ASTContext.h revision 9cdda0cf8528e3d595be9bfa002f0450074beb4d
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/PrettyPrinter.h"
23#include "clang/AST/TemplateName.h"
24#include "clang/AST/Type.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/ADT/OwningPtr.h"
28#include "llvm/Support/Allocator.h"
29#include <vector>
30
31namespace llvm {
32  struct fltSemantics;
33}
34
35namespace clang {
36  class FileManager;
37  class ASTRecordLayout;
38  class Expr;
39  class ExternalASTSource;
40  class IdentifierTable;
41  class SelectorTable;
42  class SourceManager;
43  class TargetInfo;
44  // Decls
45  class Decl;
46  class ObjCPropertyDecl;
47  class RecordDecl;
48  class TagDecl;
49  class TranslationUnitDecl;
50  class TypeDecl;
51  class TypedefDecl;
52  class TemplateTypeParmDecl;
53  class FieldDecl;
54  class ObjCIvarRefExpr;
55  class ObjCIvarDecl;
56
57  namespace Builtin { class Context; }
58
59/// ASTContext - This class holds long-lived AST nodes (such as types and
60/// decls) that can be referred to throughout the semantic analysis of a file.
61class ASTContext {
62  std::vector<Type*> Types;
63  llvm::FoldingSet<ExtQualType> ExtQualTypes;
64  llvm::FoldingSet<ComplexType> ComplexTypes;
65  llvm::FoldingSet<PointerType> PointerTypes;
66  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
67  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
68  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
69  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
70  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
71  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
72  std::vector<VariableArrayType*> VariableArrayTypes;
73  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
74  std::vector<DependentSizedExtVectorType*> DependentSizedExtVectorTypes;
75  llvm::FoldingSet<VectorType> VectorTypes;
76  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
77  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
78  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
79  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
80  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
81  llvm::FoldingSet<TypenameType> TypenameTypes;
82  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
83  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
84
85  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
86  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
87
88  /// \brief The set of nested name specifiers.
89  ///
90  /// This set is managed by the NestedNameSpecifier class.
91  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
92  NestedNameSpecifier *GlobalNestedNameSpecifier;
93  friend class NestedNameSpecifier;
94
95  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
96  ///  This is lazily created.  This is intentionally not serialized.
97  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
98  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
99
100  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
101  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
102
103  /// BuiltinVaListType - built-in va list type.
104  /// This is initially null and set by Sema::LazilyCreateBuiltin when
105  /// a builtin that takes a valist is encountered.
106  QualType BuiltinVaListType;
107
108  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
109  QualType ObjCIdType;
110  const RecordType *IdStructType;
111
112  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
113  QualType ObjCSelType;
114  const RecordType *SelStructType;
115
116  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
117  QualType ObjCProtoType;
118  const RecordType *ProtoStructType;
119
120  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
121  QualType ObjCClassType;
122  const RecordType *ClassStructType;
123
124  QualType ObjCConstantStringType;
125  RecordDecl *CFConstantStringTypeDecl;
126
127  RecordDecl *ObjCFastEnumerationStateTypeDecl;
128
129  TranslationUnitDecl *TUDecl;
130
131  /// SourceMgr - The associated SourceManager object.
132  SourceManager &SourceMgr;
133
134  /// LangOpts - The language options used to create the AST associated with
135  ///  this ASTContext object.
136  LangOptions LangOpts;
137
138  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
139  bool FreeMemory;
140  llvm::MallocAllocator MallocAlloc;
141  llvm::BumpPtrAllocator BumpAlloc;
142public:
143  TargetInfo &Target;
144  IdentifierTable &Idents;
145  SelectorTable &Selectors;
146  Builtin::Context &BuiltinInfo;
147  DeclarationNameTable DeclarationNames;
148  llvm::OwningPtr<ExternalASTSource> ExternalSource;
149  clang::PrintingPolicy PrintingPolicy;
150
151  SourceManager& getSourceManager() { return SourceMgr; }
152  const SourceManager& getSourceManager() const { return SourceMgr; }
153  void *Allocate(unsigned Size, unsigned Align = 8) {
154    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
155                        BumpAlloc.Allocate(Size, Align);
156  }
157  void Deallocate(void *Ptr) {
158    if (FreeMemory)
159      MallocAlloc.Deallocate(Ptr);
160  }
161  const LangOptions& getLangOptions() const { return LangOpts; }
162
163  FullSourceLoc getFullLoc(SourceLocation Loc) const {
164    return FullSourceLoc(Loc,SourceMgr);
165  }
166
167  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
168
169
170  // Builtin Types.
