ASTContext.h revision 811c820257746b1799b790b6adc7804f44154011
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/AddressSpaces.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/LangOptions.h"
20#include "clang/Basic/OperatorKinds.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/VersionTuple.h"
23#include "clang/AST/Comment.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/LambdaMangleContext.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/TemplateName.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/CanonicalType.h"
31#include "clang/AST/RawCommentList.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/FoldingSet.h"
34#include "llvm/ADT/IntrusiveRefCntPtr.h"
35#include "llvm/ADT/OwningPtr.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/TinyPtrVector.h"
38#include "llvm/Support/Allocator.h"
39#include <vector>
40
41namespace llvm {
42  struct fltSemantics;
43}
44
45namespace clang {
46  class FileManager;
47  class ASTRecordLayout;
48  class BlockExpr;
49  class CharUnits;
50  class DiagnosticsEngine;
51  class Expr;
52  class ExternalASTSource;
53  class ASTMutationListener;
54  class IdentifierTable;
55  class SelectorTable;
56  class TargetInfo;
57  class CXXABI;
58  // Decls
59  class DeclContext;
60  class CXXConversionDecl;
61  class CXXMethodDecl;
62  class CXXRecordDecl;
63  class Decl;
64  class FieldDecl;
65  class MangleContext;
66  class ObjCIvarDecl;
67  class ObjCIvarRefExpr;
68  class ObjCPropertyDecl;
69  class ParmVarDecl;
70  class RecordDecl;
71  class StoredDeclsMap;
72  class TagDecl;
73  class TemplateTemplateParmDecl;
74  class TemplateTypeParmDecl;
75  class TranslationUnitDecl;
76  class TypeDecl;
77  class TypedefNameDecl;
78  class UsingDecl;
79  class UsingShadowDecl;
80  class UnresolvedSetIterator;
81
82  namespace Builtin { class Context; }
83
84/// ASTContext - This class holds long-lived AST nodes (such as types and
85/// decls) that can be referred to throughout the semantic analysis of a file.
86class ASTContext : public RefCountedBase<ASTContext> {
87  ASTContext &this_() { return *this; }
88
89  mutable std::vector<Type*> Types;
90  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
91  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
92  mutable llvm::FoldingSet<PointerType> PointerTypes;
93  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
94  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
95  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
96  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
97  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
98  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
99  mutable std::vector<VariableArrayType*> VariableArrayTypes;
100  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
101  mutable llvm::FoldingSet<DependentSizedExtVectorType>
102    DependentSizedExtVectorTypes;
103  mutable llvm::FoldingSet<VectorType> VectorTypes;
104  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
105  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
106    FunctionProtoTypes;
107  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
108  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
109  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
110  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
111    SubstTemplateTypeParmTypes;
112  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
113    SubstTemplateTypeParmPackTypes;
114  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
115    TemplateSpecializationTypes;
116  mutable llvm::FoldingSet<ParenType> ParenTypes;
117  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
118  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
119  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
120                                     ASTContext&>
121    DependentTemplateSpecializationTypes;
122  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
123  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
124  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
125  mutable llvm::FoldingSet<AutoType> AutoTypes;
126  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
127  llvm::FoldingSet<AttributedType> AttributedTypes;
128
129  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
130  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
131  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
132    SubstTemplateTemplateParms;
133  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
134                                     ASTContext&>
135    SubstTemplateTemplateParmPacks;
136
137  /// \brief The set of nested name specifiers.
138  ///
139  /// This set is managed by the NestedNameSpecifier class.
140  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
141  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
142  friend class NestedNameSpecifier;
143
144  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
145  ///  This is lazily created.  This is intentionally not serialized.
146  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
147    ASTRecordLayouts;
148  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
149    ObjCLayouts;
150
151  /// TypeInfoMap - A cache from types to size and alignment information.
152  typedef llvm::DenseMap<const Type*,
153                         std::pair<uint64_t, unsigned> > TypeInfoMap;
154  mutable TypeInfoMap MemoizedTypeInfo;
155
156  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
157  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
158
159  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
160  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
161
162  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
163  /// interface.
164  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
165
166  /// \brief Mapping from __block VarDecls to their copy initialization expr.
167  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
168
169  /// \brief Mapping from class scope functions specialization to their
170  ///  template patterns.
171  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
172    ClassScopeSpecializationPattern;
173
174  /// \brief Representation of a "canonical" template template parameter that
175  /// is used in canonical template names.
176  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
177    TemplateTemplateParmDecl *Parm;
178
179  public:
180    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
181      : Parm(Parm) { }
182
183    TemplateTemplateParmDecl *getParam() const { return Parm; }
184
185    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
186
187    static void Profile(llvm::FoldingSetNodeID &ID,
188                        TemplateTemplateParmDecl *Parm);
189  };
190  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
191    CanonTemplateTemplateParms;
192
193  TemplateTemplateParmDecl *
194    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
195
196  /// \brief The typedef for the __int128_t type.
197  mutable TypedefDecl *Int128Decl;
198
199  /// \brief The typedef for the __uint128_t type.
200  mutable TypedefDecl *UInt128Decl;
201
202  /// \brief The typedef for the target specific predefined
203  /// __builtin_va_list type.
204  mutable TypedefDecl *BuiltinVaListDecl;
205
206  /// \brief The typedef for the predefined 'id' type.
207  mutable TypedefDecl *ObjCIdDecl;
208
209  /// \brief The typedef for the predefined 'SEL' type.
210  mutable TypedefDecl *ObjCSelDecl;
211
212  /// \brief The typedef for the predefined 'Class' type.
213  mutable TypedefDecl *ObjCClassDecl;
214
215  /// \brief The typedef for the predefined 'Protocol' class in Objective-C.
216  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
217
218  // Typedefs which may be provided defining the structure of Objective-C
219  // pseudo-builtins
220  QualType ObjCIdRedefinitionType;
221  QualType ObjCClassRedefinitionType;
222  QualType ObjCSelRedefinitionType;
223
224  QualType ObjCConstantStringType;
225  mutable RecordDecl *CFConstantStringTypeDecl;
226
227  QualType ObjCNSStringType;
228
229  /// \brief The typedef declaration for the Objective-C "instancetype" type.
230  TypedefDecl *ObjCInstanceTypeDecl;
231
232  /// \brief The type for the C FILE type.
233  TypeDecl *FILEDecl;
234
235  /// \brief The type for the C jmp_buf type.
236  TypeDecl *jmp_bufDecl;
237
238  /// \brief The type for the C sigjmp_buf type.
239  TypeDecl *sigjmp_bufDecl;
240
241  /// \brief The type for the C ucontext_t type.
242  TypeDecl *ucontext_tDecl;
243
244  /// \brief Type for the Block descriptor for Blocks CodeGen.
245  ///
246  /// Since this is only used for generation of debug info, it is not
247  /// serialized.
248  mutable RecordDecl *BlockDescriptorType;
249
250  /// \brief Type for the Block descriptor for Blocks CodeGen.
251  ///
252  /// Since this is only used for generation of debug info, it is not
253  /// serialized.
254  mutable RecordDecl *BlockDescriptorExtendedType;
255
256  /// \brief Declaration for the CUDA cudaConfigureCall function.
257  FunctionDecl *cudaConfigureCallDecl;
258
259  TypeSourceInfo NullTypeSourceInfo;
260
261  /// \brief Keeps track of all declaration attributes.
262  ///
263  /// Since so few decls have attrs, we keep them in a hash map instead of
264  /// wasting space in the Decl class.
265  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
266
267  /// \brief Keeps track of the static data member templates from which
268  /// static data members of class template specializations were instantiated.
269  ///
270  /// This data structure stores the mapping from instantiations of static
271  /// data members to the static data member representations within the
272  /// class template from which they were instantiated along with the kind
273  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
274  ///
275  /// Given the following example:
276  ///
277  /// \code
278  /// template<typename T>
279  /// struct X {
280  ///   static T value;
281  /// };
282  ///
283  /// template<typename T>
284  ///   T X<T>::value = T(17);
285  ///
286  /// int *x = &X<int>::value;
287  /// \endcode
288  ///
289  /// This mapping will contain an entry that maps from the VarDecl for
290  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
291  /// class template X) and will be marked TSK_ImplicitInstantiation.
292  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
293    InstantiatedFromStaticDataMember;
294
295  /// \brief Keeps track of the declaration from which a UsingDecl was
296  /// created during instantiation.  The source declaration is always
297  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
298  /// UnresolvedUsingTypenameDecl.
