ASTContext.h revision 3b3a45858c6b2a45114e91902c3bf3c4b7f5f302
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/SourceLocation.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Bitcode/SerializationFwd.h"
29#include "llvm/Support/Allocator.h"
30#include <vector>
31
32namespace llvm {
33  struct fltSemantics;
34}
35
36namespace clang {
37  class FileManager;
38  class ASTRecordLayout;
39  class Expr;
40  class ExternalASTSource;
41  class IdentifierTable;
42  class SelectorTable;
43  class SourceManager;
44  class TargetInfo;
45  // Decls
46  class Decl;
47  class ObjCPropertyDecl;
48  class RecordDecl;
49  class TagDecl;
50  class TranslationUnitDecl;
51  class TypeDecl;
52  class TypedefDecl;
53  class TemplateTypeParmDecl;
54  class FieldDecl;
55  class ObjCIvarRefExpr;
56  class ObjCIvarDecl;
57
58/// ASTContext - This class holds long-lived AST nodes (such as types and
59/// decls) that can be referred to throughout the semantic analysis of a file.
60class ASTContext {
61  std::vector<Type*> Types;
62  llvm::FoldingSet<ExtQualType> ExtQualTypes;
63  llvm::FoldingSet<ComplexType> ComplexTypes;
64  llvm::FoldingSet<PointerType> PointerTypes;
65  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
66  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
67  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
68  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
69  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
70  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
71  std::vector<VariableArrayType*> VariableArrayTypes;
72  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
73  llvm::FoldingSet<VectorType> VectorTypes;
74  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
75  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
76  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
77  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
78  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
79  llvm::FoldingSet<TypenameType> TypenameTypes;
80  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
81  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
82
83  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
84  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
85
86  /// \brief The set of nested name specifiers.
87  ///
88  /// This set is managed by the NestedNameSpecifier class.
89  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
90  NestedNameSpecifier *GlobalNestedNameSpecifier;
91  friend class NestedNameSpecifier;
92
93  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
94  ///  This is lazily created.  This is intentionally not serialized.
95  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
96  llvm::DenseMap<const ObjCInterfaceDecl*,
97                 const ASTRecordLayout*> ASTObjCInterfaces;
98
99  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
100  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
101
102  // FIXME: ASTRecordForInterface/ASTFieldForIvarRef and addRecordToClass and
103  // getFieldDecl be part of the backend (i.e. CodeGenTypes)?
104  llvm::DenseMap<const ObjCInterfaceDecl*, RecordDecl*> ASTRecordForInterface;
105
106  /// BuiltinVaListType - built-in va list type.
107  /// This is initially null and set by Sema::LazilyCreateBuiltin when
108  /// a builtin that takes a valist is encountered.
109  QualType BuiltinVaListType;
110
111  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
112  QualType ObjCIdType;
113  const RecordType *IdStructType;
114
115  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
116  QualType ObjCSelType;
117  const RecordType *SelStructType;
118
119  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
120  QualType ObjCProtoType;
121  const RecordType *ProtoStructType;
122
123  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
124  QualType ObjCClassType;
125  const RecordType *ClassStructType;
126
127  QualType ObjCConstantStringType;
128  RecordDecl *CFConstantStringTypeDecl;
129
130  RecordDecl *ObjCFastEnumerationStateTypeDecl;
131
132  TranslationUnitDecl *TUDecl;
133
134  /// SourceMgr - The associated SourceManager object.
135  SourceManager &SourceMgr;
136
137  /// LangOpts - The language options used to create the AST associated with
138  ///  this ASTContext object.
139  LangOptions LangOpts;
140
141  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
142  bool FreeMemory;
143  llvm::MallocAllocator MallocAlloc;
144  llvm::BumpPtrAllocator BumpAlloc;
145public:
146  TargetInfo &Target;
147  IdentifierTable &Idents;
148  SelectorTable &Selectors;
149  DeclarationNameTable DeclarationNames;
150  llvm::OwningPtr<ExternalASTSource> ExternalSource;
151
152  SourceManager& getSourceManager() { return SourceMgr; }
153  const SourceManager& getSourceManager() const { return SourceMgr; }
154  void *Allocate(unsigned Size, unsigned Align = 8) {
155    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
156                        BumpAlloc.Allocate(Size, Align);
157  }
158  void Deallocate(void *Ptr) {
159    if (FreeMemory)
160      MallocAlloc.Deallocate(Ptr);
161  }
162  const LangOptions& getLangOptions() const { return LangOpts; }
163
164  FullSourceLoc getFullLoc(SourceLocation Loc) const {
165    return FullSourceLoc(Loc,SourceMgr);
166  }
167
168  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
169
170  /// This is intentionally not serialized.  It is populated by the
171  /// ASTContext ctor, and there are no external pointers/references to
172  /// internal variables of BuiltinInfo.