171  QualType VoidTy;
172  QualType BoolTy;
173  QualType CharTy;
174  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
175  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
176  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
177  QualType UnsignedLongLongTy, UnsignedInt128Ty;
178  QualType FloatTy, DoubleTy, LongDoubleTy;
179  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
180  QualType VoidPtrTy, NullPtrTy;
181  QualType OverloadTy;
182  QualType DependentTy;
183
184  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
185             IdentifierTable &idents, SelectorTable &sels,
186             Builtin::Context &builtins,
187             bool FreeMemory = true, unsigned size_reserve=0);
188
189  ~ASTContext();
190
191  /// \brief Attach an external AST source to the AST context.
192  ///
193  /// The external AST source provides the ability to load parts of
194  /// the abstract syntax tree as needed from some external storage,
195  /// e.g., a precompiled header.
196  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
197
198  /// \brief Retrieve a pointer to the external AST source associated
199  /// with this AST context, if any.
200  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
201
202  void PrintStats() const;
203  const std::vector<Type*>& getTypes() const { return Types; }
204
205  //===--------------------------------------------------------------------===//
206  //                           Type Constructors
207  //===--------------------------------------------------------------------===//
208
209  /// getAddSpaceQualType - Return the uniqued reference to the type for an
210  /// address space qualified type with the specified type and address space.
211  /// The resulting type has a union of the qualifiers from T and the address
212  /// space. If T already has an address space specifier, it is silently
213  /// replaced.
214  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
215
216  /// getObjCGCQualType - Returns the uniqued reference to the type for an
217  /// objc gc qualified type. The retulting type has a union of the qualifiers
218  /// from T and the gc attribute.
219  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
220
221  /// getComplexType - Return the uniqued reference to the type for a complex
222  /// number with the specified element type.
223  QualType getComplexType(QualType T);
224
225  /// getPointerType - Return the uniqued reference to the type for a pointer to
226  /// the specified type.
227  QualType getPointerType(QualType T);
228
229  /// getBlockPointerType - Return the uniqued reference to the type for a block
230  /// of the specified type.
231  QualType getBlockPointerType(QualType T);
232
233  /// getLValueReferenceType - Return the uniqued reference to the type for an
234  /// lvalue reference to the specified type.
235  QualType getLValueReferenceType(QualType T);
236
237  /// getRValueReferenceType - Return the uniqued reference to the type for an
238  /// rvalue reference to the specified type.
239  QualType getRValueReferenceType(QualType T);
240
241  /// getMemberPointerType - Return the uniqued reference to the type for a
242  /// member pointer to the specified type in the specified class. The class
243  /// is a Type because it could be a dependent name.
244  QualType getMemberPointerType(QualType T, const Type *Cls);
245
246  /// getVariableArrayType - Returns a non-unique reference to the type for a
247  /// variable array of the specified element type.
248  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
249                                ArrayType::ArraySizeModifier ASM,
250                                unsigned EltTypeQuals);
251
252  /// getDependentSizedArrayType - Returns a non-unique reference to
253  /// the type for a dependently-sized array of the specified element
254  /// type. FIXME: We will need these to be uniqued, or at least
255  /// comparable, at some point.
256  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
257                                      ArrayType::ArraySizeModifier ASM,
258                                      unsigned EltTypeQuals);
259
260  /// getIncompleteArrayType - Returns a unique reference to the type for a
261  /// incomplete array of the specified element type.
262  QualType getIncompleteArrayType(QualType EltTy,
263                                  ArrayType::ArraySizeModifier ASM,
264                                  unsigned EltTypeQuals);
265
266  /// getConstantArrayType - Return the unique reference to the type for a
267  /// constant array of the specified element type.
