ASTContext.h revision 683087ffcf21d2a22cd2d0424b7f119168b47a8e
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/PrettyPrinter.h"
23#include "clang/AST/TemplateName.h"
24#include "clang/AST/Type.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Support/Allocator.h"
29#include <vector>
30
31namespace llvm {
32  struct fltSemantics;
33}
34
35namespace clang {
36  class FileManager;
37  class ASTRecordLayout;
38  class Expr;
39  class ExternalASTSource;
40  class IdentifierTable;
41  class SelectorTable;
42  class SourceManager;
43  class TargetInfo;
44  // Decls
45  class Decl;
46  class ObjCPropertyDecl;
47  class RecordDecl;
48  class TagDecl;
49  class TranslationUnitDecl;
50  class TypeDecl;
51  class TypedefDecl;
52  class TemplateTypeParmDecl;
53  class FieldDecl;
54  class ObjCIvarRefExpr;
55  class ObjCIvarDecl;
56
57  namespace Builtin { class Context; }
58
59/// ASTContext - This class holds long-lived AST nodes (such as types and
60/// decls) that can be referred to throughout the semantic analysis of a file.
61class ASTContext {
62  std::vector<Type*> Types;
63  llvm::FoldingSet<ExtQualType> ExtQualTypes;
64  llvm::FoldingSet<ComplexType> ComplexTypes;
65  llvm::FoldingSet<PointerType> PointerTypes;
66  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
67  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
68  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
69  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
70  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
71  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
72  std::vector<VariableArrayType*> VariableArrayTypes;
73  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
74  std::vector<DependentSizedExtVectorType*> DependentSizedExtVectorTypes;
75  llvm::FoldingSet<VectorType> VectorTypes;
76  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
77  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
78  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
79  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
80  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
81  llvm::FoldingSet<TypenameType> TypenameTypes;
82  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
83  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
84
85  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
86  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
87
88  /// \brief The set of nested name specifiers.
89  ///
90  /// This set is managed by the NestedNameSpecifier class.
91  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
92  NestedNameSpecifier *GlobalNestedNameSpecifier;
93  friend class NestedNameSpecifier;
94
95  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
96  ///  This is lazily created.  This is intentionally not serialized.
97  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
98  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
99
100  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
101  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
102
103  /// BuiltinVaListType - built-in va list type.
104  /// This is initially null and set by Sema::LazilyCreateBuiltin when
105  /// a builtin that takes a valist is encountered.
106  QualType BuiltinVaListType;
107
108  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
109  QualType ObjCIdType;
110  const RecordType *IdStructType;
111
112  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
113  QualType ObjCSelType;
114  const RecordType *SelStructType;
115
116  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
117  QualType ObjCProtoType;
118  const RecordType *ProtoStructType;
119
120  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
121  QualType ObjCClassType;
122  const RecordType *ClassStructType;
123
124  QualType ObjCConstantStringType;
125  RecordDecl *CFConstantStringTypeDecl;
126
127  RecordDecl *ObjCFastEnumerationStateTypeDecl;
128
129  /// \brief Keeps track of all declaration attributes.
130  ///
131  /// Since so few decls have attrs, we keep them in a hash map instead of
132  /// wasting space in the Decl class.
133  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
134
135  TranslationUnitDecl *TUDecl;
136
137  /// SourceMgr - The associated SourceManager object.
138  SourceManager &SourceMgr;
139
140  /// LangOpts - The language options used to create the AST associated with
141  ///  this ASTContext object.
142  LangOptions LangOpts;
143
144  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
145  bool FreeMemory;
146  llvm::MallocAllocator MallocAlloc;
147  llvm::BumpPtrAllocator BumpAlloc;
148public:
149  TargetInfo &Target;
150  IdentifierTable &Idents;
151  SelectorTable &Selectors;
152  Builtin::Context &BuiltinInfo;
153  DeclarationNameTable DeclarationNames;
154  llvm::OwningPtr<ExternalASTSource> ExternalSource;
155  clang::PrintingPolicy PrintingPolicy;
156
157  SourceManager& getSourceManager() { return SourceMgr; }
158  const SourceManager& getSourceManager() const { return SourceMgr; }
159  void *Allocate(unsigned Size, unsigned Align = 8) {
160    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
161                        BumpAlloc.Allocate(Size, Align);
162  }
163  void Deallocate(void *Ptr) {
164    if (FreeMemory)
165      MallocAlloc.Deallocate(Ptr);
166  }
167  const LangOptions& getLangOptions() const { return LangOpts; }
168
169  FullSourceLoc getFullLoc(SourceLocation Loc) const {
170    return FullSourceLoc(Loc,SourceMgr);
171  }
172
173  /// \brief Retrieve the attributes for the given declaration.