299  ///
300  /// For example:
301  /// \code
302  /// template<typename T>
303  /// struct A {
304  ///   void f();
305  /// };
306  ///
307  /// template<typename T>
308  /// struct B : A<T> {
309  ///   using A<T>::f;
310  /// };
311  ///
312  /// template struct B<int>;
313  /// \endcode
314  ///
315  /// This mapping will contain an entry that maps from the UsingDecl in
316  /// B<int> to the UnresolvedUsingDecl in B<T>.
317  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
318
319  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
320    InstantiatedFromUsingShadowDecl;
321
322  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
323
324  /// \brief Mapping that stores the methods overridden by a given C++
325  /// member function.
326  ///
327  /// Since most C++ member functions aren't virtual and therefore
328  /// don't override anything, we store the overridden functions in
329  /// this map on the side rather than within the CXXMethodDecl structure.
330  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
331  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
332
333  /// \brief Mapping from each declaration context to its corresponding lambda
334  /// mangling context.
335  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
336
337  /// \brief Mapping that stores parameterIndex values for ParmVarDecls
338  /// when that value exceeds the bitfield size of
339  /// ParmVarDeclBits.ParameterIndex.
340  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
341  ParameterIndexTable ParamIndices;
342
343  ImportDecl *FirstLocalImport;
344  ImportDecl *LastLocalImport;
345
346  TranslationUnitDecl *TUDecl;
347
348  /// SourceMgr - The associated SourceManager object.
349  SourceManager &SourceMgr;
350
351  /// LangOpts - The language options used to create the AST associated with
352  ///  this ASTContext object.
353  LangOptions &LangOpts;
354
355  /// \brief The allocator used to create AST objects.
356  ///
357  /// AST objects are never destructed; rather, all memory associated with the
358  /// AST objects will be released when the ASTContext itself is destroyed.
359  mutable llvm::BumpPtrAllocator BumpAlloc;
360
361  /// \brief Allocator for partial diagnostics.
362  PartialDiagnostic::StorageAllocator DiagAllocator;
363
364  /// \brief The current C++ ABI.
365  OwningPtr<CXXABI> ABI;
366  CXXABI *createCXXABI(const TargetInfo &T);
367
368  /// \brief The logical -> physical address space map.
369  const LangAS::Map *AddrSpaceMap;
370
371  friend class ASTDeclReader;
372  friend class ASTReader;
373  friend class ASTWriter;
374  friend class CXXRecordDecl;
375
376  const TargetInfo *Target;
377  clang::PrintingPolicy PrintingPolicy;
378
379public:
380  IdentifierTable &Idents;
381  SelectorTable &Selectors;
382  Builtin::Context &BuiltinInfo;
383  mutable DeclarationNameTable DeclarationNames;
384  OwningPtr<ExternalASTSource> ExternalSource;
385  ASTMutationListener *Listener;
386
387  clang::PrintingPolicy getPrintingPolicy() const { return PrintingPolicy; }
388
389  void setPrintingPolicy(clang::PrintingPolicy Policy) {
390    PrintingPolicy = Policy;
391  }
392
393  SourceManager& getSourceManager() { return SourceMgr; }
394  const SourceManager& getSourceManager() const { return SourceMgr; }
395  void *Allocate(unsigned Size, unsigned Align = 8) const {
396    return BumpAlloc.Allocate(Size, Align);
397  }
398  void Deallocate(void *Ptr) const { }
399
400  /// Return the total amount of physical memory allocated for representing
401  /// AST nodes and type information.
402  size_t getASTAllocatedMemory() const {
403    return BumpAlloc.getTotalMemory();
404  }
405  /// Return the total memory used for various side tables.
406  size_t getSideTableAllocatedMemory() const;
407
408  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
409    return DiagAllocator;
410  }
411
412  const TargetInfo &getTargetInfo() const { return *Target; }
413
414  const LangOptions& getLangOpts() const { return LangOpts; }
415
416  DiagnosticsEngine &getDiagnostics() const;
417
418  FullSourceLoc getFullLoc(SourceLocation Loc) const {
419    return FullSourceLoc(Loc,SourceMgr);
420  }
421
422  /// \brief All comments in this translation unit.
423  RawCommentList Comments;
424
425  /// \brief True if comments are already loaded from ExternalASTSource.
426  mutable bool CommentsLoaded;
427
428  typedef std::pair<const RawComment *, comments::FullComment *>
429      RawAndParsedComment;
430
431  /// \brief Mapping from declarations to their comments.
432  ///
433  /// Raw comments are owned by Comments list.  This mapping is populated
434  /// lazily.
435  mutable llvm::DenseMap<const Decl *, RawAndParsedComment> DeclComments;
436
437  /// \brief Return the documentation comment attached to a given declaration,
438  /// without looking into cache.
439  const RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
440
441public:
442  void addComment(const RawComment &RC) {
443    Comments.addComment(RC, BumpAlloc);
444  }
445
446  /// \brief Return the documentation comment attached to a given declaration.
447  /// Returns NULL if no comment is attached.
448  const RawComment *getRawCommentForDecl(const Decl *D) const;
449
450  /// Return parsed documentation comment attached to a given declaration.
451  /// Returns NULL if no comment is attached.
452  comments::FullComment *getCommentForDecl(const Decl *D) const;
453
454  /// \brief Retrieve the attributes for the given declaration.
455  AttrVec& getDeclAttrs(const Decl *D);
456
457  /// \brief Erase the attributes corresponding to the given declaration.
458  void eraseDeclAttrs(const Decl *D);
459
460  /// \brief If this variable is an instantiated static data member of a
461  /// class template specialization, returns the templated static data member
462  /// from which it was instantiated.
463  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
464                                                           const VarDecl *Var);
465
466  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
467
468  void setClassScopeSpecializationPattern(FunctionDecl *FD,
469                                          FunctionDecl *Pattern);
470
471  /// \brief Note that the static data member \p Inst is an instantiation of
472  /// the static data member template \p Tmpl of a class template.
473  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
474                                           TemplateSpecializationKind TSK,
475                        SourceLocation PointOfInstantiation = SourceLocation());
476
477  /// \brief If the given using decl is an instantiation of a
478  /// (possibly unresolved) using decl from a template instantiation,
479  /// return it.
480  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
481
482  /// \brief Remember that the using decl \p Inst is an instantiation
483  /// of the using decl \p Pattern of a class template.
484  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
485
486  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
487                                          UsingShadowDecl *Pattern);
488  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
489
490  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
491
492  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
493
494  /// ZeroBitfieldFollowsNonBitfield - return 'true" if 'FD' is a zero-length
495  /// bitfield which follows the non-bitfield 'LastFD'.
496  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
497                                      const FieldDecl *LastFD) const;
498
499  /// ZeroBitfieldFollowsBitfield - return 'true" if 'FD' is a zero-length
500  /// bitfield which follows the bitfield 'LastFD'.
501  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
502                                   const FieldDecl *LastFD) const;
503
504  /// BitfieldFollowsBitfield - return 'true" if 'FD' is a
505  /// bitfield which follows the bitfield 'LastFD'.
506  bool BitfieldFollowsBitfield(const FieldDecl *FD,
507                               const FieldDecl *LastFD) const;
508
509  /// NonBitfieldFollowsBitfield - return 'true" if 'FD' is not a
510  /// bitfield which follows the bitfield 'LastFD'.
511  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
512                                  const FieldDecl *LastFD) const;
513
514  /// BitfieldFollowsNonBitfield - return 'true" if 'FD' is a
515  /// bitfield which follows the none bitfield 'LastFD'.
516  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
517                                  const FieldDecl *LastFD) const;
518
519  // Access to the set of methods overridden by the given C++ method.
520  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
521  overridden_cxx_method_iterator
522  overridden_methods_begin(const CXXMethodDecl *Method) const;
523
524  overridden_cxx_method_iterator
525  overridden_methods_end(const CXXMethodDecl *Method) const;
526
527  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
528
529  /// \brief Note that the given C++ \p Method overrides the given \p
530  /// Overridden method.
531  void addOverriddenMethod(const CXXMethodDecl *Method,
532                           const CXXMethodDecl *Overridden);
533
534  /// \brief Notify the AST context that a new import declaration has been
535  /// parsed or implicitly created within this translation unit.
536  void addedLocalImportDecl(ImportDecl *Import);
537
538  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
539    return Import->NextLocalImport;
540  }
541
542  /// \brief Iterator that visits import declarations.
