ASTContext.h revision 6a6aa53ec6c89ae0881309b0a0dd84b6868b576b
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/Allocator.h"
32#include <vector>
33
34namespace llvm {
35  struct fltSemantics;
36}
37
38namespace clang {
39  class FileManager;
40  class ASTRecordLayout;
41  class BlockExpr;
42  class CharUnits;
43  class Diagnostic;
44  class Expr;
45  class ExternalASTSource;
46  class IdentifierTable;
47  class SelectorTable;
48  class SourceManager;
49  class TargetInfo;
50  // Decls
51  class DeclContext;
52  class CXXMethodDecl;
53  class CXXRecordDecl;
54  class Decl;
55  class FieldDecl;
56  class ObjCIvarDecl;
57  class ObjCIvarRefExpr;
58  class ObjCPropertyDecl;
59  class RecordDecl;
60  class StoredDeclsMap;
61  class TagDecl;
62  class TemplateTypeParmDecl;
63  class TranslationUnitDecl;
64  class TypeDecl;
65  class TypedefDecl;
66  class UsingDecl;
67  class UsingShadowDecl;
68  class UnresolvedSetIterator;
69
70  namespace Builtin { class Context; }
71
72/// \brief A vector of C++ member functions that is optimized for
73/// storing a single method.
74class CXXMethodVector {
75  /// \brief Storage for the vector.
76  ///
77  /// When the low bit is zero, this is a const CXXMethodDecl *. When the
78  /// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
79  mutable uintptr_t Storage;
80
81  typedef std::vector<const CXXMethodDecl *> vector_type;
82
83public:
84  CXXMethodVector() : Storage(0) { }
85
86  typedef const CXXMethodDecl **iterator;
87  iterator begin() const;
88  iterator end() const;
89
90  void push_back(const CXXMethodDecl *Method);
91  void Destroy();
92};
93
94/// ASTContext - This class holds long-lived AST nodes (such as types and
95/// decls) that can be referred to throughout the semantic analysis of a file.
96class ASTContext {
97  std::vector<Type*> Types;
98  llvm::FoldingSet<ExtQuals> ExtQualNodes;
99  llvm::FoldingSet<ComplexType> ComplexTypes;
100  llvm::FoldingSet<PointerType> PointerTypes;
101  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
102  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
103  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
104  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
105  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
106  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
107  std::vector<VariableArrayType*> VariableArrayTypes;
108  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
109  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
110  llvm::FoldingSet<VectorType> VectorTypes;
111  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
112  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
113  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
114  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
115  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
116  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
117  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
118  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
119  llvm::FoldingSet<TypenameType> TypenameTypes;
120  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
121  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
122  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
123
124  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
125  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
126
127  /// \brief The set of nested name specifiers.
128  ///
129  /// This set is managed by the NestedNameSpecifier class.
130  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
131  NestedNameSpecifier *GlobalNestedNameSpecifier;
132  friend class NestedNameSpecifier;
133
134  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
135  ///  This is lazily created.  This is intentionally not serialized.
136  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
137  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
138
139  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
140  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
141
142  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
143  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
144
145  /// BuiltinVaListType - built-in va list type.
146  /// This is initially null and set by Sema::LazilyCreateBuiltin when
147  /// a builtin that takes a valist is encountered.
148  QualType BuiltinVaListType;
149
150  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
151  QualType ObjCIdTypedefType;
152
153  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
154  QualType ObjCSelTypedefType;
155
156  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
157  QualType ObjCProtoType;
158  const RecordType *ProtoStructType;
159
160  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
161  QualType ObjCClassTypedefType;
162
163  QualType ObjCConstantStringType;
164  RecordDecl *CFConstantStringTypeDecl;
165
166  RecordDecl *ObjCFastEnumerationStateTypeDecl;
167
168  /// \brief The type for the C FILE type.
169  TypeDecl *FILEDecl;
170
171  /// \brief The type for the C jmp_buf type.
172  TypeDecl *jmp_bufDecl;
173
174  /// \brief The type for the C sigjmp_buf type.
175  TypeDecl *sigjmp_bufDecl;
176
177  /// \brief Type for the Block descriptor for Blocks CodeGen.
178  RecordDecl *BlockDescriptorType;
179
180  /// \brief Type for the Block descriptor for Blocks CodeGen.
181  RecordDecl *BlockDescriptorExtendedType;
182
183  /// \brief Keeps track of all declaration attributes.
184  ///
185  /// Since so few decls have attrs, we keep them in a hash map instead of
186  /// wasting space in the Decl class.
187  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
188
189  /// \brief Keeps track of the static data member templates from which
190  /// static data members of class template specializations were instantiated.
191  ///
192  /// This data structure stores the mapping from instantiations of static
193  /// data members to the static data member representations within the
194  /// class template from which they were instantiated along with the kind
195  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
196  ///
197  /// Given the following example:
198  ///
199  /// \code
200  /// template<typename T>
201  /// struct X {
202  ///   static T value;
203  /// };
204  ///
205  /// template<typename T>
206  ///   T X<T>::value = T(17);
207  ///
208  /// int *x = &X<int>::value;
209  /// \endcode
210  ///
211  /// This mapping will contain an entry that maps from the VarDecl for
212  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
213  /// class template X) and will be marked TSK_ImplicitInstantiation.
214  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
215    InstantiatedFromStaticDataMember;
216
217  /// \brief Keeps track of the declaration from which a UsingDecl was
218  /// created during instantiation.  The source declaration is always
219  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
220  /// UnresolvedUsingTypenameDecl.
