ASTContext.h revision 4a2023f5014e82389d5980d307b89c545dbbac81
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Attr.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/AST/CanonicalType.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/Allocator.h"
33#include <vector>
34
35namespace llvm {
36  struct fltSemantics;
37}
38
39namespace clang {
40  class FileManager;
41  class ASTRecordLayout;
42  class BlockExpr;
43  class CharUnits;
44  class Diagnostic;
45  class Expr;
46  class ExternalASTSource;
47  class IdentifierTable;
48  class SelectorTable;
49  class SourceManager;
50  class TargetInfo;
51  // Decls
52  class DeclContext;
53  class CXXMethodDecl;
54  class CXXRecordDecl;
55  class Decl;
56  class FieldDecl;
57  class ObjCIvarDecl;
58  class ObjCIvarRefExpr;
59  class ObjCPropertyDecl;
60  class RecordDecl;
61  class StoredDeclsMap;
62  class TagDecl;
63  class TemplateTypeParmDecl;
64  class TranslationUnitDecl;
65  class TypeDecl;
66  class TypedefDecl;
67  class UsingDecl;
68  class UsingShadowDecl;
69  class UnresolvedSetIterator;
70
71  namespace Builtin { class Context; }
72
73/// \brief A vector of C++ member functions that is optimized for
74/// storing a single method.
75class CXXMethodVector {
76  /// \brief Storage for the vector.
77  ///
78  /// When the low bit is zero, this is a const CXXMethodDecl *. When the
79  /// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
80  mutable uintptr_t Storage;
81
82  typedef std::vector<const CXXMethodDecl *> vector_type;
83
84public:
85  CXXMethodVector() : Storage(0) { }
86
87  typedef const CXXMethodDecl **iterator;
88  iterator begin() const;
89  iterator end() const;
90
91  void push_back(const CXXMethodDecl *Method);
92  void Destroy();
93};
94
95/// ASTContext - This class holds long-lived AST nodes (such as types and
96/// decls) that can be referred to throughout the semantic analysis of a file.
97class ASTContext {
98  std::vector<Type*> Types;
99  llvm::FoldingSet<ExtQuals> ExtQualNodes;
100  llvm::FoldingSet<ComplexType> ComplexTypes;
101  llvm::FoldingSet<PointerType> PointerTypes;
102  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
103  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
104  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
105  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
106  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
107  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
108  std::vector<VariableArrayType*> VariableArrayTypes;
109  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
110  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
111  llvm::FoldingSet<VectorType> VectorTypes;
112  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
113  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
114  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
115  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
116  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
117  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
118  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
119  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
120  llvm::FoldingSet<DependentNameType> DependentNameTypes;
121  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
122  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
123  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
124
125  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
126  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
127
128  /// \brief The set of nested name specifiers.
129  ///
130  /// This set is managed by the NestedNameSpecifier class.
131  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
132  NestedNameSpecifier *GlobalNestedNameSpecifier;
133  friend class NestedNameSpecifier;
134
135  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
136  ///  This is lazily created.  This is intentionally not serialized.
137  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
138  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
139
140  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
141  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
142
143  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
144  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
145
146  /// BuiltinVaListType - built-in va list type.
147  /// This is initially null and set by Sema::LazilyCreateBuiltin when
148  /// a builtin that takes a valist is encountered.
149  QualType BuiltinVaListType;
150
151  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
152  QualType ObjCIdTypedefType;
153
154  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
155  QualType ObjCSelTypedefType;
156
157  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
158  QualType ObjCProtoType;
159  const RecordType *ProtoStructType;
160
161  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
162  QualType ObjCClassTypedefType;
163
164  QualType ObjCConstantStringType;
165  RecordDecl *CFConstantStringTypeDecl;
166
167  RecordDecl *ObjCFastEnumerationStateTypeDecl;
168
169  /// \brief The type for the C FILE type.
170  TypeDecl *FILEDecl;
171
172  /// \brief The type for the C jmp_buf type.
173  TypeDecl *jmp_bufDecl;
174
175  /// \brief The type for the C sigjmp_buf type.
176  TypeDecl *sigjmp_bufDecl;
177
178  /// \brief Type for the Block descriptor for Blocks CodeGen.
179  RecordDecl *BlockDescriptorType;
180
181  /// \brief Type for the Block descriptor for Blocks CodeGen.
182  RecordDecl *BlockDescriptorExtendedType;
183
184  /// \brief Keeps track of all declaration attributes.
185  ///
186  /// Since so few decls have attrs, we keep them in a hash map instead of
187  /// wasting space in the Decl class.
188  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
189
190  /// \brief Keeps track of the static data member templates from which
191  /// static data members of class template specializations were instantiated.
192  ///
193  /// This data structure stores the mapping from instantiations of static
194  /// data members to the static data member representations within the
195  /// class template from which they were instantiated along with the kind
196  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
197  ///
198  /// Given the following example:
199  ///
200  /// \code
201  /// template<typename T>
202  /// struct X {
203  ///   static T value;
204  /// };
205  ///
206  /// template<typename T>
207  ///   T X<T>::value = T(17);
208  ///
209  /// int *x = &X<int>::value;
210  /// \endcode
211  ///
212  /// This mapping will contain an entry that maps from the VarDecl for
213  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
214  /// class template X) and will be marked TSK_ImplicitInstantiation.
215  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
216    InstantiatedFromStaticDataMember;
217
218  /// \brief Keeps track of the declaration from which a UsingDecl was
219  /// created during instantiation.  The source declaration is always
220  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
221  /// UnresolvedUsingTypenameDecl.