173  Builtin::Context BuiltinInfo;
174
175  // Builtin Types.
176  QualType VoidTy;
177  QualType BoolTy;
178  QualType CharTy;
179  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
180  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy;
181  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
182  QualType UnsignedLongLongTy;
183  QualType FloatTy, DoubleTy, LongDoubleTy;
184  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
185  QualType VoidPtrTy;
186  QualType OverloadTy;
187  QualType DependentTy;
188
189  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
190             IdentifierTable &idents, SelectorTable &sels,
191             bool FreeMemory = true, unsigned size_reserve=0);
192
193  ~ASTContext();
194
195  /// \brief Attach an external AST source to the AST context.
196  ///
197  /// The external AST source provides the ability to load parts of
198  /// the abstract syntax tree as needed from some external storage,
199  /// e.g., a precompiled header.
200  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
201
202  /// \brief Retrieve a pointer to the external AST source associated
203  /// with this AST context, if any.
204  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
205
206  void PrintStats() const;
207  const std::vector<Type*>& getTypes() const { return Types; }
208
209  //===--------------------------------------------------------------------===//
210  //                           Type Constructors
211  //===--------------------------------------------------------------------===//
212
213  /// getAddSpaceQualType - Return the uniqued reference to the type for an
214  /// address space qualified type with the specified type and address space.
215  /// The resulting type has a union of the qualifiers from T and the address
216  /// space. If T already has an address space specifier, it is silently
217  /// replaced.
218  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
219
220  /// getObjCGCQualType - Returns the uniqued reference to the type for an
221  /// objc gc qualified type. The retulting type has a union of the qualifiers
222  /// from T and the gc attribute.
223  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
224
225  /// getComplexType - Return the uniqued reference to the type for a complex
226  /// number with the specified element type.
227  QualType getComplexType(QualType T);
228
229  /// getPointerType - Return the uniqued reference to the type for a pointer to
230  /// the specified type.
231  QualType getPointerType(QualType T);
232
233  /// getBlockPointerType - Return the uniqued reference to the type for a block
234  /// of the specified type.
235  QualType getBlockPointerType(QualType T);
236
237  /// getLValueReferenceType - Return the uniqued reference to the type for an
238  /// lvalue reference to the specified type.
239  QualType getLValueReferenceType(QualType T);
240
241  /// getRValueReferenceType - Return the uniqued reference to the type for an
242  /// rvalue reference to the specified type.
243  QualType getRValueReferenceType(QualType T);
244
245  /// getMemberPointerType - Return the uniqued reference to the type for a
246  /// member pointer to the specified type in the specified class. The class
247  /// is a Type because it could be a dependent name.
248  QualType getMemberPointerType(QualType T, const Type *Cls);
249
250  /// getVariableArrayType - Returns a non-unique reference to the type for a
251  /// variable array of the specified element type.
252  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
253                                ArrayType::ArraySizeModifier ASM,
254                                unsigned EltTypeQuals);
255
256  /// getDependentSizedArrayType - Returns a non-unique reference to
257  /// the type for a dependently-sized array of the specified element
258  /// type. FIXME: We will need these to be uniqued, or at least
259  /// comparable, at some point.
260  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
261                                      ArrayType::ArraySizeModifier ASM,
262                                      unsigned EltTypeQuals);
263
264  /// getIncompleteArrayType - Returns a unique reference to the type for a
265  /// incomplete array of the specified element type.
266  QualType getIncompleteArrayType(QualType EltTy,
267                                  ArrayType::ArraySizeModifier ASM,
268                                  unsigned EltTypeQuals);
269
270  /// getConstantArrayType - Return the unique reference to the type for a
271  /// constant array of the specified element type.
272  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
273                                ArrayType::ArraySizeModifier ASM,
274                                unsigned EltTypeQuals);
275
276  /// getVectorType - Return the unique reference to a vector type of
277  /// the specified element type and size. VectorType must be a built-in type.
278  QualType getVectorType(QualType VectorType, unsigned NumElts);
279
280  /// getExtVectorType - Return the unique reference to an extended vector type
281  /// of the specified element type and size.  VectorType must be a built-in
282  /// type.
