ASTContext.h revision 6b96742ceedebb5eb8f1299ab67cb3ecd6d92aaf
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/LambdaMangleContext.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/TemplateName.h"
27#include "clang/AST/Type.h"
28#include "clang/Basic/AddressSpaces.h"
29#include "clang/Basic/IdentifierTable.h"
30#include "clang/Basic/LangOptions.h"
31#include "clang/Basic/OperatorKinds.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/VersionTuple.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/IntrusiveRefCntPtr.h"
37#include "llvm/ADT/OwningPtr.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/Support/Allocator.h"
41#include <vector>
42
43namespace llvm {
44  struct fltSemantics;
45}
46
47namespace clang {
48  class FileManager;
49  class AtomicExpr;
50  class ASTRecordLayout;
51  class BlockExpr;
52  class CharUnits;
53  class DiagnosticsEngine;
54  class Expr;
55  class ExternalASTSource;
56  class ASTMutationListener;
57  class IdentifierTable;
58  class MaterializeTemporaryExpr;
59  class SelectorTable;
60  class TargetInfo;
61  class CXXABI;
62  // Decls
63  class MangleContext;
64  class ObjCIvarDecl;
65  class ObjCPropertyDecl;
66  class UnresolvedSetIterator;
67  class UsingDecl;
68  class UsingShadowDecl;
69
70  namespace Builtin { class Context; }
71
72  namespace comments {
73    class FullComment;
74  }
75
76/// \brief Holds long-lived AST nodes (such as types and decls) that can be
77/// referred to throughout the semantic analysis of a file.
78class ASTContext : public RefCountedBase<ASTContext> {
79  ASTContext &this_() { return *this; }
80
81  mutable SmallVector<Type *, 0> Types;
82  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
84  mutable llvm::FoldingSet<PointerType> PointerTypes;
85  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
86  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
87  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
88  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
89  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
90  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
91  mutable std::vector<VariableArrayType*> VariableArrayTypes;
92  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
93  mutable llvm::FoldingSet<DependentSizedExtVectorType>
94    DependentSizedExtVectorTypes;
95  mutable llvm::FoldingSet<VectorType> VectorTypes;
96  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
97  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
98    FunctionProtoTypes;
99  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
100  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
101  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
102  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
103    SubstTemplateTypeParmTypes;
104  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
105    SubstTemplateTypeParmPackTypes;
106  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
107    TemplateSpecializationTypes;
108  mutable llvm::FoldingSet<ParenType> ParenTypes;
109  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
110  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
111  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
112                                     ASTContext&>
113    DependentTemplateSpecializationTypes;
114  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
115  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
116  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
117  mutable llvm::FoldingSet<AutoType> AutoTypes;
118  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
119  llvm::FoldingSet<AttributedType> AttributedTypes;
120
121  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
122  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
123  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
124    SubstTemplateTemplateParms;
125  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
126                                     ASTContext&>
127    SubstTemplateTemplateParmPacks;
128
129  /// \brief The set of nested name specifiers.
130  ///
131  /// This set is managed by the NestedNameSpecifier class.
132  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
133  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
134  friend class NestedNameSpecifier;
135
136  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
137  ///
138  /// This is lazily created.  This is intentionally not serialized.
139  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
140    ASTRecordLayouts;
141  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
142    ObjCLayouts;
143
144  /// \brief A cache from types to size and alignment information.
145  typedef llvm::DenseMap<const Type*,
146                         std::pair<uint64_t, unsigned> > TypeInfoMap;
147  mutable TypeInfoMap MemoizedTypeInfo;
148
149  /// \brief A cache mapping from CXXRecordDecls to key functions.
150  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
151
152  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
153  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
154
155  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
156  /// interface.
157  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
158
159  /// \brief Mapping from __block VarDecls to their copy initialization expr.
160  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
161
162  /// \brief Mapping from class scope functions specialization to their
163  /// template patterns.
164  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
165    ClassScopeSpecializationPattern;
166
167  /// \brief Mapping from materialized temporaries with static storage duration
168  /// that appear in constant initializers to their evaluated values.
169  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
170    MaterializedTemporaryValues;
171
172  /// \brief Representation of a "canonical" template template parameter that
173  /// is used in canonical template names.
174  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
175    TemplateTemplateParmDecl *Parm;
176
177  public:
178    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
179      : Parm(Parm) { }
180
181    TemplateTemplateParmDecl *getParam() const { return Parm; }
182
183    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
184
185    static void Profile(llvm::FoldingSetNodeID &ID,
186                        TemplateTemplateParmDecl *Parm);
187  };
188  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
189    CanonTemplateTemplateParms;
190
191  TemplateTemplateParmDecl *
192    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
193
194  /// \brief The typedef for the __int128_t type.
195  mutable TypedefDecl *Int128Decl;
196
197  /// \brief The typedef for the __uint128_t type.
198  mutable TypedefDecl *UInt128Decl;
199
200  /// \brief The typedef for the target specific predefined
201  /// __builtin_va_list type.
202  mutable TypedefDecl *BuiltinVaListDecl;
203
204  /// \brief The typedef for the predefined \c id type.
205  mutable TypedefDecl *ObjCIdDecl;
206
207  /// \brief The typedef for the predefined \c SEL type.
208  mutable TypedefDecl *ObjCSelDecl;
209
210  /// \brief The typedef for the predefined \c Class type.
211  mutable TypedefDecl *ObjCClassDecl;
212
213  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
214  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
215
216  /// \brief The typedef for the predefined 'BOOL' type.
217  mutable TypedefDecl *BOOLDecl;
218
219  // Typedefs which may be provided defining the structure of Objective-C
220  // pseudo-builtins
221  QualType ObjCIdRedefinitionType;
222  QualType ObjCClassRedefinitionType;
223  QualType ObjCSelRedefinitionType;
224
225  QualType ObjCConstantStringType;
226  mutable RecordDecl *CFConstantStringTypeDecl;
227
228  mutable QualType ObjCSuperType;
229
230  QualType ObjCNSStringType;
231
232  /// \brief The typedef declaration for the Objective-C "instancetype" type.
233  TypedefDecl *ObjCInstanceTypeDecl;
234
235  /// \brief The type for the C FILE type.
236  TypeDecl *FILEDecl;
237
238  /// \brief The type for the C jmp_buf type.
239  TypeDecl *jmp_bufDecl;
240
241  /// \brief The type for the C sigjmp_buf type.
242  TypeDecl *sigjmp_bufDecl;
243
244  /// \brief The type for the C ucontext_t type.
245  TypeDecl *ucontext_tDecl;
246
247  /// \brief Type for the Block descriptor for Blocks CodeGen.
248  ///
249  /// Since this is only used for generation of debug info, it is not
250  /// serialized.
251  mutable RecordDecl *BlockDescriptorType;
252
253  /// \brief Type for the Block descriptor for Blocks CodeGen.
254  ///
255  /// Since this is only used for generation of debug info, it is not
256  /// serialized.
257  mutable RecordDecl *BlockDescriptorExtendedType;
258
259  /// \brief Declaration for the CUDA cudaConfigureCall function.
260  FunctionDecl *cudaConfigureCallDecl;
261
262  TypeSourceInfo NullTypeSourceInfo;
263
264  /// \brief Keeps track of all declaration attributes.
265  ///
266  /// Since so few decls have attrs, we keep them in a hash map instead of
267  /// wasting space in the Decl class.
268  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
269
270  /// \brief Keeps track of the static data member templates from which
271  /// static data members of class template specializations were instantiated.
272  ///
273  /// This data structure stores the mapping from instantiations of static
274  /// data members to the static data member representations within the
275  /// class template from which they were instantiated along with the kind
276  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
277  ///
278  /// Given the following example:
279  ///
280  /// \code
281  /// template<typename T>
282  /// struct X {
283  ///   static T value;
284  /// };
285  ///
286  /// template<typename T>
287  ///   T X<T>::value = T(17);
288  ///
289  /// int *x = &X<int>::value;
290  /// \endcode
291  ///
292  /// This mapping will contain an entry that maps from the VarDecl for
293  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
294  /// class template X) and will be marked TSK_ImplicitInstantiation.
295  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
296    InstantiatedFromStaticDataMember;
297
298  /// \brief Keeps track of the declaration from which a UsingDecl was
299  /// created during instantiation.
300  ///
301  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
302  /// or an UnresolvedUsingTypenameDecl.
303  ///
304  /// For example:
305  /// \code
306  /// template<typename T>
307  /// struct A {
308  ///   void f();
309  /// };
310  ///
311  /// template<typename T>
312  /// struct B : A<T> {
313  ///   using A<T>::f;
314  /// };
315  ///
316  /// template struct B<int>;
317  /// \endcode
318  ///
319  /// This mapping will contain an entry that maps from the UsingDecl in
320  /// B<int> to the UnresolvedUsingDecl in B<T>.
321  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
322
323  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
324    InstantiatedFromUsingShadowDecl;
325
326  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
327
328  /// \brief Mapping that stores the methods overridden by a given C++
329  /// member function.
330  ///
331  /// Since most C++ member functions aren't virtual and therefore
332  /// don't override anything, we store the overridden functions in
333  /// this map on the side rather than within the CXXMethodDecl structure.
334  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
335  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
336
337  /// \brief Mapping from each declaration context to its corresponding lambda
338  /// mangling context.
