ASTContext.h revision 4ba2a17694148e16eaa8d3917f657ffcd3667be4
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "clang/AST/UsuallyTinyPtrVector.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/Allocator.h"
33#include <vector>
34
35namespace llvm {
36  struct fltSemantics;
37  class raw_ostream;
38}
39
40namespace clang {
41  class FileManager;
42  class ASTRecordLayout;
43  class BlockExpr;
44  class CharUnits;
45  class Diagnostic;
46  class Expr;
47  class ExternalASTSource;
48  class ASTMutationListener;
49  class IdentifierTable;
50  class SelectorTable;
51  class SourceManager;
52  class TargetInfo;
53  class CXXABI;
54  // Decls
55  class DeclContext;
56  class CXXMethodDecl;
57  class CXXRecordDecl;
58  class Decl;
59  class FieldDecl;
60  class ObjCIvarDecl;
61  class ObjCIvarRefExpr;
62  class ObjCPropertyDecl;
63  class RecordDecl;
64  class StoredDeclsMap;
65  class TagDecl;
66  class TemplateTemplateParmDecl;
67  class TemplateTypeParmDecl;
68  class TranslationUnitDecl;
69  class TypeDecl;
70  class TypedefDecl;
71  class UsingDecl;
72  class UsingShadowDecl;
73  class UnresolvedSetIterator;
74
75  namespace Builtin { class Context; }
76
77/// ASTContext - This class holds long-lived AST nodes (such as types and
78/// decls) that can be referred to throughout the semantic analysis of a file.
79class ASTContext {
80  ASTContext &this_() { return *this; }
81
82  mutable std::vector<Type*> Types;
83  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
84  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
85  mutable llvm::FoldingSet<PointerType> PointerTypes;
86  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92  mutable std::vector<VariableArrayType*> VariableArrayTypes;
93  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94  mutable llvm::FoldingSet<DependentSizedExtVectorType>
95    DependentSizedExtVectorTypes;
96  mutable llvm::FoldingSet<VectorType> VectorTypes;
97  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
98  mutable llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
99  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
100  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
101  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
102  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
103    SubstTemplateTypeParmTypes;
104  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
105    TemplateSpecializationTypes;
106  mutable llvm::FoldingSet<ParenType> ParenTypes;
107  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
108  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
109  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
110                                     ASTContext&>
111    DependentTemplateSpecializationTypes;
112  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
113  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
114  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
115  llvm::FoldingSet<AttributedType> AttributedTypes;
116
117  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
118  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
119
120  /// \brief The set of nested name specifiers.
121  ///
122  /// This set is managed by the NestedNameSpecifier class.
123  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
124  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
125  friend class NestedNameSpecifier;
126
127  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
128  ///  This is lazily created.  This is intentionally not serialized.
129  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
130    ASTRecordLayouts;
131  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
132    ObjCLayouts;
133
134  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
135  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
136
137  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
138  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
139
140  /// \brief Mapping from __block VarDecls to their copy initialization expr.
141  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
142
143  /// \brief Representation of a "canonical" template template parameter that
144  /// is used in canonical template names.
145  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
146    TemplateTemplateParmDecl *Parm;
147
148  public:
149    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
150      : Parm(Parm) { }
151
152    TemplateTemplateParmDecl *getParam() const { return Parm; }
153
154    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
155
156    static void Profile(llvm::FoldingSetNodeID &ID,
157                        TemplateTemplateParmDecl *Parm);
158  };
159  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
160    CanonTemplateTemplateParms;
161
162  TemplateTemplateParmDecl *
163    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
164
165  /// \brief Whether __[u]int128_t identifier is installed.
166  bool IsInt128Installed;
167
168  /// BuiltinVaListType - built-in va list type.
169  /// This is initially null and set by Sema::LazilyCreateBuiltin when
170  /// a builtin that takes a valist is encountered.
171  QualType BuiltinVaListType;
172
173  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
174  QualType ObjCIdTypedefType;
175
176  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
177  QualType ObjCSelTypedefType;
178
179  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
180  QualType ObjCProtoType;
181  const RecordType *ProtoStructType;
182
183  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
184  QualType ObjCClassTypedefType;
185
186  QualType ObjCConstantStringType;
187  mutable RecordDecl *CFConstantStringTypeDecl;
188
189  mutable RecordDecl *NSConstantStringTypeDecl;
190
191  mutable RecordDecl *ObjCFastEnumerationStateTypeDecl;
192
193  /// \brief The type for the C FILE type.
194  TypeDecl *FILEDecl;
195
196  /// \brief The type for the C jmp_buf type.
197  TypeDecl *jmp_bufDecl;
198
199  /// \brief The type for the C sigjmp_buf type.
200  TypeDecl *sigjmp_bufDecl;
201
202  /// \brief Type for the Block descriptor for Blocks CodeGen.
203  mutable RecordDecl *BlockDescriptorType;
204
205  /// \brief Type for the Block descriptor for Blocks CodeGen.
206  mutable RecordDecl *BlockDescriptorExtendedType;
207
208  TypeSourceInfo NullTypeSourceInfo;
209
210  /// \brief Keeps track of all declaration attributes.
211  ///
212  /// Since so few decls have attrs, we keep them in a hash map instead of
213  /// wasting space in the Decl class.
214  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
215
216  /// \brief Keeps track of the static data member templates from which
217  /// static data members of class template specializations were instantiated.
218  ///
219  /// This data structure stores the mapping from instantiations of static
220  /// data members to the static data member representations within the
221  /// class template from which they were instantiated along with the kind
222  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
223  ///
224  /// Given the following example:
225  ///
226  /// \code
227  /// template<typename T>
228  /// struct X {
229  ///   static T value;
230  /// };
231  ///
232  /// template<typename T>
233  ///   T X<T>::value = T(17);
234  ///
235  /// int *x = &X<int>::value;
236  /// \endcode
237  ///
238  /// This mapping will contain an entry that maps from the VarDecl for
239  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
240  /// class template X) and will be marked TSK_ImplicitInstantiation.
241  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
242    InstantiatedFromStaticDataMember;
243
244  /// \brief Keeps track of the declaration from which a UsingDecl was
245  /// created during instantiation.  The source declaration is always
246  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
247  /// UnresolvedUsingTypenameDecl.
248  ///
249  /// For example:
250  /// \code
251  /// template<typename T>
252  /// struct A {
253  ///   void f();
254  /// };
255  ///
256  /// template<typename T>
257  /// struct B : A<T> {
258  ///   using A<T>::f;
259  /// };
260  ///
261  /// template struct B<int>;
262  /// \endcode
263  ///
264  /// This mapping will contain an entry that maps from the UsingDecl in
265  /// B<int> to the UnresolvedUsingDecl in B<T>.