543  class import_iterator {
544    ImportDecl *Import;
545
546  public:
547    typedef ImportDecl               *value_type;
548    typedef ImportDecl               *reference;
549    typedef ImportDecl               *pointer;
550    typedef int                       difference_type;
551    typedef std::forward_iterator_tag iterator_category;
552
553    import_iterator() : Import() { }
554    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
555
556    reference operator*() const { return Import; }
557    pointer operator->() const { return Import; }
558
559    import_iterator &operator++() {
560      Import = ASTContext::getNextLocalImport(Import);
561      return *this;
562    }
563
564    import_iterator operator++(int) {
565      import_iterator Other(*this);
566      ++(*this);
567      return Other;
568    }
569
570    friend bool operator==(import_iterator X, import_iterator Y) {
571      return X.Import == Y.Import;
572    }
573
574    friend bool operator!=(import_iterator X, import_iterator Y) {
575      return X.Import != Y.Import;
576    }
577  };
578
579  import_iterator local_import_begin() const {
580    return import_iterator(FirstLocalImport);
581  }
582  import_iterator local_import_end() const { return import_iterator(); }
583
584  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
585
586
587  // Builtin Types.
588  CanQualType VoidTy;
589  CanQualType BoolTy;
590  CanQualType CharTy;
591  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
592  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
593  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
594  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
595  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
596  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
597  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
598  CanQualType FloatTy, DoubleTy, LongDoubleTy;
599  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
600  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
601  CanQualType VoidPtrTy, NullPtrTy;
602  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
603  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
604  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
605  CanQualType ObjCBuiltinBoolTy;
606
607  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
608  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
609  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
610
611  // Type used to help define __builtin_va_list for some targets.
612  // The type is built when constructing 'BuiltinVaListDecl'.
613  mutable QualType VaListTagTy;
614
615  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
616             IdentifierTable &idents, SelectorTable &sels,
617             Builtin::Context &builtins,
618             unsigned size_reserve,
619             bool DelayInitialization = false);
620
621  ~ASTContext();
622
623  /// \brief Attach an external AST source to the AST context.
624  ///
625  /// The external AST source provides the ability to load parts of
626  /// the abstract syntax tree as needed from some external storage,
627  /// e.g., a precompiled header.
628  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
629
630  /// \brief Retrieve a pointer to the external AST source associated
631  /// with this AST context, if any.
632  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
633
634  /// \brief Attach an AST mutation listener to the AST context.
635  ///
636  /// The AST mutation listener provides the ability to track modifications to
637  /// the abstract syntax tree entities committed after they were initially
638  /// created.
639  void setASTMutationListener(ASTMutationListener *Listener) {
640    this->Listener = Listener;
641  }
642
643  /// \brief Retrieve a pointer to the AST mutation listener associated
644  /// with this AST context, if any.
645  ASTMutationListener *getASTMutationListener() const { return Listener; }
646
647  void PrintStats() const;
648  const std::vector<Type*>& getTypes() const { return Types; }
649
650  /// \brief Retrieve the declaration for the 128-bit signed integer type.
651  TypedefDecl *getInt128Decl() const;
652
653  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
654  TypedefDecl *getUInt128Decl() const;
655
656  //===--------------------------------------------------------------------===//
657  //                           Type Constructors
658  //===--------------------------------------------------------------------===//
659
660private:
661  /// getExtQualType - Return a type with extended qualifiers.
662  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
663
664  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
665
666public:
667  /// getAddSpaceQualType - Return the uniqued reference to the type for an
668  /// address space qualified type with the specified type and address space.
669  /// The resulting type has a union of the qualifiers from T and the address
670  /// space. If T already has an address space specifier, it is silently
671  /// replaced.
672  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
673
674  /// getObjCGCQualType - Returns the uniqued reference to the type for an
675  /// objc gc qualified type. The retulting type has a union of the qualifiers
676  /// from T and the gc attribute.
677  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
678
679  /// getRestrictType - Returns the uniqued reference to the type for a
680  /// 'restrict' qualified type.  The resulting type has a union of the
681  /// qualifiers from T and 'restrict'.
682  QualType getRestrictType(QualType T) const {
683    return T.withFastQualifiers(Qualifiers::Restrict);
684  }
685
686  /// getVolatileType - Returns the uniqued reference to the type for a
687  /// 'volatile' qualified type.  The resulting type has a union of the
688  /// qualifiers from T and 'volatile'.
689  QualType getVolatileType(QualType T) const {
690    return T.withFastQualifiers(Qualifiers::Volatile);
691  }
692
693  /// getConstType - Returns the uniqued reference to the type for a
694  /// 'const' qualified type.  The resulting type has a union of the
695  /// qualifiers from T and 'const'.
696  ///
697  /// It can be reasonably expected that this will always be
698  /// equivalent to calling T.withConst().
699  QualType getConstType(QualType T) const { return T.withConst(); }
700
701  /// adjustFunctionType - Change the ExtInfo on a function type.
702  const FunctionType *adjustFunctionType(const FunctionType *Fn,
703                                         FunctionType::ExtInfo EInfo);
704
705  /// getComplexType - Return the uniqued reference to the type for a complex
706  /// number with the specified element type.
707  QualType getComplexType(QualType T) const;
708  CanQualType getComplexType(CanQualType T) const {
709    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
710  }
711
712  /// getPointerType - Return the uniqued reference to the type for a pointer to
713  /// the specified type.
714  QualType getPointerType(QualType T) const;
715  CanQualType getPointerType(CanQualType T) const {
716    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
717  }
718
719  /// getAtomicType - Return the uniqued reference to the atomic type for
720  /// the specified type.
721  QualType getAtomicType(QualType T) const;
722
723  /// getBlockPointerType - Return the uniqued reference to the type for a block
724  /// of the specified type.
725  QualType getBlockPointerType(QualType T) const;
726
727  /// This gets the struct used to keep track of the descriptor for pointer to
728  /// blocks.
729  QualType getBlockDescriptorType() const;
730
731  /// This gets the struct used to keep track of the extended descriptor for
732  /// pointer to blocks.
733  QualType getBlockDescriptorExtendedType() const;
734
735  void setcudaConfigureCallDecl(FunctionDecl *FD) {
736    cudaConfigureCallDecl = FD;
737  }
738  FunctionDecl *getcudaConfigureCallDecl() {
739    return cudaConfigureCallDecl;
740  }
741
742  /// This builds the struct used for __block variables.
743  QualType BuildByRefType(StringRef DeclName, QualType Ty) const;
744
745  /// Returns true iff we need copy/dispose helpers for the given type.
746  bool BlockRequiresCopying(QualType Ty) const;
747
748  /// getLValueReferenceType - Return the uniqued reference to the type for an
749  /// lvalue reference to the specified type.
750  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
751    const;
752
753  /// getRValueReferenceType - Return the uniqued reference to the type for an
754  /// rvalue reference to the specified type.
755  QualType getRValueReferenceType(QualType T) const;
756
757  /// getMemberPointerType - Return the uniqued reference to the type for a
758  /// member pointer to the specified type in the specified class. The class
759  /// is a Type because it could be a dependent name.
760  QualType getMemberPointerType(QualType T, const Type *Cls) const;
761
762  /// getVariableArrayType - Returns a non-unique reference to the type for a
763  /// variable array of the specified element type.
764  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
765                                ArrayType::ArraySizeModifier ASM,
766                                unsigned IndexTypeQuals,
767                                SourceRange Brackets) const;
768
769  /// getDependentSizedArrayType - Returns a non-unique reference to
770  /// the type for a dependently-sized array of the specified element
771  /// type. FIXME: We will need these to be uniqued, or at least
772  /// comparable, at some point.
773  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
774                                      ArrayType::ArraySizeModifier ASM,
775                                      unsigned IndexTypeQuals,
776                                      SourceRange Brackets) const;
777
778  /// getIncompleteArrayType - Returns a unique reference to the type for a
779  /// incomplete array of the specified element type.
780  QualType getIncompleteArrayType(QualType EltTy,
781                                  ArrayType::ArraySizeModifier ASM,
782                                  unsigned IndexTypeQuals) const;
783
784  /// getConstantArrayType - Return the unique reference to the type for a
785  /// constant array of the specified element type.
786  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
787                                ArrayType::ArraySizeModifier ASM,
788                                unsigned IndexTypeQuals) const;
789
790  /// getVariableArrayDecayedType - Returns a vla type where known sizes
791  /// are replaced with [*].
792  QualType getVariableArrayDecayedType(QualType Ty) const;
793
794  /// getVectorType - Return the unique reference to a vector type of
795  /// the specified element type and size. VectorType must be a built-in type.
796  QualType getVectorType(QualType VectorType, unsigned NumElts,
797                         VectorType::VectorKind VecKind) const;
798
799  /// getExtVectorType - Return the unique reference to an extended vector type
800  /// of the specified element type and size.  VectorType must be a built-in
801  /// type.
802  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
803
804  /// getDependentSizedExtVectorType - Returns a non-unique reference to
805  /// the type for a dependently-sized vector of the specified element
806  /// type. FIXME: We will need these to be uniqued, or at least
807  /// comparable, at some point.