174  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
175
176  /// \brief Erase the attributes corresponding to the given declaration.
177  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
178
179  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
180
181
182  // Builtin Types.
183  QualType VoidTy;
184  QualType BoolTy;
185  QualType CharTy;
186  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
187  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
188  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
189  QualType UnsignedLongLongTy, UnsignedInt128Ty;
190  QualType FloatTy, DoubleTy, LongDoubleTy;
191  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
192  QualType VoidPtrTy, NullPtrTy;
193  QualType OverloadTy;
194  QualType DependentTy;
195  QualType UndeducedAutoTy;
196
197  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
198             IdentifierTable &idents, SelectorTable &sels,
199             Builtin::Context &builtins,
200             bool FreeMemory = true, unsigned size_reserve=0);
201
202  ~ASTContext();
203
204  /// \brief Attach an external AST source to the AST context.
205  ///
206  /// The external AST source provides the ability to load parts of
207  /// the abstract syntax tree as needed from some external storage,
208  /// e.g., a precompiled header.
209  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
210
211  /// \brief Retrieve a pointer to the external AST source associated
212  /// with this AST context, if any.
213  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
214
215  void PrintStats() const;
216  const std::vector<Type*>& getTypes() const { return Types; }
217
218  //===--------------------------------------------------------------------===//
219  //                           Type Constructors
220  //===--------------------------------------------------------------------===//
221
222  /// getAddSpaceQualType - Return the uniqued reference to the type for an
223  /// address space qualified type with the specified type and address space.
224  /// The resulting type has a union of the qualifiers from T and the address
225  /// space. If T already has an address space specifier, it is silently
226  /// replaced.
227  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
228
229  /// getObjCGCQualType - Returns the uniqued reference to the type for an
230  /// objc gc qualified type. The retulting type has a union of the qualifiers
231  /// from T and the gc attribute.
232  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
233
234  /// getComplexType - Return the uniqued reference to the type for a complex
235  /// number with the specified element type.
236  QualType getComplexType(QualType T);
237
238  /// getPointerType - Return the uniqued reference to the type for a pointer to
239  /// the specified type.
240  QualType getPointerType(QualType T);
241
242  /// getBlockPointerType - Return the uniqued reference to the type for a block
243  /// of the specified type.
244  QualType getBlockPointerType(QualType T);
245
246  /// getLValueReferenceType - Return the uniqued reference to the type for an
247  /// lvalue reference to the specified type.
248  QualType getLValueReferenceType(QualType T);
249
250  /// getRValueReferenceType - Return the uniqued reference to the type for an
251  /// rvalue reference to the specified type.
252  QualType getRValueReferenceType(QualType T);
253
254  /// getMemberPointerType - Return the uniqued reference to the type for a
255  /// member pointer to the specified type in the specified class. The class
256  /// is a Type because it could be a dependent name.
257  QualType getMemberPointerType(QualType T, const Type *Cls);
258
259  /// getVariableArrayType - Returns a non-unique reference to the type for a
260  /// variable array of the specified element type.
261  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
262                                ArrayType::ArraySizeModifier ASM,
263                                unsigned EltTypeQuals);
264
265  /// getDependentSizedArrayType - Returns a non-unique reference to
266  /// the type for a dependently-sized array of the specified element
267  /// type. FIXME: We will need these to be uniqued, or at least
268  /// comparable, at some point.
269  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
270                                      ArrayType::ArraySizeModifier ASM,
271                                      unsigned EltTypeQuals);
272
273  /// getIncompleteArrayType - Returns a unique reference to the type for a
274  /// incomplete array of the specified element type.
