ASTContext.h revision a2c3646c35dd09d21b74826240aa916545b1873f
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/LambdaMangleContext.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TemplateName.h"
28#include "clang/AST/Type.h"
29#include "clang/Basic/AddressSpaces.h"
30#include "clang/Basic/IdentifierTable.h"
31#include "clang/Basic/LangOptions.h"
32#include "clang/Basic/OperatorKinds.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/VersionTuple.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/IntrusiveRefCntPtr.h"
38#include "llvm/ADT/OwningPtr.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/Support/Allocator.h"
42#include <vector>
43
44namespace llvm {
45  struct fltSemantics;
46}
47
48namespace clang {
49  class FileManager;
50  class ASTRecordLayout;
51  class BlockExpr;
52  class CharUnits;
53  class DiagnosticsEngine;
54  class Expr;
55  class ExternalASTSource;
56  class ASTMutationListener;
57  class IdentifierTable;
58  class SelectorTable;
59  class TargetInfo;
60  class CXXABI;
61  // Decls
62  class MangleContext;
63  class ObjCIvarDecl;
64  class ObjCPropertyDecl;
65  class UnresolvedSetIterator;
66  class UsingDecl;
67  class UsingShadowDecl;
68
69  namespace Builtin { class Context; }
70
71  namespace comments {
72    class FullComment;
73  }
74
75/// \brief Holds long-lived AST nodes (such as types and decls) that can be
76/// referred to throughout the semantic analysis of a file.
77class ASTContext : public RefCountedBase<ASTContext> {
78  ASTContext &this_() { return *this; }
79
80  mutable SmallVector<Type *, 0> Types;
81  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
82  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
83  mutable llvm::FoldingSet<PointerType> PointerTypes;
84  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
85  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
86  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
87  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
88  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
89  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
90  mutable std::vector<VariableArrayType*> VariableArrayTypes;
91  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
92  mutable llvm::FoldingSet<DependentSizedExtVectorType>
93    DependentSizedExtVectorTypes;
94  mutable llvm::FoldingSet<VectorType> VectorTypes;
95  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
96  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
97    FunctionProtoTypes;
98  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
99  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
100  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
101  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
102    SubstTemplateTypeParmTypes;
103  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
104    SubstTemplateTypeParmPackTypes;
105  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
106    TemplateSpecializationTypes;
107  mutable llvm::FoldingSet<ParenType> ParenTypes;
108  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
109  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
110  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
111                                     ASTContext&>
112    DependentTemplateSpecializationTypes;
113  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
114  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
115  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
116  mutable llvm::FoldingSet<AutoType> AutoTypes;
117  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
118  llvm::FoldingSet<AttributedType> AttributedTypes;
119
120  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
121  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
122  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
123    SubstTemplateTemplateParms;
124  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
125                                     ASTContext&>
126    SubstTemplateTemplateParmPacks;
127
128  /// \brief The set of nested name specifiers.
129  ///
130  /// This set is managed by the NestedNameSpecifier class.
131  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
132  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
133  friend class NestedNameSpecifier;
134
135  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
136  ///
137  /// This is lazily created.  This is intentionally not serialized.
138  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
139    ASTRecordLayouts;
140  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
141    ObjCLayouts;
142
143  /// \brief A cache from types to size and alignment information.
144  typedef llvm::DenseMap<const Type*,
145                         std::pair<uint64_t, unsigned> > TypeInfoMap;
146  mutable TypeInfoMap MemoizedTypeInfo;
147
148  /// \brief A cache mapping from CXXRecordDecls to key functions.
149  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
150
151  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
152  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
153
154  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
155  /// interface.
156  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
157
158  /// \brief Mapping from __block VarDecls to their copy initialization expr.
159  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
160
161  /// \brief Mapping from class scope functions specialization to their
162  /// template patterns.
163  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
164    ClassScopeSpecializationPattern;
165
166  /// \brief Representation of a "canonical" template template parameter that
167  /// is used in canonical template names.
168  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
169    TemplateTemplateParmDecl *Parm;
170
171  public:
172    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
173      : Parm(Parm) { }
174
175    TemplateTemplateParmDecl *getParam() const { return Parm; }
176
177    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
178
179    static void Profile(llvm::FoldingSetNodeID &ID,
180                        TemplateTemplateParmDecl *Parm);
181  };
182  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
183    CanonTemplateTemplateParms;
184
185  TemplateTemplateParmDecl *
186    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
187
188  /// \brief The typedef for the __int128_t type.