222  ///
223  /// For example:
224  /// \code
225  /// template<typename T>
226  /// struct A {
227  ///   void f();
228  /// };
229  ///
230  /// template<typename T>
231  /// struct B : A<T> {
232  ///   using A<T>::f;
233  /// };
234  ///
235  /// template struct B<int>;
236  /// \endcode
237  ///
238  /// This mapping will contain an entry that maps from the UsingDecl in
239  /// B<int> to the UnresolvedUsingDecl in B<T>.
240  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
241
242  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
243    InstantiatedFromUsingShadowDecl;
244
245  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
246
247  /// \brief Mapping that stores the methods overridden by a given C++
248  /// member function.
249  ///
250  /// Since most C++ member functions aren't virtual and therefore
251  /// don't override anything, we store the overridden functions in
252  /// this map on the side rather than within the CXXMethodDecl structure.
253  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
254
255  TranslationUnitDecl *TUDecl;
256
257  /// SourceMgr - The associated SourceManager object.
258  SourceManager &SourceMgr;
259
260  /// LangOpts - The language options used to create the AST associated with
261  ///  this ASTContext object.
262  LangOptions LangOpts;
263
264  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
265  bool FreeMemory;
266  llvm::MallocAllocator MallocAlloc;
267  llvm::BumpPtrAllocator BumpAlloc;
268
269  /// \brief Allocator for partial diagnostics.
270  PartialDiagnostic::StorageAllocator DiagAllocator;
271
272public:
273  const TargetInfo &Target;
274  IdentifierTable &Idents;
275  SelectorTable &Selectors;
276  Builtin::Context &BuiltinInfo;
277  DeclarationNameTable DeclarationNames;
278  llvm::OwningPtr<ExternalASTSource> ExternalSource;
279  clang::PrintingPolicy PrintingPolicy;
280
281  // Typedefs which may be provided defining the structure of Objective-C
282  // pseudo-builtins
283  QualType ObjCIdRedefinitionType;
284  QualType ObjCClassRedefinitionType;
285  QualType ObjCSelRedefinitionType;
286
287  SourceManager& getSourceManager() { return SourceMgr; }
288  const SourceManager& getSourceManager() const { return SourceMgr; }
289  void *Allocate(unsigned Size, unsigned Align = 8) {
290    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
291                        BumpAlloc.Allocate(Size, Align);
292  }
293  void Deallocate(void *Ptr) {
294    if (FreeMemory)
295      MallocAlloc.Deallocate(Ptr);
296  }
297
298  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
299    return DiagAllocator;
300  }
301
302  const LangOptions& getLangOptions() const { return LangOpts; }
303
304  FullSourceLoc getFullLoc(SourceLocation Loc) const {
305    return FullSourceLoc(Loc,SourceMgr);
306  }
307
308  /// \brief Retrieve the attributes for the given declaration.
309  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
310
311  /// \brief Erase the attributes corresponding to the given declaration.
312  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
313
314  /// \brief If this variable is an instantiated static data member of a
315  /// class template specialization, returns the templated static data member
316  /// from which it was instantiated.
317  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
318                                                           const VarDecl *Var);
319
320  /// \brief Note that the static data member \p Inst is an instantiation of
321  /// the static data member template \p Tmpl of a class template.
322  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
323                                           TemplateSpecializationKind TSK);
324
325  /// \brief If the given using decl is an instantiation of a
326  /// (possibly unresolved) using decl from a template instantiation,
327  /// return it.
328  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
329
330  /// \brief Remember that the using decl \p Inst is an instantiation
331  /// of the using decl \p Pattern of a class template.
332  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
333
334  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
335                                          UsingShadowDecl *Pattern);
336  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
337
338  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
339
340  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
341
342  // Access to the set of methods overridden by the given C++ method.
343  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
344  overridden_cxx_method_iterator
345  overridden_methods_begin(const CXXMethodDecl *Method) const;
346
347  overridden_cxx_method_iterator
348  overridden_methods_end(const CXXMethodDecl *Method) const;
349
350  /// \brief Note that the given C++ \p Method overrides the given \p
351  /// Overridden method.
352  void addOverriddenMethod(const CXXMethodDecl *Method,
353                           const CXXMethodDecl *Overridden);
354
355  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
356
357
358  // Builtin Types.
359  CanQualType VoidTy;
360  CanQualType BoolTy;
361  CanQualType CharTy;
362  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
363  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
364  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
365  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
366  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
367  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
368  CanQualType FloatTy, DoubleTy, LongDoubleTy;
369  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
370  CanQualType VoidPtrTy, NullPtrTy;
371  CanQualType OverloadTy;
372  CanQualType DependentTy;
373  CanQualType UndeducedAutoTy;
374  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
375
376  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
377             IdentifierTable &idents, SelectorTable &sels,
378             Builtin::Context &builtins,
379             bool FreeMemory = true, unsigned size_reserve=0);
380
381  ~ASTContext();
382
383  /// \brief Attach an external AST source to the AST context.
384  ///
385  /// The external AST source provides the ability to load parts of
386  /// the abstract syntax tree as needed from some external storage,
387  /// e.g., a precompiled header.
388  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
389
390  /// \brief Retrieve a pointer to the external AST source associated
391  /// with this AST context, if any.
392  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
393
394  void PrintStats() const;
395  const std::vector<Type*>& getTypes() const { return Types; }
396
397  //===--------------------------------------------------------------------===//
398  //                           Type Constructors
399  //===--------------------------------------------------------------------===//
400
401private:
402  /// getExtQualType - Return a type with extended qualifiers.
403  QualType getExtQualType(const Type *Base, Qualifiers Quals);
404
405  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
406
407public:
408  /// getAddSpaceQualType - Return the uniqued reference to the type for an
409  /// address space qualified type with the specified type and address space.