266  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
267
268  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
269    InstantiatedFromUsingShadowDecl;
270
271  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
272
273  /// \brief Mapping that stores the methods overridden by a given C++
274  /// member function.
275  ///
276  /// Since most C++ member functions aren't virtual and therefore
277  /// don't override anything, we store the overridden functions in
278  /// this map on the side rather than within the CXXMethodDecl structure.
279  typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
280  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
281
282  TranslationUnitDecl *TUDecl;
283
284  /// SourceMgr - The associated SourceManager object.
285  SourceManager &SourceMgr;
286
287  /// LangOpts - The language options used to create the AST associated with
288  ///  this ASTContext object.
289  LangOptions LangOpts;
290
291  /// \brief The allocator used to create AST objects.
292  ///
293  /// AST objects are never destructed; rather, all memory associated with the
294  /// AST objects will be released when the ASTContext itself is destroyed.
295  mutable llvm::BumpPtrAllocator BumpAlloc;
296
297  /// \brief Allocator for partial diagnostics.
298  PartialDiagnostic::StorageAllocator DiagAllocator;
299
300  /// \brief The current C++ ABI.
301  llvm::OwningPtr<CXXABI> ABI;
302  CXXABI *createCXXABI(const TargetInfo &T);
303
304  friend class ASTDeclReader;
305
306public:
307  const TargetInfo &Target;
308  IdentifierTable &Idents;
309  SelectorTable &Selectors;
310  Builtin::Context &BuiltinInfo;
311  mutable DeclarationNameTable DeclarationNames;
312  llvm::OwningPtr<ExternalASTSource> ExternalSource;
313  ASTMutationListener *Listener;
314  clang::PrintingPolicy PrintingPolicy;
315
316  // Typedefs which may be provided defining the structure of Objective-C
317  // pseudo-builtins
318  QualType ObjCIdRedefinitionType;
319  QualType ObjCClassRedefinitionType;
320  QualType ObjCSelRedefinitionType;
321
322  SourceManager& getSourceManager() { return SourceMgr; }
323  const SourceManager& getSourceManager() const { return SourceMgr; }
324  void *Allocate(unsigned Size, unsigned Align = 8) const {
325    return BumpAlloc.Allocate(Size, Align);
326  }
327  void Deallocate(void *Ptr) const { }
328
329  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
330    return DiagAllocator;
331  }
332
333  const LangOptions& getLangOptions() const { return LangOpts; }
334
335  Diagnostic &getDiagnostics() const;
336
337  FullSourceLoc getFullLoc(SourceLocation Loc) const {
338    return FullSourceLoc(Loc,SourceMgr);
339  }
340
341  /// \brief Retrieve the attributes for the given declaration.
342  AttrVec& getDeclAttrs(const Decl *D);
343
344  /// \brief Erase the attributes corresponding to the given declaration.
345  void eraseDeclAttrs(const Decl *D);
346
347  /// \brief If this variable is an instantiated static data member of a
348  /// class template specialization, returns the templated static data member
349  /// from which it was instantiated.
350  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
351                                                           const VarDecl *Var);
352
353  /// \brief Note that the static data member \p Inst is an instantiation of
354  /// the static data member template \p Tmpl of a class template.
355  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
356                                           TemplateSpecializationKind TSK,
357                        SourceLocation PointOfInstantiation = SourceLocation());
358
359  /// \brief If the given using decl is an instantiation of a
360  /// (possibly unresolved) using decl from a template instantiation,
361  /// return it.
362  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
363
364  /// \brief Remember that the using decl \p Inst is an instantiation
365  /// of the using decl \p Pattern of a class template.
366  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
367
368  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
369                                          UsingShadowDecl *Pattern);
370  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
371
372  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
373
374  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
375
376  // Access to the set of methods overridden by the given C++ method.
377  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
378  overridden_cxx_method_iterator
379  overridden_methods_begin(const CXXMethodDecl *Method) const;
380
381  overridden_cxx_method_iterator
382  overridden_methods_end(const CXXMethodDecl *Method) const;
383
384  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
385
386  /// \brief Note that the given C++ \p Method overrides the given \p
387  /// Overridden method.
388  void addOverriddenMethod(const CXXMethodDecl *Method,
389                           const CXXMethodDecl *Overridden);
390
391  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
392
393
394  // Builtin Types.
395  CanQualType VoidTy;
396  CanQualType BoolTy;
397  CanQualType CharTy;
398  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
399  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
400  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
401  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
402  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
403  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
404  CanQualType FloatTy, DoubleTy, LongDoubleTy;
405  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
406  CanQualType VoidPtrTy, NullPtrTy;
407  CanQualType OverloadTy, UndeducedAutoTy;
408  CanQualType DependentTy;
409  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
410
411  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
412             IdentifierTable &idents, SelectorTable &sels,
413             Builtin::Context &builtins,
414             unsigned size_reserve);
415
416  ~ASTContext();
417
418  /// \brief Attach an external AST source to the AST context.
419  ///
420  /// The external AST source provides the ability to load parts of
421  /// the abstract syntax tree as needed from some external storage,
422  /// e.g., a precompiled header.
423  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
424
425  /// \brief Retrieve a pointer to the external AST source associated
426  /// with this AST context, if any.
427  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
428
429  /// \brief Attach an AST mutation listener to the AST context.
430  ///
431  /// The AST mutation listener provides the ability to track modifications to
432  /// the abstract syntax tree entities committed after they were initially
433  /// created.
434  void setASTMutationListener(ASTMutationListener *Listener) {
435    this->Listener = Listener;
436  }
437
438  /// \brief Retrieve a pointer to the AST mutation listener associated
439  /// with this AST context, if any.
440  ASTMutationListener *getASTMutationListener() const { return Listener; }
441
442  void PrintStats() const;
443  const std::vector<Type*>& getTypes() const { return Types; }
444
445  //===--------------------------------------------------------------------===//
446  //                           Type Constructors
447  //===--------------------------------------------------------------------===//
448
449private:
450  /// getExtQualType - Return a type with extended qualifiers.
451  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
452
453  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
454
455public:
456  /// getAddSpaceQualType - Return the uniqued reference to the type for an
457  /// address space qualified type with the specified type and address space.
458  /// The resulting type has a union of the qualifiers from T and the address
459  /// space. If T already has an address space specifier, it is silently
460  /// replaced.