189  mutable TypedefDecl *Int128Decl;
190
191  /// \brief The typedef for the __uint128_t type.
192  mutable TypedefDecl *UInt128Decl;
193
194  /// \brief The typedef for the target specific predefined
195  /// __builtin_va_list type.
196  mutable TypedefDecl *BuiltinVaListDecl;
197
198  /// \brief The typedef for the predefined \c id type.
199  mutable TypedefDecl *ObjCIdDecl;
200
201  /// \brief The typedef for the predefined \c SEL type.
202  mutable TypedefDecl *ObjCSelDecl;
203
204  /// \brief The typedef for the predefined \c Class type.
205  mutable TypedefDecl *ObjCClassDecl;
206
207  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
208  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
209
210  /// \brief The typedef for the predefined 'BOOL' type.
211  mutable TypedefDecl *BOOLDecl;
212
213  // Typedefs which may be provided defining the structure of Objective-C
214  // pseudo-builtins
215  QualType ObjCIdRedefinitionType;
216  QualType ObjCClassRedefinitionType;
217  QualType ObjCSelRedefinitionType;
218
219  QualType ObjCConstantStringType;
220  mutable RecordDecl *CFConstantStringTypeDecl;
221
222  mutable QualType ObjCSuperType;
223
224  QualType ObjCNSStringType;
225
226  /// \brief The typedef declaration for the Objective-C "instancetype" type.
227  TypedefDecl *ObjCInstanceTypeDecl;
228
229  /// \brief The type for the C FILE type.
230  TypeDecl *FILEDecl;
231
232  /// \brief The type for the C jmp_buf type.
233  TypeDecl *jmp_bufDecl;
234
235  /// \brief The type for the C sigjmp_buf type.
236  TypeDecl *sigjmp_bufDecl;
237
238  /// \brief The type for the C ucontext_t type.
239  TypeDecl *ucontext_tDecl;
240
241  /// \brief Type for the Block descriptor for Blocks CodeGen.
242  ///
243  /// Since this is only used for generation of debug info, it is not
244  /// serialized.
245  mutable RecordDecl *BlockDescriptorType;
246
247  /// \brief Type for the Block descriptor for Blocks CodeGen.
248  ///
249  /// Since this is only used for generation of debug info, it is not
250  /// serialized.
251  mutable RecordDecl *BlockDescriptorExtendedType;
252
253  /// \brief Declaration for the CUDA cudaConfigureCall function.
254  FunctionDecl *cudaConfigureCallDecl;
255
256  TypeSourceInfo NullTypeSourceInfo;
257
258  /// \brief Keeps track of all declaration attributes.
259  ///
260  /// Since so few decls have attrs, we keep them in a hash map instead of
261  /// wasting space in the Decl class.
262  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
263
264  /// \brief Keeps track of the static data member templates from which
265  /// static data members of class template specializations were instantiated.
266  ///
267  /// This data structure stores the mapping from instantiations of static
268  /// data members to the static data member representations within the
269  /// class template from which they were instantiated along with the kind
270  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
271  ///
272  /// Given the following example:
273  ///
274  /// \code
275  /// template<typename T>
276  /// struct X {
277  ///   static T value;
278  /// };
279  ///
280  /// template<typename T>
281  ///   T X<T>::value = T(17);
282  ///
283  /// int *x = &X<int>::value;
284  /// \endcode
285  ///
286  /// This mapping will contain an entry that maps from the VarDecl for
287  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
288  /// class template X) and will be marked TSK_ImplicitInstantiation.
289  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
290    InstantiatedFromStaticDataMember;
291
292  /// \brief Keeps track of the declaration from which a UsingDecl was
293  /// created during instantiation.
294  ///
295  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
296  /// or an UnresolvedUsingTypenameDecl.
297  ///
298  /// For example:
299  /// \code
300  /// template<typename T>
301  /// struct A {
302  ///   void f();
303  /// };
304  ///
305  /// template<typename T>
306  /// struct B : A<T> {
307  ///   using A<T>::f;
308  /// };
309  ///
310  /// template struct B<int>;
311  /// \endcode
312  ///
313  /// This mapping will contain an entry that maps from the UsingDecl in
314  /// B<int> to the UnresolvedUsingDecl in B<T>.