275  QualType getIncompleteArrayType(QualType EltTy,
276                                  ArrayType::ArraySizeModifier ASM,
277                                  unsigned EltTypeQuals);
278
279  /// getConstantArrayType - Return the unique reference to the type for a
280  /// constant array of the specified element type.
281  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
282                                ArrayType::ArraySizeModifier ASM,
283                                unsigned EltTypeQuals);
284
285  /// getVectorType - Return the unique reference to a vector type of
286  /// the specified element type and size. VectorType must be a built-in type.
287  QualType getVectorType(QualType VectorType, unsigned NumElts);
288
289  /// getExtVectorType - Return the unique reference to an extended vector type
290  /// of the specified element type and size.  VectorType must be a built-in
291  /// type.
292  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
293
294  /// getDependentSizedExtVectorType - Returns a non-unique reference to
295  /// the type for a dependently-sized vector of the specified element
296  /// type. FIXME: We will need these to be uniqued, or at least
297  /// comparable, at some point.
298  QualType getDependentSizedExtVectorType(QualType VectorType,
299                                          Expr *SizeExpr,
300                                          SourceLocation AttrLoc);
301
302  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
303  ///
304  QualType getFunctionNoProtoType(QualType ResultTy);
305
306  /// getFunctionType - Return a normal function type with a typed argument
307  /// list.  isVariadic indicates whether the argument list includes '...'.
308  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
309                           unsigned NumArgs, bool isVariadic,
310                           unsigned TypeQuals, bool hasExceptionSpec = false,
311                           bool hasAnyExceptionSpec = false,
312                           unsigned NumExs = 0, const QualType *ExArray = 0);
313
314  /// getTypeDeclType - Return the unique reference to the type for
315  /// the specified type declaration.
316  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
317
318  /// getTypedefType - Return the unique reference to the type for the
319  /// specified typename decl.
320  QualType getTypedefType(TypedefDecl *Decl);
321  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
322
323  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
324                                   bool ParameterPack,
325                                   IdentifierInfo *Name = 0);
326
327  QualType getTemplateSpecializationType(TemplateName T,
328                                         const TemplateArgument *Args,
329                                         unsigned NumArgs,
330                                         QualType Canon = QualType());
331
332  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
333                                QualType NamedType);
334  QualType getTypenameType(NestedNameSpecifier *NNS,
335                           const IdentifierInfo *Name,
336                           QualType Canon = QualType());
337  QualType getTypenameType(NestedNameSpecifier *NNS,
338                           const TemplateSpecializationType *TemplateId,
339                           QualType Canon = QualType());
340
341  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
342  /// given interface decl and the conforming protocol list.
343  QualType getObjCObjectPointerType(ObjCInterfaceDecl *Decl,
344                                    ObjCProtocolDecl **ProtocolList = 0,
345                                    unsigned NumProtocols = 0);
346
347  /// getObjCQualifiedInterfaceType - Return a
348  /// ObjCQualifiedInterfaceType type for the given interface decl and
349  /// the conforming protocol list.
350  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
351                                         ObjCProtocolDecl **ProtocolList,
352                                         unsigned NumProtocols);
353
354  /// getTypeOfType - GCC extension.
355  QualType getTypeOfExprType(Expr *e);
356  QualType getTypeOfType(QualType t);
357
358  /// getDecltypeType - C++0x decltype.
359  QualType getDecltypeType(Expr *e);
360
361  /// getTagDeclType - Return the unique reference to the type for the
362  /// specified TagDecl (struct/union/class/enum) decl.
363  QualType getTagDeclType(TagDecl *Decl);
364
365  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
366  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
367  QualType getSizeType() const;
368
369  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
370  /// returns a type compatible with the type defined in <stddef.h> as defined
371  /// by the target.
372  QualType getWCharType() const { return WCharTy; }
373
374  /// getSignedWCharType - Return the type of "signed wchar_t".
375  /// Used when in C++, as a GCC extension.
376  QualType getSignedWCharType() const;
377
378  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
379  /// Used when in C++, as a GCC extension.
380  QualType getUnsignedWCharType() const;
381
382  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
383  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
384  QualType getPointerDiffType() const;
385
386  // getCFConstantStringType - Return the C structure type used to represent
387  // constant CFStrings.