283  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
284
285  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
286  ///
287  QualType getFunctionNoProtoType(QualType ResultTy);
288
289  /// getFunctionType - Return a normal function type with a typed argument
290  /// list.  isVariadic indicates whether the argument list includes '...'.
291  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
292                           unsigned NumArgs, bool isVariadic,
293                           unsigned TypeQuals);
294
295  /// getTypeDeclType - Return the unique reference to the type for
296  /// the specified type declaration.
297  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
298
299  /// getTypedefType - Return the unique reference to the type for the
300  /// specified typename decl.
301  QualType getTypedefType(TypedefDecl *Decl);
302  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
303
304  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
305                                   IdentifierInfo *Name = 0);
306
307  QualType getTemplateSpecializationType(TemplateName T,
308                                         const TemplateArgument *Args,
309                                         unsigned NumArgs,
310                                         QualType Canon = QualType());
311
312  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
313                                QualType NamedType);
314  QualType getTypenameType(NestedNameSpecifier *NNS,
315                           const IdentifierInfo *Name,
316                           QualType Canon = QualType());
317  QualType getTypenameType(NestedNameSpecifier *NNS,
318                           const TemplateSpecializationType *TemplateId,
319                           QualType Canon = QualType());
320
321  /// getObjCQualifiedInterfaceType - Return a
322  /// ObjCQualifiedInterfaceType type for the given interface decl and
323  /// the conforming protocol list.
324  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
325                                         ObjCProtocolDecl **ProtocolList,
326                                         unsigned NumProtocols);
327
328  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
329  /// given 'id' and conforming protocol list.
330  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
331                                  unsigned NumProtocols);
332
333
334  /// getTypeOfType - GCC extension.
335  QualType getTypeOfExprType(Expr *e);
336  QualType getTypeOfType(QualType t);
337
338  /// getTagDeclType - Return the unique reference to the type for the
339  /// specified TagDecl (struct/union/class/enum) decl.
340  QualType getTagDeclType(TagDecl *Decl);
341
342  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
343  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
344  QualType getSizeType() const;
345
346  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
347  /// returns a type compatible with the type defined in <stddef.h> as defined
348  /// by the target.
349  QualType getWCharType() const { return WCharTy; }
350
351  /// getSignedWCharType - Return the type of "signed wchar_t".
352  /// Used when in C++, as a GCC extension.
353  QualType getSignedWCharType() const;
354
355  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
356  /// Used when in C++, as a GCC extension.
357  QualType getUnsignedWCharType() const;
358
359  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
360  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
361  QualType getPointerDiffType() const;
362
363  // getCFConstantStringType - Return the C structure type used to represent
364  // constant CFStrings.
365  QualType getCFConstantStringType();
366
367  // This setter/getter represents the ObjC type for an NSConstantString.
368  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
369  QualType getObjCConstantStringInterface() const {
370    return ObjCConstantStringType;
371  }
372
373  //// This gets the struct used to keep track of fast enumerations.
374  QualType getObjCFastEnumerationStateType();
375
376  /// getObjCEncodingForType - Emit the ObjC type encoding for the
377  /// given type into \arg S. If \arg NameFields is specified then
378  /// record field names are also encoded.
379  void getObjCEncodingForType(QualType t, std::string &S,
380                              const FieldDecl *Field=0);
381
382  void getLegacyIntegralTypeEncoding(QualType &t) const;
383
384  // Put the string version of type qualifiers into S.
385  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
386                                       std::string &S) const;
387
388  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
389  /// declaration.
390  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
391
392  /// getObjCEncodingForPropertyDecl - Return the encoded type for
393  /// this method declaration. If non-NULL, Container must be either
394  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
395  /// only be NULL when getting encodings for protocol properties.
396  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
397                                      const Decl *Container,
398                                      std::string &S);
399
400  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
401  /// purpose.
402  int getObjCEncodingTypeSize(QualType t);
403
404  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
405  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
406  QualType getObjCIdType() const { return ObjCIdType; }
407  void setObjCIdType(TypedefDecl *Decl);
408
409  void setObjCSelType(TypedefDecl *Decl);
410  QualType getObjCSelType() const { return ObjCSelType; }
411
412  void setObjCProtoType(QualType QT);
413  QualType getObjCProtoType() const { return ObjCProtoType; }
414
415  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
416  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
417  /// struct.