221  ///
222  /// For example:
223  /// \code
224  /// template<typename T>
225  /// struct A {
226  ///   void f();
227  /// };
228  ///
229  /// template<typename T>
230  /// struct B : A<T> {
231  ///   using A<T>::f;
232  /// };
233  ///
234  /// template struct B<int>;
235  /// \endcode
236  ///
237  /// This mapping will contain an entry that maps from the UsingDecl in
238  /// B<int> to the UnresolvedUsingDecl in B<T>.
239  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
240
241  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
242    InstantiatedFromUsingShadowDecl;
243
244  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
245
246  /// \brief Mapping that stores the methods overridden by a given C++
247  /// member function.
248  ///
249  /// Since most C++ member functions aren't virtual and therefore
250  /// don't override anything, we store the overridden functions in
251  /// this map on the side rather than within the CXXMethodDecl structure.
252  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
253
254  TranslationUnitDecl *TUDecl;
255
256  /// SourceMgr - The associated SourceManager object.
257  SourceManager &SourceMgr;
258
259  /// LangOpts - The language options used to create the AST associated with
260  ///  this ASTContext object.
261  LangOptions LangOpts;
262
263  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
264  bool FreeMemory;
265  llvm::MallocAllocator MallocAlloc;
266  llvm::BumpPtrAllocator BumpAlloc;
267
268public:
269  const TargetInfo &Target;
270  IdentifierTable &Idents;
271  SelectorTable &Selectors;
272  Builtin::Context &BuiltinInfo;
273  DeclarationNameTable DeclarationNames;
274  llvm::OwningPtr<ExternalASTSource> ExternalSource;
275  clang::PrintingPolicy PrintingPolicy;
276
277  // Typedefs which may be provided defining the structure of Objective-C
278  // pseudo-builtins
279  QualType ObjCIdRedefinitionType;
280  QualType ObjCClassRedefinitionType;
281  QualType ObjCSelRedefinitionType;
282
283  SourceManager& getSourceManager() { return SourceMgr; }
284  const SourceManager& getSourceManager() const { return SourceMgr; }
285  void *Allocate(unsigned Size, unsigned Align = 8) {
286    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
287                        BumpAlloc.Allocate(Size, Align);
288  }
289  void Deallocate(void *Ptr) {
290    if (FreeMemory)
291      MallocAlloc.Deallocate(Ptr);
292  }
293  const LangOptions& getLangOptions() const { return LangOpts; }
294
295  FullSourceLoc getFullLoc(SourceLocation Loc) const {
296    return FullSourceLoc(Loc,SourceMgr);
297  }
298
299  /// \brief Retrieve the attributes for the given declaration.
300  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
301
302  /// \brief Erase the attributes corresponding to the given declaration.
303  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
304
305  /// \brief If this variable is an instantiated static data member of a
306  /// class template specialization, returns the templated static data member
307  /// from which it was instantiated.
308  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
309                                                           const VarDecl *Var);
310
311  /// \brief Note that the static data member \p Inst is an instantiation of
312  /// the static data member template \p Tmpl of a class template.
313  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
314                                           TemplateSpecializationKind TSK);
315
316  /// \brief If the given using decl is an instantiation of a
317  /// (possibly unresolved) using decl from a template instantiation,
318  /// return it.
319  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
320
321  /// \brief Remember that the using decl \p Inst is an instantiation
322  /// of the using decl \p Pattern of a class template.
323  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
324
325  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
326                                          UsingShadowDecl *Pattern);
327  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
328
329  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
330
331  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
332
333  // Access to the set of methods overridden by the given C++ method.
334  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
335  overridden_cxx_method_iterator
336  overridden_methods_begin(const CXXMethodDecl *Method) const;
337
338  overridden_cxx_method_iterator
339  overridden_methods_end(const CXXMethodDecl *Method) const;
340
341  /// \brief Note that the given C++ \p Method overrides the given \p
342  /// Overridden method.
343  void addOverriddenMethod(const CXXMethodDecl *Method,
344                           const CXXMethodDecl *Overridden);
345
346  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
347
348
349  // Builtin Types.
350  CanQualType VoidTy;
351  CanQualType BoolTy;
352  CanQualType CharTy;
353  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
354  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
355  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
356  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
357  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
358  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
359  CanQualType FloatTy, DoubleTy, LongDoubleTy;
360  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
361  CanQualType VoidPtrTy, NullPtrTy;
362  CanQualType OverloadTy;
363  CanQualType DependentTy;
364  CanQualType UndeducedAutoTy;
365  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
366
367  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
368             IdentifierTable &idents, SelectorTable &sels,
369             Builtin::Context &builtins,
370             bool FreeMemory = true, unsigned size_reserve=0);
371
372  ~ASTContext();
373
374  /// \brief Attach an external AST source to the AST context.
375  ///
376  /// The external AST source provides the ability to load parts of
377  /// the abstract syntax tree as needed from some external storage,
378  /// e.g., a precompiled header.
379  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
380
381  /// \brief Retrieve a pointer to the external AST source associated
382  /// with this AST context, if any.
383  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
384
385  void PrintStats() const;
386  const std::vector<Type*>& getTypes() const { return Types; }
387
388  //===--------------------------------------------------------------------===//
389  //                           Type Constructors
390  //===--------------------------------------------------------------------===//
391
392private:
393  /// getExtQualType - Return a type with extended qualifiers.
394  QualType getExtQualType(const Type *Base, Qualifiers Quals);
395
396  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
397
398public:
399  /// getAddSpaceQualType - Return the uniqued reference to the type for an
400  /// address space qualified type with the specified type and address space.