268  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
269                                ArrayType::ArraySizeModifier ASM,
270                                unsigned EltTypeQuals);
271
272  /// getVectorType - Return the unique reference to a vector type of
273  /// the specified element type and size. VectorType must be a built-in type.
274  QualType getVectorType(QualType VectorType, unsigned NumElts);
275
276  /// getExtVectorType - Return the unique reference to an extended vector type
277  /// of the specified element type and size.  VectorType must be a built-in
278  /// type.
279  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
280
281  /// getDependentSizedExtVectorType - Returns a non-unique reference to
282  /// the type for a dependently-sized vector of the specified element
283  /// type. FIXME: We will need these to be uniqued, or at least
284  /// comparable, at some point.
285  QualType getDependentSizedExtVectorType(QualType VectorType,
286                                          Expr *SizeExpr,
287                                          SourceLocation AttrLoc);
288
289  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
290  ///
291  QualType getFunctionNoProtoType(QualType ResultTy);
292
293  /// getFunctionType - Return a normal function type with a typed argument
294  /// list.  isVariadic indicates whether the argument list includes '...'.
295  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
296                           unsigned NumArgs, bool isVariadic,
297                           unsigned TypeQuals, bool hasExceptionSpec = false,
298                           bool hasAnyExceptionSpec = false,
299                           unsigned NumExs = 0, const QualType *ExArray = 0);
300
301  /// getTypeDeclType - Return the unique reference to the type for
302  /// the specified type declaration.
303  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
304
305  /// getTypedefType - Return the unique reference to the type for the
306  /// specified typename decl.
307  QualType getTypedefType(TypedefDecl *Decl);
308  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
309
310  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
311                                   bool ParameterPack,
312                                   IdentifierInfo *Name = 0);
313
314  QualType getTemplateSpecializationType(TemplateName T,
315                                         const TemplateArgument *Args,
316                                         unsigned NumArgs,
317                                         QualType Canon = QualType());
318
319  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
320                                QualType NamedType);
321  QualType getTypenameType(NestedNameSpecifier *NNS,
322                           const IdentifierInfo *Name,
323                           QualType Canon = QualType());
324  QualType getTypenameType(NestedNameSpecifier *NNS,
325                           const TemplateSpecializationType *TemplateId,
326                           QualType Canon = QualType());
327
328  /// getObjCQualifiedInterfaceType - Return a
329  /// ObjCQualifiedInterfaceType type for the given interface decl and
330  /// the conforming protocol list.
331  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
332                                         ObjCProtocolDecl **ProtocolList,
333                                         unsigned NumProtocols);
334
335  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
336  /// given 'id' and conforming protocol list.
337  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
338                                  unsigned NumProtocols);
339
340
341  /// getTypeOfType - GCC extension.
342  QualType getTypeOfExprType(Expr *e);
343  QualType getTypeOfType(QualType t);
344
345  /// getTagDeclType - Return the unique reference to the type for the
346  /// specified TagDecl (struct/union/class/enum) decl.
347  QualType getTagDeclType(TagDecl *Decl);
348
349  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
350  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
351  QualType getSizeType() const;
352
353  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
354  /// returns a type compatible with the type defined in <stddef.h> as defined
355  /// by the target.
356  QualType getWCharType() const { return WCharTy; }
357
358  /// getSignedWCharType - Return the type of "signed wchar_t".
359  /// Used when in C++, as a GCC extension.
360  QualType getSignedWCharType() const;
361
362  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
363  /// Used when in C++, as a GCC extension.
364  QualType getUnsignedWCharType() const;
365
366  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
367  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
368  QualType getPointerDiffType() const;
369
370  // getCFConstantStringType - Return the C structure type used to represent
371  // constant CFStrings.
372  QualType getCFConstantStringType();
373
374  /// Get the structure type used to representation CFStrings, or NULL
375  /// if it hasn't yet been built.
376  QualType getRawCFConstantStringType() {
377    if (CFConstantStringTypeDecl)
378      return getTagDeclType(CFConstantStringTypeDecl);
379    return QualType();
380  }
381  void setCFConstantStringType(QualType T);
382
383  // This setter/getter represents the ObjC type for an NSConstantString.