461  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
462
463  /// getObjCGCQualType - Returns the uniqued reference to the type for an
464  /// objc gc qualified type. The retulting type has a union of the qualifiers
465  /// from T and the gc attribute.
466  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
467
468  /// getRestrictType - Returns the uniqued reference to the type for a
469  /// 'restrict' qualified type.  The resulting type has a union of the
470  /// qualifiers from T and 'restrict'.
471  QualType getRestrictType(QualType T) const {
472    return T.withFastQualifiers(Qualifiers::Restrict);
473  }
474
475  /// getVolatileType - Returns the uniqued reference to the type for a
476  /// 'volatile' qualified type.  The resulting type has a union of the
477  /// qualifiers from T and 'volatile'.
478  QualType getVolatileType(QualType T) const {
479    return T.withFastQualifiers(Qualifiers::Volatile);
480  }
481
482  /// getConstType - Returns the uniqued reference to the type for a
483  /// 'const' qualified type.  The resulting type has a union of the
484  /// qualifiers from T and 'const'.
485  ///
486  /// It can be reasonably expected that this will always be
487  /// equivalent to calling T.withConst().
488  QualType getConstType(QualType T) const { return T.withConst(); }
489
490  /// adjustFunctionType - Change the ExtInfo on a function type.
491  const FunctionType *adjustFunctionType(const FunctionType *Fn,
492                                         FunctionType::ExtInfo EInfo);
493
494  /// getComplexType - Return the uniqued reference to the type for a complex
495  /// number with the specified element type.
496  QualType getComplexType(QualType T) const;
497  CanQualType getComplexType(CanQualType T) const {
498    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
499  }
500
501  /// getPointerType - Return the uniqued reference to the type for a pointer to
502  /// the specified type.
503  QualType getPointerType(QualType T) const;
504  CanQualType getPointerType(CanQualType T) const {
505    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
506  }
507
508  /// getBlockPointerType - Return the uniqued reference to the type for a block
509  /// of the specified type.
510  QualType getBlockPointerType(QualType T) const;
511
512  /// This gets the struct used to keep track of the descriptor for pointer to
513  /// blocks.
514  QualType getBlockDescriptorType() const;
515
516  // Set the type for a Block descriptor type.
517  void setBlockDescriptorType(QualType T);
518  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
519  QualType getRawBlockdescriptorType() {
520    if (BlockDescriptorType)
521      return getTagDeclType(BlockDescriptorType);
522    return QualType();
523  }
524
525  /// This gets the struct used to keep track of the extended descriptor for
526  /// pointer to blocks.
527  QualType getBlockDescriptorExtendedType() const;
528
529  // Set the type for a Block descriptor extended type.
530  void setBlockDescriptorExtendedType(QualType T);
531  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
532  /// built.
533  QualType getRawBlockdescriptorExtendedType() const {
534    if (BlockDescriptorExtendedType)
535      return getTagDeclType(BlockDescriptorExtendedType);
536    return QualType();
537  }
538
539  /// This gets the struct used to keep track of pointer to blocks, complete
540  /// with captured variables.
541  QualType getBlockParmType(bool BlockHasCopyDispose,
542                            llvm::SmallVectorImpl<const Expr *> &Layout) const;
543
544  /// This builds the struct used for __block variables.
545  QualType BuildByRefType(llvm::StringRef DeclName, QualType Ty) const;
546
547  /// Returns true iff we need copy/dispose helpers for the given type.
548  bool BlockRequiresCopying(QualType Ty) const;
549
550  /// getLValueReferenceType - Return the uniqued reference to the type for an
551  /// lvalue reference to the specified type.
552  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
553    const;
554
555  /// getRValueReferenceType - Return the uniqued reference to the type for an
556  /// rvalue reference to the specified type.
557  QualType getRValueReferenceType(QualType T) const;
558
559  /// getMemberPointerType - Return the uniqued reference to the type for a
560  /// member pointer to the specified type in the specified class. The class
561  /// is a Type because it could be a dependent name.
562  QualType getMemberPointerType(QualType T, const Type *Cls) const;
563
564  /// getVariableArrayType - Returns a non-unique reference to the type for a
565  /// variable array of the specified element type.
566  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
567                                ArrayType::ArraySizeModifier ASM,
568                                unsigned EltTypeQuals,
569                                SourceRange Brackets) const;
570
571  /// getDependentSizedArrayType - Returns a non-unique reference to
572  /// the type for a dependently-sized array of the specified element
573  /// type. FIXME: We will need these to be uniqued, or at least
574  /// comparable, at some point.
575  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
576                                      ArrayType::ArraySizeModifier ASM,
577                                      unsigned EltTypeQuals,
578                                      SourceRange Brackets) const;
579
580  /// getIncompleteArrayType - Returns a unique reference to the type for a
581  /// incomplete array of the specified element type.
582  QualType getIncompleteArrayType(QualType EltTy,
583                                  ArrayType::ArraySizeModifier ASM,
584                                  unsigned EltTypeQuals) const;
585
586  /// getConstantArrayType - Return the unique reference to the type for a
587  /// constant array of the specified element type.
588  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
589                                ArrayType::ArraySizeModifier ASM,
590                                unsigned EltTypeQuals) const;
591
592  /// getUnknownSizeVariableArrayType - Return a variable array type with
593  /// all variable indices replaced with unknow [*] size.
594  QualType getUnknownSizeVariableArrayType(QualType Ty) const;
595
596  /// getVariableArrayDecayedType - Returns a vla type where known sizes
597  /// are replaced with [*]
598  QualType getVariableArrayDecayedType(QualType Ty) const;
599
600  /// getVectorType - Return the unique reference to a vector type of
601  /// the specified element type and size. VectorType must be a built-in type.
602  QualType getVectorType(QualType VectorType, unsigned NumElts,
603                         VectorType::VectorKind VecKind) const;
604
605  /// getExtVectorType - Return the unique reference to an extended vector type
606  /// of the specified element type and size.  VectorType must be a built-in
607  /// type.
608  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
609
610  /// getDependentSizedExtVectorType - Returns a non-unique reference to
611  /// the type for a dependently-sized vector of the specified element
612  /// type. FIXME: We will need these to be uniqued, or at least
613  /// comparable, at some point.
614  QualType getDependentSizedExtVectorType(QualType VectorType,
615                                          Expr *SizeExpr,
616                                          SourceLocation AttrLoc) const;
617
618  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
619  ///
620  QualType getFunctionNoProtoType(QualType ResultTy,
621                                  const FunctionType::ExtInfo &Info) const;
622
623  QualType getFunctionNoProtoType(QualType ResultTy) const {
624    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
625  }
626
627  /// getFunctionType - Return a normal function type with a typed
628  /// argument list.