410  /// The resulting type has a union of the qualifiers from T and the address
411  /// space. If T already has an address space specifier, it is silently
412  /// replaced.
413  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
414
415  /// getObjCGCQualType - Returns the uniqued reference to the type for an
416  /// objc gc qualified type. The retulting type has a union of the qualifiers
417  /// from T and the gc attribute.
418  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
419
420  /// getRestrictType - Returns the uniqued reference to the type for a
421  /// 'restrict' qualified type.  The resulting type has a union of the
422  /// qualifiers from T and 'restrict'.
423  QualType getRestrictType(QualType T) {
424    return T.withFastQualifiers(Qualifiers::Restrict);
425  }
426
427  /// getVolatileType - Returns the uniqued reference to the type for a
428  /// 'volatile' qualified type.  The resulting type has a union of the
429  /// qualifiers from T and 'volatile'.
430  QualType getVolatileType(QualType T);
431
432  /// getConstType - Returns the uniqued reference to the type for a
433  /// 'const' qualified type.  The resulting type has a union of the
434  /// qualifiers from T and 'const'.
435  ///
436  /// It can be reasonably expected that this will always be
437  /// equivalent to calling T.withConst().
438  QualType getConstType(QualType T) { return T.withConst(); }
439
440  /// getNoReturnType - Add or remove the noreturn attribute to the given type
441  /// which must be a FunctionType or a pointer to an allowable type or a
442  /// BlockPointer.
443  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
444
445  /// getCallConvType - Adds the specified calling convention attribute to
446  /// the given type, which must be a FunctionType or a pointer to an
447  /// allowable type.
448  QualType getCallConvType(QualType T, CallingConv CallConv);
449
450  /// getRegParmType - Sets the specified regparm attribute to
451  /// the given type, which must be a FunctionType or a pointer to an
452  /// allowable type.
453  QualType getRegParmType(QualType T, unsigned RegParm);
454
455  /// getComplexType - Return the uniqued reference to the type for a complex
456  /// number with the specified element type.
457  QualType getComplexType(QualType T);
458  CanQualType getComplexType(CanQualType T) {
459    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
460  }
461
462  /// getPointerType - Return the uniqued reference to the type for a pointer to
463  /// the specified type.
464  QualType getPointerType(QualType T);
465  CanQualType getPointerType(CanQualType T) {
466    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
467  }
468
469  /// getBlockPointerType - Return the uniqued reference to the type for a block
470  /// of the specified type.
471  QualType getBlockPointerType(QualType T);
472
473  /// This gets the struct used to keep track of the descriptor for pointer to
474  /// blocks.
475  QualType getBlockDescriptorType();
476
477  // Set the type for a Block descriptor type.
478  void setBlockDescriptorType(QualType T);
479  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
480  QualType getRawBlockdescriptorType() {
481    if (BlockDescriptorType)
482      return getTagDeclType(BlockDescriptorType);
483    return QualType();
484  }
485
486  /// This gets the struct used to keep track of the extended descriptor for
487  /// pointer to blocks.
488  QualType getBlockDescriptorExtendedType();
489
490  // Set the type for a Block descriptor extended type.
491  void setBlockDescriptorExtendedType(QualType T);
492  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
493  /// built.
494  QualType getRawBlockdescriptorExtendedType() {
495    if (BlockDescriptorExtendedType)
496      return getTagDeclType(BlockDescriptorExtendedType);
497    return QualType();
498  }
499
500  /// This gets the struct used to keep track of pointer to blocks, complete
501  /// with captured variables.
502  QualType getBlockParmType(bool BlockHasCopyDispose,
503                            llvm::SmallVector<const Expr *, 8> &BDRDs);
504
505  /// This builds the struct used for __block variables.
506  QualType BuildByRefType(const char *DeclName, QualType Ty);
507
508  /// Returns true iff we need copy/dispose helpers for the given type.
509  bool BlockRequiresCopying(QualType Ty);
510
511  /// getLValueReferenceType - Return the uniqued reference to the type for an
512  /// lvalue reference to the specified type.
513  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
514
515  /// getRValueReferenceType - Return the uniqued reference to the type for an
516  /// rvalue reference to the specified type.
517  QualType getRValueReferenceType(QualType T);
518
519  /// getMemberPointerType - Return the uniqued reference to the type for a
520  /// member pointer to the specified type in the specified class. The class
521  /// is a Type because it could be a dependent name.
522  QualType getMemberPointerType(QualType T, const Type *Cls);
523
524  /// getVariableArrayType - Returns a non-unique reference to the type for a
525  /// variable array of the specified element type.
526  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
527                                ArrayType::ArraySizeModifier ASM,
528                                unsigned EltTypeQuals,
529                                SourceRange Brackets);
530
531  /// getDependentSizedArrayType - Returns a non-unique reference to
532  /// the type for a dependently-sized array of the specified element
533  /// type. FIXME: We will need these to be uniqued, or at least
534  /// comparable, at some point.
535  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
536                                      ArrayType::ArraySizeModifier ASM,
537                                      unsigned EltTypeQuals,
538                                      SourceRange Brackets);
539
540  /// getIncompleteArrayType - Returns a unique reference to the type for a
541  /// incomplete array of the specified element type.
542  QualType getIncompleteArrayType(QualType EltTy,
543                                  ArrayType::ArraySizeModifier ASM,
544                                  unsigned EltTypeQuals);
545
546  /// getConstantArrayType - Return the unique reference to the type for a
547  /// constant array of the specified element type.
548  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
549                                ArrayType::ArraySizeModifier ASM,
550                                unsigned EltTypeQuals);
551
552  /// getVectorType - Return the unique reference to a vector type of
553  /// the specified element type and size. VectorType must be a built-in type.