384  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
385  QualType getObjCConstantStringInterface() const {
386    return ObjCConstantStringType;
387  }
388
389  //// This gets the struct used to keep track of fast enumerations.
390  QualType getObjCFastEnumerationStateType();
391
392  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
393  /// been built.
394  QualType getRawObjCFastEnumerationStateType() {
395    if (ObjCFastEnumerationStateTypeDecl)
396      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
397    return QualType();
398  }
399
400  void setObjCFastEnumerationStateType(QualType T);
401
402  /// getObjCEncodingForType - Emit the ObjC type encoding for the
403  /// given type into \arg S. If \arg NameFields is specified then
404  /// record field names are also encoded.
405  void getObjCEncodingForType(QualType t, std::string &S,
406                              const FieldDecl *Field=0);
407
408  void getLegacyIntegralTypeEncoding(QualType &t) const;
409
410  // Put the string version of type qualifiers into S.
411  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
412                                       std::string &S) const;
413
414  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
415  /// declaration.
416  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
417
418  /// getObjCEncodingForPropertyDecl - Return the encoded type for
419  /// this method declaration. If non-NULL, Container must be either
420  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
421  /// only be NULL when getting encodings for protocol properties.
422  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
423                                      const Decl *Container,
424                                      std::string &S);
425
426  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
427  /// purpose.
428  int getObjCEncodingTypeSize(QualType t);
429
430  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
431  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
432  QualType getObjCIdType() const { return ObjCIdType; }
433  void setObjCIdType(QualType T);
434
435  void setObjCSelType(QualType T);
436  QualType getObjCSelType() const { return ObjCSelType; }
437
438  void setObjCProtoType(QualType QT);
439  QualType getObjCProtoType() const { return ObjCProtoType; }
440
441  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
442  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
443  /// struct.
444  QualType getObjCClassType() const { return ObjCClassType; }
445  void setObjCClassType(QualType T);
446
447  void setBuiltinVaListType(QualType T);
448  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
449
450  QualType getFixedWidthIntType(unsigned Width, bool Signed);
451
452  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
453                                        bool TemplateKeyword,
454                                        TemplateDecl *Template);
455
456  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
457                                        const IdentifierInfo *Name);
458
459  enum GetBuiltinTypeError {
460    GE_None,        //< No error
461    GE_Missing_FILE //< Missing the FILE type from <stdio.h>
462  };
463
464  /// GetBuiltinType - Return the type for the specified builtin.
465  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
466
467private:
468  QualType getFromTargetType(unsigned Type) const;
469
470  //===--------------------------------------------------------------------===//
471  //                         Type Predicates.
472  //===--------------------------------------------------------------------===//
473
474public:
475  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
476  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
477  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
478  /// ID type).
479  bool isObjCObjectPointerType(QualType Ty) const;
480
481  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
482  /// garbage collection attribute.
483  ///
484  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
485
486  /// isObjCNSObjectType - Return true if this is an NSObject object with
487  /// its NSObject attribute set.
488  bool isObjCNSObjectType(QualType Ty) const;
489
490  //===--------------------------------------------------------------------===//
491  //                         Type Sizing and Analysis
492  //===--------------------------------------------------------------------===//
493
494  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
495  /// scalar floating point type.
496  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
497
498  /// getTypeInfo - Get the size and alignment of the specified complete type in
499  /// bits.
500  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
501  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
502    return getTypeInfo(T.getTypePtr());
503  }
504
505  /// getTypeSize - Return the size of the specified type, in bits.  This method
506  /// does not work on incomplete types.
507  uint64_t getTypeSize(QualType T) {
508    return getTypeInfo(T).first;
509  }
510  uint64_t getTypeSize(const Type *T) {
511    return getTypeInfo(T).first;
512  }
513
514  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
515  /// This method does not work on incomplete types.
516  unsigned getTypeAlign(QualType T) {
517    return getTypeInfo(T).second;
518  }
519  unsigned getTypeAlign(const Type *T) {
520    return getTypeInfo(T).second;
521  }
522
523  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
524  /// type for the current target in bits.  This can be different than the ABI
525  /// alignment in cases where it is beneficial for performance to overalign
526  /// a data type.
