ASTContext.h revision 395b475a4474f1c7574d927ad142ca0c7997cbca
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/PrettyPrinter.h"
23#include "clang/AST/TemplateName.h"
24#include "clang/AST/Type.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Support/Allocator.h"
29#include <vector>
30
31namespace llvm {
32  struct fltSemantics;
33}
34
35namespace clang {
36  class FileManager;
37  class ASTRecordLayout;
38  class Expr;
39  class ExternalASTSource;
40  class IdentifierTable;
41  class SelectorTable;
42  class SourceManager;
43  class TargetInfo;
44  // Decls
45  class Decl;
46  class ObjCPropertyDecl;
47  class RecordDecl;
48  class TagDecl;
49  class TranslationUnitDecl;
50  class TypeDecl;
51  class TypedefDecl;
52  class TemplateTypeParmDecl;
53  class FieldDecl;
54  class ObjCIvarRefExpr;
55  class ObjCIvarDecl;
56
57  namespace Builtin { class Context; }
58
59/// ASTContext - This class holds long-lived AST nodes (such as types and
60/// decls) that can be referred to throughout the semantic analysis of a file.
61class ASTContext {
62  std::vector<Type*> Types;
63  llvm::FoldingSet<ExtQualType> ExtQualTypes;
64  llvm::FoldingSet<ComplexType> ComplexTypes;
65  llvm::FoldingSet<PointerType> PointerTypes;
66  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
67  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
68  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
69  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
70  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
71  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
72  std::vector<VariableArrayType*> VariableArrayTypes;
73  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
74  std::vector<DependentSizedExtVectorType*> DependentSizedExtVectorTypes;
75  llvm::FoldingSet<VectorType> VectorTypes;
76  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
77  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
78  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
79  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
80  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
81  llvm::FoldingSet<TypenameType> TypenameTypes;
82  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
83  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
84
85  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
86  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
87
88  /// \brief The set of nested name specifiers.
89  ///
90  /// This set is managed by the NestedNameSpecifier class.
91  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
92  NestedNameSpecifier *GlobalNestedNameSpecifier;
93  friend class NestedNameSpecifier;
94
95  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
96  ///  This is lazily created.  This is intentionally not serialized.
97  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
98  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
99
100  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
101  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
102
103  /// BuiltinVaListType - built-in va list type.
104  /// This is initially null and set by Sema::LazilyCreateBuiltin when
105  /// a builtin that takes a valist is encountered.
106  QualType BuiltinVaListType;
107
108  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
109  QualType ObjCIdType;
110  const RecordType *IdStructType;
111
112  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
113  QualType ObjCSelType;
114  const RecordType *SelStructType;
115
116  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
117  QualType ObjCProtoType;
118  const RecordType *ProtoStructType;
119
120  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
121  QualType ObjCClassType;
122  const RecordType *ClassStructType;
123
124  QualType ObjCConstantStringType;
125  RecordDecl *CFConstantStringTypeDecl;
126
127  RecordDecl *ObjCFastEnumerationStateTypeDecl;
128
129  /// \brief Keeps track of all declaration attributes.
130  ///
131  /// Since so few decls have attrs, we keep them in a hash map instead of
132  /// wasting space in the Decl class.
133  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
134
135  TranslationUnitDecl *TUDecl;
136
137  /// SourceMgr - The associated SourceManager object.
138  SourceManager &SourceMgr;
139
140  /// LangOpts - The language options used to create the AST associated with
141  ///  this ASTContext object.
142  LangOptions LangOpts;
143
144  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
145  bool FreeMemory;
146  llvm::MallocAllocator MallocAlloc;
147  llvm::BumpPtrAllocator BumpAlloc;
148public:
149  TargetInfo &Target;
150  IdentifierTable &Idents;
151  SelectorTable &Selectors;
152  Builtin::Context &BuiltinInfo;
153  DeclarationNameTable DeclarationNames;
154  llvm::OwningPtr<ExternalASTSource> ExternalSource;
155  clang::PrintingPolicy PrintingPolicy;
156
157  SourceManager& getSourceManager() { return SourceMgr; }
158  const SourceManager& getSourceManager() const { return SourceMgr; }
159  void *Allocate(unsigned Size, unsigned Align = 8) {
160    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
161                        BumpAlloc.Allocate(Size, Align);
162  }
163  void Deallocate(void *Ptr) {
164    if (FreeMemory)
165      MallocAlloc.Deallocate(Ptr);
166  }
167  const LangOptions& getLangOptions() const { return LangOpts; }
168
169  FullSourceLoc getFullLoc(SourceLocation Loc) const {
170    return FullSourceLoc(Loc,SourceMgr);
171  }
172
173  /// \brief Retrieve the attributes for the given declaration.