808  QualType getDependentSizedExtVectorType(QualType VectorType,
809                                          Expr *SizeExpr,
810                                          SourceLocation AttrLoc) const;
811
812  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
813  ///
814  QualType getFunctionNoProtoType(QualType ResultTy,
815                                  const FunctionType::ExtInfo &Info) const;
816
817  QualType getFunctionNoProtoType(QualType ResultTy) const {
818    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
819  }
820
821  /// getFunctionType - Return a normal function type with a typed
822  /// argument list.
823  QualType getFunctionType(QualType ResultTy,
824                           const QualType *Args, unsigned NumArgs,
825                           const FunctionProtoType::ExtProtoInfo &EPI) const;
826
827  /// getTypeDeclType - Return the unique reference to the type for
828  /// the specified type declaration.
829  QualType getTypeDeclType(const TypeDecl *Decl,
830                           const TypeDecl *PrevDecl = 0) const {
831    assert(Decl && "Passed null for Decl param");
832    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
833
834    if (PrevDecl) {
835      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
836      Decl->TypeForDecl = PrevDecl->TypeForDecl;
837      return QualType(PrevDecl->TypeForDecl, 0);
838    }
839
840    return getTypeDeclTypeSlow(Decl);
841  }
842
843  /// getTypedefType - Return the unique reference to the type for the
844  /// specified typedef-name decl.
845  QualType getTypedefType(const TypedefNameDecl *Decl,
846                          QualType Canon = QualType()) const;
847
848  QualType getRecordType(const RecordDecl *Decl) const;
849
850  QualType getEnumType(const EnumDecl *Decl) const;
851
852  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
853
854  QualType getAttributedType(AttributedType::Kind attrKind,
855                             QualType modifiedType,
856                             QualType equivalentType);
857
858  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
859                                        QualType Replacement) const;
860  QualType getSubstTemplateTypeParmPackType(
861                                          const TemplateTypeParmType *Replaced,
862                                            const TemplateArgument &ArgPack);
863
864  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
865                                   bool ParameterPack,
866                                   TemplateTypeParmDecl *ParmDecl = 0) const;
867
868  QualType getTemplateSpecializationType(TemplateName T,
869                                         const TemplateArgument *Args,
870                                         unsigned NumArgs,
871                                         QualType Canon = QualType()) const;
872
873  QualType getCanonicalTemplateSpecializationType(TemplateName T,
874                                                  const TemplateArgument *Args,
875                                                  unsigned NumArgs) const;
876
877  QualType getTemplateSpecializationType(TemplateName T,
878                                         const TemplateArgumentListInfo &Args,
879                                         QualType Canon = QualType()) const;
880
881  TypeSourceInfo *
882  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
883                                    const TemplateArgumentListInfo &Args,
884                                    QualType Canon = QualType()) const;
885
886  QualType getParenType(QualType NamedType) const;
887
888  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
889                             NestedNameSpecifier *NNS,
890                             QualType NamedType) const;
891  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
892                                NestedNameSpecifier *NNS,
893                                const IdentifierInfo *Name,
894                                QualType Canon = QualType()) const;
895
896  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
897                                                  NestedNameSpecifier *NNS,
898                                                  const IdentifierInfo *Name,
899                                    const TemplateArgumentListInfo &Args) const;
900  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
901                                                  NestedNameSpecifier *NNS,
902                                                  const IdentifierInfo *Name,
903                                                  unsigned NumArgs,
904                                            const TemplateArgument *Args) const;
905
906  QualType getPackExpansionType(QualType Pattern,
907                                llvm::Optional<unsigned> NumExpansions);
908
909  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
910                                ObjCInterfaceDecl *PrevDecl = 0) const;
911
912  QualType getObjCObjectType(QualType Base,
913                             ObjCProtocolDecl * const *Protocols,
914                             unsigned NumProtocols) const;
915
916  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
917  /// for the given ObjCObjectType.
918  QualType getObjCObjectPointerType(QualType OIT) const;
919
920  /// getTypeOfType - GCC extension.
921  QualType getTypeOfExprType(Expr *e) const;
922  QualType getTypeOfType(QualType t) const;
923
924  /// getDecltypeType - C++0x decltype.
925  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
926
927  /// getUnaryTransformType - unary type transforms
928  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
929                                 UnaryTransformType::UTTKind UKind) const;
930
931  /// getAutoType - C++0x deduced auto type.
932  QualType getAutoType(QualType DeducedType) const;
933
934  /// getAutoDeductType - C++0x deduction pattern for 'auto' type.
935  QualType getAutoDeductType() const;
936
937  /// getAutoRRefDeductType - C++0x deduction pattern for 'auto &&' type.
938  QualType getAutoRRefDeductType() const;
939
940  /// getTagDeclType - Return the unique reference to the type for the
941  /// specified TagDecl (struct/union/class/enum) decl.
942  QualType getTagDeclType(const TagDecl *Decl) const;
943
944  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
945  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
946  CanQualType getSizeType() const;
947
948  /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5),
949  /// defined in <stdint.h>.
950  CanQualType getIntMaxType() const;
951
952  /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5),
953  /// defined in <stdint.h>.
954  CanQualType getUIntMaxType() const;
955
956  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
957  /// returns a type compatible with the type defined in <stddef.h> as defined
958  /// by the target.
959  QualType getWCharType() const { return WCharTy; }
960
961  /// getSignedWCharType - Return the type of "signed wchar_t".
962  /// Used when in C++, as a GCC extension.
963  QualType getSignedWCharType() const;
964
965  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
966  /// Used when in C++, as a GCC extension.
967  QualType getUnsignedWCharType() const;
968
969  /// getWIntType - In C99, this returns a type compatible with the type
970  /// defined in <stddef.h> as defined by the target.
971  QualType getWIntType() const { return WIntTy; }
972
973  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
974  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
975  QualType getPointerDiffType() const;
976
977  // getCFConstantStringType - Return the C structure type used to represent
978  // constant CFStrings.
979  QualType getCFConstantStringType() const;
980
981  /// Get the structure type used to representation CFStrings, or NULL
982  /// if it hasn't yet been built.
983  QualType getRawCFConstantStringType() const {
984    if (CFConstantStringTypeDecl)
985      return getTagDeclType(CFConstantStringTypeDecl);
986    return QualType();
987  }
988  void setCFConstantStringType(QualType T);
989
990  // This setter/getter represents the ObjC type for an NSConstantString.
991  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
992  QualType getObjCConstantStringInterface() const {
993    return ObjCConstantStringType;
994  }
995
996  QualType getObjCNSStringType() const {
997    return ObjCNSStringType;
998  }
999
1000  void setObjCNSStringType(QualType T) {
1001    ObjCNSStringType = T;
1002  }
1003
1004  /// \brief Retrieve the type that 'id' has been defined to, which may be
1005  /// different from the built-in 'id' if 'id' has been typedef'd.
1006  QualType getObjCIdRedefinitionType() const {
1007    if (ObjCIdRedefinitionType.isNull())
1008      return getObjCIdType();
1009    return ObjCIdRedefinitionType;
1010  }
1011
1012  /// \brief Set the user-written type that redefines 'id'.
1013  void setObjCIdRedefinitionType(QualType RedefType) {
1014    ObjCIdRedefinitionType = RedefType;
1015  }
1016
1017  /// \brief Retrieve the type that 'Class' has been defined to, which may be
1018  /// different from the built-in 'Class' if 'Class' has been typedef'd.
1019  QualType getObjCClassRedefinitionType() const {
1020    if (ObjCClassRedefinitionType.isNull())
1021      return getObjCClassType();
1022    return ObjCClassRedefinitionType;
1023  }
1024
1025  /// \brief Set the user-written type that redefines 'SEL'.
1026  void setObjCClassRedefinitionType(QualType RedefType) {
1027    ObjCClassRedefinitionType = RedefType;
1028  }
1029
1030  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1031  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1032  QualType getObjCSelRedefinitionType() const {
1033    if (ObjCSelRedefinitionType.isNull())
1034      return getObjCSelType();
1035    return ObjCSelRedefinitionType;
1036  }
1037
1038
1039  /// \brief Set the user-written type that redefines 'SEL'.
1040  void setObjCSelRedefinitionType(QualType RedefType) {
1041    ObjCSelRedefinitionType = RedefType;
1042  }
1043
1044  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1045  /// otherwise, returns a NULL type;
1046  QualType getObjCInstanceType() {
1047    return getTypeDeclType(getObjCInstanceTypeDecl());
1048  }
1049
1050  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1051  /// "instancetype" type.
1052  TypedefDecl *getObjCInstanceTypeDecl();
1053
1054  /// \brief Set the type for the C FILE type.
