the ASTContext's allocator for
784/// obtaining memory. It is a non-throwing new[], which means that it returns
785/// null on error.
786/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
787/// @code
788/// // Default alignment (16)
789/// char *data = new (Context) char[10];
790/// // Specific alignment
791/// char *data = new (Context, 8) char[10];
792/// @endcode
793/// Please note that you cannot use delete on the pointer; it must be
794/// deallocated using an explicit destructor call followed by
795/// @c Context.Deallocate(Ptr).
796///
797/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
798/// @param C The ASTContext that provides the allocator.
799/// @param Alignment The alignment of the allocated memory (if the underlying
800///                  allocator supports it).
801/// @return The allocated memory. Could be NULL.
802inline void *operator new[](size_t Bytes, clang::ASTContext& C,
803                            size_t Alignment = 16) throw () {
804  return C.Allocate(Bytes, Alignment);
805}
806
807/// @brief Placement delete[] companion to the new[] above.
808///
809/// This operator is just a companion to the new[] above. There is no way of
810/// invoking it directly; see the new[] operator for more details. This operator
811/// is called implicitly by the compiler if a placement new[] expression using
812/// the ASTContext throws in the object constructor.
813inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
814  C.Deallocate(Ptr);
815}
816
817#endif
818