401  /// The resulting type has a union of the qualifiers from T and the address
402  /// space. If T already has an address space specifier, it is silently
403  /// replaced.
404  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
405
406  /// getObjCGCQualType - Returns the uniqued reference to the type for an
407  /// objc gc qualified type. The retulting type has a union of the qualifiers
408  /// from T and the gc attribute.
409  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
410
411  /// getRestrictType - Returns the uniqued reference to the type for a
412  /// 'restrict' qualified type.  The resulting type has a union of the
413  /// qualifiers from T and 'restrict'.
414  QualType getRestrictType(QualType T) {
415    return T.withFastQualifiers(Qualifiers::Restrict);
416  }
417
418  /// getVolatileType - Returns the uniqued reference to the type for a
419  /// 'volatile' qualified type.  The resulting type has a union of the
420  /// qualifiers from T and 'volatile'.
421  QualType getVolatileType(QualType T);
422
423  /// getConstType - Returns the uniqued reference to the type for a
424  /// 'const' qualified type.  The resulting type has a union of the
425  /// qualifiers from T and 'const'.
426  ///
427  /// It can be reasonably expected that this will always be
428  /// equivalent to calling T.withConst().
429  QualType getConstType(QualType T) { return T.withConst(); }
430
431  /// getNoReturnType - Add or remove the noreturn attribute to the given type
432  /// which must be a FunctionType or a pointer to an allowable type or a
433  /// BlockPointer.
434  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
435
436  /// getCallConvType - Adds the specified calling convention attribute to
437  /// the given type, which must be a FunctionType or a pointer to an
438  /// allowable type.
439  QualType getCallConvType(QualType T, CallingConv CallConv);
440
441  /// getComplexType - Return the uniqued reference to the type for a complex
442  /// number with the specified element type.
443  QualType getComplexType(QualType T);
444  CanQualType getComplexType(CanQualType T) {
445    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
446  }
447
448  /// getPointerType - Return the uniqued reference to the type for a pointer to
449  /// the specified type.
450  QualType getPointerType(QualType T);
451  CanQualType getPointerType(CanQualType T) {
452    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
453  }
454
455  /// getBlockPointerType - Return the uniqued reference to the type for a block
456  /// of the specified type.
457  QualType getBlockPointerType(QualType T);
458
459  /// This gets the struct used to keep track of the descriptor for pointer to
460  /// blocks.
461  QualType getBlockDescriptorType();
462
463  // Set the type for a Block descriptor type.
464  void setBlockDescriptorType(QualType T);
465  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
466  QualType getRawBlockdescriptorType() {
467    if (BlockDescriptorType)
468      return getTagDeclType(BlockDescriptorType);
469    return QualType();
470  }
471
472  /// This gets the struct used to keep track of the extended descriptor for
473  /// pointer to blocks.
474  QualType getBlockDescriptorExtendedType();
475
476  // Set the type for a Block descriptor extended type.
477  void setBlockDescriptorExtendedType(QualType T);
478  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
479  /// built.
480  QualType getRawBlockdescriptorExtendedType() {
481    if (BlockDescriptorExtendedType)
482      return getTagDeclType(BlockDescriptorExtendedType);
483    return QualType();
484  }
485
486  /// This gets the struct used to keep track of pointer to blocks, complete
487  /// with captured variables.
488  QualType getBlockParmType(bool BlockHasCopyDispose,
489                            llvm::SmallVector<const Expr *, 8> &BDRDs);
490
491  /// This builds the struct used for __block variables.
492  QualType BuildByRefType(const char *DeclName, QualType Ty);
493
494  /// Returns true iff we need copy/dispose helpers for the given type.
495  bool BlockRequiresCopying(QualType Ty);
496
497  /// getLValueReferenceType - Return the uniqued reference to the type for an
498  /// lvalue reference to the specified type.
499  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
500
501  /// getRValueReferenceType - Return the uniqued reference to the type for an
502  /// rvalue reference to the specified type.
503  QualType getRValueReferenceType(QualType T);
504
505  /// getMemberPointerType - Return the uniqued reference to the type for a
506  /// member pointer to the specified type in the specified class. The class
507  /// is a Type because it could be a dependent name.
508  QualType getMemberPointerType(QualType T, const Type *Cls);
509
510  /// getVariableArrayType - Returns a non-unique reference to the type for a
511  /// variable array of the specified element type.
512  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
513                                ArrayType::ArraySizeModifier ASM,
514                                unsigned EltTypeQuals,
515                                SourceRange Brackets);
516
517  /// getDependentSizedArrayType - Returns a non-unique reference to
518  /// the type for a dependently-sized array of the specified element
519  /// type. FIXME: We will need these to be uniqued, or at least
520  /// comparable, at some point.
521  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
522                                      ArrayType::ArraySizeModifier ASM,
523                                      unsigned EltTypeQuals,
524                                      SourceRange Brackets);
525
526  /// getIncompleteArrayType - Returns a unique reference to the type for a
527  /// incomplete array of the specified element type.
528  QualType getIncompleteArrayType(QualType EltTy,
529                                  ArrayType::ArraySizeModifier ASM,
530                                  unsigned EltTypeQuals);
531
532  /// getConstantArrayType - Return the unique reference to the type for a
533  /// constant array of the specified element type.
534  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
535                                ArrayType::ArraySizeModifier ASM,
536                                unsigned EltTypeQuals);
537
538  /// getVectorType - Return the unique reference to a vector type of
539  /// the specified element type and size. VectorType must be a built-in type.
540  QualType getVectorType(QualType VectorType, unsigned NumElts,
541                         bool AltiVec, bool IsPixel);
542
543  /// getExtVectorType - Return the unique reference to an extended vector type
544  /// of the specified element type and size.  VectorType must be a built-in
545  /// type.