1055  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1056
1057  /// \brief Retrieve the C FILE type.
1058  QualType getFILEType() const {
1059    if (FILEDecl)
1060      return getTypeDeclType(FILEDecl);
1061    return QualType();
1062  }
1063
1064  /// \brief Set the type for the C jmp_buf type.
1065  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1066    this->jmp_bufDecl = jmp_bufDecl;
1067  }
1068
1069  /// \brief Retrieve the C jmp_buf type.
1070  QualType getjmp_bufType() const {
1071    if (jmp_bufDecl)
1072      return getTypeDeclType(jmp_bufDecl);
1073    return QualType();
1074  }
1075
1076  /// \brief Set the type for the C sigjmp_buf type.
1077  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1078    this->sigjmp_bufDecl = sigjmp_bufDecl;
1079  }
1080
1081  /// \brief Retrieve the C sigjmp_buf type.
1082  QualType getsigjmp_bufType() const {
1083    if (sigjmp_bufDecl)
1084      return getTypeDeclType(sigjmp_bufDecl);
1085    return QualType();
1086  }
1087
1088  /// \brief Set the type for the C ucontext_t type.
1089  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1090    this->ucontext_tDecl = ucontext_tDecl;
1091  }
1092
1093  /// \brief Retrieve the C ucontext_t type.
1094  QualType getucontext_tType() const {
1095    if (ucontext_tDecl)
1096      return getTypeDeclType(ucontext_tDecl);
1097    return QualType();
1098  }
1099
1100  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1101  QualType getLogicalOperationType() const {
1102    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1103  }
1104
1105  /// getObjCEncodingForType - Emit the ObjC type encoding for the
1106  /// given type into \arg S. If \arg NameFields is specified then
1107  /// record field names are also encoded.
1108  void getObjCEncodingForType(QualType t, std::string &S,
1109                              const FieldDecl *Field=0) const;
1110
1111  void getLegacyIntegralTypeEncoding(QualType &t) const;
1112
1113  // Put the string version of type qualifiers into S.
1114  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1115                                       std::string &S) const;
1116
1117  /// getObjCEncodingForFunctionDecl - Returns the encoded type for this
1118  /// function.  This is in the same format as Objective-C method encodings.
1119  ///
1120  /// \returns true if an error occurred (e.g., because one of the parameter
1121  /// types is incomplete), false otherwise.
1122  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1123
1124  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
1125  /// declaration.
1126  ///
1127  /// \returns true if an error occurred (e.g., because one of the parameter
1128  /// types is incomplete), false otherwise.
1129  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1130                                    bool Extended = false)
1131    const;
1132
1133  /// getObjCEncodingForBlock - Return the encoded type for this block
1134  /// declaration.
1135  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1136
1137  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1138  /// this method declaration. If non-NULL, Container must be either
1139  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1140  /// only be NULL when getting encodings for protocol properties.
1141  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1142                                      const Decl *Container,
1143                                      std::string &S) const;
1144
1145  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1146                                      ObjCProtocolDecl *rProto) const;
1147
1148  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
1149  /// purpose in characters.
1150  CharUnits getObjCEncodingTypeSize(QualType t) const;
1151
1152  /// \brief Retrieve the typedef corresponding to the predefined 'id' type
1153  /// in Objective-C.
1154  TypedefDecl *getObjCIdDecl() const;
1155
1156  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
1157  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
1158  QualType getObjCIdType() const {
1159    return getTypeDeclType(getObjCIdDecl());
1160  }
1161
1162  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1163  /// in Objective-C.
1164  TypedefDecl *getObjCSelDecl() const;
1165
1166  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1167  /// 'SEL' type.
1168  QualType getObjCSelType() const {
1169    return getTypeDeclType(getObjCSelDecl());
1170  }
1171
1172  /// \brief Retrieve the typedef declaration corresponding to the predefined
1173  /// Objective-C 'Class' type.
1174  TypedefDecl *getObjCClassDecl() const;
1175
1176  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
1177  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
1178  /// struct.
1179  QualType getObjCClassType() const {
1180    return getTypeDeclType(getObjCClassDecl());
1181  }
1182
1183  /// \brief Retrieve the Objective-C class declaration corresponding to
1184  /// the predefined 'Protocol' class.
1185  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1186
1187  /// \brief Retrieve the type of the Objective-C "Protocol" class.
1188  QualType getObjCProtoType() const {
1189    return getObjCInterfaceType(getObjCProtocolDecl());
1190  }
1191
1192  /// \brief Retrieve the C type declaration corresponding to the predefined
1193  /// __builtin_va_list type.
1194  TypedefDecl *getBuiltinVaListDecl() const;
1195
1196  /// \brief Retrieve the type of the __builtin_va_list type.
1197  QualType getBuiltinVaListType() const {
1198    return getTypeDeclType(getBuiltinVaListDecl());
1199  }
1200
1201  /// \brief Retrieve the C type declaration corresponding to the predefined
1202  /// __va_list_tag type used to help define the __builtin_va_list type for
1203  /// some targets.
1204  QualType getVaListTagType() const;
1205
1206  /// getCVRQualifiedType - Returns a type with additional const,
1207  /// volatile, or restrict qualifiers.
1208  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1209    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1210  }
1211
1212  /// getQualifiedType - Un-split a SplitQualType.
1213  QualType getQualifiedType(SplitQualType split) const {
1214    return getQualifiedType(split.Ty, split.Quals);
1215  }
1216
1217  /// getQualifiedType - Returns a type with additional qualifiers.
1218  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1219    if (!Qs.hasNonFastQualifiers())
1220      return T.withFastQualifiers(Qs.getFastQualifiers());
1221    QualifierCollector Qc(Qs);
1222    const Type *Ptr = Qc.strip(T);
1223    return getExtQualType(Ptr, Qc);
1224  }
1225
1226  /// getQualifiedType - Returns a type with additional qualifiers.
1227  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1228    if (!Qs.hasNonFastQualifiers())
1229      return QualType(T, Qs.getFastQualifiers());
1230    return getExtQualType(T, Qs);
1231  }
1232
1233  /// getLifetimeQualifiedType - Returns a type with the given
1234  /// lifetime qualifier.
1235  QualType getLifetimeQualifiedType(QualType type,
1236                                    Qualifiers::ObjCLifetime lifetime) {
1237    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1238    assert(lifetime != Qualifiers::OCL_None);
1239
1240    Qualifiers qs;
1241    qs.addObjCLifetime(lifetime);
1242    return getQualifiedType(type, qs);
1243  }
1244
1245  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1246                                         SourceLocation NameLoc) const;
1247
1248  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1249                                         UnresolvedSetIterator End) const;
1250
1251  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1252                                        bool TemplateKeyword,
1253                                        TemplateDecl *Template) const;
1254
1255  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1256                                        const IdentifierInfo *Name) const;
1257  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1258                                        OverloadedOperatorKind Operator) const;
1259  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1260                                            TemplateName replacement) const;
1261  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1262                                        const TemplateArgument &ArgPack) const;
1263
1264  enum GetBuiltinTypeError {
1265    GE_None,              ///< No error
1266    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1267    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1268    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1269  };
1270
1271  /// GetBuiltinType - Return the type for the specified builtin.  If
1272  /// IntegerConstantArgs is non-null, it is filled in with a bitmask of
1273  /// arguments to the builtin that are required to be integer constant
1274  /// expressions.
1275  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1276                          unsigned *IntegerConstantArgs = 0) const;
1277
1278private:
1279  CanQualType getFromTargetType(unsigned Type) const;
1280  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1281
1282  //===--------------------------------------------------------------------===//
1283  //                         Type Predicates.
1284  //===--------------------------------------------------------------------===//
1285
1286public:
1287  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
1288  /// garbage collection attribute.
1289  ///
1290  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1291
1292  /// areCompatibleVectorTypes - Return true if the given vector types
1293  /// are of the same unqualified type or if they are equivalent to the same
1294  /// GCC vector type, ignoring whether they are target-specific (AltiVec or
1295  /// Neon) types.
1296  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1297
1298  /// isObjCNSObjectType - Return true if this is an NSObject object with
1299  /// its NSObject attribute set.
1300  static bool isObjCNSObjectType(QualType Ty) {
1301    return Ty->isObjCNSObjectType();
1302  }
1303
1304  //===--------------------------------------------------------------------===//
1305  //                         Type Sizing and Analysis
1306  //===--------------------------------------------------------------------===//
1307
1308  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1309  /// scalar floating point type.
1310  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1311
1312  /// getTypeInfo - Get the size and alignment of the specified complete type in
1313  /// bits.