339  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
340
341  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
342  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
343
344  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
345  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
346  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
347  ParameterIndexTable ParamIndices;
348
349  ImportDecl *FirstLocalImport;
350  ImportDecl *LastLocalImport;
351
352  TranslationUnitDecl *TUDecl;
353
354  /// \brief The associated SourceManager object.a
355  SourceManager &SourceMgr;
356
357  /// \brief The language options used to create the AST associated with
358  ///  this ASTContext object.
359  LangOptions &LangOpts;
360
361  /// \brief The allocator used to create AST objects.
362  ///
363  /// AST objects are never destructed; rather, all memory associated with the
364  /// AST objects will be released when the ASTContext itself is destroyed.
365  mutable llvm::BumpPtrAllocator BumpAlloc;
366
367  /// \brief Allocator for partial diagnostics.
368  PartialDiagnostic::StorageAllocator DiagAllocator;
369
370  /// \brief The current C++ ABI.
371  OwningPtr<CXXABI> ABI;
372  CXXABI *createCXXABI(const TargetInfo &T);
373
374  /// \brief The logical -> physical address space map.
375  const LangAS::Map *AddrSpaceMap;
376
377  friend class ASTDeclReader;
378  friend class ASTReader;
379  friend class ASTWriter;
380  friend class CXXRecordDecl;
381
382  const TargetInfo *Target;
383  clang::PrintingPolicy PrintingPolicy;
384
385public:
386  IdentifierTable &Idents;
387  SelectorTable &Selectors;
388  Builtin::Context &BuiltinInfo;
389  mutable DeclarationNameTable DeclarationNames;
390  OwningPtr<ExternalASTSource> ExternalSource;
391  ASTMutationListener *Listener;
392
393  /// \brief Contains parents of a node.
394  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
395
396  /// \brief Maps from a node to its parents.
397  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
398
399  /// \brief Returns the parents of the given node.
400  ///
401  /// Note that this will lazily compute the parents of all nodes
402  /// and store them for later retrieval. Thus, the first call is O(n)
403  /// in the number of AST nodes.
404  ///
405  /// Caveats and FIXMEs:
406  /// Calculating the parent map over all AST nodes will need to load the
407  /// full AST. This can be undesirable in the case where the full AST is
408  /// expensive to create (for example, when using precompiled header
409  /// preambles). Thus, there are good opportunities for optimization here.
410  /// One idea is to walk the given node downwards, looking for references
411  /// to declaration contexts - once a declaration context is found, compute
412  /// the parent map for the declaration context; if that can satisfy the
413  /// request, loading the whole AST can be avoided. Note that this is made
414  /// more complex by statements in templates having multiple parents - those
415  /// problems can be solved by building closure over the templated parts of
416  /// the AST, which also avoids touching large parts of the AST.
417  /// Additionally, we will want to add an interface to already give a hint
418  /// where to search for the parents, for example when looking at a statement
419  /// inside a certain function.
420  ///
421  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
422  /// NestedNameSpecifier or NestedNameSpecifierLoc.
423  template <typename NodeT>
424  ParentVector getParents(const NodeT &Node) {
425    return getParents(ast_type_traits::DynTypedNode::create(Node));
426  }
427
428  ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
429
430  const clang::PrintingPolicy &getPrintingPolicy() const {
431    return PrintingPolicy;
432  }
433
434  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
435    PrintingPolicy = Policy;
436  }
437
438  SourceManager& getSourceManager() { return SourceMgr; }
439  const SourceManager& getSourceManager() const { return SourceMgr; }
440
441  llvm::BumpPtrAllocator &getAllocator() const {
442    return BumpAlloc;
443  }
444
445  void *Allocate(size_t Size, unsigned Align = 8) const {
446    return BumpAlloc.Allocate(Size, Align);
447  }
448  void Deallocate(void *Ptr) const { }
449
450  /// Return the total amount of physical memory allocated for representing
451  /// AST nodes and type information.
452  size_t getASTAllocatedMemory() const {
453    return BumpAlloc.getTotalMemory();
454  }
455  /// Return the total memory used for various side tables.
456  size_t getSideTableAllocatedMemory() const;
457
458  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
459    return DiagAllocator;
460  }
461
462  const TargetInfo &getTargetInfo() const { return *Target; }
463
464  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
465
466  const LangOptions& getLangOpts() const { return LangOpts; }
467
468  DiagnosticsEngine &getDiagnostics() const;
469
470  FullSourceLoc getFullLoc(SourceLocation Loc) const {
471    return FullSourceLoc(Loc,SourceMgr);
472  }
473
474  /// \brief All comments in this translation unit.
475  RawCommentList Comments;
476
477  /// \brief True if comments are already loaded from ExternalASTSource.
478  mutable bool CommentsLoaded;
479
480  class RawCommentAndCacheFlags {
481  public:
482    enum Kind {
483      /// We searched for a comment attached to the particular declaration, but
484      /// didn't find any.
485      ///
486      /// getRaw() == 0.
487      NoCommentInDecl = 0,
488
489      /// We have found a comment attached to this particular declaration.
490      ///
491      /// getRaw() != 0.
492      FromDecl,
493
494      /// This declaration does not have an attached comment, and we have
495      /// searched the redeclaration chain.
496      ///
497      /// If getRaw() == 0, the whole redeclaration chain does not have any
498      /// comments.
499      ///
500      /// If getRaw() != 0, it is a comment propagated from other
501      /// redeclaration.
502      FromRedecl
503    };
504
505    Kind getKind() const LLVM_READONLY {
506      return Data.getInt();
507    }
508
509    void setKind(Kind K) {
510      Data.setInt(K);
511    }
512
513    const RawComment *getRaw() const LLVM_READONLY {
514      return Data.getPointer();
515    }
516
517    void setRaw(const RawComment *RC) {
518      Data.setPointer(RC);
519    }
520
521    const Decl *getOriginalDecl() const LLVM_READONLY {
522      return OriginalDecl;
523    }
524
525    void setOriginalDecl(const Decl *Orig) {
526      OriginalDecl = Orig;
527    }
528
529  private:
530    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
531    const Decl *OriginalDecl;
532  };
533
534  /// \brief Mapping from declarations to comments attached to any
535  /// redeclaration.
536  ///
537  /// Raw comments are owned by Comments list.  This mapping is populated
538  /// lazily.
539  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
540
541  /// \brief Mapping from declarations to parsed comments attached to any
542  /// redeclaration.
543  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
544
545  /// \brief Return the documentation comment attached to a given declaration,
546  /// without looking into cache.
547  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
548
549public:
550  RawCommentList &getRawCommentList() {
551    return Comments;
552  }
553
554  void addComment(const RawComment &RC) {
555    assert(LangOpts.RetainCommentsFromSystemHeaders ||
556           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
557    Comments.addComment(RC, BumpAlloc);
558  }
559
560  /// \brief Return the documentation comment attached to a given declaration.
561  /// Returns NULL if no comment is attached.
562  ///
563  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
564  /// the comment, if the comment we found comes from a redeclaration.
565  const RawComment *getRawCommentForAnyRedecl(
566                                      const Decl *D,
567                                      const Decl **OriginalDecl = NULL) const;
568
569  /// Return parsed documentation comment attached to a given declaration.
570  /// Returns NULL if no comment is attached.
571  ///
572  /// \param PP the Preprocessor used with this TU.  Could be NULL if
573  /// preprocessor is not available.
574  comments::FullComment *getCommentForDecl(const Decl *D,
575                                           const Preprocessor *PP) const;
576
577  /// Return parsed documentation comment attached to a given declaration.
578  /// Returns NULL if no comment is attached. Does not look at any
579  /// redeclarations of the declaration.
580  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
581
582  comments::FullComment *cloneFullComment(comments::FullComment *FC,
583                                         const Decl *D) const;
584
585private:
586  mutable comments::CommandTraits CommentCommandTraits;
587
588public:
589  comments::CommandTraits &getCommentCommandTraits() const {
590    return CommentCommandTraits;
591  }
592
593  /// \brief Retrieve the attributes for the given declaration.
594  AttrVec& getDeclAttrs(const Decl *D);
595
596  /// \brief Erase the attributes corresponding to the given declaration.
597  void eraseDeclAttrs(const Decl *D);
598
599  /// \brief If this variable is an instantiated static data member of a
600  /// class template specialization, returns the templated static data member
601  /// from which it was instantiated.
602  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
603                                                           const VarDecl *Var);
604
605  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
606
607  void setClassScopeSpecializationPattern(FunctionDecl *FD,
608                                          FunctionDecl *Pattern);
609
610  /// \brief Note that the static data member \p Inst is an instantiation of
611  /// the static data member template \p Tmpl of a class template.
612  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
613                                           TemplateSpecializationKind TSK,
614                        SourceLocation PointOfInstantiation = SourceLocation());
615
616  /// \brief If the given using decl \p Inst is an instantiation of a
617  /// (possibly unresolved) using decl from a template instantiation,
618  /// return it.
619  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
620
621  /// \brief Remember that the using decl \p Inst is an instantiation
622  /// of the using decl \p Pattern of a class template.
623  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
624
625  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
626                                          UsingShadowDecl *Pattern);
627  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
628
629  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
630
631  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
632
633  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
634  /// the non-bitfield \p LastFD.
635  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
636                                      const FieldDecl *LastFD) const;
637
638  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
639  /// the bitfield \p LastFD.