629  QualType getFunctionType(QualType ResultTy,
630                           const QualType *Args, unsigned NumArgs,
631                           const FunctionProtoType::ExtProtoInfo &EPI) const;
632
633  /// getTypeDeclType - Return the unique reference to the type for
634  /// the specified type declaration.
635  QualType getTypeDeclType(const TypeDecl *Decl,
636                           const TypeDecl *PrevDecl = 0) const {
637    assert(Decl && "Passed null for Decl param");
638    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
639
640    if (PrevDecl) {
641      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
642      Decl->TypeForDecl = PrevDecl->TypeForDecl;
643      return QualType(PrevDecl->TypeForDecl, 0);
644    }
645
646    return getTypeDeclTypeSlow(Decl);
647  }
648
649  /// getTypedefType - Return the unique reference to the type for the
650  /// specified typename decl.
651  QualType getTypedefType(const TypedefDecl *Decl, QualType Canon = QualType())
652    const;
653
654  QualType getRecordType(const RecordDecl *Decl) const;
655
656  QualType getEnumType(const EnumDecl *Decl) const;
657
658  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
659
660  QualType getAttributedType(AttributedType::Kind attrKind,
661                             QualType modifiedType,
662                             QualType equivalentType);
663
664  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
665                                        QualType Replacement) const;
666
667  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
668                                   bool ParameterPack,
669                                   IdentifierInfo *Name = 0) const;
670
671  QualType getTemplateSpecializationType(TemplateName T,
672                                         const TemplateArgument *Args,
673                                         unsigned NumArgs,
674                                         QualType Canon = QualType()) const;
675
676  QualType getCanonicalTemplateSpecializationType(TemplateName T,
677                                                  const TemplateArgument *Args,
678                                                  unsigned NumArgs) const;
679
680  QualType getTemplateSpecializationType(TemplateName T,
681                                         const TemplateArgumentListInfo &Args,
682                                         QualType Canon = QualType()) const;
683
684  TypeSourceInfo *
685  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
686                                    const TemplateArgumentListInfo &Args,
687                                    QualType Canon = QualType()) const;
688
689  QualType getParenType(QualType NamedType) const;
690
691  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
692                             NestedNameSpecifier *NNS,
693                             QualType NamedType) const;
694  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
695                                NestedNameSpecifier *NNS,
696                                const IdentifierInfo *Name,
697                                QualType Canon = QualType()) const;
698
699  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
700                                                  NestedNameSpecifier *NNS,
701                                                  const IdentifierInfo *Name,
702                                    const TemplateArgumentListInfo &Args) const;
703  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
704                                                  NestedNameSpecifier *NNS,
705                                                  const IdentifierInfo *Name,
706                                                  unsigned NumArgs,
707                                            const TemplateArgument *Args) const;
708
709  QualType getPackExpansionType(QualType Pattern);
710
711  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl) const;
712
713  QualType getObjCObjectType(QualType Base,
714                             ObjCProtocolDecl * const *Protocols,
715                             unsigned NumProtocols) const;
716
717  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
718  /// for the given ObjCObjectType.
719  QualType getObjCObjectPointerType(QualType OIT) const;
720
721  /// getTypeOfType - GCC extension.
722  QualType getTypeOfExprType(Expr *e) const;
723  QualType getTypeOfType(QualType t) const;
724
725  /// getDecltypeType - C++0x decltype.
726  QualType getDecltypeType(Expr *e) const;
727
728  /// getTagDeclType - Return the unique reference to the type for the
729  /// specified TagDecl (struct/union/class/enum) decl.
730  QualType getTagDeclType(const TagDecl *Decl) const;
731
732  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
733  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
734  CanQualType getSizeType() const;
735
736  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
737  /// returns a type compatible with the type defined in <stddef.h> as defined
738  /// by the target.
739  QualType getWCharType() const { return WCharTy; }
740
741  /// getSignedWCharType - Return the type of "signed wchar_t".
742  /// Used when in C++, as a GCC extension.
743  QualType getSignedWCharType() const;
744
745  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
746  /// Used when in C++, as a GCC extension.
747  QualType getUnsignedWCharType() const;
748
749  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
750  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
751  QualType getPointerDiffType() const;
752
753  // getCFConstantStringType - Return the C structure type used to represent
754  // constant CFStrings.
755  QualType getCFConstantStringType() const;
756
757  // getNSConstantStringType - Return the C structure type used to represent
758  // constant NSStrings.
759  QualType getNSConstantStringType() const;
760  /// Get the structure type used to representation NSStrings, or NULL
761  /// if it hasn't yet been built.
762  QualType getRawNSConstantStringType() const {
763    if (NSConstantStringTypeDecl)
764      return getTagDeclType(NSConstantStringTypeDecl);
765    return QualType();
766  }
767  void setNSConstantStringType(QualType T);
768
769
770  /// Get the structure type used to representation CFStrings, or NULL
771  /// if it hasn't yet been built.
772  QualType getRawCFConstantStringType() const {
773    if (CFConstantStringTypeDecl)
774      return getTagDeclType(CFConstantStringTypeDecl);
775    return QualType();
776  }
777  void setCFConstantStringType(QualType T);
778
779  // This setter/getter represents the ObjC type for an NSConstantString.
780  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
781  QualType getObjCConstantStringInterface() const {
782    return ObjCConstantStringType;
783  }
784
785  //// This gets the struct used to keep track of fast enumerations.
786  QualType getObjCFastEnumerationStateType() const;
787
788  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
789  /// been built.
790  QualType getRawObjCFastEnumerationStateType() const {
791    if (ObjCFastEnumerationStateTypeDecl)
792      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
793    return QualType();
794  }
795
796  void setObjCFastEnumerationStateType(QualType T);
797
798  /// \brief Set the type for the C FILE type.
799  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
800
801  /// \brief Retrieve the C FILE type.
802  QualType getFILEType() const {
803    if (FILEDecl)
804      return getTypeDeclType(FILEDecl);
805    return QualType();
806  }
807
808  /// \brief Set the type for the C jmp_buf type.
809  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
810    this->jmp_bufDecl = jmp_bufDecl;
811  }
812
813  /// \brief Retrieve the C jmp_buf type.
814  QualType getjmp_bufType() const {
815    if (jmp_bufDecl)
816      return getTypeDeclType(jmp_bufDecl);
817    return QualType();
818  }
819
820  /// \brief Set the type for the C sigjmp_buf type.
821  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
822    this->sigjmp_bufDecl = sigjmp_bufDecl;
823  }
824
825  /// \brief Retrieve the C sigjmp_buf type.