174  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
175
176  /// \brief Erase the attributes corresponding to the given declaration.
177  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
178
179  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
180
181
182  // Builtin Types.
183  QualType VoidTy;
184  QualType BoolTy;
185  QualType CharTy;
186  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
187  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
188  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
189  QualType UnsignedLongLongTy, UnsignedInt128Ty;
190  QualType FloatTy, DoubleTy, LongDoubleTy;
191  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
192  QualType VoidPtrTy, NullPtrTy;
193  QualType OverloadTy;
194  QualType DependentTy;
195
196  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
197             IdentifierTable &idents, SelectorTable &sels,
198             Builtin::Context &builtins,
199             bool FreeMemory = true, unsigned size_reserve=0);
200
201  ~ASTContext();
202
203  /// \brief Attach an external AST source to the AST context.
204  ///
205  /// The external AST source provides the ability to load parts of
206  /// the abstract syntax tree as needed from some external storage,
207  /// e.g., a precompiled header.
208  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
209
210  /// \brief Retrieve a pointer to the external AST source associated
211  /// with this AST context, if any.
212  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
213
214  void PrintStats() const;
215  const std::vector<Type*>& getTypes() const { return Types; }
216
217  //===--------------------------------------------------------------------===//
218  //                           Type Constructors
219  //===--------------------------------------------------------------------===//
220
221  /// getAddSpaceQualType - Return the uniqued reference to the type for an
222  /// address space qualified type with the specified type and address space.
223  /// The resulting type has a union of the qualifiers from T and the address
224  /// space. If T already has an address space specifier, it is silently
225  /// replaced.
226  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
227
228  /// getObjCGCQualType - Returns the uniqued reference to the type for an
229  /// objc gc qualified type. The retulting type has a union of the qualifiers
230  /// from T and the gc attribute.
231  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
232
233  /// getComplexType - Return the uniqued reference to the type for a complex
234  /// number with the specified element type.
235  QualType getComplexType(QualType T);
236
237  /// getPointerType - Return the uniqued reference to the type for a pointer to
238  /// the specified type.
239  QualType getPointerType(QualType T);
240
241  /// getBlockPointerType - Return the uniqued reference to the type for a block
242  /// of the specified type.
243  QualType getBlockPointerType(QualType T);
244
245  /// getLValueReferenceType - Return the uniqued reference to the type for an
246  /// lvalue reference to the specified type.
247  QualType getLValueReferenceType(QualType T);
248
249  /// getRValueReferenceType - Return the uniqued reference to the type for an
250  /// rvalue reference to the specified type.
251  QualType getRValueReferenceType(QualType T);
252
253  /// getMemberPointerType - Return the uniqued reference to the type for a
254  /// member pointer to the specified type in the specified class. The class
255  /// is a Type because it could be a dependent name.
256  QualType getMemberPointerType(QualType T, const Type *Cls);
257
258  /// getVariableArrayType - Returns a non-unique reference to the type for a
259  /// variable array of the specified element type.
260  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
261                                ArrayType::ArraySizeModifier ASM,
262                                unsigned EltTypeQuals);
263
264  /// getDependentSizedArrayType - Returns a non-unique reference to
265  /// the type for a dependently-sized array of the specified element
266  /// type. FIXME: We will need these to be uniqued, or at least
267  /// comparable, at some point.
268  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
269                                      ArrayType::ArraySizeModifier ASM,
270                                      unsigned EltTypeQuals);
271
272  /// getIncompleteArrayType - Returns a unique reference to the type for a
273  /// incomplete array of the specified element type.
274  QualType getIncompleteArrayType(QualType EltTy,
275                                  ArrayType::ArraySizeModifier ASM,
276                                  unsigned EltTypeQuals);
277
278  /// getConstantArrayType - Return the unique reference to the type for a
279  /// constant array of the specified element type.