388  QualType getCFConstantStringType();
389
390  /// Get the structure type used to representation CFStrings, or NULL
391  /// if it hasn't yet been built.
392  QualType getRawCFConstantStringType() {
393    if (CFConstantStringTypeDecl)
394      return getTagDeclType(CFConstantStringTypeDecl);
395    return QualType();
396  }
397  void setCFConstantStringType(QualType T);
398
399  // This setter/getter represents the ObjC type for an NSConstantString.
400  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
401  QualType getObjCConstantStringInterface() const {
402    return ObjCConstantStringType;
403  }
404
405  //// This gets the struct used to keep track of fast enumerations.
406  QualType getObjCFastEnumerationStateType();
407
408  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
409  /// been built.
410  QualType getRawObjCFastEnumerationStateType() {
411    if (ObjCFastEnumerationStateTypeDecl)
412      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
413    return QualType();
414  }
415
416  void setObjCFastEnumerationStateType(QualType T);
417
418  /// getObjCEncodingForType - Emit the ObjC type encoding for the
419  /// given type into \arg S. If \arg NameFields is specified then
420  /// record field names are also encoded.
421  void getObjCEncodingForType(QualType t, std::string &S,
422                              const FieldDecl *Field=0);
423
424  void getLegacyIntegralTypeEncoding(QualType &t) const;
425
426  // Put the string version of type qualifiers into S.
427  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
428                                       std::string &S) const;
429
430  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
431  /// declaration.
432  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
433
434  /// getObjCEncodingForPropertyDecl - Return the encoded type for
435  /// this method declaration. If non-NULL, Container must be either
436  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
437  /// only be NULL when getting encodings for protocol properties.
438  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
439                                      const Decl *Container,
440                                      std::string &S);
441
442  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
443  /// purpose.
444  int getObjCEncodingTypeSize(QualType t);
445
446  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
447  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
448  QualType getObjCIdType() const { return ObjCIdType; }
449  void setObjCIdType(QualType T);
450
451  void setObjCSelType(QualType T);
452  QualType getObjCSelType() const { return ObjCSelType; }
453
454  void setObjCProtoType(QualType QT);
455  QualType getObjCProtoType() const { return ObjCProtoType; }
456
457  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
458  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
459  /// struct.
460  QualType getObjCClassType() const { return ObjCClassType; }
461  void setObjCClassType(QualType T);
462
463  void setBuiltinVaListType(QualType T);
464  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
465
466  QualType getFixedWidthIntType(unsigned Width, bool Signed);
467
468  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
469                                        bool TemplateKeyword,
470                                        TemplateDecl *Template);
471
472  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
473                                        const IdentifierInfo *Name);
474
475  enum GetBuiltinTypeError {
476    GE_None,        //< No error
477    GE_Missing_FILE //< Missing the FILE type from <stdio.h>
478  };
479
480  /// GetBuiltinType - Return the type for the specified builtin.
481  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
482
483private:
484  QualType getFromTargetType(unsigned Type) const;
485
486  //===--------------------------------------------------------------------===//
487  //                         Type Predicates.
488  //===--------------------------------------------------------------------===//
489
490public:
491  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
492  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
493  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
494  /// ID type).
495  bool isObjCObjectPointerType(QualType Ty) const;
496
497  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
498  /// garbage collection attribute.
499  ///
500  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
501
502  /// isObjCNSObjectType - Return true if this is an NSObject object with
503  /// its NSObject attribute set.
504  bool isObjCNSObjectType(QualType Ty) const;
505
506  //===--------------------------------------------------------------------===//
507  //                         Type Sizing and Analysis
508  //===--------------------------------------------------------------------===//
509
510  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
511  /// scalar floating point type.
512  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
513
514  /// getTypeInfo - Get the size and alignment of the specified complete type in
515  /// bits.
516  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
517  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
518    return getTypeInfo(T.getTypePtr());
519  }
520
521  /// getTypeSize - Return the size of the specified type, in bits.  This method
522  /// does not work on incomplete types.
523  uint64_t getTypeSize(QualType T) {
524    return getTypeInfo(T).first;
525  }
526  uint64_t getTypeSize(const Type *T) {
527    return getTypeInfo(T).first;
528  }
529
530  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
531  /// This method does not work on incomplete types.