546  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
547
548  /// getDependentSizedExtVectorType - Returns a non-unique reference to
549  /// the type for a dependently-sized vector of the specified element
550  /// type. FIXME: We will need these to be uniqued, or at least
551  /// comparable, at some point.
552  QualType getDependentSizedExtVectorType(QualType VectorType,
553                                          Expr *SizeExpr,
554                                          SourceLocation AttrLoc);
555
556  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
557  ///
558  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
559                                  CallingConv CallConv);
560  QualType getFunctionNoProtoType(QualType ResultTy) {
561    return getFunctionNoProtoType(ResultTy, false, CC_Default);
562  }
563
564  /// getFunctionType - Return a normal function type with a typed argument
565  /// list.  isVariadic indicates whether the argument list includes '...'.
566  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
567                           unsigned NumArgs, bool isVariadic,
568                           unsigned TypeQuals, bool hasExceptionSpec,
569                           bool hasAnyExceptionSpec,
570                           unsigned NumExs, const QualType *ExArray,
571                           bool NoReturn,
572                           CallingConv CallConv);
573
574  /// getTypeDeclType - Return the unique reference to the type for
575  /// the specified type declaration.
576  QualType getTypeDeclType(const TypeDecl *Decl,
577                           const TypeDecl *PrevDecl = 0) {
578    assert(Decl && "Passed null for Decl param");
579    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
580
581    if (PrevDecl) {
582      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
583      Decl->TypeForDecl = PrevDecl->TypeForDecl;
584      return QualType(PrevDecl->TypeForDecl, 0);
585    }
586
587    return getTypeDeclTypeSlow(Decl);
588  }
589
590  /// getTypedefType - Return the unique reference to the type for the
591  /// specified typename decl.
592  QualType getTypedefType(const TypedefDecl *Decl);
593
594  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
595
596  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
597                                        QualType Replacement);
598
599  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
600                                   bool ParameterPack,
601                                   IdentifierInfo *Name = 0);
602
603  QualType getTemplateSpecializationType(TemplateName T,
604                                         const TemplateArgument *Args,
605                                         unsigned NumArgs,
606                                         QualType Canon = QualType());
607
608  QualType getTemplateSpecializationType(TemplateName T,
609                                         const TemplateArgumentListInfo &Args,
610                                         QualType Canon = QualType());
611
612  TypeSourceInfo *
613  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
614                                    const TemplateArgumentListInfo &Args,
615                                    QualType Canon = QualType());
616
617  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
618                                QualType NamedType);
619  QualType getTypenameType(NestedNameSpecifier *NNS,
620                           const IdentifierInfo *Name,
621                           QualType Canon = QualType());
622  QualType getTypenameType(NestedNameSpecifier *NNS,
623                           const TemplateSpecializationType *TemplateId,
624                           QualType Canon = QualType());
625  QualType getElaboratedType(QualType UnderlyingType,
626                             ElaboratedType::TagKind Tag);
627
628  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
629                                ObjCProtocolDecl **Protocols = 0,
630                                unsigned NumProtocols = 0);
631
632  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
633  /// given interface decl and the conforming protocol list.
634  QualType getObjCObjectPointerType(QualType OIT,
635                                    ObjCProtocolDecl **ProtocolList = 0,
636                                    unsigned NumProtocols = 0,
637                                    unsigned Quals = 0);
638
639  /// getTypeOfType - GCC extension.
640  QualType getTypeOfExprType(Expr *e);
641  QualType getTypeOfType(QualType t);
642
643  /// getDecltypeType - C++0x decltype.
644  QualType getDecltypeType(Expr *e);
645
646  /// getTagDeclType - Return the unique reference to the type for the
647  /// specified TagDecl (struct/union/class/enum) decl.
648  QualType getTagDeclType(const TagDecl *Decl);
649
650  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
651  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
652  CanQualType getSizeType() const;
653
654  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
655  /// returns a type compatible with the type defined in <stddef.h> as defined
656  /// by the target.
657  QualType getWCharType() const { return WCharTy; }
658
659  /// getSignedWCharType - Return the type of "signed wchar_t".
660  /// Used when in C++, as a GCC extension.
661  QualType getSignedWCharType() const;
662
663  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
664  /// Used when in C++, as a GCC extension.
665  QualType getUnsignedWCharType() const;
666
667  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
668  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
669  QualType getPointerDiffType() const;
670
671  // getCFConstantStringType - Return the C structure type used to represent
672  // constant CFStrings.
673  QualType getCFConstantStringType();
674
675  /// Get the structure type used to representation CFStrings, or NULL
676  /// if it hasn't yet been built.
677  QualType getRawCFConstantStringType() {
678    if (CFConstantStringTypeDecl)
679      return getTagDeclType(CFConstantStringTypeDecl);
680    return QualType();
681  }
682  void setCFConstantStringType(QualType T);
683
684  // This setter/getter represents the ObjC type for an NSConstantString.
685  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
686  QualType getObjCConstantStringInterface() const {
687    return ObjCConstantStringType;
688  }
689
690  //// This gets the struct used to keep track of fast enumerations.
691  QualType getObjCFastEnumerationStateType();
692
693  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
694  /// been built.
695  QualType getRawObjCFastEnumerationStateType() {
696    if (ObjCFastEnumerationStateTypeDecl)
697      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
698    return QualType();
699  }
700
701  void setObjCFastEnumerationStateType(QualType T);
702
703  /// \brief Set the type for the C FILE type.
704  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
705
706  /// \brief Retrieve the C FILE type.