280  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
281                                ArrayType::ArraySizeModifier ASM,
282                                unsigned EltTypeQuals);
283
284  /// getVectorType - Return the unique reference to a vector type of
285  /// the specified element type and size. VectorType must be a built-in type.
286  QualType getVectorType(QualType VectorType, unsigned NumElts);
287
288  /// getExtVectorType - Return the unique reference to an extended vector type
289  /// of the specified element type and size.  VectorType must be a built-in
290  /// type.
291  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
292
293  /// getDependentSizedExtVectorType - Returns a non-unique reference to
294  /// the type for a dependently-sized vector of the specified element
295  /// type. FIXME: We will need these to be uniqued, or at least
296  /// comparable, at some point.
297  QualType getDependentSizedExtVectorType(QualType VectorType,
298                                          Expr *SizeExpr,
299                                          SourceLocation AttrLoc);
300
301  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
302  ///
303  QualType getFunctionNoProtoType(QualType ResultTy);
304
305  /// getFunctionType - Return a normal function type with a typed argument
306  /// list.  isVariadic indicates whether the argument list includes '...'.
307  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
308                           unsigned NumArgs, bool isVariadic,
309                           unsigned TypeQuals, bool hasExceptionSpec = false,
310                           bool hasAnyExceptionSpec = false,
311                           unsigned NumExs = 0, const QualType *ExArray = 0);
312
313  /// getTypeDeclType - Return the unique reference to the type for
314  /// the specified type declaration.
315  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
316
317  /// getTypedefType - Return the unique reference to the type for the
318  /// specified typename decl.
319  QualType getTypedefType(TypedefDecl *Decl);
320  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
321
322  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
323                                   bool ParameterPack,
324                                   IdentifierInfo *Name = 0);
325
326  QualType getTemplateSpecializationType(TemplateName T,
327                                         const TemplateArgument *Args,
328                                         unsigned NumArgs,
329                                         QualType Canon = QualType());
330
331  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
332                                QualType NamedType);
333  QualType getTypenameType(NestedNameSpecifier *NNS,
334                           const IdentifierInfo *Name,
335                           QualType Canon = QualType());
336  QualType getTypenameType(NestedNameSpecifier *NNS,
337                           const TemplateSpecializationType *TemplateId,
338                           QualType Canon = QualType());
339
340  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
341  /// given interface decl and the conforming protocol list.
342  QualType getObjCObjectPointerType(ObjCInterfaceDecl *Decl,
343                                    ObjCProtocolDecl **ProtocolList = 0,
344                                    unsigned NumProtocols = 0);
345
346  /// getObjCQualifiedInterfaceType - Return a
347  /// ObjCQualifiedInterfaceType type for the given interface decl and
348  /// the conforming protocol list.
349  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
350                                         ObjCProtocolDecl **ProtocolList,
351                                         unsigned NumProtocols);
352
353  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
354  /// given 'id' and conforming protocol list.
355  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
356                                  unsigned NumProtocols);
357
358
359  /// getTypeOfType - GCC extension.
360  QualType getTypeOfExprType(Expr *e);
361  QualType getTypeOfType(QualType t);
362
363  /// getDecltypeType - C++0x decltype.
364  QualType getDecltypeType(Expr *e);
365
366  /// getTagDeclType - Return the unique reference to the type for the
367  /// specified TagDecl (struct/union/class/enum) decl.
368  QualType getTagDeclType(TagDecl *Decl);
369
370  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
371  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
372  QualType getSizeType() const;
373
374  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
375  /// returns a type compatible with the type defined in <stddef.h> as defined
376  /// by the target.
377  QualType getWCharType() const { return WCharTy; }
378
379  /// getSignedWCharType - Return the type of "signed wchar_t".
380  /// Used when in C++, as a GCC extension.
381  QualType getSignedWCharType() const;
382
383  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
384  /// Used when in C++, as a GCC extension.
385  QualType getUnsignedWCharType() const;
386
387  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
388  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
389  QualType getPointerDiffType() const;
390
391  // getCFConstantStringType - Return the C structure type used to represent
392  // constant CFStrings.