532  unsigned getTypeAlign(QualType T) {
533    return getTypeInfo(T).second;
534  }
535  unsigned getTypeAlign(const Type *T) {
536    return getTypeInfo(T).second;
537  }
538
539  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
540  /// type for the current target in bits.  This can be different than the ABI
541  /// alignment in cases where it is beneficial for performance to overalign
542  /// a data type.
543  unsigned getPreferredTypeAlign(const Type *T);
544
545  /// getDeclAlignInBytes - Return the alignment of the specified decl
546  /// that should be returned by __alignof().  Note that bitfields do
547  /// not have a valid alignment, so this method will assert on them.
548  unsigned getDeclAlignInBytes(const Decl *D);
549
550  /// getASTRecordLayout - Get or compute information about the layout of the
551  /// specified record (struct/union/class), which indicates its size and field
552  /// position information.
553  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
554
555  /// getASTObjCInterfaceLayout - Get or compute information about the
556  /// layout of the specified Objective-C interface.
557  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
558
559  /// getASTObjCImplementationLayout - Get or compute information about
560  /// the layout of the specified Objective-C implementation. This may
561  /// differ from the interface if synthesized ivars are present.
562  const ASTRecordLayout &
563  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
564
565  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
566                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
567
568  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
569                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
570                               bool CollectSynthesized = true);
571  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
572                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
573  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
574                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
575  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
576  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
577
578  //===--------------------------------------------------------------------===//
579  //                            Type Operators
580  //===--------------------------------------------------------------------===//
581
582  /// getCanonicalType - Return the canonical (structural) type corresponding to
583  /// the specified potentially non-canonical type.  The non-canonical version
584  /// of a type may have many "decorated" versions of types.  Decorators can
585  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
586  /// to be free of any of these, allowing two canonical types to be compared
587  /// for exact equality with a simple pointer comparison.
588  QualType getCanonicalType(QualType T);
589  const Type *getCanonicalType(const Type *T) {
590    return T->getCanonicalTypeInternal().getTypePtr();
591  }
592
593  /// \brief Determine whether the given types are equivalent.
594  bool hasSameType(QualType T1, QualType T2) {
595    return getCanonicalType(T1) == getCanonicalType(T2);
596  }
597
598  /// \brief Determine whether the given types are equivalent after
599  /// cvr-qualifiers have been removed.
600  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
601    T1 = getCanonicalType(T1);
602    T2 = getCanonicalType(T2);
603    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
604  }
605
606  /// \brief Retrieves the "canonical" declaration of the given declaration.
607  Decl *getCanonicalDecl(Decl *D);
608
609  /// \brief Retrieves the "canonical" declaration of the given tag
610  /// declaration.
611  ///
612  /// The canonical declaration for the given tag declaration is
613  /// either the definition of the tag (if it is a complete type) or
614  /// the first declaration of that tag.
615  TagDecl *getCanonicalDecl(TagDecl *Tag) {
616    return cast<TagDecl>(getCanonicalDecl((Decl *)Tag));
617  }
618
619  /// \brief Retrieves the "canonical" declaration of
620
621  /// \brief Retrieves the "canonical" nested name specifier for a
622  /// given nested name specifier.
623  ///
624  /// The canonical nested name specifier is a nested name specifier
625  /// that uniquely identifies a type or namespace within the type
626  /// system. For example, given:
627  ///
628  /// \code
629  /// namespace N {
630  ///   struct S {
631  ///     template<typename T> struct X { typename T* type; };
632  ///   };
633  /// }
634  ///
635  /// template<typename T> struct Y {
636  ///   typename N::S::X<T>::type member;
637  /// };
638  /// \endcode
639  ///
640  /// Here, the nested-name-specifier for N::S::X<T>:: will be
641  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
642  /// by declarations in the type system and the canonical type for
643  /// the template type parameter 'T' is template-param-0-0.
644  NestedNameSpecifier *
645  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
646
647  /// \brief Retrieves the "canonical" template name that refers to a
648  /// given template.
649  ///
650  /// The canonical template name is the simplest expression that can
651  /// be used to refer to a given template. For most templates, this
652  /// expression is just the template declaration itself. For example,
653  /// the template std::vector can be referred to via a variety of
654  /// names---std::vector, ::std::vector, vector (if vector is in
655  /// scope), etc.---but all of these names map down to the same
656  /// TemplateDecl, which is used to form the canonical template name.