640  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
641                                   const FieldDecl *LastFD) const;
642
643  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
644  /// \p LastFD.
645  bool BitfieldFollowsBitfield(const FieldDecl *FD,
646                               const FieldDecl *LastFD) const;
647
648  /// \brief Return \c true if \p FD is not a bitfield which follows the
649  /// bitfield \p LastFD.
650  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
651                                  const FieldDecl *LastFD) const;
652
653  /// \brief Return \c true if \p FD is a bitfield which follows the
654  /// non-bitfield \p LastFD.
655  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
656                                  const FieldDecl *LastFD) const;
657
658  // Access to the set of methods overridden by the given C++ method.
659  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
660  overridden_cxx_method_iterator
661  overridden_methods_begin(const CXXMethodDecl *Method) const;
662
663  overridden_cxx_method_iterator
664  overridden_methods_end(const CXXMethodDecl *Method) const;
665
666  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
667
668  /// \brief Note that the given C++ \p Method overrides the given \p
669  /// Overridden method.
670  void addOverriddenMethod(const CXXMethodDecl *Method,
671                           const CXXMethodDecl *Overridden);
672
673  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
674  ///
675  /// An ObjC method is considered to override any method in the class's
676  /// base classes, its protocols, or its categories' protocols, that has
677  /// the same selector and is of the same kind (class or instance).
678  /// A method in an implementation is not considered as overriding the same
679  /// method in the interface or its categories.
680  void getOverriddenMethods(
681                        const NamedDecl *Method,
682                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
683
684  /// \brief Notify the AST context that a new import declaration has been
685  /// parsed or implicitly created within this translation unit.
686  void addedLocalImportDecl(ImportDecl *Import);
687
688  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
689    return Import->NextLocalImport;
690  }
691
692  /// \brief Iterator that visits import declarations.
693  class import_iterator {
694    ImportDecl *Import;
695
696  public:
697    typedef ImportDecl               *value_type;
698    typedef ImportDecl               *reference;
699    typedef ImportDecl               *pointer;
700    typedef int                       difference_type;
701    typedef std::forward_iterator_tag iterator_category;
702
703    import_iterator() : Import() { }
704    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
705
706    reference operator*() const { return Import; }
707    pointer operator->() const { return Import; }
708
709    import_iterator &operator++() {
710      Import = ASTContext::getNextLocalImport(Import);
711      return *this;
712    }
713
714    import_iterator operator++(int) {
715      import_iterator Other(*this);
716      ++(*this);
717      return Other;
718    }
719
720    friend bool operator==(import_iterator X, import_iterator Y) {
721      return X.Import == Y.Import;
722    }
723
724    friend bool operator!=(import_iterator X, import_iterator Y) {
725      return X.Import != Y.Import;
726    }
727  };
728
729  import_iterator local_import_begin() const {
730    return import_iterator(FirstLocalImport);
731  }
732  import_iterator local_import_end() const { return import_iterator(); }
733
734  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
735
736
737  // Builtin Types.
738  CanQualType VoidTy;
739  CanQualType BoolTy;
740  CanQualType CharTy;
741  CanQualType WCharTy;  // [C++ 3.9.1p5].
742  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
743  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
744  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
745  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
746  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
747  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
748  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
749  CanQualType FloatTy, DoubleTy, LongDoubleTy;
750  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
751  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
752  CanQualType VoidPtrTy, NullPtrTy;
753  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
754  CanQualType BuiltinFnTy;
755  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
756  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
757  CanQualType ObjCBuiltinBoolTy;
758  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
759  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
760  CanQualType OCLImage3dTy;
761  CanQualType OCLSamplerTy, OCLEventTy;
762
763  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
764  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
765  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
766
767  // Type used to help define __builtin_va_list for some targets.
768  // The type is built when constructing 'BuiltinVaListDecl'.
769  mutable QualType VaListTagTy;
770
771  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
772             IdentifierTable &idents, SelectorTable &sels,
773             Builtin::Context &builtins,
774             unsigned size_reserve,
775             bool DelayInitialization = false);
776
777  ~ASTContext();
778
779  /// \brief Attach an external AST source to the AST context.
780  ///
781  /// The external AST source provides the ability to load parts of
782  /// the abstract syntax tree as needed from some external storage,
783  /// e.g., a precompiled header.
784  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
785
786  /// \brief Retrieve a pointer to the external AST source associated
787  /// with this AST context, if any.
788  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
789
790  /// \brief Attach an AST mutation listener to the AST context.
791  ///
792  /// The AST mutation listener provides the ability to track modifications to
793  /// the abstract syntax tree entities committed after they were initially
794  /// created.
795  void setASTMutationListener(ASTMutationListener *Listener) {
796    this->Listener = Listener;
797  }
798
799  /// \brief Retrieve a pointer to the AST mutation listener associated
800  /// with this AST context, if any.
801  ASTMutationListener *getASTMutationListener() const { return Listener; }
802
803  void PrintStats() const;
804  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
805
806  /// \brief Retrieve the declaration for the 128-bit signed integer type.
807  TypedefDecl *getInt128Decl() const;
808
809  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
810  TypedefDecl *getUInt128Decl() const;
811
812  //===--------------------------------------------------------------------===//
813  //                           Type Constructors
814  //===--------------------------------------------------------------------===//
815
816private:
817  /// \brief Return a type with extended qualifiers.
818  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
819
820  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
821
822public:
823  /// \brief Return the uniqued reference to the type for an address space
824  /// qualified type with the specified type and address space.
825  ///
826  /// The resulting type has a union of the qualifiers from T and the address
827  /// space. If T already has an address space specifier, it is silently
828  /// replaced.
829  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
830
831  /// \brief Return the uniqued reference to the type for an Objective-C
832  /// gc-qualified type.
833  ///
834  /// The retulting type has a union of the qualifiers from T and the gc
835  /// attribute.
836  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
837
838  /// \brief Return the uniqued reference to the type for a \c restrict
839  /// qualified type.
840  ///
841  /// The resulting type has a union of the qualifiers from \p T and
842  /// \c restrict.
843  QualType getRestrictType(QualType T) const {
844    return T.withFastQualifiers(Qualifiers::Restrict);
845  }
846
847  /// \brief Return the uniqued reference to the type for a \c volatile
848  /// qualified type.
849  ///
850  /// The resulting type has a union of the qualifiers from \p T and
851  /// \c volatile.
852  QualType getVolatileType(QualType T) const {
853    return T.withFastQualifiers(Qualifiers::Volatile);
854  }
855
856  /// \brief Return the uniqued reference to the type for a \c const
857  /// qualified type.
858  ///
859  /// The resulting type has a union of the qualifiers from \p T and \c const.
860  ///
861  /// It can be reasonably expected that this will always be equivalent to
862  /// calling T.withConst().
863  QualType getConstType(QualType T) const { return T.withConst(); }
864
865  /// \brief Change the ExtInfo on a function type.
866  const FunctionType *adjustFunctionType(const FunctionType *Fn,
867                                         FunctionType::ExtInfo EInfo);
868
869  /// \brief Change the result type of a function type once it is deduced.
870  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
871
872  /// \brief Return the uniqued reference to the type for a complex
873  /// number with the specified element type.
874  QualType getComplexType(QualType T) const;
875  CanQualType getComplexType(CanQualType T) const {
876    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
877  }
878
879  /// \brief Return the uniqued reference to the type for a pointer to
880  /// the specified type.
881  QualType getPointerType(QualType T) const;
882  CanQualType getPointerType(CanQualType T) const {
883    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
884  }
885
886  /// \brief Return the uniqued reference to the atomic type for the specified
887  /// type.
888  QualType getAtomicType(QualType T) const;
889
890  /// \brief Return the uniqued reference to the type for a block of the
891  /// specified type.
892  QualType getBlockPointerType(QualType T) const;
893
894  /// Gets the struct used to keep track of the descriptor for pointer to
895  /// blocks.
896  QualType getBlockDescriptorType() const;
897
898  /// Gets the struct used to keep track of the extended descriptor for
899  /// pointer to blocks.
900  QualType getBlockDescriptorExtendedType() const;
901
902  void setcudaConfigureCallDecl(FunctionDecl *FD) {
903    cudaConfigureCallDecl = FD;
904  }
905  FunctionDecl *getcudaConfigureCallDecl() {
906    return cudaConfigureCallDecl;
907  }
908
909  /// Returns true iff we need copy/dispose helpers for the given type.
910  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
911
912
913  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
914  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
915  /// has extended lifetime.
916  bool getByrefLifetime(QualType Ty,
917                        Qualifiers::ObjCLifetime &Lifetime,
918                        bool &HasByrefExtendedLayout) const;
919
920  /// \brief Return the uniqued reference to the type for an lvalue reference
921  /// to the specified type.
922  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
923    const;
924
925  /// \brief Return the uniqued reference to the type for an rvalue reference
926  /// to the specified type.
927  QualType getRValueReferenceType(QualType T) const;
928
929  /// \brief Return the uniqued reference to the type for a member pointer to
930  /// the specified type in the specified class.
931  ///
932  /// The class \p Cls is a \c Type because it could be a dependent name.
933  QualType getMemberPointerType(QualType T, const Type *Cls) const;
934
935  /// \brief Return a non-unique reference to the type for a variable array of
936  /// the specified element type.