826  QualType getsigjmp_bufType() const {
827    if (sigjmp_bufDecl)
828      return getTypeDeclType(sigjmp_bufDecl);
829    return QualType();
830  }
831
832  /// getObjCEncodingForType - Emit the ObjC type encoding for the
833  /// given type into \arg S. If \arg NameFields is specified then
834  /// record field names are also encoded.
835  void getObjCEncodingForType(QualType t, std::string &S,
836                              const FieldDecl *Field=0) const;
837
838  void getLegacyIntegralTypeEncoding(QualType &t) const;
839
840  // Put the string version of type qualifiers into S.
841  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
842                                       std::string &S) const;
843
844  /// getObjCEncodingForFunctionDecl - Returns the encoded type for this
845  //function.  This is in the same format as Objective-C method encodings.
846  void getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
847
848  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
849  /// declaration.
850  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S)
851    const;
852
853  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
854  /// declaration.
855  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S) const;
856
857  /// getObjCEncodingForPropertyDecl - Return the encoded type for
858  /// this method declaration. If non-NULL, Container must be either
859  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
860  /// only be NULL when getting encodings for protocol properties.
861  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
862                                      const Decl *Container,
863                                      std::string &S) const;
864
865  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
866                                      ObjCProtocolDecl *rProto) const;
867
868  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
869  /// purpose in characters.
870  CharUnits getObjCEncodingTypeSize(QualType t) const;
871
872  /// \brief Whether __[u]int128_t identifier is installed.
873  bool isInt128Installed() const { return IsInt128Installed; }
874  void setInt128Installed() { IsInt128Installed = true; }
875
876  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
877  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
878  QualType getObjCIdType() const { return ObjCIdTypedefType; }
879  void setObjCIdType(QualType T);
880
881  void setObjCSelType(QualType T);
882  QualType getObjCSelType() const { return ObjCSelTypedefType; }
883
884  void setObjCProtoType(QualType QT);
885  QualType getObjCProtoType() const { return ObjCProtoType; }
886
887  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
888  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
889  /// struct.
890  QualType getObjCClassType() const { return ObjCClassTypedefType; }
891  void setObjCClassType(QualType T);
892
893  void setBuiltinVaListType(QualType T);
894  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
895
896  /// getCVRQualifiedType - Returns a type with additional const,
897  /// volatile, or restrict qualifiers.
898  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
899    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
900  }
901
902  /// getQualifiedType - Returns a type with additional qualifiers.
903  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
904    if (!Qs.hasNonFastQualifiers())
905      return T.withFastQualifiers(Qs.getFastQualifiers());
906    QualifierCollector Qc(Qs);
907    const Type *Ptr = Qc.strip(T);
908    return getExtQualType(Ptr, Qc);
909  }
910
911  /// getQualifiedType - Returns a type with additional qualifiers.
912  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
913    if (!Qs.hasNonFastQualifiers())
914      return QualType(T, Qs.getFastQualifiers());
915    return getExtQualType(T, Qs);
916  }
917
918  DeclarationNameInfo getNameForTemplate(TemplateName Name,
919                                         SourceLocation NameLoc) const;
920
921  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
922                                         UnresolvedSetIterator End) const;
923
924  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
925                                        bool TemplateKeyword,
926                                        TemplateDecl *Template) const;
927
928  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
929                                        const IdentifierInfo *Name) const;
930  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
931                                        OverloadedOperatorKind Operator) const;
932
933  enum GetBuiltinTypeError {
934    GE_None,              //< No error
935    GE_Missing_stdio,     //< Missing a type from <stdio.h>
936    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
937  };
938
939  /// GetBuiltinType - Return the type for the specified builtin.  If
940  /// IntegerConstantArgs is non-null, it is filled in with a bitmask of
941  /// arguments to the builtin that are required to be integer constant
942  /// expressions.
943  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
944                          unsigned *IntegerConstantArgs = 0) const;
945
946private:
947  CanQualType getFromTargetType(unsigned Type) const;
948
949  //===--------------------------------------------------------------------===//
950  //                         Type Predicates.
951  //===--------------------------------------------------------------------===//
952
953public:
954  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
955  /// garbage collection attribute.
956  ///
957  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
958
959  /// areCompatibleVectorTypes - Return true if the given vector types
960  /// are of the same unqualified type or if they are equivalent to the same
961  /// GCC vector type, ignoring whether they are target-specific (AltiVec or
962  /// Neon) types.
963  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
964
965  /// isObjCNSObjectType - Return true if this is an NSObject object with
966  /// its NSObject attribute set.
967  bool isObjCNSObjectType(QualType Ty) const;
968
969  //===--------------------------------------------------------------------===//
970  //                         Type Sizing and Analysis
971  //===--------------------------------------------------------------------===//
972
973  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
974  /// scalar floating point type.
975  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
976
977  /// getTypeInfo - Get the size and alignment of the specified complete type in
978  /// bits.
979  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
980  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
981    return getTypeInfo(T.getTypePtr());
982  }
983
984  /// getTypeSize - Return the size of the specified type, in bits.  This method
985  /// does not work on incomplete types.
986  uint64_t getTypeSize(QualType T) const {
987    return getTypeInfo(T).first;
988  }
989  uint64_t getTypeSize(const Type *T) const {
990    return getTypeInfo(T).first;
991  }
992
993  /// getCharWidth - Return the size of the character type, in bits
994  uint64_t getCharWidth() const {
995    return getTypeSize(CharTy);
996  }
997
998  /// getTypeSizeInChars - Return the size of the specified type, in characters.
999  /// This method does not work on incomplete types.
1000  CharUnits getTypeSizeInChars(QualType T) const;
1001  CharUnits getTypeSizeInChars(const Type *T) const;
1002
1003  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
1004  /// This method does not work on incomplete types.
1005  unsigned getTypeAlign(QualType T) const {
1006    return getTypeInfo(T).second;
1007  }
1008  unsigned getTypeAlign(const Type *T) const {
1009    return getTypeInfo(T).second;
1010  }
1011
1012  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1013  /// characters. This method does not work on incomplete types.
1014  CharUnits getTypeAlignInChars(QualType T) const;
1015  CharUnits getTypeAlignInChars(const Type *T) const;
1016
1017  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T);
1018  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T);
1019
1020  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1021  /// type for the current target in bits.  This can be different than the ABI
1022  /// alignment in cases where it is beneficial for performance to overalign
1023  /// a data type.