393  QualType getCFConstantStringType();
394
395  /// Get the structure type used to representation CFStrings, or NULL
396  /// if it hasn't yet been built.
397  QualType getRawCFConstantStringType() {
398    if (CFConstantStringTypeDecl)
399      return getTagDeclType(CFConstantStringTypeDecl);
400    return QualType();
401  }
402  void setCFConstantStringType(QualType T);
403
404  // This setter/getter represents the ObjC type for an NSConstantString.
405  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
406  QualType getObjCConstantStringInterface() const {
407    return ObjCConstantStringType;
408  }
409
410  //// This gets the struct used to keep track of fast enumerations.
411  QualType getObjCFastEnumerationStateType();
412
413  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
414  /// been built.
415  QualType getRawObjCFastEnumerationStateType() {
416    if (ObjCFastEnumerationStateTypeDecl)
417      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
418    return QualType();
419  }
420
421  void setObjCFastEnumerationStateType(QualType T);
422
423  /// getObjCEncodingForType - Emit the ObjC type encoding for the
424  /// given type into \arg S. If \arg NameFields is specified then
425  /// record field names are also encoded.
426  void getObjCEncodingForType(QualType t, std::string &S,
427                              const FieldDecl *Field=0);
428
429  void getLegacyIntegralTypeEncoding(QualType &t) const;
430
431  // Put the string version of type qualifiers into S.
432  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
433                                       std::string &S) const;
434
435  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
436  /// declaration.
437  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
438
439  /// getObjCEncodingForPropertyDecl - Return the encoded type for
440  /// this method declaration. If non-NULL, Container must be either
441  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
442  /// only be NULL when getting encodings for protocol properties.
443  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
444                                      const Decl *Container,
445                                      std::string &S);
446
447  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
448  /// purpose.
449  int getObjCEncodingTypeSize(QualType t);
450
451  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
452  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
453  QualType getObjCIdType() const { return ObjCIdType; }
454  void setObjCIdType(QualType T);
455
456  void setObjCSelType(QualType T);
457  QualType getObjCSelType() const { return ObjCSelType; }
458
459  void setObjCProtoType(QualType QT);
460  QualType getObjCProtoType() const { return ObjCProtoType; }
461
462  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
463  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
464  /// struct.
465  QualType getObjCClassType() const { return ObjCClassType; }
466  void setObjCClassType(QualType T);
467
468  void setBuiltinVaListType(QualType T);
469  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
470
471  QualType getFixedWidthIntType(unsigned Width, bool Signed);
472
473  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
474                                        bool TemplateKeyword,
475                                        TemplateDecl *Template);
476
477  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
478                                        const IdentifierInfo *Name);
479
480  enum GetBuiltinTypeError {
481    GE_None,        //< No error
482    GE_Missing_FILE //< Missing the FILE type from <stdio.h>
483  };
484
485  /// GetBuiltinType - Return the type for the specified builtin.
486  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
487
488private:
489  QualType getFromTargetType(unsigned Type) const;
490
491  //===--------------------------------------------------------------------===//
492  //                         Type Predicates.
493  //===--------------------------------------------------------------------===//
494
495public:
496  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
497  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
498  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
499  /// ID type).
500  bool isObjCObjectPointerType(QualType Ty) const;
501
502  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
503  /// garbage collection attribute.
504  ///
505  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
506
507  /// isObjCNSObjectType - Return true if this is an NSObject object with
508  /// its NSObject attribute set.
509  bool isObjCNSObjectType(QualType Ty) const;
510
511  //===--------------------------------------------------------------------===//
512  //                         Type Sizing and Analysis
513  //===--------------------------------------------------------------------===//
514
515  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
516  /// scalar floating point type.
517  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
518
519  /// getTypeInfo - Get the size and alignment of the specified complete type in
520  /// bits.
521  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
522  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
523    return getTypeInfo(T.getTypePtr());
524  }
525
526  /// getTypeSize - Return the size of the specified type, in bits.  This method
527  /// does not work on incomplete types.
528  uint64_t getTypeSize(QualType T) {
529    return getTypeInfo(T).first;
530  }
531  uint64_t getTypeSize(const Type *T) {
532    return getTypeInfo(T).first;
533  }
534
535  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
536  /// This method does not work on incomplete types.