937  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
938                                ArrayType::ArraySizeModifier ASM,
939                                unsigned IndexTypeQuals,
940                                SourceRange Brackets) const;
941
942  /// \brief Return a non-unique reference to the type for a dependently-sized
943  /// array of the specified element type.
944  ///
945  /// FIXME: We will need these to be uniqued, or at least comparable, at some
946  /// point.
947  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
948                                      ArrayType::ArraySizeModifier ASM,
949                                      unsigned IndexTypeQuals,
950                                      SourceRange Brackets) const;
951
952  /// \brief Return a unique reference to the type for an incomplete array of
953  /// the specified element type.
954  QualType getIncompleteArrayType(QualType EltTy,
955                                  ArrayType::ArraySizeModifier ASM,
956                                  unsigned IndexTypeQuals) const;
957
958  /// \brief Return the unique reference to the type for a constant array of
959  /// the specified element type.
960  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
961                                ArrayType::ArraySizeModifier ASM,
962                                unsigned IndexTypeQuals) const;
963
964  /// \brief Returns a vla type where known sizes are replaced with [*].
965  QualType getVariableArrayDecayedType(QualType Ty) const;
966
967  /// \brief Return the unique reference to a vector type of the specified
968  /// element type and size.
969  ///
970  /// \pre \p VectorType must be a built-in type.
971  QualType getVectorType(QualType VectorType, unsigned NumElts,
972                         VectorType::VectorKind VecKind) const;
973
974  /// \brief Return the unique reference to an extended vector type
975  /// of the specified element type and size.
976  ///
977  /// \pre \p VectorType must be a built-in type.
978  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
979
980  /// \pre Return a non-unique reference to the type for a dependently-sized
981  /// vector of the specified element type.
982  ///
983  /// FIXME: We will need these to be uniqued, or at least comparable, at some
984  /// point.
985  QualType getDependentSizedExtVectorType(QualType VectorType,
986                                          Expr *SizeExpr,
987                                          SourceLocation AttrLoc) const;
988
989  /// \brief Return a K&R style C function type like 'int()'.
990  QualType getFunctionNoProtoType(QualType ResultTy,
991                                  const FunctionType::ExtInfo &Info) const;
992
993  QualType getFunctionNoProtoType(QualType ResultTy) const {
994    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
995  }
996
997  /// \brief Return a normal function type with a typed argument list.
998  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
999                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1000
1001  /// \brief Return the unique reference to the type for the specified type
1002  /// declaration.
1003  QualType getTypeDeclType(const TypeDecl *Decl,
1004                           const TypeDecl *PrevDecl = 0) const {
1005    assert(Decl && "Passed null for Decl param");
1006    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1007
1008    if (PrevDecl) {
1009      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1010      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1011      return QualType(PrevDecl->TypeForDecl, 0);
1012    }
1013
1014    return getTypeDeclTypeSlow(Decl);
1015  }
1016
1017  /// \brief Return the unique reference to the type for the specified
1018  /// typedef-name decl.
1019  QualType getTypedefType(const TypedefNameDecl *Decl,
1020                          QualType Canon = QualType()) const;
1021
1022  QualType getRecordType(const RecordDecl *Decl) const;
1023
1024  QualType getEnumType(const EnumDecl *Decl) const;
1025
1026  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1027
1028  QualType getAttributedType(AttributedType::Kind attrKind,
1029                             QualType modifiedType,
1030                             QualType equivalentType);
1031
1032  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1033                                        QualType Replacement) const;
1034  QualType getSubstTemplateTypeParmPackType(
1035                                          const TemplateTypeParmType *Replaced,
1036                                            const TemplateArgument &ArgPack);
1037
1038  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1039                                   bool ParameterPack,
1040                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1041
1042  QualType getTemplateSpecializationType(TemplateName T,
1043                                         const TemplateArgument *Args,
1044                                         unsigned NumArgs,
1045                                         QualType Canon = QualType()) const;
1046
1047  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1048                                                  const TemplateArgument *Args,
1049                                                  unsigned NumArgs) const;
1050
1051  QualType getTemplateSpecializationType(TemplateName T,
1052                                         const TemplateArgumentListInfo &Args,
1053                                         QualType Canon = QualType()) const;
1054
1055  TypeSourceInfo *
1056  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1057                                    const TemplateArgumentListInfo &Args,
1058                                    QualType Canon = QualType()) const;
1059
1060  QualType getParenType(QualType NamedType) const;
1061
1062  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1063                             NestedNameSpecifier *NNS,
1064                             QualType NamedType) const;
1065  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1066                                NestedNameSpecifier *NNS,
1067                                const IdentifierInfo *Name,
1068                                QualType Canon = QualType()) const;
1069
1070  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1071                                                  NestedNameSpecifier *NNS,
1072                                                  const IdentifierInfo *Name,
1073                                    const TemplateArgumentListInfo &Args) const;
1074  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1075                                                  NestedNameSpecifier *NNS,
1076                                                  const IdentifierInfo *Name,
1077                                                  unsigned NumArgs,
1078                                            const TemplateArgument *Args) const;
1079
1080  QualType getPackExpansionType(QualType Pattern,
1081                                Optional<unsigned> NumExpansions);
1082
1083  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1084                                ObjCInterfaceDecl *PrevDecl = 0) const;
1085
1086  QualType getObjCObjectType(QualType Base,
1087                             ObjCProtocolDecl * const *Protocols,
1088                             unsigned NumProtocols) const;
1089
1090  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1091  QualType getObjCObjectPointerType(QualType OIT) const;
1092
1093  /// \brief GCC extension.
1094  QualType getTypeOfExprType(Expr *e) const;
1095  QualType getTypeOfType(QualType t) const;
1096
1097  /// \brief C++11 decltype.
1098  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1099
1100  /// \brief Unary type transforms
1101  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1102                                 UnaryTransformType::UTTKind UKind) const;
1103
1104  /// \brief C++11 deduced auto type.
1105  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1106                       bool IsDependent = false) const;
1107
1108  /// \brief C++11 deduction pattern for 'auto' type.
1109  QualType getAutoDeductType() const;
1110
1111  /// \brief C++11 deduction pattern for 'auto &&' type.
1112  QualType getAutoRRefDeductType() const;
1113
1114  /// \brief Return the unique reference to the type for the specified TagDecl
1115  /// (struct/union/class/enum) decl.
1116  QualType getTagDeclType(const TagDecl *Decl) const;
1117
1118  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1119  /// <stddef.h>.
1120  ///
1121  /// The sizeof operator requires this (C99 6.5.3.4p4).
1122  CanQualType getSizeType() const;
1123
1124  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1125  /// <stdint.h>.
1126  CanQualType getIntMaxType() const;
1127
1128  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1129  /// <stdint.h>.
1130  CanQualType getUIntMaxType() const;
1131
1132  /// \brief Return the unique wchar_t type available in C++ (and available as
1133  /// __wchar_t as a Microsoft extension).
1134  QualType getWCharType() const { return WCharTy; }
1135
1136  /// \brief Return the type of wide characters. In C++, this returns the
1137  /// unique wchar_t type. In C99, this returns a type compatible with the type
1138  /// defined in <stddef.h> as defined by the target.
1139  QualType getWideCharType() const { return WideCharTy; }
1140
1141  /// \brief Return the type of "signed wchar_t".
1142  ///
1143  /// Used when in C++, as a GCC extension.
1144  QualType getSignedWCharType() const;
1145
1146  /// \brief Return the type of "unsigned wchar_t".
1147  ///
1148  /// Used when in C++, as a GCC extension.
1149  QualType getUnsignedWCharType() const;
1150
1151  /// \brief In C99, this returns a type compatible with the type
1152  /// defined in <stddef.h> as defined by the target.
1153  QualType getWIntType() const { return WIntTy; }
1154
1155  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1156  /// as defined by the target.
1157  QualType getIntPtrType() const;
1158
1159  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1160  /// as defined by the target.
1161  QualType getUIntPtrType() const;
1162
1163  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1164  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1165  QualType getPointerDiffType() const;
1166
1167  /// \brief Return the unique type for "pid_t" defined in
1168  /// <sys/types.h>. We need this to compute the correct type for vfork().
1169  QualType getProcessIDType() const;
1170
1171  /// \brief Return the C structure type used to represent constant CFStrings.
1172  QualType getCFConstantStringType() const;
1173
1174  /// \brief Returns the C struct type for objc_super
1175  QualType getObjCSuperType() const;
1176  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1177
1178  /// Get the structure type used to representation CFStrings, or NULL
1179  /// if it hasn't yet been built.
1180  QualType getRawCFConstantStringType() const {
1181    if (CFConstantStringTypeDecl)
1182      return getTagDeclType(CFConstantStringTypeDecl);
1183    return QualType();
1184  }
1185  void setCFConstantStringType(QualType T);
1186
1187  // This setter/getter represents the ObjC type for an NSConstantString.
1188  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1189  QualType getObjCConstantStringInterface() const {
1190    return ObjCConstantStringType;
1191  }
1192
1193  QualType getObjCNSStringType() const {
1194    return ObjCNSStringType;
1195  }
1196
1197  void setObjCNSStringType(QualType T) {
1198    ObjCNSStringType = T;
1199  }
1200
1201  /// \brief Retrieve the type that \c id has been defined to, which may be
1202  /// different from the built-in \c id if \c id has been typedef'd.