527  unsigned getPreferredTypeAlign(const Type *T);
528
529  /// getDeclAlignInBytes - Return the alignment of the specified decl
530  /// that should be returned by __alignof().  Note that bitfields do
531  /// not have a valid alignment, so this method will assert on them.
532  unsigned getDeclAlignInBytes(const Decl *D);
533
534  /// getASTRecordLayout - Get or compute information about the layout of the
535  /// specified record (struct/union/class), which indicates its size and field
536  /// position information.
537  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
538
539  /// getASTObjCInterfaceLayout - Get or compute information about the
540  /// layout of the specified Objective-C interface.
541  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
542
543  /// getASTObjCImplementationLayout - Get or compute information about
544  /// the layout of the specified Objective-C implementation. This may
545  /// differ from the interface if synthesized ivars are present.
546  const ASTRecordLayout &
547  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
548
549  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
550                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
551
552  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
553                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
554                               bool CollectSynthesized = true);
555  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
556                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
557  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
558                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
559  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
560  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
561
562  //===--------------------------------------------------------------------===//
563  //                            Type Operators
564  //===--------------------------------------------------------------------===//
565
566  /// getCanonicalType - Return the canonical (structural) type corresponding to
567  /// the specified potentially non-canonical type.  The non-canonical version
568  /// of a type may have many "decorated" versions of types.  Decorators can
569  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
570  /// to be free of any of these, allowing two canonical types to be compared
571  /// for exact equality with a simple pointer comparison.
572  QualType getCanonicalType(QualType T);
573  const Type *getCanonicalType(const Type *T) {
574    return T->getCanonicalTypeInternal().getTypePtr();
575  }
576
577  /// \brief Determine whether the given types are equivalent.
578  bool hasSameType(QualType T1, QualType T2) {
579    return getCanonicalType(T1) == getCanonicalType(T2);
580  }
581
582  /// \brief Determine whether the given types are equivalent after
583  /// cvr-qualifiers have been removed.
584  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
585    T1 = getCanonicalType(T1);
586    T2 = getCanonicalType(T2);
587    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
588  }
589
590  /// \brief Retrieves the "canonical" declaration of the given declaration.
591  Decl *getCanonicalDecl(Decl *D);
592
593  /// \brief Retrieves the "canonical" declaration of the given tag
594  /// declaration.
595  ///
596  /// The canonical declaration for the given tag declaration is
597  /// either the definition of the tag (if it is a complete type) or
598  /// the first declaration of that tag.
599  TagDecl *getCanonicalDecl(TagDecl *Tag) {
600    return cast<TagDecl>(getCanonicalDecl((Decl *)Tag));
601  }
602
603  /// \brief Retrieves the "canonical" declaration of
604
605  /// \brief Retrieves the "canonical" nested name specifier for a
606  /// given nested name specifier.
607  ///
608  /// The canonical nested name specifier is a nested name specifier
609  /// that uniquely identifies a type or namespace within the type
610  /// system. For example, given:
611  ///
612  /// \code
613  /// namespace N {
614  ///   struct S {
615  ///     template<typename T> struct X { typename T* type; };
616  ///   };
617  /// }
618  ///
619  /// template<typename T> struct Y {
620  ///   typename N::S::X<T>::type member;
621  /// };
622  /// \endcode
623  ///
624  /// Here, the nested-name-specifier for N::S::X<T>:: will be
625  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
626  /// by declarations in the type system and the canonical type for
627  /// the template type parameter 'T' is template-param-0-0.
628  NestedNameSpecifier *
629  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
630
631  /// \brief Retrieves the "canonical" template name that refers to a
632  /// given template.
633  ///
634  /// The canonical template name is the simplest expression that can
635  /// be used to refer to a given template. For most templates, this
636  /// expression is just the template declaration itself. For example,
637  /// the template std::vector can be referred to via a variety of
638  /// names---std::vector, ::std::vector, vector (if vector is in
639  /// scope), etc.---but all of these names map down to the same
640  /// TemplateDecl, which is used to form the canonical template name.