657  ///
658  /// Dependent template names are more interesting. Here, the
659  /// template name could be something like T::template apply or
660  /// std::allocator<T>::template rebind, where the nested name
661  /// specifier itself is dependent. In this case, the canonical
662  /// template name uses the shortest form of the dependent
663  /// nested-name-specifier, which itself contains all canonical
664  /// types, values, and templates.
665  TemplateName getCanonicalTemplateName(TemplateName Name);
666
667  /// Type Query functions.  If the type is an instance of the specified class,
668  /// return the Type pointer for the underlying maximally pretty type.  This
669  /// is a member of ASTContext because this may need to do some amount of
670  /// canonicalization, e.g. to move type qualifiers into the element type.
671  const ArrayType *getAsArrayType(QualType T);
672  const ConstantArrayType *getAsConstantArrayType(QualType T) {
673    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
674  }
675  const VariableArrayType *getAsVariableArrayType(QualType T) {
676    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
677  }
678  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
679    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
680  }
681
682  /// getBaseElementType - Returns the innermost element type of a variable
683  /// length array type. For example, will return "int" for int[m][n]
684  QualType getBaseElementType(const VariableArrayType *VAT);
685
686  /// getArrayDecayedType - Return the properly qualified result of decaying the
687  /// specified array type to a pointer.  This operation is non-trivial when
688  /// handling typedefs etc.  The canonical type of "T" must be an array type,
689  /// this returns a pointer to a properly qualified element of the array.
690  ///
691  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
692  QualType getArrayDecayedType(QualType T);
693
694  /// getIntegerTypeOrder - Returns the highest ranked integer type:
695  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
696  /// LHS < RHS, return -1.
697  int getIntegerTypeOrder(QualType LHS, QualType RHS);
698
699  /// getFloatingTypeOrder - Compare the rank of the two specified floating
700  /// point types, ignoring the domain of the type (i.e. 'double' ==
701  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
702  /// LHS < RHS, return -1.
703  int getFloatingTypeOrder(QualType LHS, QualType RHS);
704
705  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
706  /// point or a complex type (based on typeDomain/typeSize).
707  /// 'typeDomain' is a real floating point or complex type.
708  /// 'typeSize' is a real floating point or complex type.
709  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
710                                             QualType typeDomain) const;
711
712private:
713  // Helper for integer ordering
714  unsigned getIntegerRank(Type* T);
715
716public:
717
718  //===--------------------------------------------------------------------===//
719  //                    Type Compatibility Predicates
720  //===--------------------------------------------------------------------===//
721
722  /// Compatibility predicates used to check assignment expressions.
723  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
724
725  bool isObjCIdType(QualType T) const {
726    return T == ObjCIdType;
727  }
728  bool isObjCIdStructType(QualType T) const {
729    if (!IdStructType) // ObjC isn't enabled
730      return false;
731    return T->getAsStructureType() == IdStructType;
732  }
733  bool isObjCClassType(QualType T) const {
734    return T == ObjCClassType;
735  }
736  bool isObjCClassStructType(QualType T) const {
737    if (!ClassStructType) // ObjC isn't enabled
738      return false;
739    return T->getAsStructureType() == ClassStructType;
740  }
741  bool isObjCSelType(QualType T) const {
742    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
743    return T->getAsStructureType() == SelStructType;
744  }
745
746  // Check the safety of assignment from LHS to RHS
747  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
748                               const ObjCInterfaceType *RHS);
749  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
750
751  // Functions for calculating composite types
752  QualType mergeTypes(QualType, QualType);
753  QualType mergeFunctionTypes(QualType, QualType);
754
755  //===--------------------------------------------------------------------===//
756  //                    Integer Predicates
757  //===--------------------------------------------------------------------===//
758
759  // The width of an integer, as defined in C99 6.2.6.2. This is the number
760  // of bits in an integer type excluding any padding bits.
761  unsigned getIntWidth(QualType T);
762
763  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
764  // unsigned integer type.  This method takes a signed type, and returns the
765  // corresponding unsigned integer type.