418  QualType getObjCClassType() const { return ObjCClassType; }
419  void setObjCClassType(TypedefDecl *Decl);
420
421  void setBuiltinVaListType(QualType T);
422  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
423
424  QualType getFixedWidthIntType(unsigned Width, bool Signed);
425
426  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
427                                        bool TemplateKeyword,
428                                        TemplateDecl *Template);
429
430  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
431                                        const IdentifierInfo *Name);
432
433private:
434  QualType getFromTargetType(unsigned Type) const;
435
436  //===--------------------------------------------------------------------===//
437  //                         Type Predicates.
438  //===--------------------------------------------------------------------===//
439
440public:
441  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
442  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
443  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
444  /// ID type).
445  bool isObjCObjectPointerType(QualType Ty) const;
446
447  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
448  /// garbage collection attribute.
449  ///
450  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
451
452  /// isObjCNSObjectType - Return true if this is an NSObject object with
453  /// its NSObject attribute set.
454  bool isObjCNSObjectType(QualType Ty) const;
455
456  //===--------------------------------------------------------------------===//
457  //                         Type Sizing and Analysis
458  //===--------------------------------------------------------------------===//
459
460  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
461  /// scalar floating point type.
462  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
463
464  /// getTypeInfo - Get the size and alignment of the specified complete type in
465  /// bits.
466  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
467  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
468    return getTypeInfo(T.getTypePtr());
469  }
470
471  /// getTypeSize - Return the size of the specified type, in bits.  This method
472  /// does not work on incomplete types.
473  uint64_t getTypeSize(QualType T) {
474    return getTypeInfo(T).first;
475  }
476  uint64_t getTypeSize(const Type *T) {
477    return getTypeInfo(T).first;
478  }
479
480  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
481  /// This method does not work on incomplete types.
482  unsigned getTypeAlign(QualType T) {
483    return getTypeInfo(T).second;
484  }
485  unsigned getTypeAlign(const Type *T) {
486    return getTypeInfo(T).second;
487  }
488
489  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
490  /// type for the current target in bits.  This can be different than the ABI
491  /// alignment in cases where it is beneficial for performance to overalign
492  /// a data type.
493  unsigned getPreferredTypeAlign(const Type *T);
494
495  /// getDeclAlignInBytes - Return the alignment of the specified decl
496  /// that should be returned by __alignof().  Note that bitfields do
497  /// not have a valid alignment, so this method will assert on them.
498  unsigned getDeclAlignInBytes(const Decl *D);
499
500  /// getASTRecordLayout - Get or compute information about the layout of the
501  /// specified record (struct/union/class), which indicates its size and field
502  /// position information.
503  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
504
505  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
506  const RecordDecl *addRecordToClass(const ObjCInterfaceDecl *D);
507  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
508                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
509
510  //===--------------------------------------------------------------------===//
511  //                            Type Operators
512  //===--------------------------------------------------------------------===//
513
514  /// getCanonicalType - Return the canonical (structural) type corresponding to
515  /// the specified potentially non-canonical type.  The non-canonical version
516  /// of a type may have many "decorated" versions of types.  Decorators can
517  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
518  /// to be free of any of these, allowing two canonical types to be compared
519  /// for exact equality with a simple pointer comparison.
520  QualType getCanonicalType(QualType T);
521  const Type *getCanonicalType(const Type *T) {
522    return T->getCanonicalTypeInternal().getTypePtr();
523  }
524
525  /// \brief Determine whether the given types are equivalent.
526  bool hasSameType(QualType T1, QualType T2) {
527    return getCanonicalType(T1) == getCanonicalType(T2);
528  }
529
530  /// \brief Determine whether the given types are equivalent after
531  /// cvr-qualifiers have been removed.
532  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
533    T1 = getCanonicalType(T1);
534    T2 = getCanonicalType(T2);
535    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
536  }
537
538  /// \brief Retrieves the "canonical" declaration of the given tag
539  /// declaration.
540  ///
541  /// The canonical declaration for the given tag declaration is
542  /// either the definition of the tag (if it is a complete type) or
543  /// the first declaration of that tag.
544  TagDecl *getCanonicalDecl(TagDecl *Tag) {
545    QualType T = getTagDeclType(Tag);
546    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
547                           ->getDecl());
548  }
549
550  /// \brief Retrieves the "canonical" nested name specifier for a
551  /// given nested name specifier.