641  ///
642  /// Dependent template names are more interesting. Here, the
643  /// template name could be something like T::template apply or
644  /// std::allocator<T>::template rebind, where the nested name
645  /// specifier itself is dependent. In this case, the canonical
646  /// template name uses the shortest form of the dependent
647  /// nested-name-specifier, which itself contains all canonical
648  /// types, values, and templates.
649  TemplateName getCanonicalTemplateName(TemplateName Name);
650
651  /// Type Query functions.  If the type is an instance of the specified class,
652  /// return the Type pointer for the underlying maximally pretty type.  This
653  /// is a member of ASTContext because this may need to do some amount of
654  /// canonicalization, e.g. to move type qualifiers into the element type.
655  const ArrayType *getAsArrayType(QualType T);
656  const ConstantArrayType *getAsConstantArrayType(QualType T) {
657    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
658  }
659  const VariableArrayType *getAsVariableArrayType(QualType T) {
660    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
661  }
662  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
663    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
664  }
665
666  /// getBaseElementType - Returns the innermost element type of a variable
667  /// length array type. For example, will return "int" for int[m][n]
668  QualType getBaseElementType(const VariableArrayType *VAT);
669
670  /// getArrayDecayedType - Return the properly qualified result of decaying the
671  /// specified array type to a pointer.  This operation is non-trivial when
672  /// handling typedefs etc.  The canonical type of "T" must be an array type,
673  /// this returns a pointer to a properly qualified element of the array.
674  ///
675  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
676  QualType getArrayDecayedType(QualType T);
677
678  /// getIntegerTypeOrder - Returns the highest ranked integer type:
679  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
680  /// LHS < RHS, return -1.
681  int getIntegerTypeOrder(QualType LHS, QualType RHS);
682
683  /// getFloatingTypeOrder - Compare the rank of the two specified floating
684  /// point types, ignoring the domain of the type (i.e. 'double' ==
685  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
686  /// LHS < RHS, return -1.
687  int getFloatingTypeOrder(QualType LHS, QualType RHS);
688
689  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
690  /// point or a complex type (based on typeDomain/typeSize).
691  /// 'typeDomain' is a real floating point or complex type.
692  /// 'typeSize' is a real floating point or complex type.
693  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
694                                             QualType typeDomain) const;
695
696private:
697  // Helper for integer ordering
698  unsigned getIntegerRank(Type* T);
699
700public:
701
702  //===--------------------------------------------------------------------===//
703  //                    Type Compatibility Predicates
704  //===--------------------------------------------------------------------===//
705
706  /// Compatibility predicates used to check assignment expressions.
707  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
708
709  bool isObjCIdType(QualType T) const {
710    return T == ObjCIdType;
711  }
712  bool isObjCIdStructType(QualType T) const {
713    if (!IdStructType) // ObjC isn't enabled
714      return false;
715    return T->getAsStructureType() == IdStructType;
716  }
717  bool isObjCClassType(QualType T) const {
718    return T == ObjCClassType;
719  }
720  bool isObjCClassStructType(QualType T) const {
721    if (!ClassStructType) // ObjC isn't enabled
722      return false;
723    return T->getAsStructureType() == ClassStructType;
724  }
725  bool isObjCSelType(QualType T) const {
726    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
727    return T->getAsStructureType() == SelStructType;
728  }
729
730  // Check the safety of assignment from LHS to RHS
731  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
732                               const ObjCInterfaceType *RHS);
733  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
734
735  // Functions for calculating composite types
736  QualType mergeTypes(QualType, QualType);
737  QualType mergeFunctionTypes(QualType, QualType);
738
739  //===--------------------------------------------------------------------===//
740  //                    Integer Predicates
741  //===--------------------------------------------------------------------===//
742
743  // The width of an integer, as defined in C99 6.2.6.2. This is the number
744  // of bits in an integer type excluding any padding bits.
745  unsigned getIntWidth(QualType T);
746
747  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
748  // unsigned integer type.  This method takes a signed type, and returns the
749  // corresponding unsigned integer type.
750  QualType getCorrespondingUnsignedType(QualType T);
751
752  //===--------------------------------------------------------------------===//
753  //                    Type Iterators.