707  QualType getFILEType() {
708    if (FILEDecl)
709      return getTypeDeclType(FILEDecl);
710    return QualType();
711  }
712
713  /// \brief Set the type for the C jmp_buf type.
714  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
715    this->jmp_bufDecl = jmp_bufDecl;
716  }
717
718  /// \brief Retrieve the C jmp_buf type.
719  QualType getjmp_bufType() {
720    if (jmp_bufDecl)
721      return getTypeDeclType(jmp_bufDecl);
722    return QualType();
723  }
724
725  /// \brief Set the type for the C sigjmp_buf type.
726  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
727    this->sigjmp_bufDecl = sigjmp_bufDecl;
728  }
729
730  /// \brief Retrieve the C sigjmp_buf type.
731  QualType getsigjmp_bufType() {
732    if (sigjmp_bufDecl)
733      return getTypeDeclType(sigjmp_bufDecl);
734    return QualType();
735  }
736
737  /// getObjCEncodingForType - Emit the ObjC type encoding for the
738  /// given type into \arg S. If \arg NameFields is specified then
739  /// record field names are also encoded.
740  void getObjCEncodingForType(QualType t, std::string &S,
741                              const FieldDecl *Field=0);
742
743  void getLegacyIntegralTypeEncoding(QualType &t) const;
744
745  // Put the string version of type qualifiers into S.
746  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
747                                       std::string &S) const;
748
749  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
750  /// declaration.
751  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
752
753  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
754  /// declaration.
755  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
756
757  /// getObjCEncodingForPropertyDecl - Return the encoded type for
758  /// this method declaration. If non-NULL, Container must be either
759  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
760  /// only be NULL when getting encodings for protocol properties.
761  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
762                                      const Decl *Container,
763                                      std::string &S);
764
765  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
766                                      ObjCProtocolDecl *rProto);
767
768  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
769  /// purpose in characters.
770  CharUnits getObjCEncodingTypeSize(QualType t);
771
772  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
773  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
774  QualType getObjCIdType() const { return ObjCIdTypedefType; }
775  void setObjCIdType(QualType T);
776
777  void setObjCSelType(QualType T);
778  QualType getObjCSelType() const { return ObjCSelTypedefType; }
779
780  void setObjCProtoType(QualType QT);
781  QualType getObjCProtoType() const { return ObjCProtoType; }
782
783  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
784  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
785  /// struct.
786  QualType getObjCClassType() const { return ObjCClassTypedefType; }
787  void setObjCClassType(QualType T);
788
789  void setBuiltinVaListType(QualType T);
790  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
791
792  /// getCVRQualifiedType - Returns a type with additional const,
793  /// volatile, or restrict qualifiers.
794  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
795    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
796  }
797
798  /// getQualifiedType - Returns a type with additional qualifiers.
799  QualType getQualifiedType(QualType T, Qualifiers Qs) {
800    if (!Qs.hasNonFastQualifiers())
801      return T.withFastQualifiers(Qs.getFastQualifiers());
802    QualifierCollector Qc(Qs);
803    const Type *Ptr = Qc.strip(T);
804    return getExtQualType(Ptr, Qc);
805  }
806
807  /// getQualifiedType - Returns a type with additional qualifiers.
808  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
809    if (!Qs.hasNonFastQualifiers())
810      return QualType(T, Qs.getFastQualifiers());
811    return getExtQualType(T, Qs);
812  }
813
814  DeclarationName getNameForTemplate(TemplateName Name);
815
816  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
817                                         UnresolvedSetIterator End);
818
819  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
820                                        bool TemplateKeyword,
821                                        TemplateDecl *Template);
822
823  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
824                                        const IdentifierInfo *Name);
825  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
826                                        OverloadedOperatorKind Operator);
827
828  enum GetBuiltinTypeError {
829    GE_None,              //< No error
830    GE_Missing_stdio,     //< Missing a type from <stdio.h>
831    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
832  };
833
834  /// GetBuiltinType - Return the type for the specified builtin.
835  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
836
837private:
838  CanQualType getFromTargetType(unsigned Type) const;
839
840  //===--------------------------------------------------------------------===//
841  //                         Type Predicates.
842  //===--------------------------------------------------------------------===//
843
844public:
845  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
846  /// garbage collection attribute.
847  ///
848  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
849
850  /// isObjCNSObjectType - Return true if this is an NSObject object with
851  /// its NSObject attribute set.
852  bool isObjCNSObjectType(QualType Ty) const;
853
854  //===--------------------------------------------------------------------===//
855  //                         Type Sizing and Analysis
856  //===--------------------------------------------------------------------===//
857
858  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
859  /// scalar floating point type.
860  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
861
862  /// getTypeInfo - Get the size and alignment of the specified complete type in
863  /// bits.
864  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
865  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
866    return getTypeInfo(T.getTypePtr());
867  }
868
869  /// getTypeSize - Return the size of the specified type, in bits.  This method
870  /// does not work on incomplete types.
871  uint64_t getTypeSize(QualType T) {
872    return getTypeInfo(T).first;
873  }
874  uint64_t getTypeSize(const Type *T) {
875    return getTypeInfo(T).first;
876  }
877
878  /// getCharWidth - Return the size of the character type, in bits
879  uint64_t getCharWidth() {
880    return getTypeSize(CharTy);
881  }
882
883  /// getTypeSizeInChars - Return the size of the specified type, in characters.
884  /// This method does not work on incomplete types.
885  CharUnits getTypeSizeInChars(QualType T);
886  CharUnits getTypeSizeInChars(const Type *T);
887
888  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
889  /// This method does not work on incomplete types.