554  QualType getVectorType(QualType VectorType, unsigned NumElts,
555                         bool AltiVec, bool IsPixel);
556
557  /// getExtVectorType - Return the unique reference to an extended vector type
558  /// of the specified element type and size.  VectorType must be a built-in
559  /// type.
560  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
561
562  /// getDependentSizedExtVectorType - Returns a non-unique reference to
563  /// the type for a dependently-sized vector of the specified element
564  /// type. FIXME: We will need these to be uniqued, or at least
565  /// comparable, at some point.
566  QualType getDependentSizedExtVectorType(QualType VectorType,
567                                          Expr *SizeExpr,
568                                          SourceLocation AttrLoc);
569
570  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
571  ///
572  QualType getFunctionNoProtoType(QualType ResultTy,
573                                  const FunctionType::ExtInfo &Info);
574
575  QualType getFunctionNoProtoType(QualType ResultTy) {
576    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
577  }
578
579  /// getFunctionType - Return a normal function type with a typed argument
580  /// list.  isVariadic indicates whether the argument list includes '...'.
581  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
582                           unsigned NumArgs, bool isVariadic,
583                           unsigned TypeQuals, bool hasExceptionSpec,
584                           bool hasAnyExceptionSpec,
585                           unsigned NumExs, const QualType *ExArray,
586                           const FunctionType::ExtInfo &Info);
587
588  /// getTypeDeclType - Return the unique reference to the type for
589  /// the specified type declaration.
590  QualType getTypeDeclType(const TypeDecl *Decl,
591                           const TypeDecl *PrevDecl = 0) {
592    assert(Decl && "Passed null for Decl param");
593    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
594
595    if (PrevDecl) {
596      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
597      Decl->TypeForDecl = PrevDecl->TypeForDecl;
598      return QualType(PrevDecl->TypeForDecl, 0);
599    }
600
601    return getTypeDeclTypeSlow(Decl);
602  }
603
604  /// getTypedefType - Return the unique reference to the type for the
605  /// specified typename decl.
606  QualType getTypedefType(const TypedefDecl *Decl);
607
608  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
609
610  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
611                                        QualType Replacement);
612
613  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
614                                   bool ParameterPack,
615                                   IdentifierInfo *Name = 0);
616
617  QualType getTemplateSpecializationType(TemplateName T,
618                                         const TemplateArgument *Args,
619                                         unsigned NumArgs,
620                                         QualType Canon = QualType());
621
622  QualType getTemplateSpecializationType(TemplateName T,
623                                         const TemplateArgumentListInfo &Args,
624                                         QualType Canon = QualType());
625
626  TypeSourceInfo *
627  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
628                                    const TemplateArgumentListInfo &Args,
629                                    QualType Canon = QualType());
630
631  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
632                                QualType NamedType);
633  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
634                                NestedNameSpecifier *NNS,
635                                const IdentifierInfo *Name,
636                                QualType Canon = QualType());
637  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
638                                NestedNameSpecifier *NNS,
639                                const TemplateSpecializationType *TemplateId,
640                                QualType Canon = QualType());
641  QualType getElaboratedType(QualType UnderlyingType,
642                             ElaboratedType::TagKind Tag);
643
644  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
645                                ObjCProtocolDecl **Protocols = 0,
646                                unsigned NumProtocols = 0);
647
648  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
649  /// given interface decl and the conforming protocol list.
650  QualType getObjCObjectPointerType(QualType OIT,
651                                    ObjCProtocolDecl **ProtocolList = 0,
652                                    unsigned NumProtocols = 0,
653                                    unsigned Quals = 0);
654
655  /// getTypeOfType - GCC extension.
656  QualType getTypeOfExprType(Expr *e);
657  QualType getTypeOfType(QualType t);
658
659  /// getDecltypeType - C++0x decltype.
660  QualType getDecltypeType(Expr *e);
661
662  /// getTagDeclType - Return the unique reference to the type for the
663  /// specified TagDecl (struct/union/class/enum) decl.
664  QualType getTagDeclType(const TagDecl *Decl);
665
666  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
667  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
668  CanQualType getSizeType() const;
669
670  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
671  /// returns a type compatible with the type defined in <stddef.h> as defined
672  /// by the target.
673  QualType getWCharType() const { return WCharTy; }
674
675  /// getSignedWCharType - Return the type of "signed wchar_t".
676  /// Used when in C++, as a GCC extension.
677  QualType getSignedWCharType() const;
678
679  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
680  /// Used when in C++, as a GCC extension.
681  QualType getUnsignedWCharType() const;
682
683  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
684  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
685  QualType getPointerDiffType() const;
686
687  // getCFConstantStringType - Return the C structure type used to represent
688  // constant CFStrings.
689  QualType getCFConstantStringType();
690
691  /// Get the structure type used to representation CFStrings, or NULL
692  /// if it hasn't yet been built.
693  QualType getRawCFConstantStringType() {
694    if (CFConstantStringTypeDecl)
695      return getTagDeclType(CFConstantStringTypeDecl);
696    return QualType();
697  }
698  void setCFConstantStringType(QualType T);
699
700  // This setter/getter represents the ObjC type for an NSConstantString.
701  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
702  QualType getObjCConstantStringInterface() const {
703    return ObjCConstantStringType;
704  }
705
706  //// This gets the struct used to keep track of fast enumerations.
707  QualType getObjCFastEnumerationStateType();
708
709  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
710  /// been built.