1203  QualType getObjCIdRedefinitionType() const {
1204    if (ObjCIdRedefinitionType.isNull())
1205      return getObjCIdType();
1206    return ObjCIdRedefinitionType;
1207  }
1208
1209  /// \brief Set the user-written type that redefines \c id.
1210  void setObjCIdRedefinitionType(QualType RedefType) {
1211    ObjCIdRedefinitionType = RedefType;
1212  }
1213
1214  /// \brief Retrieve the type that \c Class has been defined to, which may be
1215  /// different from the built-in \c Class if \c Class has been typedef'd.
1216  QualType getObjCClassRedefinitionType() const {
1217    if (ObjCClassRedefinitionType.isNull())
1218      return getObjCClassType();
1219    return ObjCClassRedefinitionType;
1220  }
1221
1222  /// \brief Set the user-written type that redefines 'SEL'.
1223  void setObjCClassRedefinitionType(QualType RedefType) {
1224    ObjCClassRedefinitionType = RedefType;
1225  }
1226
1227  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1228  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1229  QualType getObjCSelRedefinitionType() const {
1230    if (ObjCSelRedefinitionType.isNull())
1231      return getObjCSelType();
1232    return ObjCSelRedefinitionType;
1233  }
1234
1235
1236  /// \brief Set the user-written type that redefines 'SEL'.
1237  void setObjCSelRedefinitionType(QualType RedefType) {
1238    ObjCSelRedefinitionType = RedefType;
1239  }
1240
1241  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1242  /// otherwise, returns a NULL type;
1243  QualType getObjCInstanceType() {
1244    return getTypeDeclType(getObjCInstanceTypeDecl());
1245  }
1246
1247  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1248  /// "instancetype" type.
1249  TypedefDecl *getObjCInstanceTypeDecl();
1250
1251  /// \brief Set the type for the C FILE type.
1252  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1253
1254  /// \brief Retrieve the C FILE type.
1255  QualType getFILEType() const {
1256    if (FILEDecl)
1257      return getTypeDeclType(FILEDecl);
1258    return QualType();
1259  }
1260
1261  /// \brief Set the type for the C jmp_buf type.
1262  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1263    this->jmp_bufDecl = jmp_bufDecl;
1264  }
1265
1266  /// \brief Retrieve the C jmp_buf type.
1267  QualType getjmp_bufType() const {
1268    if (jmp_bufDecl)
1269      return getTypeDeclType(jmp_bufDecl);
1270    return QualType();
1271  }
1272
1273  /// \brief Set the type for the C sigjmp_buf type.
1274  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1275    this->sigjmp_bufDecl = sigjmp_bufDecl;
1276  }
1277
1278  /// \brief Retrieve the C sigjmp_buf type.
1279  QualType getsigjmp_bufType() const {
1280    if (sigjmp_bufDecl)
1281      return getTypeDeclType(sigjmp_bufDecl);
1282    return QualType();
1283  }
1284
1285  /// \brief Set the type for the C ucontext_t type.
1286  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1287    this->ucontext_tDecl = ucontext_tDecl;
1288  }
1289
1290  /// \brief Retrieve the C ucontext_t type.
1291  QualType getucontext_tType() const {
1292    if (ucontext_tDecl)
1293      return getTypeDeclType(ucontext_tDecl);
1294    return QualType();
1295  }
1296
1297  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1298  QualType getLogicalOperationType() const {
1299    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1300  }
1301
1302  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1303  /// \p S.
1304  ///
1305  /// If \p Field is specified then record field names are also encoded.
1306  void getObjCEncodingForType(QualType T, std::string &S,
1307                              const FieldDecl *Field=0) const;
1308
1309  void getLegacyIntegralTypeEncoding(QualType &t) const;
1310
1311  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1312  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1313                                       std::string &S) const;
1314
1315  /// \brief Emit the encoded type for the function \p Decl into \p S.
1316  ///
1317  /// This is in the same format as Objective-C method encodings.
1318  ///
1319  /// \returns true if an error occurred (e.g., because one of the parameter
1320  /// types is incomplete), false otherwise.
1321  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1322
1323  /// \brief Emit the encoded type for the method declaration \p Decl into
1324  /// \p S.
1325  ///
1326  /// \returns true if an error occurred (e.g., because one of the parameter
1327  /// types is incomplete), false otherwise.
1328  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1329                                    bool Extended = false)
1330    const;
1331
1332  /// \brief Return the encoded type for this block declaration.
1333  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1334
1335  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1336  /// this method declaration. If non-NULL, Container must be either
1337  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1338  /// only be NULL when getting encodings for protocol properties.
1339  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1340                                      const Decl *Container,
1341                                      std::string &S) const;
1342
1343  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1344                                      ObjCProtocolDecl *rProto) const;
1345
1346  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1347  /// in characters.
1348  CharUnits getObjCEncodingTypeSize(QualType T) const;
1349
1350  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1351  /// in Objective-C.
1352  TypedefDecl *getObjCIdDecl() const;
1353
1354  /// \brief Represents the Objective-CC \c id type.
1355  ///
1356  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1357  /// pointer type, a pointer to a struct.
1358  QualType getObjCIdType() const {
1359    return getTypeDeclType(getObjCIdDecl());
1360  }
1361
1362  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1363  /// in Objective-C.
1364  TypedefDecl *getObjCSelDecl() const;
1365
1366  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1367  /// 'SEL' type.
1368  QualType getObjCSelType() const {
1369    return getTypeDeclType(getObjCSelDecl());
1370  }
1371
1372  /// \brief Retrieve the typedef declaration corresponding to the predefined
1373  /// Objective-C 'Class' type.
1374  TypedefDecl *getObjCClassDecl() const;
1375
1376  /// \brief Represents the Objective-C \c Class type.
1377  ///
1378  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1379  /// pointer type, a pointer to a struct.
1380  QualType getObjCClassType() const {
1381    return getTypeDeclType(getObjCClassDecl());
1382  }
1383
1384  /// \brief Retrieve the Objective-C class declaration corresponding to
1385  /// the predefined \c Protocol class.
1386  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1387
1388  /// \brief Retrieve declaration of 'BOOL' typedef
1389  TypedefDecl *getBOOLDecl() const {
1390    return BOOLDecl;
1391  }
1392
1393  /// \brief Save declaration of 'BOOL' typedef
1394  void setBOOLDecl(TypedefDecl *TD) {
1395    BOOLDecl = TD;
1396  }
1397
1398  /// \brief type of 'BOOL' type.
1399  QualType getBOOLType() const {
1400    return getTypeDeclType(getBOOLDecl());
1401  }
1402
1403  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1404  QualType getObjCProtoType() const {
1405    return getObjCInterfaceType(getObjCProtocolDecl());
1406  }
1407
1408  /// \brief Retrieve the C type declaration corresponding to the predefined
1409  /// \c __builtin_va_list type.
1410  TypedefDecl *getBuiltinVaListDecl() const;
1411
1412  /// \brief Retrieve the type of the \c __builtin_va_list type.
1413  QualType getBuiltinVaListType() const {
1414    return getTypeDeclType(getBuiltinVaListDecl());
1415  }
1416
1417  /// \brief Retrieve the C type declaration corresponding to the predefined
1418  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1419  /// for some targets.
1420  QualType getVaListTagType() const;
1421
1422  /// \brief Return a type with additional \c const, \c volatile, or
1423  /// \c restrict qualifiers.
1424  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1425    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1426  }
1427
1428  /// \brief Un-split a SplitQualType.
1429  QualType getQualifiedType(SplitQualType split) const {
1430    return getQualifiedType(split.Ty, split.Quals);
1431  }
1432
1433  /// \brief Return a type with additional qualifiers.
1434  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1435    if (!Qs.hasNonFastQualifiers())
1436      return T.withFastQualifiers(Qs.getFastQualifiers());
1437    QualifierCollector Qc(Qs);
1438    const Type *Ptr = Qc.strip(T);
1439    return getExtQualType(Ptr, Qc);
1440  }
1441
1442  /// \brief Return a type with additional qualifiers.
1443  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1444    if (!Qs.hasNonFastQualifiers())
1445      return QualType(T, Qs.getFastQualifiers());
1446    return getExtQualType(T, Qs);
1447  }
1448
1449  /// \brief Return a type with the given lifetime qualifier.
1450  ///
1451  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1452  QualType getLifetimeQualifiedType(QualType type,
1453                                    Qualifiers::ObjCLifetime lifetime) {
1454    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1455    assert(lifetime != Qualifiers::OCL_None);
1456
1457    Qualifiers qs;
1458    qs.addObjCLifetime(lifetime);
1459    return getQualifiedType(type, qs);
1460  }
1461
1462  /// getUnqualifiedObjCPointerType - Returns version of
1463  /// Objective-C pointer type with lifetime qualifier removed.
1464  QualType getUnqualifiedObjCPointerType(QualType type) const {
1465    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1466        !type.getQualifiers().hasObjCLifetime())
1467      return type;
1468    Qualifiers Qs = type.getQualifiers();
1469    Qs.removeObjCLifetime();
1470    return getQualifiedType(type.getUnqualifiedType(), Qs);
1471  }
1472
1473  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1474                                         SourceLocation NameLoc) const;
1475
1476  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1477                                         UnresolvedSetIterator End) const;
1478
1479  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1480                                        bool TemplateKeyword,
1481                                        TemplateDecl *Template) const;
1482
1483  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1484                                        const IdentifierInfo *Name) const;
1485  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1486                                        OverloadedOperatorKind Operator) const;
1487  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1488                                            TemplateName replacement) const;
1489  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1490                                        const TemplateArgument &ArgPack) const;
1491
1492  enum GetBuiltinTypeError {
1493    GE_None,              ///< No error
1494    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1495    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1496    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1497  };
1498
1499  /// \brief Return the type for the specified builtin.