552  ///
553  /// The canonical nested name specifier is a nested name specifier
554  /// that uniquely identifies a type or namespace within the type
555  /// system. For example, given:
556  ///
557  /// \code
558  /// namespace N {
559  ///   struct S {
560  ///     template<typename T> struct X { typename T* type; };
561  ///   };
562  /// }
563  ///
564  /// template<typename T> struct Y {
565  ///   typename N::S::X<T>::type member;
566  /// };
567  /// \endcode
568  ///
569  /// Here, the nested-name-specifier for N::S::X<T>:: will be
570  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
571  /// by declarations in the type system and the canonical type for
572  /// the template type parameter 'T' is template-param-0-0.
573  NestedNameSpecifier *
574  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
575
576  /// Type Query functions.  If the type is an instance of the specified class,
577  /// return the Type pointer for the underlying maximally pretty type.  This
578  /// is a member of ASTContext because this may need to do some amount of
579  /// canonicalization, e.g. to move type qualifiers into the element type.
580  const ArrayType *getAsArrayType(QualType T);
581  const ConstantArrayType *getAsConstantArrayType(QualType T) {
582    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
583  }
584  const VariableArrayType *getAsVariableArrayType(QualType T) {
585    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
586  }
587  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
588    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
589  }
590
591  /// getBaseElementType - Returns the innermost element type of a variable
592  /// length array type. For example, will return "int" for int[m][n]
593  QualType getBaseElementType(const VariableArrayType *VAT);
594
595  /// getArrayDecayedType - Return the properly qualified result of decaying the
596  /// specified array type to a pointer.  This operation is non-trivial when
597  /// handling typedefs etc.  The canonical type of "T" must be an array type,
598  /// this returns a pointer to a properly qualified element of the array.
599  ///
600  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
601  QualType getArrayDecayedType(QualType T);
602
603  /// getIntegerTypeOrder - Returns the highest ranked integer type:
604  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
605  /// LHS < RHS, return -1.
606  int getIntegerTypeOrder(QualType LHS, QualType RHS);
607
608  /// getFloatingTypeOrder - Compare the rank of the two specified floating
609  /// point types, ignoring the domain of the type (i.e. 'double' ==
610  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
611  /// LHS < RHS, return -1.
612  int getFloatingTypeOrder(QualType LHS, QualType RHS);
613
614  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
615  /// point or a complex type (based on typeDomain/typeSize).
616  /// 'typeDomain' is a real floating point or complex type.
617  /// 'typeSize' is a real floating point or complex type.
618  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
619                                             QualType typeDomain) const;
620
621private:
622  // Helper for integer ordering
623  unsigned getIntegerRank(Type* T);
624
625public:
626
627  //===--------------------------------------------------------------------===//
628  //                    Type Compatibility Predicates
629  //===--------------------------------------------------------------------===//
630
631  /// Compatibility predicates used to check assignment expressions.
632  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
633  bool typesAreBlockCompatible(QualType lhs, QualType rhs);
634
635  bool isObjCIdType(QualType T) const {
636    return T == ObjCIdType;
637  }
638  bool isObjCIdStructType(QualType T) const {
639    if (!IdStructType) // ObjC isn't enabled
640      return false;
641    return T->getAsStructureType() == IdStructType;
642  }
643  bool isObjCClassType(QualType T) const {
644    return T == ObjCClassType;
645  }
646  bool isObjCClassStructType(QualType T) const {
647    if (!ClassStructType) // ObjC isn't enabled
648      return false;
649    return T->getAsStructureType() == ClassStructType;
650  }
651  bool isObjCSelType(QualType T) const {
652    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
653    return T->getAsStructureType() == SelStructType;
654  }
655
656  // Check the safety of assignment from LHS to RHS
657  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
658                               const ObjCInterfaceType *RHS);
659  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
660
661  // Functions for calculating composite types
662  QualType mergeTypes(QualType, QualType);
663  QualType mergeFunctionTypes(QualType, QualType);
664
665  //===--------------------------------------------------------------------===//
666  //                    Integer Predicates
667  //===--------------------------------------------------------------------===//
668
669  // The width of an integer, as defined in C99 6.2.6.2. This is the number
670  // of bits in an integer type excluding any padding bits.
671  unsigned getIntWidth(QualType T);
672
673  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
674  // unsigned integer type.  This method takes a signed type, and returns the
675  // corresponding unsigned integer type.
676  QualType getCorrespondingUnsignedType(QualType T);
677
678  //===--------------------------------------------------------------------===//
679  //                    Type Iterators.