711  QualType getRawObjCFastEnumerationStateType() {
712    if (ObjCFastEnumerationStateTypeDecl)
713      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
714    return QualType();
715  }
716
717  void setObjCFastEnumerationStateType(QualType T);
718
719  /// \brief Set the type for the C FILE type.
720  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
721
722  /// \brief Retrieve the C FILE type.
723  QualType getFILEType() {
724    if (FILEDecl)
725      return getTypeDeclType(FILEDecl);
726    return QualType();
727  }
728
729  /// \brief Set the type for the C jmp_buf type.
730  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
731    this->jmp_bufDecl = jmp_bufDecl;
732  }
733
734  /// \brief Retrieve the C jmp_buf type.
735  QualType getjmp_bufType() {
736    if (jmp_bufDecl)
737      return getTypeDeclType(jmp_bufDecl);
738    return QualType();
739  }
740
741  /// \brief Set the type for the C sigjmp_buf type.
742  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
743    this->sigjmp_bufDecl = sigjmp_bufDecl;
744  }
745
746  /// \brief Retrieve the C sigjmp_buf type.
747  QualType getsigjmp_bufType() {
748    if (sigjmp_bufDecl)
749      return getTypeDeclType(sigjmp_bufDecl);
750    return QualType();
751  }
752
753  /// getObjCEncodingForType - Emit the ObjC type encoding for the
754  /// given type into \arg S. If \arg NameFields is specified then
755  /// record field names are also encoded.
756  void getObjCEncodingForType(QualType t, std::string &S,
757                              const FieldDecl *Field=0);
758
759  void getLegacyIntegralTypeEncoding(QualType &t) const;
760
761  // Put the string version of type qualifiers into S.
762  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
763                                       std::string &S) const;
764
765  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
766  /// declaration.
767  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
768
769  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
770  /// declaration.
771  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
772
773  /// getObjCEncodingForPropertyDecl - Return the encoded type for
774  /// this method declaration. If non-NULL, Container must be either
775  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
776  /// only be NULL when getting encodings for protocol properties.
777  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
778                                      const Decl *Container,
779                                      std::string &S);
780
781  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
782                                      ObjCProtocolDecl *rProto);
783
784  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
785  /// purpose in characters.
786  CharUnits getObjCEncodingTypeSize(QualType t);
787
788  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
789  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
790  QualType getObjCIdType() const { return ObjCIdTypedefType; }
791  void setObjCIdType(QualType T);
792
793  void setObjCSelType(QualType T);
794  QualType getObjCSelType() const { return ObjCSelTypedefType; }
795
796  void setObjCProtoType(QualType QT);
797  QualType getObjCProtoType() const { return ObjCProtoType; }
798
799  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
800  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
801  /// struct.
802  QualType getObjCClassType() const { return ObjCClassTypedefType; }
803  void setObjCClassType(QualType T);
804
805  void setBuiltinVaListType(QualType T);
806  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
807
808  /// getCVRQualifiedType - Returns a type with additional const,
809  /// volatile, or restrict qualifiers.
810  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
811    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
812  }
813
814  /// getQualifiedType - Returns a type with additional qualifiers.
815  QualType getQualifiedType(QualType T, Qualifiers Qs) {
816    if (!Qs.hasNonFastQualifiers())
817      return T.withFastQualifiers(Qs.getFastQualifiers());
818    QualifierCollector Qc(Qs);
819    const Type *Ptr = Qc.strip(T);
820    return getExtQualType(Ptr, Qc);
821  }
822
823  /// getQualifiedType - Returns a type with additional qualifiers.
824  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
825    if (!Qs.hasNonFastQualifiers())
826      return QualType(T, Qs.getFastQualifiers());
827    return getExtQualType(T, Qs);
828  }
829
830  DeclarationName getNameForTemplate(TemplateName Name);
831
832  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
833                                         UnresolvedSetIterator End);
834
835  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
836                                        bool TemplateKeyword,
837                                        TemplateDecl *Template);
838
839  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
840                                        const IdentifierInfo *Name);
841  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
842                                        OverloadedOperatorKind Operator);
843
844  enum GetBuiltinTypeError {
845    GE_None,              //< No error
846    GE_Missing_stdio,     //< Missing a type from <stdio.h>
847    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
848  };
849
850  /// GetBuiltinType - Return the type for the specified builtin.
851  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
852
853private:
854  CanQualType getFromTargetType(unsigned Type) const;
855
856  //===--------------------------------------------------------------------===//
857  //                         Type Predicates.
858  //===--------------------------------------------------------------------===//
859
860public:
861  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
862  /// garbage collection attribute.
863  ///
864  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
865
866  /// isObjCNSObjectType - Return true if this is an NSObject object with
867  /// its NSObject attribute set.
868  bool isObjCNSObjectType(QualType Ty) const;
869
870  //===--------------------------------------------------------------------===//
871  //                         Type Sizing and Analysis
872  //===--------------------------------------------------------------------===//
873
874  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
875  /// scalar floating point type.
876  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
877
878  /// getTypeInfo - Get the size and alignment of the specified complete type in
879  /// bits.
880  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
881  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
882    return getTypeInfo(T.getTypePtr());
883  }
884
885  /// getTypeSize - Return the size of the specified type, in bits.  This method
886  /// does not work on incomplete types.
887  uint64_t getTypeSize(QualType T) {
888    return getTypeInfo(T).first;
889  }
890  uint64_t getTypeSize(const Type *T) {
891    return getTypeInfo(T).first;
892  }
893
894  /// getCharWidth - Return the size of the character type, in bits
895  uint64_t getCharWidth() {
896    return getTypeSize(CharTy);
897  }
898
899  /// getTypeSizeInChars - Return the size of the specified type, in characters.
900  /// This method does not work on incomplete types.