890  unsigned getTypeAlign(QualType T) {
891    return getTypeInfo(T).second;
892  }
893  unsigned getTypeAlign(const Type *T) {
894    return getTypeInfo(T).second;
895  }
896
897  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
898  /// characters. This method does not work on incomplete types.
899  CharUnits getTypeAlignInChars(QualType T);
900  CharUnits getTypeAlignInChars(const Type *T);
901
902  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
903  /// type for the current target in bits.  This can be different than the ABI
904  /// alignment in cases where it is beneficial for performance to overalign
905  /// a data type.
906  unsigned getPreferredTypeAlign(const Type *T);
907
908  /// getDeclAlign - Return a conservative estimate of the alignment of
909  /// the specified decl.  Note that bitfields do not have a valid alignment, so
910  /// this method will assert on them.
911  /// If @p RefAsPointee, references are treated like their underlying type
912  /// (for alignof), else they're treated like pointers (for CodeGen).
913  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
914
915  /// getASTRecordLayout - Get or compute information about the layout of the
916  /// specified record (struct/union/class), which indicates its size and field
917  /// position information.
918  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
919
920  /// getASTObjCInterfaceLayout - Get or compute information about the
921  /// layout of the specified Objective-C interface.
922  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
923
924  /// getASTObjCImplementationLayout - Get or compute information about
925  /// the layout of the specified Objective-C implementation. This may
926  /// differ from the interface if synthesized ivars are present.
927  const ASTRecordLayout &
928  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
929
930  /// getKeyFunction - Get the key function for the given record decl.
931  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
932  ///
933  /// ...the first non-pure virtual function that is not inline at the point
934  /// of class definition.
935  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
936
937  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
938                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
939
940  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
941                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
942  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
943                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
944  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
945  void CollectInheritedProtocols(const Decl *CDecl,
946                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
947
948  //===--------------------------------------------------------------------===//
949  //                            Type Operators
950  //===--------------------------------------------------------------------===//
951
952  /// getCanonicalType - Return the canonical (structural) type corresponding to
953  /// the specified potentially non-canonical type.  The non-canonical version
954  /// of a type may have many "decorated" versions of types.  Decorators can
955  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
956  /// to be free of any of these, allowing two canonical types to be compared
957  /// for exact equality with a simple pointer comparison.
958  CanQualType getCanonicalType(QualType T);
959  const Type *getCanonicalType(const Type *T) {
960    return T->getCanonicalTypeInternal().getTypePtr();
961  }
962
963  /// getCanonicalParamType - Return the canonical parameter type
964  /// corresponding to the specific potentially non-canonical one.
965  /// Qualifiers are stripped off, functions are turned into function
966  /// pointers, and arrays decay one level into pointers.
967  CanQualType getCanonicalParamType(QualType T);
968
969  /// \brief Determine whether the given types are equivalent.
970  bool hasSameType(QualType T1, QualType T2) {
971    return getCanonicalType(T1) == getCanonicalType(T2);
972  }
973
974  /// \brief Returns this type as a completely-unqualified array type,
975  /// capturing the qualifiers in Quals. This will remove the minimal amount of
976  /// sugaring from the types, similar to the behavior of
977  /// QualType::getUnqualifiedType().
978  ///
979  /// \param T is the qualified type, which may be an ArrayType
980  ///
981  /// \param Quals will receive the full set of qualifiers that were
982  /// applied to the array.
983  ///
984  /// \returns if this is an array type, the completely unqualified array type
985  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
986  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
987
988  /// \brief Determine whether the given types are equivalent after
989  /// cvr-qualifiers have been removed.
990  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
991    CanQualType CT1 = getCanonicalType(T1);
992    CanQualType CT2 = getCanonicalType(T2);
993
994    Qualifiers Quals;
995    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
996    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
997    return UnqualT1 == UnqualT2;
998  }
999
1000  /// \brief Retrieves the "canonical" declaration of
1001
1002  /// \brief Retrieves the "canonical" nested name specifier for a
1003  /// given nested name specifier.
1004  ///
1005  /// The canonical nested name specifier is a nested name specifier
1006  /// that uniquely identifies a type or namespace within the type
1007  /// system. For example, given:
1008  ///
1009  /// \code
1010  /// namespace N {
1011  ///   struct S {
1012  ///     template<typename T> struct X { typename T* type; };
1013  ///   };
1014  /// }
1015  ///
1016  /// template<typename T> struct Y {
1017  ///   typename N::S::X<T>::type member;
1018  /// };
1019  /// \endcode
1020  ///
1021  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1022  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1023  /// by declarations in the type system and the canonical type for
1024  /// the template type parameter 'T' is template-param-0-0.
1025  NestedNameSpecifier *
1026  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1027
1028  /// \brief Retrieves the canonical representation of the given
1029  /// calling convention.
1030  CallingConv getCanonicalCallConv(CallingConv CC) {
1031    if (CC == CC_C)
1032      return CC_Default;
1033    return CC;
1034  }
1035
1036  /// \brief Determines whether two calling conventions name the same
1037  /// calling convention.
1038  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1039    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1040  }
1041
1042  /// \brief Retrieves the "canonical" template name that refers to a
1043  /// given template.
1044  ///
1045  /// The canonical template name is the simplest expression that can
1046  /// be used to refer to a given template. For most templates, this
1047  /// expression is just the template declaration itself. For example,
1048  /// the template std::vector can be referred to via a variety of
1049  /// names---std::vector, ::std::vector, vector (if vector is in
1050  /// scope), etc.---but all of these names map down to the same
1051  /// TemplateDecl, which is used to form the canonical template name.