1500  ///
1501  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1502  /// arguments to the builtin that are required to be integer constant
1503  /// expressions.
1504  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1505                          unsigned *IntegerConstantArgs = 0) const;
1506
1507private:
1508  CanQualType getFromTargetType(unsigned Type) const;
1509  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1510
1511  //===--------------------------------------------------------------------===//
1512  //                         Type Predicates.
1513  //===--------------------------------------------------------------------===//
1514
1515public:
1516  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1517  /// collection attributes.
1518  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1519
1520  /// \brief Return true if the given vector types are of the same unqualified
1521  /// type or if they are equivalent to the same GCC vector type.
1522  ///
1523  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1524  /// types.
1525  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1526
1527  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1528  /// attribute set.
1529  static bool isObjCNSObjectType(QualType Ty) {
1530    return Ty->isObjCNSObjectType();
1531  }
1532
1533  //===--------------------------------------------------------------------===//
1534  //                         Type Sizing and Analysis
1535  //===--------------------------------------------------------------------===//
1536
1537  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1538  /// point type.
1539  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1540
1541  /// \brief Get the size and alignment of the specified complete type in bits.
1542  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1543  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1544    return getTypeInfo(T.getTypePtr());
1545  }
1546
1547  /// \brief Return the size of the specified (complete) type \p T, in bits.
1548  uint64_t getTypeSize(QualType T) const {
1549    return getTypeInfo(T).first;
1550  }
1551  uint64_t getTypeSize(const Type *T) const {
1552    return getTypeInfo(T).first;
1553  }
1554
1555  /// \brief Return the size of the character type, in bits.
1556  uint64_t getCharWidth() const {
1557    return getTypeSize(CharTy);
1558  }
1559
1560  /// \brief Convert a size in bits to a size in characters.
1561  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1562
1563  /// \brief Convert a size in characters to a size in bits.
1564  int64_t toBits(CharUnits CharSize) const;
1565
1566  /// \brief Return the size of the specified (complete) type \p T, in
1567  /// characters.
1568  CharUnits getTypeSizeInChars(QualType T) const;
1569  CharUnits getTypeSizeInChars(const Type *T) const;
1570
1571  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1572  /// bits.
1573  unsigned getTypeAlign(QualType T) const {
1574    return getTypeInfo(T).second;
1575  }
1576  unsigned getTypeAlign(const Type *T) const {
1577    return getTypeInfo(T).second;
1578  }
1579
1580  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1581  /// characters.
1582  CharUnits getTypeAlignInChars(QualType T) const;
1583  CharUnits getTypeAlignInChars(const Type *T) const;
1584
1585  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1586  // type is a record, its data size is returned.
1587  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1588
1589  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1590  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1591
1592  /// \brief Return the "preferred" alignment of the specified type \p T for
1593  /// the current target, in bits.
1594  ///
1595  /// This can be different than the ABI alignment in cases where it is
1596  /// beneficial for performance to overalign a data type.
1597  unsigned getPreferredTypeAlign(const Type *T) const;
1598
1599  /// \brief Return the alignment in bits that should be given to a
1600  /// global variable with type \p T.
1601  unsigned getAlignOfGlobalVar(QualType T) const;
1602
1603  /// \brief Return the alignment in characters that should be given to a
1604  /// global variable with type \p T.
1605  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1606
1607  /// \brief Return a conservative estimate of the alignment of the specified
1608  /// decl \p D.
1609  ///
1610  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1611  /// alignment.
1612  ///
1613  /// If \p RefAsPointee, references are treated like their underlying type
1614  /// (for alignof), else they're treated like pointers (for CodeGen).
1615  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1616
1617  /// \brief Get or compute information about the layout of the specified
1618  /// record (struct/union/class) \p D, which indicates its size and field
1619  /// position information.
1620  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1621
1622  /// \brief Get or compute information about the layout of the specified
1623  /// Objective-C interface.
1624  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1625    const;
1626
1627  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1628                        bool Simple = false) const;
1629
1630  /// \brief Get or compute information about the layout of the specified
1631  /// Objective-C implementation.
1632  ///
1633  /// This may differ from the interface if synthesized ivars are present.
1634  const ASTRecordLayout &
1635  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1636
1637  /// \brief Get our current best idea for the key function of the
1638  /// given record decl, or NULL if there isn't one.
1639  ///
1640  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1641  ///   ...the first non-pure virtual function that is not inline at the
1642  ///   point of class definition.
1643  ///
1644  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1645  /// virtual functions that are defined 'inline', which means that
1646  /// the result of this computation can change.
1647  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1648
1649  /// \brief Observe that the given method cannot be a key function.
1650  /// Checks the key-function cache for the method's class and clears it
1651  /// if matches the given declaration.
1652  ///
1653  /// This is used in ABIs where out-of-line definitions marked
1654  /// inline are not considered to be key functions.
1655  ///
1656  /// \param method should be the declaration from the class definition
1657  void setNonKeyFunction(const CXXMethodDecl *method);
1658
1659  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1660  uint64_t getFieldOffset(const ValueDecl *FD) const;
1661
1662  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1663
1664  MangleContext *createMangleContext();
1665
1666  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1667                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1668
1669  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1670  void CollectInheritedProtocols(const Decl *CDecl,
1671                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1672
1673  //===--------------------------------------------------------------------===//
1674  //                            Type Operators
1675  //===--------------------------------------------------------------------===//
1676
1677  /// \brief Return the canonical (structural) type corresponding to the
1678  /// specified potentially non-canonical type \p T.
1679  ///
1680  /// The non-canonical version of a type may have many "decorated" versions of
1681  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1682  /// returned type is guaranteed to be free of any of these, allowing two
1683  /// canonical types to be compared for exact equality with a simple pointer
1684  /// comparison.
1685  CanQualType getCanonicalType(QualType T) const {
1686    return CanQualType::CreateUnsafe(T.getCanonicalType());
1687  }
1688
1689  const Type *getCanonicalType(const Type *T) const {
1690    return T->getCanonicalTypeInternal().getTypePtr();
1691  }
1692
1693  /// \brief Return the canonical parameter type corresponding to the specific
1694  /// potentially non-canonical one.
1695  ///
1696  /// Qualifiers are stripped off, functions are turned into function
1697  /// pointers, and arrays decay one level into pointers.
1698  CanQualType getCanonicalParamType(QualType T) const;
1699
1700  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1701  bool hasSameType(QualType T1, QualType T2) const {
1702    return getCanonicalType(T1) == getCanonicalType(T2);
1703  }
1704
1705  /// \brief Return this type as a completely-unqualified array type,
1706  /// capturing the qualifiers in \p Quals.
1707  ///
1708  /// This will remove the minimal amount of sugaring from the types, similar
1709  /// to the behavior of QualType::getUnqualifiedType().
1710  ///
1711  /// \param T is the qualified type, which may be an ArrayType
1712  ///
1713  /// \param Quals will receive the full set of qualifiers that were
1714  /// applied to the array.
1715  ///
1716  /// \returns if this is an array type, the completely unqualified array type
1717  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1718  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1719
1720  /// \brief Determine whether the given types are equivalent after
1721  /// cvr-qualifiers have been removed.
1722  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1723    return getCanonicalType(T1).getTypePtr() ==
1724           getCanonicalType(T2).getTypePtr();
1725  }
1726
1727  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1728
1729  /// \brief Retrieves the "canonical" nested name specifier for a
1730  /// given nested name specifier.
1731  ///
1732  /// The canonical nested name specifier is a nested name specifier
1733  /// that uniquely identifies a type or namespace within the type
1734  /// system. For example, given:
1735  ///
1736  /// \code
1737  /// namespace N {
1738  ///   struct S {
1739  ///     template<typename T> struct X { typename T* type; };
1740  ///   };
1741  /// }
1742  ///
1743  /// template<typename T> struct Y {
1744  ///   typename N::S::X<T>::type member;
1745  /// };
1746  /// \endcode
1747  ///
1748  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1749  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1750  /// by declarations in the type system and the canonical type for
1751  /// the template type parameter 'T' is template-param-0-0.
1752  NestedNameSpecifier *
1753  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1754
1755  /// \brief Retrieves the default calling convention to use for
1756  /// C++ instance methods.
1757  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1758
1759  /// \brief Retrieves the canonical representation of the given
1760  /// calling convention.
1761  CallingConv getCanonicalCallConv(CallingConv CC) const;
1762
1763  /// \brief Determines whether two calling conventions name the same
1764  /// calling convention.
1765  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1766    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1767  }
1768
1769  /// \brief Retrieves the "canonical" template name that refers to a
1770  /// given template.
1771  ///
1772  /// The canonical template name is the simplest expression that can
1773  /// be used to refer to a given template. For most templates, this
1774  /// expression is just the template declaration itself. For example,
1775  /// the template std::vector can be referred to via a variety of
1776  /// names---std::vector, \::std::vector, vector (if vector is in
1777  /// scope), etc.---but all of these names map down to the same
1778  /// TemplateDecl, which is used to form the canonical template name.