1314  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1315  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1316    return getTypeInfo(T.getTypePtr());
1317  }
1318
1319  /// getTypeSize - Return the size of the specified type, in bits.  This method
1320  /// does not work on incomplete types.
1321  uint64_t getTypeSize(QualType T) const {
1322    return getTypeInfo(T).first;
1323  }
1324  uint64_t getTypeSize(const Type *T) const {
1325    return getTypeInfo(T).first;
1326  }
1327
1328  /// getCharWidth - Return the size of the character type, in bits
1329  uint64_t getCharWidth() const {
1330    return getTypeSize(CharTy);
1331  }
1332
1333  /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1334  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1335
1336  /// toBits - Convert a size in characters to a size in bits.
1337  int64_t toBits(CharUnits CharSize) const;
1338
1339  /// getTypeSizeInChars - Return the size of the specified type, in characters.
1340  /// This method does not work on incomplete types.
1341  CharUnits getTypeSizeInChars(QualType T) const;
1342  CharUnits getTypeSizeInChars(const Type *T) const;
1343
1344  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
1345  /// This method does not work on incomplete types.
1346  unsigned getTypeAlign(QualType T) const {
1347    return getTypeInfo(T).second;
1348  }
1349  unsigned getTypeAlign(const Type *T) const {
1350    return getTypeInfo(T).second;
1351  }
1352
1353  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1354  /// characters. This method does not work on incomplete types.
1355  CharUnits getTypeAlignInChars(QualType T) const;
1356  CharUnits getTypeAlignInChars(const Type *T) const;
1357
1358  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1359  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1360
1361  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1362  /// type for the current target in bits.  This can be different than the ABI
1363  /// alignment in cases where it is beneficial for performance to overalign
1364  /// a data type.
1365  unsigned getPreferredTypeAlign(const Type *T) const;
1366
1367  /// getDeclAlign - Return a conservative estimate of the alignment of
1368  /// the specified decl.  Note that bitfields do not have a valid alignment, so
1369  /// this method will assert on them.
1370  /// If @p RefAsPointee, references are treated like their underlying type
1371  /// (for alignof), else they're treated like pointers (for CodeGen).
1372  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1373
1374  /// getASTRecordLayout - Get or compute information about the layout of the
1375  /// specified record (struct/union/class), which indicates its size and field
1376  /// position information.
1377  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1378
1379  /// getASTObjCInterfaceLayout - Get or compute information about the
1380  /// layout of the specified Objective-C interface.
1381  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1382    const;
1383
1384  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1385                        bool Simple = false) const;
1386
1387  /// getASTObjCImplementationLayout - Get or compute information about
1388  /// the layout of the specified Objective-C implementation. This may
1389  /// differ from the interface if synthesized ivars are present.
1390  const ASTRecordLayout &
1391  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1392
1393  /// getKeyFunction - Get the key function for the given record decl, or NULL
1394  /// if there isn't one.  The key function is, according to the Itanium C++ ABI
1395  /// section 5.2.3:
1396  ///
1397  /// ...the first non-pure virtual function that is not inline at the point
1398  /// of class definition.
1399  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1400
1401  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1402  uint64_t getFieldOffset(const ValueDecl *FD) const;
1403
1404  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1405
1406  MangleContext *createMangleContext();
1407
1408  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1409                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1410
1411  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1412  void CollectInheritedProtocols(const Decl *CDecl,
1413                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1414
1415  //===--------------------------------------------------------------------===//
1416  //                            Type Operators
1417  //===--------------------------------------------------------------------===//
1418
1419  /// getCanonicalType - Return the canonical (structural) type corresponding to
1420  /// the specified potentially non-canonical type.  The non-canonical version
1421  /// of a type may have many "decorated" versions of types.  Decorators can
1422  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1423  /// to be free of any of these, allowing two canonical types to be compared
1424  /// for exact equality with a simple pointer comparison.
1425  CanQualType getCanonicalType(QualType T) const {
1426    return CanQualType::CreateUnsafe(T.getCanonicalType());
1427  }
1428
1429  const Type *getCanonicalType(const Type *T) const {
1430    return T->getCanonicalTypeInternal().getTypePtr();
1431  }
1432
1433  /// getCanonicalParamType - Return the canonical parameter type
1434  /// corresponding to the specific potentially non-canonical one.
1435  /// Qualifiers are stripped off, functions are turned into function
1436  /// pointers, and arrays decay one level into pointers.
1437  CanQualType getCanonicalParamType(QualType T) const;
1438
1439  /// \brief Determine whether the given types are equivalent.
1440  bool hasSameType(QualType T1, QualType T2) const {
1441    return getCanonicalType(T1) == getCanonicalType(T2);
1442  }
1443
1444  /// \brief Returns this type as a completely-unqualified array type,
1445  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1446  /// sugaring from the types, similar to the behavior of
1447  /// QualType::getUnqualifiedType().
1448  ///
1449  /// \param T is the qualified type, which may be an ArrayType
1450  ///
1451  /// \param Quals will receive the full set of qualifiers that were
1452  /// applied to the array.
1453  ///
1454  /// \returns if this is an array type, the completely unqualified array type
1455  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1456  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1457
1458  /// \brief Determine whether the given types are equivalent after
1459  /// cvr-qualifiers have been removed.
1460  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1461    return getCanonicalType(T1).getTypePtr() ==
1462           getCanonicalType(T2).getTypePtr();
1463  }
1464
1465  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1466
1467  /// \brief Retrieves the "canonical" nested name specifier for a
1468  /// given nested name specifier.
1469  ///
1470  /// The canonical nested name specifier is a nested name specifier
1471  /// that uniquely identifies a type or namespace within the type
1472  /// system. For example, given:
1473  ///
1474  /// \code
1475  /// namespace N {
1476  ///   struct S {
1477  ///     template<typename T> struct X { typename T* type; };
1478  ///   };
1479  /// }
1480  ///
1481  /// template<typename T> struct Y {
1482  ///   typename N::S::X<T>::type member;
1483  /// };
1484  /// \endcode
1485  ///
1486  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1487  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1488  /// by declarations in the type system and the canonical type for
1489  /// the template type parameter 'T' is template-param-0-0.
1490  NestedNameSpecifier *
1491  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1492
1493  /// \brief Retrieves the default calling convention to use for
1494  /// C++ instance methods.
1495  CallingConv getDefaultMethodCallConv();
1496
1497  /// \brief Retrieves the canonical representation of the given
1498  /// calling convention.
1499  CallingConv getCanonicalCallConv(CallingConv CC) const {
1500    if (!LangOpts.MRTD && CC == CC_C)
1501      return CC_Default;
1502    return CC;
1503  }
1504
1505  /// \brief Determines whether two calling conventions name the same
1506  /// calling convention.
1507  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1508    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1509  }
1510
1511  /// \brief Retrieves the "canonical" template name that refers to a
1512  /// given template.
1513  ///
1514  /// The canonical template name is the simplest expression that can
1515  /// be used to refer to a given template. For most templates, this
1516  /// expression is just the template declaration itself. For example,
1517  /// the template std::vector can be referred to via a variety of
1518  /// names---std::vector, \::std::vector, vector (if vector is in
1519  /// scope), etc.---but all of these names map down to the same
1520  /// TemplateDecl, which is used to form the canonical template name.
1521  ///
1522  /// Dependent template names are more interesting. Here, the
1523  /// template name could be something like T::template apply or
1524  /// std::allocator<T>::template rebind, where the nested name
1525  /// specifier itself is dependent. In this case, the canonical
1526  /// template name uses the shortest form of the dependent
1527  /// nested-name-specifier, which itself contains all canonical
1528  /// types, values, and templates.
1529  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1530
1531  /// \brief Determine whether the given template names refer to the same
1532  /// template.
1533  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1534
1535  /// \brief Retrieve the "canonical" template argument.
1536  ///
1537  /// The canonical template argument is the simplest template argument
1538  /// (which may be a type, value, expression, or declaration) that
1539  /// expresses the value of the argument.
1540  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1541    const;
1542
1543  /// Type Query functions.  If the type is an instance of the specified class,
1544  /// return the Type pointer for the underlying maximally pretty type.  This
1545  /// is a member of ASTContext because this may need to do some amount of
1546  /// canonicalization, e.g. to move type qualifiers into the element type.
1547  const ArrayType *getAsArrayType(QualType T) const;
1548  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1549    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1550  }
1551  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1552    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1553  }
1554  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1555    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1556  }
1557  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1558    const {
1559    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1560  }
1561
1562  /// getBaseElementType - Returns the innermost element type of an array type.
1563  /// For example, will return "int" for int[m][n]
1564  QualType getBaseElementType(const ArrayType *VAT) const;
1565
1566  /// getBaseElementType - Returns the innermost element type of a type
1567  /// (which needn't actually be an array type).