537  unsigned getTypeAlign(QualType T) {
538    return getTypeInfo(T).second;
539  }
540  unsigned getTypeAlign(const Type *T) {
541    return getTypeInfo(T).second;
542  }
543
544  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
545  /// type for the current target in bits.  This can be different than the ABI
546  /// alignment in cases where it is beneficial for performance to overalign
547  /// a data type.
548  unsigned getPreferredTypeAlign(const Type *T);
549
550  /// getDeclAlignInBytes - Return the alignment of the specified decl
551  /// that should be returned by __alignof().  Note that bitfields do
552  /// not have a valid alignment, so this method will assert on them.
553  unsigned getDeclAlignInBytes(const Decl *D);
554
555  /// getASTRecordLayout - Get or compute information about the layout of the
556  /// specified record (struct/union/class), which indicates its size and field
557  /// position information.
558  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
559
560  /// getASTObjCInterfaceLayout - Get or compute information about the
561  /// layout of the specified Objective-C interface.
562  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
563
564  /// getASTObjCImplementationLayout - Get or compute information about
565  /// the layout of the specified Objective-C implementation. This may
566  /// differ from the interface if synthesized ivars are present.
567  const ASTRecordLayout &
568  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
569
570  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
571                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
572
573  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
574                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
575                               bool CollectSynthesized = true);
576  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
577                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
578  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
579                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
580  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
581  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
582
583  //===--------------------------------------------------------------------===//
584  //                            Type Operators
585  //===--------------------------------------------------------------------===//
586
587  /// getCanonicalType - Return the canonical (structural) type corresponding to
588  /// the specified potentially non-canonical type.  The non-canonical version
589  /// of a type may have many "decorated" versions of types.  Decorators can
590  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
591  /// to be free of any of these, allowing two canonical types to be compared
592  /// for exact equality with a simple pointer comparison.
593  QualType getCanonicalType(QualType T);
594  const Type *getCanonicalType(const Type *T) {
595    return T->getCanonicalTypeInternal().getTypePtr();
596  }
597
598  /// \brief Determine whether the given types are equivalent.
599  bool hasSameType(QualType T1, QualType T2) {
600    return getCanonicalType(T1) == getCanonicalType(T2);
601  }
602
603  /// \brief Determine whether the given types are equivalent after
604  /// cvr-qualifiers have been removed.
605  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
606    T1 = getCanonicalType(T1);
607    T2 = getCanonicalType(T2);
608    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
609  }
610
611  /// \brief Retrieves the "canonical" declaration of the given declaration.
612  Decl *getCanonicalDecl(Decl *D);
613
614  /// \brief Retrieves the "canonical" declaration of the given tag
615  /// declaration.
616  ///
617  /// The canonical declaration for the given tag declaration is
618  /// either the definition of the tag (if it is a complete type) or
619  /// the first declaration of that tag.
620  TagDecl *getCanonicalDecl(TagDecl *Tag) {
621    return cast<TagDecl>(getCanonicalDecl((Decl *)Tag));
622  }
623
624  /// \brief Retrieves the "canonical" declaration of
625
626  /// \brief Retrieves the "canonical" nested name specifier for a
627  /// given nested name specifier.
628  ///
629  /// The canonical nested name specifier is a nested name specifier
630  /// that uniquely identifies a type or namespace within the type
631  /// system. For example, given:
632  ///
633  /// \code
634  /// namespace N {
635  ///   struct S {
636  ///     template<typename T> struct X { typename T* type; };
637  ///   };
638  /// }
639  ///
640  /// template<typename T> struct Y {
641  ///   typename N::S::X<T>::type member;
642  /// };
643  /// \endcode
644  ///
645  /// Here, the nested-name-specifier for N::S::X<T>:: will be
646  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
647  /// by declarations in the type system and the canonical type for
648  /// the template type parameter 'T' is template-param-0-0.
649  NestedNameSpecifier *
650  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
651
652  /// \brief Retrieves the "canonical" template name that refers to a
653  /// given template.
654  ///
655  /// The canonical template name is the simplest expression that can
656  /// be used to refer to a given template. For most templates, this
657  /// expression is just the template declaration itself. For example,
658  /// the template std::vector can be referred to via a variety of
659  /// names---std::vector, ::std::vector, vector (if vector is in
660  /// scope), etc.---but all of these names map down to the same
661  /// TemplateDecl, which is used to form the canonical template name.