901  CharUnits getTypeSizeInChars(QualType T);
902  CharUnits getTypeSizeInChars(const Type *T);
903
904  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
905  /// This method does not work on incomplete types.
906  unsigned getTypeAlign(QualType T) {
907    return getTypeInfo(T).second;
908  }
909  unsigned getTypeAlign(const Type *T) {
910    return getTypeInfo(T).second;
911  }
912
913  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
914  /// characters. This method does not work on incomplete types.
915  CharUnits getTypeAlignInChars(QualType T);
916  CharUnits getTypeAlignInChars(const Type *T);
917
918  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
919  /// type for the current target in bits.  This can be different than the ABI
920  /// alignment in cases where it is beneficial for performance to overalign
921  /// a data type.
922  unsigned getPreferredTypeAlign(const Type *T);
923
924  /// getDeclAlign - Return a conservative estimate of the alignment of
925  /// the specified decl.  Note that bitfields do not have a valid alignment, so
926  /// this method will assert on them.
927  /// If @p RefAsPointee, references are treated like their underlying type
928  /// (for alignof), else they're treated like pointers (for CodeGen).
929  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
930
931  /// getASTRecordLayout - Get or compute information about the layout of the
932  /// specified record (struct/union/class), which indicates its size and field
933  /// position information.
934  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
935
936  /// getASTObjCInterfaceLayout - Get or compute information about the
937  /// layout of the specified Objective-C interface.
938  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
939
940  /// getASTObjCImplementationLayout - Get or compute information about
941  /// the layout of the specified Objective-C implementation. This may
942  /// differ from the interface if synthesized ivars are present.
943  const ASTRecordLayout &
944  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
945
946  /// getKeyFunction - Get the key function for the given record decl.
947  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
948  ///
949  /// ...the first non-pure virtual function that is not inline at the point
950  /// of class definition.
951  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
952
953  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
954                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
955
956  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
957                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
958  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
959                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
960  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
961  void CollectInheritedProtocols(const Decl *CDecl,
962                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
963
964  //===--------------------------------------------------------------------===//
965  //                            Type Operators
966  //===--------------------------------------------------------------------===//
967
968  /// getCanonicalType - Return the canonical (structural) type corresponding to
969  /// the specified potentially non-canonical type.  The non-canonical version
970  /// of a type may have many "decorated" versions of types.  Decorators can
971  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
972  /// to be free of any of these, allowing two canonical types to be compared
973  /// for exact equality with a simple pointer comparison.
974  CanQualType getCanonicalType(QualType T);
975  const Type *getCanonicalType(const Type *T) {
976    return T->getCanonicalTypeInternal().getTypePtr();
977  }
978
979  /// getCanonicalParamType - Return the canonical parameter type
980  /// corresponding to the specific potentially non-canonical one.
981  /// Qualifiers are stripped off, functions are turned into function
982  /// pointers, and arrays decay one level into pointers.
983  CanQualType getCanonicalParamType(QualType T);
984
985  /// \brief Determine whether the given types are equivalent.
986  bool hasSameType(QualType T1, QualType T2) {
987    return getCanonicalType(T1) == getCanonicalType(T2);
988  }
989
990  /// \brief Returns this type as a completely-unqualified array type,
991  /// capturing the qualifiers in Quals. This will remove the minimal amount of
992  /// sugaring from the types, similar to the behavior of
993  /// QualType::getUnqualifiedType().
994  ///
995  /// \param T is the qualified type, which may be an ArrayType
996  ///
997  /// \param Quals will receive the full set of qualifiers that were
998  /// applied to the array.
999  ///
1000  /// \returns if this is an array type, the completely unqualified array type
1001  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1002  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1003
1004  /// \brief Determine whether the given types are equivalent after
1005  /// cvr-qualifiers have been removed.
1006  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1007    CanQualType CT1 = getCanonicalType(T1);
1008    CanQualType CT2 = getCanonicalType(T2);
1009
1010    Qualifiers Quals;
1011    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1012    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1013    return UnqualT1 == UnqualT2;
1014  }
1015
1016  /// \brief Retrieves the "canonical" declaration of
1017
1018  /// \brief Retrieves the "canonical" nested name specifier for a
1019  /// given nested name specifier.
1020  ///
1021  /// The canonical nested name specifier is a nested name specifier
1022  /// that uniquely identifies a type or namespace within the type
1023  /// system. For example, given:
1024  ///
1025  /// \code
1026  /// namespace N {
1027  ///   struct S {
1028  ///     template<typename T> struct X { typename T* type; };
1029  ///   };
1030  /// }
1031  ///
1032  /// template<typename T> struct Y {
1033  ///   typename N::S::X<T>::type member;
1034  /// };
1035  /// \endcode
1036  ///
1037  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1038  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1039  /// by declarations in the type system and the canonical type for
1040  /// the template type parameter 'T' is template-param-0-0.
1041  NestedNameSpecifier *
1042  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1043
1044  /// \brief Retrieves the canonical representation of the given
1045  /// calling convention.
1046  CallingConv getCanonicalCallConv(CallingConv CC) {
1047    if (CC == CC_C)
1048      return CC_Default;
1049    return CC;
1050  }
1051
1052  /// \brief Determines whether two calling conventions name the same
1053  /// calling convention.
1054  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1055    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1056  }
1057
1058  /// \brief Retrieves the "canonical" template name that refers to a
1059  /// given template.
1060  ///
1061  /// The canonical template name is the simplest expression that can
1062  /// be used to refer to a given template. For most templates, this
1063  /// expression is just the template declaration itself. For example,
1064  /// the template std::vector can be referred to via a variety of
1065  /// names---std::vector, ::std::vector, vector (if vector is in
1066  /// scope), etc.---but all of these names map down to the same
1067  /// TemplateDecl, which is used to form the canonical template name.