315  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
316
317  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
318    InstantiatedFromUsingShadowDecl;
319
320  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
321
322  /// \brief Mapping that stores the methods overridden by a given C++
323  /// member function.
324  ///
325  /// Since most C++ member functions aren't virtual and therefore
326  /// don't override anything, we store the overridden functions in
327  /// this map on the side rather than within the CXXMethodDecl structure.
328  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
329  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
330
331  /// \brief Mapping from each declaration context to its corresponding lambda
332  /// mangling context.
333  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
334
335  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
336  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
337
338  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
339  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
340  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
341  ParameterIndexTable ParamIndices;
342
343  ImportDecl *FirstLocalImport;
344  ImportDecl *LastLocalImport;
345
346  TranslationUnitDecl *TUDecl;
347
348  /// \brief The associated SourceManager object.a
349  SourceManager &SourceMgr;
350
351  /// \brief The language options used to create the AST associated with
352  ///  this ASTContext object.
353  LangOptions &LangOpts;
354
355  /// \brief The allocator used to create AST objects.
356  ///
357  /// AST objects are never destructed; rather, all memory associated with the
358  /// AST objects will be released when the ASTContext itself is destroyed.
359  mutable llvm::BumpPtrAllocator BumpAlloc;
360
361  /// \brief Allocator for partial diagnostics.
362  PartialDiagnostic::StorageAllocator DiagAllocator;
363
364  /// \brief The current C++ ABI.
365  OwningPtr<CXXABI> ABI;
366  CXXABI *createCXXABI(const TargetInfo &T);
367
368  /// \brief The logical -> physical address space map.
369  const LangAS::Map *AddrSpaceMap;
370
371  friend class ASTDeclReader;
372  friend class ASTReader;
373  friend class ASTWriter;
374  friend class CXXRecordDecl;
375
376  const TargetInfo *Target;
377  clang::PrintingPolicy PrintingPolicy;
378
379public:
380  IdentifierTable &Idents;
381  SelectorTable &Selectors;
382  Builtin::Context &BuiltinInfo;
383  mutable DeclarationNameTable DeclarationNames;
384  OwningPtr<ExternalASTSource> ExternalSource;
385  ASTMutationListener *Listener;
386
387  /// \brief Contains parents of a node.
388  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
389
390  /// \brief Maps from a node to its parents.
391  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
392
393  /// \brief Returns the parents of the given node.
394  ///
395  /// Note that this will lazily compute the parents of all nodes
396  /// and store them for later retrieval. Thus, the first call is O(n)
397  /// in the number of AST nodes.
398  ///
399  /// Caveats and FIXMEs:
400  /// Calculating the parent map over all AST nodes will need to load the
401  /// full AST. This can be undesirable in the case where the full AST is
402  /// expensive to create (for example, when using precompiled header
403  /// preambles). Thus, there are good opportunities for optimization here.
404  /// One idea is to walk the given node downwards, looking for references
405  /// to declaration contexts - once a declaration context is found, compute
406  /// the parent map for the declaration context; if that can satisfy the
407  /// request, loading the whole AST can be avoided. Note that this is made
408  /// more complex by statements in templates having multiple parents - those
409  /// problems can be solved by building closure over the templated parts of
410  /// the AST, which also avoids touching large parts of the AST.
411  /// Additionally, we will want to add an interface to already give a hint
412  /// where to search for the parents, for example when looking at a statement
413  /// inside a certain function.
414  ///
415  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
416  /// NestedNameSpecifier or NestedNameSpecifierLoc.
417  template <typename NodeT>
418  ParentVector getParents(const NodeT &Node) {
419    return getParents(ast_type_traits::DynTypedNode::create(Node));
420  }
421
422  ParentVector getParents(const ast_type_traits::DynTypedNode &Node) {
423    assert(Node.getMemoizationData() &&
424           "Invariant broken: only nodes that support memoization may be "
425           "used in the parent map.");
426    if (!AllParents) {
427      // We always need to run over the whole translation unit, as
428      // hasAncestor can escape any subtree.