1779  ///
1780  /// Dependent template names are more interesting. Here, the
1781  /// template name could be something like T::template apply or
1782  /// std::allocator<T>::template rebind, where the nested name
1783  /// specifier itself is dependent. In this case, the canonical
1784  /// template name uses the shortest form of the dependent
1785  /// nested-name-specifier, which itself contains all canonical
1786  /// types, values, and templates.
1787  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1788
1789  /// \brief Determine whether the given template names refer to the same
1790  /// template.
1791  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1792
1793  /// \brief Retrieve the "canonical" template argument.
1794  ///
1795  /// The canonical template argument is the simplest template argument
1796  /// (which may be a type, value, expression, or declaration) that
1797  /// expresses the value of the argument.
1798  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1799    const;
1800
1801  /// Type Query functions.  If the type is an instance of the specified class,
1802  /// return the Type pointer for the underlying maximally pretty type.  This
1803  /// is a member of ASTContext because this may need to do some amount of
1804  /// canonicalization, e.g. to move type qualifiers into the element type.
1805  const ArrayType *getAsArrayType(QualType T) const;
1806  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1807    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1808  }
1809  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1810    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1811  }
1812  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1813    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1814  }
1815  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1816    const {
1817    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1818  }
1819
1820  /// \brief Return the innermost element type of an array type.
1821  ///
1822  /// For example, will return "int" for int[m][n]
1823  QualType getBaseElementType(const ArrayType *VAT) const;
1824
1825  /// \brief Return the innermost element type of a type (which needn't
1826  /// actually be an array type).
1827  QualType getBaseElementType(QualType QT) const;
1828
1829  /// \brief Return number of constant array elements.
1830  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1831
1832  /// \brief Perform adjustment on the parameter type of a function.
1833  ///
1834  /// This routine adjusts the given parameter type @p T to the actual
1835  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1836  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1837  QualType getAdjustedParameterType(QualType T) const;
1838
1839  /// \brief Retrieve the parameter type as adjusted for use in the signature
1840  /// of a function, decaying array and function types and removing top-level
1841  /// cv-qualifiers.
1842  QualType getSignatureParameterType(QualType T) const;
1843
1844  /// \brief Return the properly qualified result of decaying the specified
1845  /// array type to a pointer.
1846  ///
1847  /// This operation is non-trivial when handling typedefs etc.  The canonical
1848  /// type of \p T must be an array type, this returns a pointer to a properly
1849  /// qualified element of the array.
1850  ///
1851  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1852  QualType getArrayDecayedType(QualType T) const;
1853
1854  /// \brief Return the type that \p PromotableType will promote to: C99
1855  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1856  QualType getPromotedIntegerType(QualType PromotableType) const;
1857
1858  /// \brief Recurses in pointer/array types until it finds an Objective-C
1859  /// retainable type and returns its ownership.
1860  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1861
1862  /// \brief Whether this is a promotable bitfield reference according
1863  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1864  ///
1865  /// \returns the type this bit-field will promote to, or NULL if no
1866  /// promotion occurs.
1867  QualType isPromotableBitField(Expr *E) const;
1868
1869  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1870  ///
1871  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1872  /// \p LHS < \p RHS, return -1.
1873  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1874
1875  /// \brief Compare the rank of the two specified floating point types,
1876  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1877  ///
1878  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1879  /// \p LHS < \p RHS, return -1.
1880  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1881
1882  /// \brief Return a real floating point or a complex type (based on
1883  /// \p typeDomain/\p typeSize).
1884  ///
1885  /// \param typeDomain a real floating point or complex type.
1886  /// \param typeSize a real floating point or complex type.
1887  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1888                                             QualType typeDomain) const;
1889
1890  unsigned getTargetAddressSpace(QualType T) const {
1891    return getTargetAddressSpace(T.getQualifiers());
1892  }
1893
1894  unsigned getTargetAddressSpace(Qualifiers Q) const {
1895    return getTargetAddressSpace(Q.getAddressSpace());
1896  }
1897
1898  unsigned getTargetAddressSpace(unsigned AS) const {
1899    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1900      return AS;
1901    else
1902      return (*AddrSpaceMap)[AS - LangAS::Offset];
1903  }
1904
1905private:
1906  // Helper for integer ordering
1907  unsigned getIntegerRank(const Type *T) const;
1908
1909public:
1910
1911  //===--------------------------------------------------------------------===//
1912  //                    Type Compatibility Predicates
1913  //===--------------------------------------------------------------------===//
1914
1915  /// Compatibility predicates used to check assignment expressions.
1916  bool typesAreCompatible(QualType T1, QualType T2,
1917                          bool CompareUnqualified = false); // C99 6.2.7p1
1918
1919  bool propertyTypesAreCompatible(QualType, QualType);
1920  bool typesAreBlockPointerCompatible(QualType, QualType);
1921
1922  bool isObjCIdType(QualType T) const {
1923    return T == getObjCIdType();
1924  }
1925  bool isObjCClassType(QualType T) const {
1926    return T == getObjCClassType();
1927  }
1928  bool isObjCSelType(QualType T) const {
1929    return T == getObjCSelType();
1930  }
1931  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1932  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1933                                         bool ForCompare);
1934
1935  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1936
1937  // Check the safety of assignment from LHS to RHS
1938  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1939                               const ObjCObjectPointerType *RHSOPT);
1940  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1941                               const ObjCObjectType *RHS);
1942  bool canAssignObjCInterfacesInBlockPointer(
1943                                          const ObjCObjectPointerType *LHSOPT,
1944                                          const ObjCObjectPointerType *RHSOPT,
1945                                          bool BlockReturnType);
1946  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1947  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1948                                   const ObjCObjectPointerType *RHSOPT);
1949  bool canBindObjCObjectType(QualType To, QualType From);
1950
1951  // Functions for calculating composite types
1952  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1953                      bool Unqualified = false, bool BlockReturnType = false);
1954  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1955                              bool Unqualified = false);
1956  QualType mergeFunctionArgumentTypes(QualType, QualType,
1957                                      bool OfBlockPointer=false,
1958                                      bool Unqualified = false);
1959  QualType mergeTransparentUnionType(QualType, QualType,
1960                                     bool OfBlockPointer=false,
1961                                     bool Unqualified = false);
1962
1963  QualType mergeObjCGCQualifiers(QualType, QualType);
1964
1965  bool FunctionTypesMatchOnNSConsumedAttrs(
1966         const FunctionProtoType *FromFunctionType,
1967         const FunctionProtoType *ToFunctionType);
1968
1969  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1970    ObjCLayouts[CD] = 0;
1971  }
1972
1973  //===--------------------------------------------------------------------===//
1974  //                    Integer Predicates
1975  //===--------------------------------------------------------------------===//
1976
1977  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1978  // of bits in an integer type excluding any padding bits.
1979  unsigned getIntWidth(QualType T) const;
1980
1981  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1982  // unsigned integer type.  This method takes a signed type, and returns the
1983  // corresponding unsigned integer type.
1984  QualType getCorrespondingUnsignedType(QualType T) const;
1985
1986  //===--------------------------------------------------------------------===//
1987  //                    Type Iterators.
1988  //===--------------------------------------------------------------------===//
1989
1990  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
1991  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
1992
1993  type_iterator types_begin() { return Types.begin(); }
1994  type_iterator types_end() { return Types.end(); }
1995  const_type_iterator types_begin() const { return Types.begin(); }
1996  const_type_iterator types_end() const { return Types.end(); }
1997
1998  //===--------------------------------------------------------------------===//
1999  //                    Integer Values
2000  //===--------------------------------------------------------------------===//
2001
2002  /// \brief Make an APSInt of the appropriate width and signedness for the
2003  /// given \p Value and integer \p Type.
2004  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2005    llvm::APSInt Res(getIntWidth(Type),
2006                     !Type->isSignedIntegerOrEnumerationType());
2007    Res = Value;
2008    return Res;
2009  }
2010
2011  bool isSentinelNullExpr(const Expr *E);
2012
2013  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2014  /// none exists.
2015  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2016  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2017  /// none exists.
2018  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2019
2020  /// \brief Return true if there is at least one \@implementation in the TU.
2021  bool AnyObjCImplementation() {
2022    return !ObjCImpls.empty();
2023  }
2024
2025  /// \brief Set the implementation of ObjCInterfaceDecl.
2026  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2027                             ObjCImplementationDecl *ImplD);
2028  /// \brief Set the implementation of ObjCCategoryDecl.
2029  void setObjCImplementation(ObjCCategoryDecl *CatD,
2030                             ObjCCategoryImplDecl *ImplD);
2031
2032  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2033  /// interface, or null if none exists.
2034  const ObjCMethodDecl *getObjCMethodRedeclaration(
2035                                               const ObjCMethodDecl *MD) const {
2036    return ObjCMethodRedecls.lookup(MD);
2037  }
2038
2039  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2040                                  const ObjCMethodDecl *Redecl) {
2041    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2042    ObjCMethodRedecls[MD] = Redecl;
2043  }
2044
2045  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2046  /// an Objective-C method/property/ivar etc. that is part of an interface,
2047  /// otherwise returns null.
2048  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2049
2050  /// \brief Set the copy inialization expression of a block var decl.
2051  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2052  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2053  /// NULL if none exists.
2054  Expr *getBlockVarCopyInits(const VarDecl* VD);
2055
2056  /// \brief Allocate an uninitialized TypeSourceInfo.