1052  ///
1053  /// Dependent template names are more interesting. Here, the
1054  /// template name could be something like T::template apply or
1055  /// std::allocator<T>::template rebind, where the nested name
1056  /// specifier itself is dependent. In this case, the canonical
1057  /// template name uses the shortest form of the dependent
1058  /// nested-name-specifier, which itself contains all canonical
1059  /// types, values, and templates.
1060  TemplateName getCanonicalTemplateName(TemplateName Name);
1061
1062  /// \brief Determine whether the given template names refer to the same
1063  /// template.
1064  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1065
1066  /// \brief Retrieve the "canonical" template argument.
1067  ///
1068  /// The canonical template argument is the simplest template argument
1069  /// (which may be a type, value, expression, or declaration) that
1070  /// expresses the value of the argument.
1071  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1072
1073  /// Type Query functions.  If the type is an instance of the specified class,
1074  /// return the Type pointer for the underlying maximally pretty type.  This
1075  /// is a member of ASTContext because this may need to do some amount of
1076  /// canonicalization, e.g. to move type qualifiers into the element type.
1077  const ArrayType *getAsArrayType(QualType T);
1078  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1079    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1080  }
1081  const VariableArrayType *getAsVariableArrayType(QualType T) {
1082    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1083  }
1084  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1085    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1086  }
1087  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1088    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1089  }
1090
1091  /// getBaseElementType - Returns the innermost element type of an array type.
1092  /// For example, will return "int" for int[m][n]
1093  QualType getBaseElementType(const ArrayType *VAT);
1094
1095  /// getBaseElementType - Returns the innermost element type of a type
1096  /// (which needn't actually be an array type).
1097  QualType getBaseElementType(QualType QT);
1098
1099  /// getConstantArrayElementCount - Returns number of constant array elements.
1100  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1101
1102  /// getArrayDecayedType - Return the properly qualified result of decaying the
1103  /// specified array type to a pointer.  This operation is non-trivial when
1104  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1105  /// this returns a pointer to a properly qualified element of the array.
1106  ///
1107  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1108  QualType getArrayDecayedType(QualType T);
1109
1110  /// getPromotedIntegerType - Returns the type that Promotable will
1111  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1112  /// integer type.
1113  QualType getPromotedIntegerType(QualType PromotableType);
1114
1115  /// \brief Whether this is a promotable bitfield reference according
1116  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1117  ///
1118  /// \returns the type this bit-field will promote to, or NULL if no
1119  /// promotion occurs.
1120  QualType isPromotableBitField(Expr *E);
1121
1122  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1123  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1124  /// LHS < RHS, return -1.
1125  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1126
1127  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1128  /// point types, ignoring the domain of the type (i.e. 'double' ==
1129  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1130  /// LHS < RHS, return -1.
1131  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1132
1133  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1134  /// point or a complex type (based on typeDomain/typeSize).
1135  /// 'typeDomain' is a real floating point or complex type.
1136  /// 'typeSize' is a real floating point or complex type.
1137  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1138                                             QualType typeDomain) const;
1139
1140private:
1141  // Helper for integer ordering
1142  unsigned getIntegerRank(Type* T);
1143
1144public:
1145
1146  //===--------------------------------------------------------------------===//
1147  //                    Type Compatibility Predicates
1148  //===--------------------------------------------------------------------===//
1149
1150  /// Compatibility predicates used to check assignment expressions.
1151  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1152
1153  bool typesAreBlockPointerCompatible(QualType, QualType);
1154
1155  bool isObjCIdType(QualType T) const {
1156    return T == ObjCIdTypedefType;
1157  }
1158  bool isObjCClassType(QualType T) const {
1159    return T == ObjCClassTypedefType;
1160  }
1161  bool isObjCSelType(QualType T) const {
1162    return T == ObjCSelTypedefType;
1163  }
1164  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1165  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1166                                         bool ForCompare);
1167
1168  // Check the safety of assignment from LHS to RHS
1169  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1170                               const ObjCObjectPointerType *RHSOPT);
1171  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1172                               const ObjCInterfaceType *RHS);
1173  bool canAssignObjCInterfacesInBlockPointer(
1174                                          const ObjCObjectPointerType *LHSOPT,
1175                                          const ObjCObjectPointerType *RHSOPT);
1176  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1177  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1178                                   const ObjCObjectPointerType *RHSOPT);
1179
1180  // Functions for calculating composite types
1181  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1182  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1183
1184  /// UsualArithmeticConversionsType - handles the various conversions
1185  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1186  /// and returns the result type of that conversion.
1187  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1188
1189  //===--------------------------------------------------------------------===//
1190  //                    Integer Predicates
1191  //===--------------------------------------------------------------------===//
1192
1193  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1194  // of bits in an integer type excluding any padding bits.
1195  unsigned getIntWidth(QualType T);
1196
1197  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1198  // unsigned integer type.  This method takes a signed type, and returns the
1199  // corresponding unsigned integer type.
1200  QualType getCorrespondingUnsignedType(QualType T);
1201
1202  //===--------------------------------------------------------------------===//
1203  //                    Type Iterators.
1204  //===--------------------------------------------------------------------===//
1205
1206  typedef std::vector<Type*>::iterator       type_iterator;
1207  typedef std::vector<Type*>::const_iterator const_type_iterator;
1208
1209  type_iterator types_begin() { return Types.begin(); }
1210  type_iterator types_end() { return Types.end(); }
1211  const_type_iterator types_begin() const { return Types.begin(); }
1212  const_type_iterator types_end() const { return Types.end(); }
1213
1214  //===--------------------------------------------------------------------===//
1215  //                    Integer Values
1216  //===--------------------------------------------------------------------===//
1217
1218  /// MakeIntValue - Make an APSInt of the appropriate width and
1219  /// signedness for the given \arg Value and integer \arg Type.