1024  unsigned getPreferredTypeAlign(const Type *T) const;
1025
1026  /// getDeclAlign - Return a conservative estimate of the alignment of
1027  /// the specified decl.  Note that bitfields do not have a valid alignment, so
1028  /// this method will assert on them.
1029  /// If @p RefAsPointee, references are treated like their underlying type
1030  /// (for alignof), else they're treated like pointers (for CodeGen).
1031  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1032
1033  /// getASTRecordLayout - Get or compute information about the layout of the
1034  /// specified record (struct/union/class), which indicates its size and field
1035  /// position information.
1036  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1037
1038  /// getASTObjCInterfaceLayout - Get or compute information about the
1039  /// layout of the specified Objective-C interface.
1040  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1041    const;
1042
1043  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS) const;
1044
1045  /// getASTObjCImplementationLayout - Get or compute information about
1046  /// the layout of the specified Objective-C implementation. This may
1047  /// differ from the interface if synthesized ivars are present.
1048  const ASTRecordLayout &
1049  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1050
1051  /// getKeyFunction - Get the key function for the given record decl, or NULL
1052  /// if there isn't one.  The key function is, according to the Itanium C++ ABI
1053  /// section 5.2.3:
1054  ///
1055  /// ...the first non-pure virtual function that is not inline at the point
1056  /// of class definition.
1057  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1058
1059  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1060
1061  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1062                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars)
1063    const;
1064
1065  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1066                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) const;
1067
1068  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1069  void CollectInheritedProtocols(const Decl *CDecl,
1070                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1071
1072  //===--------------------------------------------------------------------===//
1073  //                            Type Operators
1074  //===--------------------------------------------------------------------===//
1075
1076  /// getCanonicalType - Return the canonical (structural) type corresponding to
1077  /// the specified potentially non-canonical type.  The non-canonical version
1078  /// of a type may have many "decorated" versions of types.  Decorators can
1079  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1080  /// to be free of any of these, allowing two canonical types to be compared
1081  /// for exact equality with a simple pointer comparison.
1082  CanQualType getCanonicalType(QualType T) const;
1083  const Type *getCanonicalType(const Type *T) const {
1084    return T->getCanonicalTypeInternal().getTypePtr();
1085  }
1086
1087  /// getCanonicalParamType - Return the canonical parameter type
1088  /// corresponding to the specific potentially non-canonical one.
1089  /// Qualifiers are stripped off, functions are turned into function
1090  /// pointers, and arrays decay one level into pointers.
1091  CanQualType getCanonicalParamType(QualType T) const;
1092
1093  /// \brief Determine whether the given types are equivalent.
1094  bool hasSameType(QualType T1, QualType T2) {
1095    return getCanonicalType(T1) == getCanonicalType(T2);
1096  }
1097
1098  /// \brief Returns this type as a completely-unqualified array type,
1099  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1100  /// sugaring from the types, similar to the behavior of
1101  /// QualType::getUnqualifiedType().
1102  ///
1103  /// \param T is the qualified type, which may be an ArrayType
1104  ///
1105  /// \param Quals will receive the full set of qualifiers that were
1106  /// applied to the array.
1107  ///
1108  /// \returns if this is an array type, the completely unqualified array type
1109  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1110  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1111
1112  /// \brief Determine whether the given types are equivalent after
1113  /// cvr-qualifiers have been removed.
1114  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1115    CanQualType CT1 = getCanonicalType(T1);
1116    CanQualType CT2 = getCanonicalType(T2);
1117
1118    Qualifiers Quals;
1119    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1120    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1121    return UnqualT1 == UnqualT2;
1122  }
1123
1124  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1125
1126  /// \brief Retrieves the "canonical" nested name specifier for a
1127  /// given nested name specifier.
1128  ///
1129  /// The canonical nested name specifier is a nested name specifier
1130  /// that uniquely identifies a type or namespace within the type
1131  /// system. For example, given:
1132  ///
1133  /// \code
1134  /// namespace N {
1135  ///   struct S {
1136  ///     template<typename T> struct X { typename T* type; };
1137  ///   };
1138  /// }
1139  ///
1140  /// template<typename T> struct Y {
1141  ///   typename N::S::X<T>::type member;
1142  /// };
1143  /// \endcode
1144  ///
1145  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1146  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1147  /// by declarations in the type system and the canonical type for
1148  /// the template type parameter 'T' is template-param-0-0.
1149  NestedNameSpecifier *
1150  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1151
1152  /// \brief Retrieves the default calling convention to use for
1153  /// C++ instance methods.
1154  CallingConv getDefaultMethodCallConv();
1155
1156  /// \brief Retrieves the canonical representation of the given
1157  /// calling convention.
1158  CallingConv getCanonicalCallConv(CallingConv CC) const {
1159    if (CC == CC_C)
1160      return CC_Default;
1161    return CC;
1162  }
1163
1164  /// \brief Determines whether two calling conventions name the same
1165  /// calling convention.
1166  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1167    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1168  }
1169
1170  /// \brief Retrieves the "canonical" template name that refers to a
1171  /// given template.
1172  ///
1173  /// The canonical template name is the simplest expression that can
1174  /// be used to refer to a given template. For most templates, this
1175  /// expression is just the template declaration itself. For example,
1176  /// the template std::vector can be referred to via a variety of
1177  /// names---std::vector, ::std::vector, vector (if vector is in
1178  /// scope), etc.---but all of these names map down to the same
1179  /// TemplateDecl, which is used to form the canonical template name.
1180  ///
1181  /// Dependent template names are more interesting. Here, the
1182  /// template name could be something like T::template apply or
1183  /// std::allocator<T>::template rebind, where the nested name
1184  /// specifier itself is dependent. In this case, the canonical
1185  /// template name uses the shortest form of the dependent
1186  /// nested-name-specifier, which itself contains all canonical
1187  /// types, values, and templates.
1188  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1189
1190  /// \brief Determine whether the given template names refer to the same
1191  /// template.
1192  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1193
1194  /// \brief Retrieve the "canonical" template argument.
1195  ///
1196  /// The canonical template argument is the simplest template argument
1197  /// (which may be a type, value, expression, or declaration) that
1198  /// expresses the value of the argument.
1199  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1200    const;
1201
1202  /// Type Query functions.  If the type is an instance of the specified class,
1203  /// return the Type pointer for the underlying maximally pretty type.  This
1204  /// is a member of ASTContext because this may need to do some amount of
1205  /// canonicalization, e.g. to move type qualifiers into the element type.
1206  const ArrayType *getAsArrayType(QualType T) const;
1207  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1208    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1209  }
1210  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1211    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1212  }
1213  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1214    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1215  }
1216  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1217    const {
1218    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1219  }
1220
1221  /// getBaseElementType - Returns the innermost element type of an array type.