2057  ///
2058  /// The caller should initialize the memory held by TypeSourceInfo using
2059  /// the TypeLoc wrappers.
2060  ///
2061  /// \param T the type that will be the basis for type source info. This type
2062  /// should refer to how the declarator was written in source code, not to
2063  /// what type semantic analysis resolved the declarator to.
2064  ///
2065  /// \param Size the size of the type info to create, or 0 if the size
2066  /// should be calculated based on the type.
2067  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2068
2069  /// \brief Allocate a TypeSourceInfo where all locations have been
2070  /// initialized to a given location, which defaults to the empty
2071  /// location.
2072  TypeSourceInfo *
2073  getTrivialTypeSourceInfo(QualType T,
2074                           SourceLocation Loc = SourceLocation()) const;
2075
2076  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2077
2078  /// \brief Add a deallocation callback that will be invoked when the
2079  /// ASTContext is destroyed.
2080  ///
2081  /// \param Callback A callback function that will be invoked on destruction.
2082  ///
2083  /// \param Data Pointer data that will be provided to the callback function
2084  /// when it is called.
2085  void AddDeallocation(void (*Callback)(void*), void *Data);
2086
2087  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2088  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2089
2090  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2091  /// lazily, only when used; this is only relevant for function or file scoped
2092  /// var definitions.
2093  ///
2094  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2095  /// it is not used.
2096  bool DeclMustBeEmitted(const Decl *D);
2097
2098  void addUnnamedTag(const TagDecl *Tag);
2099  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2100
2101  /// \brief Retrieve the lambda mangling number for a lambda expression.
2102  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2103
2104  /// \brief Used by ParmVarDecl to store on the side the
2105  /// index of the parameter when it exceeds the size of the normal bitfield.
2106  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2107
2108  /// \brief Used by ParmVarDecl to retrieve on the side the
2109  /// index of the parameter when it exceeds the size of the normal bitfield.
2110  unsigned getParameterIndex(const ParmVarDecl *D) const;
2111
2112  /// \brief Get the storage for the constant value of a materialized temporary
2113  /// of static storage duration.
2114  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2115                                         bool MayCreate);
2116
2117  //===--------------------------------------------------------------------===//
2118  //                    Statistics
2119  //===--------------------------------------------------------------------===//
2120
2121  /// \brief The number of implicitly-declared default constructors.
2122  static unsigned NumImplicitDefaultConstructors;
2123
2124  /// \brief The number of implicitly-declared default constructors for
2125  /// which declarations were built.
2126  static unsigned NumImplicitDefaultConstructorsDeclared;
2127
2128  /// \brief The number of implicitly-declared copy constructors.
2129  static unsigned NumImplicitCopyConstructors;
2130
2131  /// \brief The number of implicitly-declared copy constructors for
2132  /// which declarations were built.
2133  static unsigned NumImplicitCopyConstructorsDeclared;
2134
2135  /// \brief The number of implicitly-declared move constructors.
2136  static unsigned NumImplicitMoveConstructors;
2137
2138  /// \brief The number of implicitly-declared move constructors for
2139  /// which declarations were built.
2140  static unsigned NumImplicitMoveConstructorsDeclared;
2141
2142  /// \brief The number of implicitly-declared copy assignment operators.
2143  static unsigned NumImplicitCopyAssignmentOperators;
2144
2145  /// \brief The number of implicitly-declared copy assignment operators for
2146  /// which declarations were built.
2147  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2148
2149  /// \brief The number of implicitly-declared move assignment operators.
2150  static unsigned NumImplicitMoveAssignmentOperators;
2151
2152  /// \brief The number of implicitly-declared move assignment operators for
2153  /// which declarations were built.
2154  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2155
2156  /// \brief The number of implicitly-declared destructors.
2157  static unsigned NumImplicitDestructors;
2158
2159  /// \brief The number of implicitly-declared destructors for which
2160  /// declarations were built.
2161  static unsigned NumImplicitDestructorsDeclared;
2162
2163private:
2164  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2165  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2166
2167public:
2168  /// \brief Initialize built-in types.
2169  ///
2170  /// This routine may only be invoked once for a given ASTContext object.
2171  /// It is normally invoked by the ASTContext constructor. However, the
2172  /// constructor can be asked to delay initialization, which places the burden
2173  /// of calling this function on the user of that object.
2174  ///
2175  /// \param Target The target
2176  void InitBuiltinTypes(const TargetInfo &Target);
2177
2178private:
2179  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2180
2181  // Return the Objective-C type encoding for a given type.
2182  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2183                                  bool ExpandPointedToStructures,
2184                                  bool ExpandStructures,
2185                                  const FieldDecl *Field,
2186                                  bool OutermostType = false,
2187                                  bool EncodingProperty = false,
2188                                  bool StructField = false,
2189                                  bool EncodeBlockParameters = false,
2190                                  bool EncodeClassNames = false,
2191                                  bool EncodePointerToObjCTypedef = false) const;
2192
2193  // Adds the encoding of the structure's members.
2194  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2195                                       const FieldDecl *Field,
2196                                       bool includeVBases = true) const;
2197
2198  // Adds the encoding of a method parameter or return type.
2199  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2200                                         QualType T, std::string& S,
2201                                         bool Extended) const;
2202
2203  const ASTRecordLayout &
2204  getObjCLayout(const ObjCInterfaceDecl *D,
2205                const ObjCImplementationDecl *Impl) const;
2206
2207private:
2208  /// \brief A set of deallocations that should be performed when the
2209  /// ASTContext is destroyed.
2210  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2211    DeallocationMap;
2212  DeallocationMap Deallocations;
2213
2214  // FIXME: This currently contains the set of StoredDeclMaps used
2215  // by DeclContext objects.  This probably should not be in ASTContext,
2216  // but we include it here so that ASTContext can quickly deallocate them.
2217  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2218
2219  friend class DeclContext;
2220  friend class DeclarationNameTable;
2221  void ReleaseDeclContextMaps();
2222
2223  llvm::OwningPtr<ParentMap> AllParents;
2224};
2225
2226/// \brief Utility function for constructing a nullary selector.
2227static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2228  IdentifierInfo* II = &Ctx.Idents.get(name);
2229  return Ctx.Selectors.getSelector(0, &II);
2230}
2231
2232/// \brief Utility function for constructing an unary selector.
2233static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2234  IdentifierInfo* II = &Ctx.Idents.get(name);
2235  return Ctx.Selectors.getSelector(1, &II);
2236}
2237
2238}  // end namespace clang
2239
2240// operator new and delete aren't allowed inside namespaces.
2241
2242/// @brief Placement new for using the ASTContext's allocator.
2243///
2244/// This placement form of operator new uses the ASTContext's allocator for
2245/// obtaining memory.
2246///
2247/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2248/// here need to also be made there.
2249///
2250/// We intentionally avoid using a nothrow specification here so that the calls
2251/// to this operator will not perform a null check on the result -- the
2252/// underlying allocator never returns null pointers.
2253///
2254/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2255/// @code
2256/// // Default alignment (8)
2257/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2258/// // Specific alignment
2259/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2260/// @endcode
2261/// Please note that you cannot use delete on the pointer; it must be
2262/// deallocated using an explicit destructor call followed by
2263/// @c Context.Deallocate(Ptr).
2264///
2265/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2266/// @param C The ASTContext that provides the allocator.
2267/// @param Alignment The alignment of the allocated memory (if the underlying
2268///                  allocator supports it).
2269/// @return The allocated memory. Could be NULL.
2270inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2271                          size_t Alignment) {
2272  return C.Allocate(Bytes, Alignment);
2273}
2274/// @brief Placement delete companion to the new above.
2275///
2276/// This operator is just a companion to the new above. There is no way of
2277/// invoking it directly; see the new operator for more details. This operator
2278/// is called implicitly by the compiler if a placement new expression using
2279/// the ASTContext throws in the object constructor.
2280inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2281  C.Deallocate(Ptr);
2282}
2283
2284/// This placement form of operator new[] uses the ASTContext's allocator for
2285/// obtaining memory.
2286///
2287/// We intentionally avoid using a nothrow specification here so that the calls
2288/// to this operator will not perform a null check on the result -- the
2289/// underlying allocator never returns null pointers.
2290///
2291/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2292/// @code
2293/// // Default alignment (8)
2294/// char *data = new (Context) char[10];
2295/// // Specific alignment
2296/// char *data = new (Context, 4) char[10];
2297/// @endcode
2298/// Please note that you cannot use delete on the pointer; it must be
2299/// deallocated using an explicit destructor call followed by
2300/// @c Context.Deallocate(Ptr).
2301///
2302/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2303/// @param C The ASTContext that provides the allocator.
2304/// @param Alignment The alignment of the allocated memory (if the underlying
2305///                  allocator supports it).
2306/// @return The allocated memory. Could be NULL.
2307inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2308                            size_t Alignment = 8) {
2309  return C.Allocate(Bytes, Alignment);
2310}
2311
2312/// @brief Placement delete[] companion to the new[] above.
2313///
2314/// This operator is just a companion to the new[] above. There is no way of
2315/// invoking it directly; see the new[] operator for more details. This operator
2316/// is called implicitly by the compiler if a placement new[] expression using
2317/// the ASTContext throws in the object constructor.
2318inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2319  C.Deallocate(Ptr);
2320}
2321
2322#endif
2323