1220  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1221    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1222    Res = Value;
1223    return Res;
1224  }
1225
1226  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1227  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1228  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1229  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1230
1231  /// \brief Set the implementation of ObjCInterfaceDecl.
1232  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1233                             ObjCImplementationDecl *ImplD);
1234  /// \brief Set the implementation of ObjCCategoryDecl.
1235  void setObjCImplementation(ObjCCategoryDecl *CatD,
1236                             ObjCCategoryImplDecl *ImplD);
1237
1238  /// \brief Allocate an uninitialized TypeSourceInfo.
1239  ///
1240  /// The caller should initialize the memory held by TypeSourceInfo using
1241  /// the TypeLoc wrappers.
1242  ///
1243  /// \param T the type that will be the basis for type source info. This type
1244  /// should refer to how the declarator was written in source code, not to
1245  /// what type semantic analysis resolved the declarator to.
1246  ///
1247  /// \param Size the size of the type info to create, or 0 if the size
1248  /// should be calculated based on the type.
1249  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1250
1251  /// \brief Allocate a TypeSourceInfo where all locations have been
1252  /// initialized to a given location, which defaults to the empty
1253  /// location.
1254  TypeSourceInfo *
1255  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1256
1257private:
1258  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1259  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1260
1261  void InitBuiltinTypes();
1262  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1263
1264  // Return the ObjC type encoding for a given type.
1265  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1266                                  bool ExpandPointedToStructures,
1267                                  bool ExpandStructures,
1268                                  const FieldDecl *Field,
1269                                  bool OutermostType = false,
1270                                  bool EncodingProperty = false);
1271
1272  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1273                                       const ObjCImplementationDecl *Impl);
1274
1275private:
1276  // FIXME: This currently contains the set of StoredDeclMaps used
1277  // by DeclContext objects.  This probably should not be in ASTContext,
1278  // but we include it here so that ASTContext can quickly deallocate them.
1279  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1280  friend class DeclContext;
1281  void ReleaseDeclContextMaps();
1282};
1283
1284/// @brief Utility function for constructing a nullary selector.
1285static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1286  IdentifierInfo* II = &Ctx.Idents.get(name);
1287  return Ctx.Selectors.getSelector(0, &II);
1288}
1289
1290/// @brief Utility function for constructing an unary selector.
1291static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1292  IdentifierInfo* II = &Ctx.Idents.get(name);
1293  return Ctx.Selectors.getSelector(1, &II);
1294}
1295
1296}  // end namespace clang
1297
1298// operator new and delete aren't allowed inside namespaces.
1299// The throw specifications are mandated by the standard.
1300/// @brief Placement new for using the ASTContext's allocator.
1301///
1302/// This placement form of operator new uses the ASTContext's allocator for
1303/// obtaining memory. It is a non-throwing new, which means that it returns
1304/// null on error. (If that is what the allocator does. The current does, so if
1305/// this ever changes, this operator will have to be changed, too.)
1306/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1307/// @code
1308/// // Default alignment (8)
1309/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1310/// // Specific alignment
1311/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1312/// @endcode
1313/// Please note that you cannot use delete on the pointer; it must be
1314/// deallocated using an explicit destructor call followed by
1315/// @c Context.Deallocate(Ptr).
1316///
1317/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1318/// @param C The ASTContext that provides the allocator.
1319/// @param Alignment The alignment of the allocated memory (if the underlying
1320///                  allocator supports it).
1321/// @return The allocated memory. Could be NULL.
1322inline void *operator new(size_t Bytes, clang::ASTContext &C,
1323                          size_t Alignment) throw () {
1324  return C.Allocate(Bytes, Alignment);
1325}
1326/// @brief Placement delete companion to the new above.
1327///
1328/// This operator is just a companion to the new above. There is no way of
1329/// invoking it directly; see the new operator for more details. This operator
1330/// is called implicitly by the compiler if a placement new expression using
1331/// the ASTContext throws in the object constructor.
1332inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1333              throw () {
1334  C.Deallocate(Ptr);
1335}
1336
1337/// This placement form of operator new[] uses the ASTContext's allocator for
1338/// obtaining memory. It is a non-throwing new[], which means that it returns
1339/// null on error.
1340/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1341/// @code
1342/// // Default alignment (8)
1343/// char *data = new (Context) char[10];
1344/// // Specific alignment
1345/// char *data = new (Context, 4) char[10];
1346/// @endcode
1347/// Please note that you cannot use delete on the pointer; it must be
1348/// deallocated using an explicit destructor call followed by
1349/// @c Context.Deallocate(Ptr).
1350///
1351/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1352/// @param C The ASTContext that provides the allocator.
1353/// @param Alignment The alignment of the allocated memory (if the underlying
1354///                  allocator supports it).
1355/// @return The allocated memory. Could be NULL.
1356inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1357                            size_t Alignment = 8) throw () {
1358  return C.Allocate(Bytes, Alignment);
1359}
1360
1361/// @brief Placement delete[] companion to the new[] above.
1362///
1363/// This operator is just a companion to the new[] above. There is no way of
1364/// invoking it directly; see the new[] operator for more details. This operator
1365/// is called implicitly by the compiler if a placement new[] expression using
1366/// the ASTContext throws in the object constructor.
1367inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1368              throw () {
1369  C.Deallocate(Ptr);
1370}
1371
1372#endif
1373