662  ///
663  /// Dependent template names are more interesting. Here, the
664  /// template name could be something like T::template apply or
665  /// std::allocator<T>::template rebind, where the nested name
666  /// specifier itself is dependent. In this case, the canonical
667  /// template name uses the shortest form of the dependent
668  /// nested-name-specifier, which itself contains all canonical
669  /// types, values, and templates.
670  TemplateName getCanonicalTemplateName(TemplateName Name);
671
672  /// Type Query functions.  If the type is an instance of the specified class,
673  /// return the Type pointer for the underlying maximally pretty type.  This
674  /// is a member of ASTContext because this may need to do some amount of
675  /// canonicalization, e.g. to move type qualifiers into the element type.
676  const ArrayType *getAsArrayType(QualType T);
677  const ConstantArrayType *getAsConstantArrayType(QualType T) {
678    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
679  }
680  const VariableArrayType *getAsVariableArrayType(QualType T) {
681    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
682  }
683  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
684    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
685  }
686
687  /// getBaseElementType - Returns the innermost element type of a variable
688  /// length array type. For example, will return "int" for int[m][n]
689  QualType getBaseElementType(const VariableArrayType *VAT);
690
691  /// getArrayDecayedType - Return the properly qualified result of decaying the
692  /// specified array type to a pointer.  This operation is non-trivial when
693  /// handling typedefs etc.  The canonical type of "T" must be an array type,
694  /// this returns a pointer to a properly qualified element of the array.
695  ///
696  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
697  QualType getArrayDecayedType(QualType T);
698
699  /// getIntegerTypeOrder - Returns the highest ranked integer type:
700  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
701  /// LHS < RHS, return -1.
702  int getIntegerTypeOrder(QualType LHS, QualType RHS);
703
704  /// getFloatingTypeOrder - Compare the rank of the two specified floating
705  /// point types, ignoring the domain of the type (i.e. 'double' ==
706  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
707  /// LHS < RHS, return -1.
708  int getFloatingTypeOrder(QualType LHS, QualType RHS);
709
710  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
711  /// point or a complex type (based on typeDomain/typeSize).
712  /// 'typeDomain' is a real floating point or complex type.
713  /// 'typeSize' is a real floating point or complex type.
714  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
715                                             QualType typeDomain) const;
716
717private:
718  // Helper for integer ordering
719  unsigned getIntegerRank(Type* T);
720
721public:
722
723  //===--------------------------------------------------------------------===//
724  //                    Type Compatibility Predicates
725  //===--------------------------------------------------------------------===//
726
727  /// Compatibility predicates used to check assignment expressions.
728  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
729
730  bool isObjCIdType(QualType T) const {
731    return T == ObjCIdType;
732  }
733  bool isObjCIdStructType(QualType T) const {
734    if (!IdStructType) // ObjC isn't enabled
735      return false;
736    return T->getAsStructureType() == IdStructType;
737  }
738  bool isObjCClassType(QualType T) const {
739    return T == ObjCClassType;
740  }
741  bool isObjCClassStructType(QualType T) const {
742    if (!ClassStructType) // ObjC isn't enabled
743      return false;
744    return T->getAsStructureType() == ClassStructType;
745  }
746  bool isObjCSelType(QualType T) const {
747    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
748    return T->getAsStructureType() == SelStructType;
749  }
750
751  // Check the safety of assignment from LHS to RHS
752  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
753                               const ObjCInterfaceType *RHS);
754  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
755
756  // Functions for calculating composite types
757  QualType mergeTypes(QualType, QualType);
758  QualType mergeFunctionTypes(QualType, QualType);
759
760  //===--------------------------------------------------------------------===//
761  //                    Integer Predicates
762  //===--------------------------------------------------------------------===//
763
764  // The width of an integer, as defined in C99 6.2.6.2. This is the number
765  // of bits in an integer type excluding any padding bits.
766  unsigned getIntWidth(QualType T);
767
768  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
769  // unsigned integer type.  This method takes a signed type, and returns the
770  // corresponding unsigned integer type.