1568  QualType getBaseElementType(QualType QT) const;
1569
1570  /// getConstantArrayElementCount - Returns number of constant array elements.
1571  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1572
1573  /// \brief Perform adjustment on the parameter type of a function.
1574  ///
1575  /// This routine adjusts the given parameter type @p T to the actual
1576  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1577  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1578  QualType getAdjustedParameterType(QualType T) const;
1579
1580  /// \brief Retrieve the parameter type as adjusted for use in the signature
1581  /// of a function, decaying array and function types and removing top-level
1582  /// cv-qualifiers.
1583  QualType getSignatureParameterType(QualType T) const;
1584
1585  /// getArrayDecayedType - Return the properly qualified result of decaying the
1586  /// specified array type to a pointer.  This operation is non-trivial when
1587  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1588  /// this returns a pointer to a properly qualified element of the array.
1589  ///
1590  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1591  QualType getArrayDecayedType(QualType T) const;
1592
1593  /// getPromotedIntegerType - Returns the type that Promotable will
1594  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1595  /// integer type.
1596  QualType getPromotedIntegerType(QualType PromotableType) const;
1597
1598  /// \brief Recurses in pointer/array types until it finds an objc retainable
1599  /// type and returns its ownership.
1600  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1601
1602  /// \brief Whether this is a promotable bitfield reference according
1603  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1604  ///
1605  /// \returns the type this bit-field will promote to, or NULL if no
1606  /// promotion occurs.
1607  QualType isPromotableBitField(Expr *E) const;
1608
1609  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1610  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1611  /// LHS < RHS, return -1.
1612  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1613
1614  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1615  /// point types, ignoring the domain of the type (i.e. 'double' ==
1616  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1617  /// LHS < RHS, return -1.
1618  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1619
1620  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1621  /// point or a complex type (based on typeDomain/typeSize).
1622  /// 'typeDomain' is a real floating point or complex type.
1623  /// 'typeSize' is a real floating point or complex type.
1624  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1625                                             QualType typeDomain) const;
1626
1627  unsigned getTargetAddressSpace(QualType T) const {
1628    return getTargetAddressSpace(T.getQualifiers());
1629  }
1630
1631  unsigned getTargetAddressSpace(Qualifiers Q) const {
1632    return getTargetAddressSpace(Q.getAddressSpace());
1633  }
1634
1635  unsigned getTargetAddressSpace(unsigned AS) const {
1636    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1637      return AS;
1638    else
1639      return (*AddrSpaceMap)[AS - LangAS::Offset];
1640  }
1641
1642private:
1643  // Helper for integer ordering
1644  unsigned getIntegerRank(const Type *T) const;
1645
1646public:
1647
1648  //===--------------------------------------------------------------------===//
1649  //                    Type Compatibility Predicates
1650  //===--------------------------------------------------------------------===//
1651
1652  /// Compatibility predicates used to check assignment expressions.
1653  bool typesAreCompatible(QualType T1, QualType T2,
1654                          bool CompareUnqualified = false); // C99 6.2.7p1
1655
1656  bool propertyTypesAreCompatible(QualType, QualType);
1657  bool typesAreBlockPointerCompatible(QualType, QualType);
1658
1659  bool isObjCIdType(QualType T) const {
1660    return T == getObjCIdType();
1661  }
1662  bool isObjCClassType(QualType T) const {
1663    return T == getObjCClassType();
1664  }
1665  bool isObjCSelType(QualType T) const {
1666    return T == getObjCSelType();
1667  }
1668  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1669  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1670                                         bool ForCompare);
1671
1672  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1673
1674  // Check the safety of assignment from LHS to RHS
1675  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1676                               const ObjCObjectPointerType *RHSOPT);
1677  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1678                               const ObjCObjectType *RHS);
1679  bool canAssignObjCInterfacesInBlockPointer(
1680                                          const ObjCObjectPointerType *LHSOPT,
1681                                          const ObjCObjectPointerType *RHSOPT,
1682                                          bool BlockReturnType);
1683  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1684  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1685                                   const ObjCObjectPointerType *RHSOPT);
1686  bool canBindObjCObjectType(QualType To, QualType From);
1687
1688  // Functions for calculating composite types
1689  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1690                      bool Unqualified = false, bool BlockReturnType = false);
1691  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1692                              bool Unqualified = false);
1693  QualType mergeFunctionArgumentTypes(QualType, QualType,
1694                                      bool OfBlockPointer=false,
1695                                      bool Unqualified = false);
1696  QualType mergeTransparentUnionType(QualType, QualType,
1697                                     bool OfBlockPointer=false,
1698                                     bool Unqualified = false);
1699
1700  QualType mergeObjCGCQualifiers(QualType, QualType);
1701
1702  bool FunctionTypesMatchOnNSConsumedAttrs(
1703         const FunctionProtoType *FromFunctionType,
1704         const FunctionProtoType *ToFunctionType);
1705
1706  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1707    ObjCLayouts[CD] = 0;
1708  }
1709
1710  //===--------------------------------------------------------------------===//
1711  //                    Integer Predicates
1712  //===--------------------------------------------------------------------===//
1713
1714  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1715  // of bits in an integer type excluding any padding bits.
1716  unsigned getIntWidth(QualType T) const;
1717
1718  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1719  // unsigned integer type.  This method takes a signed type, and returns the
1720  // corresponding unsigned integer type.
1721  QualType getCorrespondingUnsignedType(QualType T);
1722
1723  //===--------------------------------------------------------------------===//
1724  //                    Type Iterators.
1725  //===--------------------------------------------------------------------===//
1726
1727  typedef std::vector<Type*>::iterator       type_iterator;
1728  typedef std::vector<Type*>::const_iterator const_type_iterator;
1729
1730  type_iterator types_begin() { return Types.begin(); }
1731  type_iterator types_end() { return Types.end(); }
1732  const_type_iterator types_begin() const { return Types.begin(); }
1733  const_type_iterator types_end() const { return Types.end(); }
1734
1735  //===--------------------------------------------------------------------===//
1736  //                    Integer Values
1737  //===--------------------------------------------------------------------===//
1738
1739  /// MakeIntValue - Make an APSInt of the appropriate width and
1740  /// signedness for the given \arg Value and integer \arg Type.
1741  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1742    llvm::APSInt Res(getIntWidth(Type),
1743                     !Type->isSignedIntegerOrEnumerationType());
1744    Res = Value;
1745    return Res;
1746  }
1747
1748  bool isSentinelNullExpr(const Expr *E);
1749
1750  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1751  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1752  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1753  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1754
1755  /// \brief returns true if there is at least one \@implementation in TU.
1756  bool AnyObjCImplementation() {
1757    return !ObjCImpls.empty();
1758  }
1759
1760  /// \brief Set the implementation of ObjCInterfaceDecl.
1761  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1762                             ObjCImplementationDecl *ImplD);
1763  /// \brief Set the implementation of ObjCCategoryDecl.
1764  void setObjCImplementation(ObjCCategoryDecl *CatD,
1765                             ObjCCategoryImplDecl *ImplD);
1766
1767  /// \brief Get the duplicate declaration of a ObjCMethod in the same
1768  /// interface, or null if non exists.
1769  const ObjCMethodDecl *getObjCMethodRedeclaration(
1770                                               const ObjCMethodDecl *MD) const {
1771    return ObjCMethodRedecls.lookup(MD);
1772  }
1773
1774  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1775                                  const ObjCMethodDecl *Redecl) {
1776    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
1777    ObjCMethodRedecls[MD] = Redecl;
1778  }
1779
1780  /// \brief Returns the objc interface that \arg ND belongs to if it is a
1781  /// objc method/property/ivar etc. that is part of an interface,
1782  /// otherwise returns null.
1783  ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1784
1785  /// \brief Set the copy inialization expression of a block var decl.
1786  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1787  /// \brief Get the copy initialization expression of VarDecl,or NULL if
1788  /// none exists.
1789  Expr *getBlockVarCopyInits(const VarDecl*VD);
1790
1791  /// \brief Allocate an uninitialized TypeSourceInfo.
1792  ///
1793  /// The caller should initialize the memory held by TypeSourceInfo using
1794  /// the TypeLoc wrappers.
1795  ///
1796  /// \param T the type that will be the basis for type source info. This type
1797  /// should refer to how the declarator was written in source code, not to
1798  /// what type semantic analysis resolved the declarator to.
1799  ///
1800  /// \param Size the size of the type info to create, or 0 if the size
1801  /// should be calculated based on the type.
1802  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1803
1804  /// \brief Allocate a TypeSourceInfo where all locations have been
1805  /// initialized to a given location, which defaults to the empty
1806  /// location.