1222  /// For example, will return "int" for int[m][n]
1223  QualType getBaseElementType(const ArrayType *VAT) const;
1224
1225  /// getBaseElementType - Returns the innermost element type of a type
1226  /// (which needn't actually be an array type).
1227  QualType getBaseElementType(QualType QT) const;
1228
1229  /// getConstantArrayElementCount - Returns number of constant array elements.
1230  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1231
1232  /// getArrayDecayedType - Return the properly qualified result of decaying the
1233  /// specified array type to a pointer.  This operation is non-trivial when
1234  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1235  /// this returns a pointer to a properly qualified element of the array.
1236  ///
1237  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1238  QualType getArrayDecayedType(QualType T) const;
1239
1240  /// getPromotedIntegerType - Returns the type that Promotable will
1241  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1242  /// integer type.
1243  QualType getPromotedIntegerType(QualType PromotableType) const;
1244
1245  /// \brief Whether this is a promotable bitfield reference according
1246  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1247  ///
1248  /// \returns the type this bit-field will promote to, or NULL if no
1249  /// promotion occurs.
1250  QualType isPromotableBitField(Expr *E) const;
1251
1252  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1253  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1254  /// LHS < RHS, return -1.
1255  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1256
1257  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1258  /// point types, ignoring the domain of the type (i.e. 'double' ==
1259  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1260  /// LHS < RHS, return -1.
1261  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1262
1263  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1264  /// point or a complex type (based on typeDomain/typeSize).
1265  /// 'typeDomain' is a real floating point or complex type.
1266  /// 'typeSize' is a real floating point or complex type.
1267  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1268                                             QualType typeDomain) const;
1269
1270private:
1271  // Helper for integer ordering
1272  unsigned getIntegerRank(Type* T) const;
1273
1274public:
1275
1276  //===--------------------------------------------------------------------===//
1277  //                    Type Compatibility Predicates
1278  //===--------------------------------------------------------------------===//
1279
1280  /// Compatibility predicates used to check assignment expressions.
1281  bool typesAreCompatible(QualType T1, QualType T2,
1282                          bool CompareUnqualified = false); // C99 6.2.7p1
1283
1284  bool typesAreBlockPointerCompatible(QualType, QualType);
1285
1286  bool isObjCIdType(QualType T) const {
1287    return T == ObjCIdTypedefType;
1288  }
1289  bool isObjCClassType(QualType T) const {
1290    return T == ObjCClassTypedefType;
1291  }
1292  bool isObjCSelType(QualType T) const {
1293    return T == ObjCSelTypedefType;
1294  }
1295  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1296  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1297                                         bool ForCompare);
1298
1299  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1300
1301  // Check the safety of assignment from LHS to RHS
1302  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1303                               const ObjCObjectPointerType *RHSOPT);
1304  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1305                               const ObjCObjectType *RHS);
1306  bool canAssignObjCInterfacesInBlockPointer(
1307                                          const ObjCObjectPointerType *LHSOPT,
1308                                          const ObjCObjectPointerType *RHSOPT);
1309  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1310  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1311                                   const ObjCObjectPointerType *RHSOPT);
1312  bool canBindObjCObjectType(QualType To, QualType From);
1313
1314  // Functions for calculating composite types
1315  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1316                      bool Unqualified = false);
1317  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1318                              bool Unqualified = false);
1319  QualType mergeFunctionArgumentTypes(QualType, QualType,
1320                                      bool OfBlockPointer=false,
1321                                      bool Unqualified = false);
1322  QualType mergeTransparentUnionType(QualType, QualType,
1323                                     bool OfBlockPointer=false,
1324                                     bool Unqualified = false);
1325
1326  QualType mergeObjCGCQualifiers(QualType, QualType);
1327
1328  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1329    ObjCLayouts[CD] = 0;
1330  }
1331
1332  //===--------------------------------------------------------------------===//
1333  //                    Integer Predicates
1334  //===--------------------------------------------------------------------===//
1335
1336  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1337  // of bits in an integer type excluding any padding bits.
1338  unsigned getIntWidth(QualType T) const;
1339
1340  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1341  // unsigned integer type.  This method takes a signed type, and returns the
1342  // corresponding unsigned integer type.
1343  QualType getCorrespondingUnsignedType(QualType T);
1344
1345  //===--------------------------------------------------------------------===//
1346  //                    Type Iterators.
1347  //===--------------------------------------------------------------------===//
1348
1349  typedef std::vector<Type*>::iterator       type_iterator;
1350  typedef std::vector<Type*>::const_iterator const_type_iterator;
1351
1352  type_iterator types_begin() { return Types.begin(); }
1353  type_iterator types_end() { return Types.end(); }
1354  const_type_iterator types_begin() const { return Types.begin(); }
1355  const_type_iterator types_end() const { return Types.end(); }
1356
1357  //===--------------------------------------------------------------------===//
1358  //                    Integer Values
1359  //===--------------------------------------------------------------------===//
1360
1361  /// MakeIntValue - Make an APSInt of the appropriate width and
1362  /// signedness for the given \arg Value and integer \arg Type.
1363  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1364    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1365    Res = Value;
1366    return Res;
1367  }
1368
1369  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1370  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1371  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1372  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1373
1374  /// \brief Set the implementation of ObjCInterfaceDecl.
1375  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1376                             ObjCImplementationDecl *ImplD);
1377  /// \brief Set the implementation of ObjCCategoryDecl.
1378  void setObjCImplementation(ObjCCategoryDecl *CatD,
1379                             ObjCCategoryImplDecl *ImplD);
1380
1381  /// \brief Set the copy inialization expression of a block var decl.
1382  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1383  /// \brief Get the copy initialization expression of VarDecl,or NULL if
1384  /// none exists.
1385  Expr *getBlockVarCopyInits(const VarDecl*VD);
1386
1387  /// \brief Allocate an uninitialized TypeSourceInfo.
1388  ///
1389  /// The caller should initialize the memory held by TypeSourceInfo using
1390  /// the TypeLoc wrappers.
1391  ///
1392  /// \param T the type that will be the basis for type source info. This type
1393  /// should refer to how the declarator was written in source code, not to
1394  /// what type semantic analysis resolved the declarator to.
1395  ///
1396  /// \param Size the size of the type info to create, or 0 if the size
1397  /// should be calculated based on the type.
1398  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1399
1400  /// \brief Allocate a TypeSourceInfo where all locations have been
1401  /// initialized to a given location, which defaults to the empty
1402  /// location.