754  //===--------------------------------------------------------------------===//
755
756  typedef std::vector<Type*>::iterator       type_iterator;
757  typedef std::vector<Type*>::const_iterator const_type_iterator;
758
759  type_iterator types_begin() { return Types.begin(); }
760  type_iterator types_end() { return Types.end(); }
761  const_type_iterator types_begin() const { return Types.begin(); }
762  const_type_iterator types_end() const { return Types.end(); }
763
764  //===--------------------------------------------------------------------===//
765  //                    Integer Values
766  //===--------------------------------------------------------------------===//
767
768  /// MakeIntValue - Make an APSInt of the appropriate width and
769  /// signedness for the given \arg Value and integer \arg Type.
770  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
771    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
772    Res = Value;
773    return Res;
774  }
775
776private:
777  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
778  void operator=(const ASTContext&); // DO NOT IMPLEMENT
779
780  void InitBuiltinTypes();
781  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
782
783  // Return the ObjC type encoding for a given type.
784  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
785                                  bool ExpandPointedToStructures,
786                                  bool ExpandStructures,
787                                  const FieldDecl *Field,
788                                  bool OutermostType = false,
789                                  bool EncodingProperty = false);
790
791  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
792                                       const ObjCImplementationDecl *Impl);
793};
794
795}  // end namespace clang
796
797// operator new and delete aren't allowed inside namespaces.
798// The throw specifications are mandated by the standard.
799/// @brief Placement new for using the ASTContext's allocator.
800///
801/// This placement form of operator new uses the ASTContext's allocator for
802/// obtaining memory. It is a non-throwing new, which means that it returns
803/// null on error. (If that is what the allocator does. The current does, so if
804/// this ever changes, this operator will have to be changed, too.)
805/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
806/// @code
807/// // Default alignment (16)
808/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
809/// // Specific alignment
810/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
811/// @endcode
812/// Please note that you cannot use delete on the pointer; it must be
813/// deallocated using an explicit destructor call followed by
814/// @c Context.Deallocate(Ptr).
815///
816/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
817/// @param C The ASTContext that provides the allocator.
818/// @param Alignment The alignment of the allocated memory (if the underlying
819///                  allocator supports it).
820/// @return The allocated memory. Could be NULL.
821inline void *operator new(size_t Bytes, clang::ASTContext &C,
822                          size_t Alignment) throw () {
823  return C.Allocate(Bytes, Alignment);
824}
825/// @brief Placement delete companion to the new above.
826///
827/// This operator is just a companion to the new above. There is no way of
828/// invoking it directly; see the new operator for more details. This operator
829/// is called implicitly by the compiler if a placement new expression using
830/// the ASTContext throws in the object constructor.
831inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
832              throw () {
833  C.Deallocate(Ptr);
834}
835
836/// This placement form of operator new[] uses the ASTContext's allocator for
837/// obtaining memory. It is a non-throwing new[], which means that it returns
838/// null on error.
839/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
840/// @code
841/// // Default alignment (16)
842/// char *data = new (Context) char[10];
843/// // Specific alignment
844/// char *data = new (Context, 8) char[10];
845/// @endcode
846/// Please note that you cannot use delete on the pointer; it must be
847/// deallocated using an explicit destructor call followed by
848/// @c Context.Deallocate(Ptr).
849///
850/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
851/// @param C The ASTContext that provides the allocator.
852/// @param Alignment The alignment of the allocated memory (if the underlying
853///                  allocator supports it).
854/// @return The allocated memory. Could be NULL.
855inline void *operator new[](size_t Bytes, clang::ASTContext& C,
856                            size_t Alignment = 16) throw () {
857  return C.Allocate(Bytes, Alignment);
858}
859
860/// @brief Placement delete[] companion to the new[] above.
861///
862/// This operator is just a companion to the new[] above. There is no way of
863/// invoking it directly; see the new[] operator for more details. This operator
864/// is called implicitly by the compiler if a placement new[] expression using
865/// the ASTContext throws in the object constructor.
866inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
867  C.Deallocate(Ptr);
868}
869
870#endif
871