766  QualType getCorrespondingUnsignedType(QualType T);
767
768  //===--------------------------------------------------------------------===//
769  //                    Type Iterators.
770  //===--------------------------------------------------------------------===//
771
772  typedef std::vector<Type*>::iterator       type_iterator;
773  typedef std::vector<Type*>::const_iterator const_type_iterator;
774
775  type_iterator types_begin() { return Types.begin(); }
776  type_iterator types_end() { return Types.end(); }
777  const_type_iterator types_begin() const { return Types.begin(); }
778  const_type_iterator types_end() const { return Types.end(); }
779
780  //===--------------------------------------------------------------------===//
781  //                    Integer Values
782  //===--------------------------------------------------------------------===//
783
784  /// MakeIntValue - Make an APSInt of the appropriate width and
785  /// signedness for the given \arg Value and integer \arg Type.
786  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
787    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
788    Res = Value;
789    return Res;
790  }
791
792private:
793  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
794  void operator=(const ASTContext&); // DO NOT IMPLEMENT
795
796  void InitBuiltinTypes();
797  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
798
799  // Return the ObjC type encoding for a given type.
800  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
801                                  bool ExpandPointedToStructures,
802                                  bool ExpandStructures,
803                                  const FieldDecl *Field,
804                                  bool OutermostType = false,
805                                  bool EncodingProperty = false);
806
807  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
808                                       const ObjCImplementationDecl *Impl);
809};
810
811}  // end namespace clang
812
813// operator new and delete aren't allowed inside namespaces.
814// The throw specifications are mandated by the standard.
815/// @brief Placement new for using the ASTContext's allocator.
816///
817/// This placement form of operator new uses the ASTContext's allocator for
818/// obtaining memory. It is a non-throwing new, which means that it returns
819/// null on error. (If that is what the allocator does. The current does, so if
820/// this ever changes, this operator will have to be changed, too.)
821/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
822/// @code
823/// // Default alignment (16)
824/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
825/// // Specific alignment
826/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
827/// @endcode
828/// Please note that you cannot use delete on the pointer; it must be
829/// deallocated using an explicit destructor call followed by
830/// @c Context.Deallocate(Ptr).
831///
832/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
833/// @param C The ASTContext that provides the allocator.
834/// @param Alignment The alignment of the allocated memory (if the underlying
835///                  allocator supports it).
836/// @return The allocated memory. Could be NULL.
837inline void *operator new(size_t Bytes, clang::ASTContext &C,
838                          size_t Alignment) throw () {
839  return C.Allocate(Bytes, Alignment);
840}
841/// @brief Placement delete companion to the new above.
842///
843/// This operator is just a companion to the new above. There is no way of
844/// invoking it directly; see the new operator for more details. This operator
845/// is called implicitly by the compiler if a placement new expression using
846/// the ASTContext throws in the object constructor.
847inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
848              throw () {
849  C.Deallocate(Ptr);
850}
851
852/// This placement form of operator new[] uses the ASTContext's allocator for
853/// obtaining memory. It is a non-throwing new[], which means that it returns
854/// null on error.
855/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
856/// @code
857/// // Default alignment (16)
858/// char *data = new (Context) char[10];
859/// // Specific alignment
860/// char *data = new (Context, 8) char[10];
861/// @endcode
862/// Please note that you cannot use delete on the pointer; it must be
863/// deallocated using an explicit destructor call followed by
864/// @c Context.Deallocate(Ptr).
865///
866/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
867/// @param C The ASTContext that provides the allocator.
868/// @param Alignment The alignment of the allocated memory (if the underlying
869///                  allocator supports it).
870/// @return The allocated memory. Could be NULL.
871inline void *operator new[](size_t Bytes, clang::ASTContext& C,
872                            size_t Alignment = 16) throw () {
873  return C.Allocate(Bytes, Alignment);
874}
875
876/// @brief Placement delete[] companion to the new[] above.
877///
878/// This operator is just a companion to the new[] above. There is no way of
879/// invoking it directly; see the new[] operator for more details. This operator
880/// is called implicitly by the compiler if a placement new[] expression using
881/// the ASTContext throws in the object constructor.
882inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
883  C.Deallocate(Ptr);
884}
885
886#endif
887