1068  ///
1069  /// Dependent template names are more interesting. Here, the
1070  /// template name could be something like T::template apply or
1071  /// std::allocator<T>::template rebind, where the nested name
1072  /// specifier itself is dependent. In this case, the canonical
1073  /// template name uses the shortest form of the dependent
1074  /// nested-name-specifier, which itself contains all canonical
1075  /// types, values, and templates.
1076  TemplateName getCanonicalTemplateName(TemplateName Name);
1077
1078  /// \brief Determine whether the given template names refer to the same
1079  /// template.
1080  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1081
1082  /// \brief Retrieve the "canonical" template argument.
1083  ///
1084  /// The canonical template argument is the simplest template argument
1085  /// (which may be a type, value, expression, or declaration) that
1086  /// expresses the value of the argument.
1087  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1088
1089  /// Type Query functions.  If the type is an instance of the specified class,
1090  /// return the Type pointer for the underlying maximally pretty type.  This
1091  /// is a member of ASTContext because this may need to do some amount of
1092  /// canonicalization, e.g. to move type qualifiers into the element type.
1093  const ArrayType *getAsArrayType(QualType T);
1094  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1095    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1096  }
1097  const VariableArrayType *getAsVariableArrayType(QualType T) {
1098    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1099  }
1100  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1101    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1102  }
1103  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1104    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1105  }
1106
1107  /// getBaseElementType - Returns the innermost element type of an array type.
1108  /// For example, will return "int" for int[m][n]
1109  QualType getBaseElementType(const ArrayType *VAT);
1110
1111  /// getBaseElementType - Returns the innermost element type of a type
1112  /// (which needn't actually be an array type).
1113  QualType getBaseElementType(QualType QT);
1114
1115  /// getConstantArrayElementCount - Returns number of constant array elements.
1116  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1117
1118  /// getArrayDecayedType - Return the properly qualified result of decaying the
1119  /// specified array type to a pointer.  This operation is non-trivial when
1120  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1121  /// this returns a pointer to a properly qualified element of the array.
1122  ///
1123  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1124  QualType getArrayDecayedType(QualType T);
1125
1126  /// getPromotedIntegerType - Returns the type that Promotable will
1127  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1128  /// integer type.
1129  QualType getPromotedIntegerType(QualType PromotableType);
1130
1131  /// \brief Whether this is a promotable bitfield reference according
1132  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1133  ///
1134  /// \returns the type this bit-field will promote to, or NULL if no
1135  /// promotion occurs.
1136  QualType isPromotableBitField(Expr *E);
1137
1138  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1139  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1140  /// LHS < RHS, return -1.
1141  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1142
1143  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1144  /// point types, ignoring the domain of the type (i.e. 'double' ==
1145  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1146  /// LHS < RHS, return -1.
1147  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1148
1149  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1150  /// point or a complex type (based on typeDomain/typeSize).
1151  /// 'typeDomain' is a real floating point or complex type.
1152  /// 'typeSize' is a real floating point or complex type.
1153  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1154                                             QualType typeDomain) const;
1155
1156private:
1157  // Helper for integer ordering
1158  unsigned getIntegerRank(Type* T);
1159
1160public:
1161
1162  //===--------------------------------------------------------------------===//
1163  //                    Type Compatibility Predicates
1164  //===--------------------------------------------------------------------===//
1165
1166  /// Compatibility predicates used to check assignment expressions.
1167  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1168
1169  bool typesAreBlockPointerCompatible(QualType, QualType);
1170
1171  bool isObjCIdType(QualType T) const {
1172    return T == ObjCIdTypedefType;
1173  }
1174  bool isObjCClassType(QualType T) const {
1175    return T == ObjCClassTypedefType;
1176  }
1177  bool isObjCSelType(QualType T) const {
1178    return T == ObjCSelTypedefType;
1179  }
1180  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1181  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1182                                         bool ForCompare);
1183
1184  // Check the safety of assignment from LHS to RHS
1185  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1186                               const ObjCObjectPointerType *RHSOPT);
1187  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1188                               const ObjCInterfaceType *RHS);
1189  bool canAssignObjCInterfacesInBlockPointer(
1190                                          const ObjCObjectPointerType *LHSOPT,
1191                                          const ObjCObjectPointerType *RHSOPT);
1192  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1193  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1194                                   const ObjCObjectPointerType *RHSOPT);
1195
1196  // Functions for calculating composite types
1197  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1198  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1199
1200  /// UsualArithmeticConversionsType - handles the various conversions
1201  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1202  /// and returns the result type of that conversion.
1203  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1204
1205  //===--------------------------------------------------------------------===//
1206  //                    Integer Predicates
1207  //===--------------------------------------------------------------------===//
1208
1209  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1210  // of bits in an integer type excluding any padding bits.
1211  unsigned getIntWidth(QualType T);
1212
1213  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1214  // unsigned integer type.  This method takes a signed type, and returns the
1215  // corresponding unsigned integer type.
1216  QualType getCorrespondingUnsignedType(QualType T);
1217
1218  //===--------------------------------------------------------------------===//
1219  //                    Type Iterators.
1220  //===--------------------------------------------------------------------===//
1221
1222  typedef std::vector<Type*>::iterator       type_iterator;
1223  typedef std::vector<Type*>::const_iterator const_type_iterator;
1224
1225  type_iterator types_begin() { return Types.begin(); }
1226  type_iterator types_end() { return Types.end(); }
1227  const_type_iterator types_begin() const { return Types.begin(); }
1228  const_type_iterator types_end() const { return Types.end(); }
1229
1230  //===--------------------------------------------------------------------===//
1231  //                    Integer Values
1232  //===--------------------------------------------------------------------===//
1233
1234  /// MakeIntValue - Make an APSInt of the appropriate width and
1235  /// signedness for the given \arg Value and integer \arg Type.