1403  TypeSourceInfo *
1404  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1405
1406  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1407
1408  /// \brief Add a deallocation callback that will be invoked when the
1409  /// ASTContext is destroyed.
1410  ///
1411  /// \brief Callback A callback function that will be invoked on destruction.
1412  ///
1413  /// \brief Data Pointer data that will be provided to the callback function
1414  /// when it is called.
1415  void AddDeallocation(void (*Callback)(void*), void *Data);
1416
1417  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1418  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1419
1420  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1421  /// lazily, only when used; this is only relevant for function or file scoped
1422  /// var definitions.
1423  ///
1424  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1425  /// it is not used.
1426  bool DeclMustBeEmitted(const Decl *D);
1427
1428  //===--------------------------------------------------------------------===//
1429  //                    Statistics
1430  //===--------------------------------------------------------------------===//
1431
1432  /// \brief The number of implicitly-declared default constructors.
1433  static unsigned NumImplicitDefaultConstructors;
1434
1435  /// \brief The number of implicitly-declared default constructors for
1436  /// which declarations were built.
1437  static unsigned NumImplicitDefaultConstructorsDeclared;
1438
1439  /// \brief The number of implicitly-declared copy constructors.
1440  static unsigned NumImplicitCopyConstructors;
1441
1442  /// \brief The number of implicitly-declared copy constructors for
1443  /// which declarations were built.
1444  static unsigned NumImplicitCopyConstructorsDeclared;
1445
1446  /// \brief The number of implicitly-declared copy assignment operators.
1447  static unsigned NumImplicitCopyAssignmentOperators;
1448
1449  /// \brief The number of implicitly-declared copy assignment operators for
1450  /// which declarations were built.
1451  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1452
1453  /// \brief The number of implicitly-declared destructors.
1454  static unsigned NumImplicitDestructors;
1455
1456  /// \brief The number of implicitly-declared destructors for which
1457  /// declarations were built.
1458  static unsigned NumImplicitDestructorsDeclared;
1459
1460private:
1461  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1462  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1463
1464  void InitBuiltinTypes();
1465  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1466
1467  // Return the ObjC type encoding for a given type.
1468  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1469                                  bool ExpandPointedToStructures,
1470                                  bool ExpandStructures,
1471                                  const FieldDecl *Field,
1472                                  bool OutermostType = false,
1473                                  bool EncodingProperty = false) const;
1474
1475  const ASTRecordLayout &
1476  getObjCLayout(const ObjCInterfaceDecl *D,
1477                const ObjCImplementationDecl *Impl) const;
1478
1479private:
1480  /// \brief A set of deallocations that should be performed when the
1481  /// ASTContext is destroyed.
1482  llvm::SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1483
1484  // FIXME: This currently contains the set of StoredDeclMaps used
1485  // by DeclContext objects.  This probably should not be in ASTContext,
1486  // but we include it here so that ASTContext can quickly deallocate them.
1487  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1488
1489  /// \brief A counter used to uniquely identify "blocks".
1490  mutable unsigned int UniqueBlockByRefTypeID;
1491  mutable unsigned int UniqueBlockParmTypeID;
1492
1493  friend class DeclContext;
1494  friend class DeclarationNameTable;
1495  void ReleaseDeclContextMaps();
1496};
1497
1498/// @brief Utility function for constructing a nullary selector.
1499static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1500  IdentifierInfo* II = &Ctx.Idents.get(name);
1501  return Ctx.Selectors.getSelector(0, &II);
1502}
1503
1504/// @brief Utility function for constructing an unary selector.
1505static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1506  IdentifierInfo* II = &Ctx.Idents.get(name);
1507  return Ctx.Selectors.getSelector(1, &II);
1508}
1509
1510}  // end namespace clang
1511
1512// operator new and delete aren't allowed inside namespaces.
1513// The throw specifications are mandated by the standard.
1514/// @brief Placement new for using the ASTContext's allocator.
1515///
1516/// This placement form of operator new uses the ASTContext's allocator for
1517/// obtaining memory. It is a non-throwing new, which means that it returns
1518/// null on error. (If that is what the allocator does. The current does, so if
1519/// this ever changes, this operator will have to be changed, too.)
1520/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1521/// @code
1522/// // Default alignment (8)
1523/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1524/// // Specific alignment
1525/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1526/// @endcode
1527/// Please note that you cannot use delete on the pointer; it must be
1528/// deallocated using an explicit destructor call followed by
1529/// @c Context.Deallocate(Ptr).
1530///
1531/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1532/// @param C The ASTContext that provides the allocator.
1533/// @param Alignment The alignment of the allocated memory (if the underlying
1534///                  allocator supports it).
1535/// @return The allocated memory. Could be NULL.
1536inline void *operator new(size_t Bytes, const clang::ASTContext &C,
1537                          size_t Alignment) throw () {
1538  return C.Allocate(Bytes, Alignment);
1539}
1540/// @brief Placement delete companion to the new above.
1541///
1542/// This operator is just a companion to the new above. There is no way of
1543/// invoking it directly; see the new operator for more details. This operator
1544/// is called implicitly by the compiler if a placement new expression using
1545/// the ASTContext throws in the object constructor.
1546inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t)
1547              throw () {
1548  C.Deallocate(Ptr);
1549}
1550
1551/// This placement form of operator new[] uses the ASTContext's allocator for
1552/// obtaining memory. It is a non-throwing new[], which means that it returns
1553/// null on error.
1554/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1555/// @code
1556/// // Default alignment (8)
1557/// char *data = new (Context) char[10];
1558/// // Specific alignment
1559/// char *data = new (Context, 4) char[10];
1560/// @endcode
1561/// Please note that you cannot use delete on the pointer; it must be
1562/// deallocated using an explicit destructor call followed by
1563/// @c Context.Deallocate(Ptr).
1564///
1565/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1566/// @param C The ASTContext that provides the allocator.
1567/// @param Alignment The alignment of the allocated memory (if the underlying
1568///                  allocator supports it).
1569/// @return The allocated memory. Could be NULL.
1570inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
1571                            size_t Alignment = 8) throw () {
1572  return C.Allocate(Bytes, Alignment);
1573}
1574
1575/// @brief Placement delete[] companion to the new[] above.
1576///
1577/// This operator is just a companion to the new[] above. There is no way of
1578/// invoking it directly; see the new[] operator for more details. This operator
1579/// is called implicitly by the compiler if a placement new[] expression using
1580/// the ASTContext throws in the object constructor.
1581inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t)
1582              throw () {
1583  C.Deallocate(Ptr);
1584}
1585
1586#endif
1587