1807  TypeSourceInfo *
1808  getTrivialTypeSourceInfo(QualType T,
1809                           SourceLocation Loc = SourceLocation()) const;
1810
1811  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1812
1813  /// \brief Add a deallocation callback that will be invoked when the
1814  /// ASTContext is destroyed.
1815  ///
1816  /// \brief Callback A callback function that will be invoked on destruction.
1817  ///
1818  /// \brief Data Pointer data that will be provided to the callback function
1819  /// when it is called.
1820  void AddDeallocation(void (*Callback)(void*), void *Data);
1821
1822  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1823  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1824
1825  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1826  /// lazily, only when used; this is only relevant for function or file scoped
1827  /// var definitions.
1828  ///
1829  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1830  /// it is not used.
1831  bool DeclMustBeEmitted(const Decl *D);
1832
1833  /// \brief Retrieve the lambda mangling number for a lambda expression.
1834  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
1835
1836  /// \brief Used by ParmVarDecl to store on the side the
1837  /// index of the parameter when it exceeds the size of the normal bitfield.
1838  void setParameterIndex(const ParmVarDecl *D, unsigned index);
1839
1840  /// \brief Used by ParmVarDecl to retrieve on the side the
1841  /// index of the parameter when it exceeds the size of the normal bitfield.
1842  unsigned getParameterIndex(const ParmVarDecl *D) const;
1843
1844  //===--------------------------------------------------------------------===//
1845  //                    Statistics
1846  //===--------------------------------------------------------------------===//
1847
1848  /// \brief The number of implicitly-declared default constructors.
1849  static unsigned NumImplicitDefaultConstructors;
1850
1851  /// \brief The number of implicitly-declared default constructors for
1852  /// which declarations were built.
1853  static unsigned NumImplicitDefaultConstructorsDeclared;
1854
1855  /// \brief The number of implicitly-declared copy constructors.
1856  static unsigned NumImplicitCopyConstructors;
1857
1858  /// \brief The number of implicitly-declared copy constructors for
1859  /// which declarations were built.
1860  static unsigned NumImplicitCopyConstructorsDeclared;
1861
1862  /// \brief The number of implicitly-declared move constructors.
1863  static unsigned NumImplicitMoveConstructors;
1864
1865  /// \brief The number of implicitly-declared move constructors for
1866  /// which declarations were built.
1867  static unsigned NumImplicitMoveConstructorsDeclared;
1868
1869  /// \brief The number of implicitly-declared copy assignment operators.
1870  static unsigned NumImplicitCopyAssignmentOperators;
1871
1872  /// \brief The number of implicitly-declared copy assignment operators for
1873  /// which declarations were built.
1874  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1875
1876  /// \brief The number of implicitly-declared move assignment operators.
1877  static unsigned NumImplicitMoveAssignmentOperators;
1878
1879  /// \brief The number of implicitly-declared move assignment operators for
1880  /// which declarations were built.
1881  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
1882
1883  /// \brief The number of implicitly-declared destructors.
1884  static unsigned NumImplicitDestructors;
1885
1886  /// \brief The number of implicitly-declared destructors for which
1887  /// declarations were built.
1888  static unsigned NumImplicitDestructorsDeclared;
1889
1890private:
1891  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1892  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1893
1894public:
1895  /// \brief Initialize built-in types.
1896  ///
1897  /// This routine may only be invoked once for a given ASTContext object.
1898  /// It is normally invoked by the ASTContext constructor. However, the
1899  /// constructor can be asked to delay initialization, which places the burden
1900  /// of calling this function on the user of that object.
1901  ///
1902  /// \param Target The target
1903  void InitBuiltinTypes(const TargetInfo &Target);
1904
1905private:
1906  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1907
1908  // Return the ObjC type encoding for a given type.
1909  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1910                                  bool ExpandPointedToStructures,
1911                                  bool ExpandStructures,
1912                                  const FieldDecl *Field,
1913                                  bool OutermostType = false,
1914                                  bool EncodingProperty = false,
1915                                  bool StructField = false,
1916                                  bool EncodeBlockParameters = false,
1917                                  bool EncodeClassNames = false) const;
1918
1919  // Adds the encoding of the structure's members.
1920  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
1921                                       const FieldDecl *Field,
1922                                       bool includeVBases = true) const;
1923
1924  // Adds the encoding of a method parameter or return type.
1925  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
1926                                         QualType T, std::string& S,
1927                                         bool Extended) const;
1928
1929  const ASTRecordLayout &
1930  getObjCLayout(const ObjCInterfaceDecl *D,
1931                const ObjCImplementationDecl *Impl) const;
1932
1933private:
1934  /// \brief A set of deallocations that should be performed when the
1935  /// ASTContext is destroyed.
1936  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1937
1938  // FIXME: This currently contains the set of StoredDeclMaps used
1939  // by DeclContext objects.  This probably should not be in ASTContext,
1940  // but we include it here so that ASTContext can quickly deallocate them.
1941  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1942
1943  /// \brief A counter used to uniquely identify "blocks".
1944  mutable unsigned int UniqueBlockByRefTypeID;
1945
1946  friend class DeclContext;
1947  friend class DeclarationNameTable;
1948  void ReleaseDeclContextMaps();
1949};
1950
1951/// @brief Utility function for constructing a nullary selector.
1952static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
1953  IdentifierInfo* II = &Ctx.Idents.get(name);
1954  return Ctx.Selectors.getSelector(0, &II);
1955}
1956
1957/// @brief Utility function for constructing an unary selector.
1958static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
1959  IdentifierInfo* II = &Ctx.Idents.get(name);
1960  return Ctx.Selectors.getSelector(1, &II);
1961}
1962
1963}  // end namespace clang
1964
1965// operator new and delete aren't allowed inside namespaces.
1966
1967/// @brief Placement new for using the ASTContext's allocator.
1968///
1969/// This placement form of operator new uses the ASTContext's allocator for
1970/// obtaining memory.
1971///
1972/// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
1973/// need to also be made there.
1974///
1975/// We intentionally avoid using a nothrow specification here so that the calls
1976/// to this operator will not perform a null check on the result -- the
1977/// underlying allocator never returns null pointers.
1978///
1979/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1980/// @code
1981/// // Default alignment (8)
1982/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1983/// // Specific alignment
1984/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1985/// @endcode
1986/// Please note that you cannot use delete on the pointer; it must be
1987/// deallocated using an explicit destructor call followed by
1988/// @c Context.Deallocate(Ptr).
1989///
1990/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1991/// @param C The ASTContext that provides the allocator.
1992/// @param Alignment The alignment of the allocated memory (if the underlying
1993///                  allocator supports it).
1994/// @return The allocated memory. Could be NULL.
1995inline void *operator new(size_t Bytes, const clang::ASTContext &C,
1996                          size_t Alignment) {
1997  return C.Allocate(Bytes, Alignment);
1998}
1999/// @brief Placement delete companion to the new above.
2000///
2001/// This operator is just a companion to the new above. There is no way of
2002/// invoking it directly; see the new operator for more details. This operator
2003/// is called implicitly by the compiler if a placement new expression using
2004/// the ASTContext throws in the object constructor.
2005inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2006  C.Deallocate(Ptr);
2007}
2008
2009/// This placement form of operator new[] uses the ASTContext's allocator for
2010/// obtaining memory.
2011///
2012/// We intentionally avoid using a nothrow specification here so that the calls
2013/// to this operator will not perform a null check on the result -- the
2014/// underlying allocator never returns null pointers.
2015///
2016/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2017/// @code
2018/// // Default alignment (8)
2019/// char *data = new (Context) char[10];
2020/// // Specific alignment
2021/// char *data = new (Context, 4) char[10];
2022/// @endcode
2023/// Please note that you cannot use delete on the pointer; it must be
2024/// deallocated using an explicit destructor call followed by
2025/// @c Context.Deallocate(Ptr).
2026///
2027/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2028/// @param C The ASTContext that provides the allocator.
2029/// @param Alignment The alignment of the allocated memory (if the underlying
2030///                  allocator supports it).
2031/// @return The allocated memory. Could be NULL.
2032inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2033                            size_t Alignment = 8) {
2034  return C.Allocate(Bytes, Alignment);
2035}
2036
2037/// @brief Placement delete[] companion to the new[] above.
2038///
2039/// This operator is just a companion to the new[] above. There is no way of
2040/// invoking it directly; see the new[] operator for more details. This operator
2041/// is called implicitly by the compiler if a placement new[] expression using
2042/// the ASTContext throws in the object constructor.
2043inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2044  C.Deallocate(Ptr);
2045}
2046
2047#endif
2048