1236  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1237    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1238    Res = Value;
1239    return Res;
1240  }
1241
1242  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1243  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1244  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1245  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1246
1247  /// \brief Set the implementation of ObjCInterfaceDecl.
1248  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1249                             ObjCImplementationDecl *ImplD);
1250  /// \brief Set the implementation of ObjCCategoryDecl.
1251  void setObjCImplementation(ObjCCategoryDecl *CatD,
1252                             ObjCCategoryImplDecl *ImplD);
1253
1254  /// \brief Allocate an uninitialized TypeSourceInfo.
1255  ///
1256  /// The caller should initialize the memory held by TypeSourceInfo using
1257  /// the TypeLoc wrappers.
1258  ///
1259  /// \param T the type that will be the basis for type source info. This type
1260  /// should refer to how the declarator was written in source code, not to
1261  /// what type semantic analysis resolved the declarator to.
1262  ///
1263  /// \param Size the size of the type info to create, or 0 if the size
1264  /// should be calculated based on the type.
1265  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1266
1267  /// \brief Allocate a TypeSourceInfo where all locations have been
1268  /// initialized to a given location, which defaults to the empty
1269  /// location.
1270  TypeSourceInfo *
1271  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1272
1273private:
1274  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1275  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1276
1277  void InitBuiltinTypes();
1278  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1279
1280  // Return the ObjC type encoding for a given type.
1281  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1282                                  bool ExpandPointedToStructures,
1283                                  bool ExpandStructures,
1284                                  const FieldDecl *Field,
1285                                  bool OutermostType = false,
1286                                  bool EncodingProperty = false);
1287
1288  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1289                                       const ObjCImplementationDecl *Impl);
1290
1291private:
1292  // FIXME: This currently contains the set of StoredDeclMaps used
1293  // by DeclContext objects.  This probably should not be in ASTContext,
1294  // but we include it here so that ASTContext can quickly deallocate them.
1295  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1296  friend class DeclContext;
1297  void ReleaseDeclContextMaps();
1298};
1299
1300/// @brief Utility function for constructing a nullary selector.
1301static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1302  IdentifierInfo* II = &Ctx.Idents.get(name);
1303  return Ctx.Selectors.getSelector(0, &II);
1304}
1305
1306/// @brief Utility function for constructing an unary selector.
1307static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1308  IdentifierInfo* II = &Ctx.Idents.get(name);
1309  return Ctx.Selectors.getSelector(1, &II);
1310}
1311
1312}  // end namespace clang
1313
1314// operator new and delete aren't allowed inside namespaces.
1315// The throw specifications are mandated by the standard.
1316/// @brief Placement new for using the ASTContext's allocator.
1317///
1318/// This placement form of operator new uses the ASTContext's allocator for
1319/// obtaining memory. It is a non-throwing new, which means that it returns
1320/// null on error. (If that is what the allocator does. The current does, so if
1321/// this ever changes, this operator will have to be changed, too.)
1322/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1323/// @code
1324/// // Default alignment (8)
1325/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1326/// // Specific alignment
1327/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1328/// @endcode
1329/// Please note that you cannot use delete on the pointer; it must be
1330/// deallocated using an explicit destructor call followed by
1331/// @c Context.Deallocate(Ptr).
1332///
1333/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1334/// @param C The ASTContext that provides the allocator.
1335/// @param Alignment The alignment of the allocated memory (if the underlying
1336///                  allocator supports it).
1337/// @return The allocated memory. Could be NULL.
1338inline void *operator new(size_t Bytes, clang::ASTContext &C,
1339                          size_t Alignment) throw () {
1340  return C.Allocate(Bytes, Alignment);
1341}
1342/// @brief Placement delete companion to the new above.
1343///
1344/// This operator is just a companion to the new above. There is no way of
1345/// invoking it directly; see the new operator for more details. This operator
1346/// is called implicitly by the compiler if a placement new expression using
1347/// the ASTContext throws in the object constructor.
1348inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1349              throw () {
1350  C.Deallocate(Ptr);
1351}
1352
1353/// This placement form of operator new[] uses the ASTContext's allocator for
1354/// obtaining memory. It is a non-throwing new[], which means that it returns
1355/// null on error.
1356/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1357/// @code
1358/// // Default alignment (8)
1359/// char *data = new (Context) char[10];
1360/// // Specific alignment
1361/// char *data = new (Context, 4) char[10];
1362/// @endcode
1363/// Please note that you cannot use delete on the pointer; it must be
1364/// deallocated using an explicit destructor call followed by
1365/// @c Context.Deallocate(Ptr).
1366///
1367/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1368/// @param C The ASTContext that provides the allocator.
1369/// @param Alignment The alignment of the allocated memory (if the underlying
1370///                  allocator supports it).
1371/// @return The allocated memory. Could be NULL.
1372inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1373                            size_t Alignment = 8) throw () {
1374  return C.Allocate(Bytes, Alignment);
1375}
1376
1377/// @brief Placement delete[] companion to the new[] above.
1378///
1379/// This operator is just a companion to the new[] above. There is no way of
1380/// invoking it directly; see the new[] operator for more details. This operator
1381/// is called implicitly by the compiler if a placement new[] expression using
1382/// the ASTContext throws in the object constructor.
1383inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1384              throw () {
1385  C.Deallocate(Ptr);
1386}
1387
1388#endif
1389