680  //===--------------------------------------------------------------------===//
681
682  typedef std::vector<Type*>::iterator       type_iterator;
683  typedef std::vector<Type*>::const_iterator const_type_iterator;
684
685  type_iterator types_begin() { return Types.begin(); }
686  type_iterator types_end() { return Types.end(); }
687  const_type_iterator types_begin() const { return Types.begin(); }
688  const_type_iterator types_end() const { return Types.end(); }
689
690  //===--------------------------------------------------------------------===//
691  //                    Serialization
692  //===--------------------------------------------------------------------===//
693
694  void EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const;
695  static ASTContext *ReadASTBitcodeBuffer(llvm::MemoryBuffer &MBuffer,
696                                          FileManager &FMgr);
697
698  void Emit(llvm::Serializer& S) const;
699  static ASTContext *Create(llvm::Deserializer& D);
700
701  //===--------------------------------------------------------------------===//
702  //                    Integer Values
703  //===--------------------------------------------------------------------===//
704
705  /// MakeIntValue - Make an APSInt of the appropriate width and
706  /// signedness for the given \arg Value and integer \arg Type.
707  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
708    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
709    Res = Value;
710    return Res;
711  }
712
713private:
714  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
715  void operator=(const ASTContext&); // DO NOT IMPLEMENT
716
717  void InitBuiltinTypes();
718  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
719
720  // Return the ObjC type encoding for a given type.
721  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
722                                  bool ExpandPointedToStructures,
723                                  bool ExpandStructures,
724                                  const FieldDecl *Field,
725                                  bool OutermostType = false,
726                                  bool EncodingProperty = false);
727
728};
729
730}  // end namespace clang
731
732// operator new and delete aren't allowed inside namespaces.
733// The throw specifications are mandated by the standard.
734/// @brief Placement new for using the ASTContext's allocator.
735///
736/// This placement form of operator new uses the ASTContext's allocator for
737/// obtaining memory. It is a non-throwing new, which means that it returns
738/// null on error. (If that is what the allocator does. The current does, so if
739/// this ever changes, this operator will have to be changed, too.)
740/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
741/// @code
742/// // Default alignment (16)
743/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
744/// // Specific alignment
745/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
746/// @endcode
747/// Please note that you cannot use delete on the pointer; it must be
748/// deallocated using an explicit destructor call followed by
749/// @c Context.Deallocate(Ptr).
750///
751/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
752/// @param C The ASTContext that provides the allocator.
753/// @param Alignment The alignment of the allocated memory (if the underlying
754///                  allocator supports it).
755/// @return The allocated memory. Could be NULL.
756inline void *operator new(size_t Bytes, clang::ASTContext &C,
757                          size_t Alignment = 16) throw () {
758  return C.Allocate(Bytes, Alignment);
759}
760/// @brief Placement delete companion to the new above.
761///
762/// This operator is just a companion to the new above. There is no way of
763/// invoking it directly; see the new operator for more details. This operator
764/// is called implicitly by the compiler if a placement new expression using
765/// the ASTContext throws in the object constructor.
766inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
767              throw () {
768  C.Deallocate(Ptr);
769}
770
771/// This placement form of operator new[] uses the ASTContext's allocator for
772/// obtaining memory. It is a non-throwing new[], which means that it returns
773/// null on error.
774/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
775/// @code
776/// // Default alignment (16)
777/// char *data = new (Context) char[10];
778/// // Specific alignment
779/// char *data = new (Context, 8) char[10];
780/// @endcode
781/// Please note that you cannot use delete on the pointer; it must be
782/// deallocated using an explicit destructor call followed by
783/// @c Context.Deallocate(Ptr).
784///
785/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
786/// @param C The ASTContext that provides the allocator.
787/// @param Alignment The alignment of the allocated memory (if the underlying
788///                  allocator supports it).
789/// @return The allocated memory. Could be NULL.
790inline void *operator new[](size_t Bytes, clang::ASTContext& C,
791                            size_t Alignment = 16) throw () {
792  return C.Allocate(Bytes, Alignment);
793}
794
795/// @brief Placement delete[] companion to the new[] above.
796///
797/// This operator is just a companion to the new[] above. There is no way of
798/// invoking it directly; see the new[] operator for more details. This operator
799/// is called implicitly by the compiler if a placement new[] expression using
800/// the ASTContext throws in the object constructor.
801inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
802  C.Deallocate(Ptr);
803}
804
805#endif
806