771  QualType getCorrespondingUnsignedType(QualType T);
772
773  //===--------------------------------------------------------------------===//
774  //                    Type Iterators.
775  //===--------------------------------------------------------------------===//
776
777  typedef std::vector<Type*>::iterator       type_iterator;
778  typedef std::vector<Type*>::const_iterator const_type_iterator;
779
780  type_iterator types_begin() { return Types.begin(); }
781  type_iterator types_end() { return Types.end(); }
782  const_type_iterator types_begin() const { return Types.begin(); }
783  const_type_iterator types_end() const { return Types.end(); }
784
785  //===--------------------------------------------------------------------===//
786  //                    Integer Values
787  //===--------------------------------------------------------------------===//
788
789  /// MakeIntValue - Make an APSInt of the appropriate width and
790  /// signedness for the given \arg Value and integer \arg Type.
791  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
792    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
793    Res = Value;
794    return Res;
795  }
796
797private:
798  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
799  void operator=(const ASTContext&); // DO NOT IMPLEMENT
800
801  void InitBuiltinTypes();
802  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
803
804  // Return the ObjC type encoding for a given type.
805  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
806                                  bool ExpandPointedToStructures,
807                                  bool ExpandStructures,
808                                  const FieldDecl *Field,
809                                  bool OutermostType = false,
810                                  bool EncodingProperty = false);
811
812  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
813                                       const ObjCImplementationDecl *Impl);
814};
815
816}  // end namespace clang
817
818// operator new and delete aren't allowed inside namespaces.
819// The throw specifications are mandated by the standard.
820/// @brief Placement new for using the ASTContext's allocator.
821///
822/// This placement form of operator new uses the ASTContext's allocator for
823/// obtaining memory. It is a non-throwing new, which means that it returns
824/// null on error. (If that is what the allocator does. The current does, so if
825/// this ever changes, this operator will have to be changed, too.)
826/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
827/// @code
828/// // Default alignment (16)
829/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
830/// // Specific alignment
831/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
832/// @endcode
833/// Please note that you cannot use delete on the pointer; it must be
834/// deallocated using an explicit destructor call followed by
835/// @c Context.Deallocate(Ptr).
836///
837/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
838/// @param C The ASTContext that provides the allocator.
839/// @param Alignment The alignment of the allocated memory (if the underlying
840///                  allocator supports it).
841/// @return The allocated memory. Could be NULL.
842inline void *operator new(size_t Bytes, clang::ASTContext &C,
843                          size_t Alignment) throw () {
844  return C.Allocate(Bytes, Alignment);
845}
846/// @brief Placement delete companion to the new above.
847///
848/// This operator is just a companion to the new above. There is no way of
849/// invoking it directly; see the new operator for more details. This operator
850/// is called implicitly by the compiler if a placement new expression using
851/// the ASTContext throws in the object constructor.
852inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
853              throw () {
854  C.Deallocate(Ptr);
855}
856
857/// This placement form of operator new[] uses the ASTContext's allocator for
858/// obtaining memory. It is a non-throwing new[], which means that it returns
859/// null on error.
860/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
861/// @code
862/// // Default alignment (16)
863/// char *data = new (Context) char[10];
864/// // Specific alignment
865/// char *data = new (Context, 8) char[10];
866/// @endcode
867/// Please note that you cannot use delete on the pointer; it must be
868/// deallocated using an explicit destructor call followed by
869/// @c Context.Deallocate(Ptr).
870///
871/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
872/// @param C The ASTContext that provides the allocator.
873/// @param Alignment The alignment of the allocated memory (if the underlying
874///                  allocator supports it).
875/// @return The allocated memory. Could be NULL.
876inline void *operator new[](size_t Bytes, clang::ASTContext& C,
877                            size_t Alignment = 16) throw () {
878  return C.Allocate(Bytes, Alignment);
879}
880
881/// @brief Placement delete[] companion to the new[] above.
882///
883/// This operator is just a companion to the new[] above. There is no way of
884/// invoking it directly; see the new[] operator for more details. This operator
885/// is called implicitly by the compiler if a placement new[] expression using
886/// the ASTContext throws in the object constructor.
887inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
888  C.Deallocate(Ptr);
889}
890
891#endif
892