429      AllParents.reset(
430          ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
431    }
432    ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
433    if (I == AllParents->end()) {
434      return ParentVector();
435    }
436    return I->second;
437  }
438
439  const clang::PrintingPolicy &getPrintingPolicy() const {
440    return PrintingPolicy;
441  }
442
443  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
444    PrintingPolicy = Policy;
445  }
446
447  SourceManager& getSourceManager() { return SourceMgr; }
448  const SourceManager& getSourceManager() const { return SourceMgr; }
449
450  llvm::BumpPtrAllocator &getAllocator() const {
451    return BumpAlloc;
452  }
453
454  void *Allocate(unsigned Size, unsigned Align = 8) const {
455    return BumpAlloc.Allocate(Size, Align);
456  }
457  void Deallocate(void *Ptr) const { }
458
459  /// Return the total amount of physical memory allocated for representing
460  /// AST nodes and type information.
461  size_t getASTAllocatedMemory() const {
462    return BumpAlloc.getTotalMemory();
463  }
464  /// Return the total memory used for various side tables.
465  size_t getSideTableAllocatedMemory() const;
466
467  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
468    return DiagAllocator;
469  }
470
471  const TargetInfo &getTargetInfo() const { return *Target; }
472
473  const LangOptions& getLangOpts() const { return LangOpts; }
474
475  DiagnosticsEngine &getDiagnostics() const;
476
477  FullSourceLoc getFullLoc(SourceLocation Loc) const {
478    return FullSourceLoc(Loc,SourceMgr);
479  }
480
481  /// \brief All comments in this translation unit.
482  RawCommentList Comments;
483
484  /// \brief True if comments are already loaded from ExternalASTSource.
485  mutable bool CommentsLoaded;
486
487  class RawCommentAndCacheFlags {
488  public:
489    enum Kind {
490      /// We searched for a comment attached to the particular declaration, but
491      /// didn't find any.
492      ///
493      /// getRaw() == 0.
494      NoCommentInDecl = 0,
495
496      /// We have found a comment attached to this particular declaration.
497      ///
498      /// getRaw() != 0.
499      FromDecl,
500
501      /// This declaration does not have an attached comment, and we have
502      /// searched the redeclaration chain.
503      ///
504      /// If getRaw() == 0, the whole redeclaration chain does not have any
505      /// comments.
506      ///
507      /// If getRaw() != 0, it is a comment propagated from other
508      /// redeclaration.
509      FromRedecl
510    };
511
512    Kind getKind() const LLVM_READONLY {
513      return Data.getInt();
514    }
515
516    void setKind(Kind K) {
517      Data.setInt(K);
518    }
519
520    const RawComment *getRaw() const LLVM_READONLY {
521      return Data.getPointer();
522    }
523
524    void setRaw(const RawComment *RC) {
525      Data.setPointer(RC);
526    }
527
528    const Decl *getOriginalDecl() const LLVM_READONLY {
529      return OriginalDecl;
530    }
531
532    void setOriginalDecl(const Decl *Orig) {
533      OriginalDecl = Orig;
534    }
535
536  private:
537    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
538    const Decl *OriginalDecl;
539  };
540
541  /// \brief Mapping from declarations to comments attached to any
542  /// redeclaration.
543  ///
544  /// Raw comments are owned by Comments list.  This mapping is populated
545  /// lazily.
546  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
547
548  /// \brief Mapping from declarations to parsed comments attached to any
549  /// redeclaration.
550  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
551
552  /// \brief Return the documentation comment attached to a given declaration,
553  /// without looking into cache.
554  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
555
556public:
557  RawCommentList &getRawCommentList() {
558    return Comments;
559  }
560
561  void addComment(const RawComment &RC) {
562    assert(LangOpts.RetainCommentsFromSystemHeaders ||
563           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
564    Comments.addComment(RC, BumpAlloc);
565  }
566
567  /// \brief Return the documentation comment attached to a given declaration.
568  /// Returns NULL if no comment is attached.
569  ///
570  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
571  /// the comment, if the comment we found comes from a redeclaration.
572  const RawComment *getRawCommentForAnyRedecl(
573                                      const Decl *D,
574                                      const Decl **OriginalDecl = NULL) const;
575
576  /// Return parsed documentation comment attached to a given declaration.
577  /// Returns NULL if no comment is attached.
578  ///
579  /// \param PP the Preprocessor used with this TU.  Could be NULL if
580  /// preprocessor is not available.
581  comments::FullComment *getCommentForDecl(const Decl *D,
582                                           const Preprocessor *PP) const;
583
584  comments::FullComment *cloneFullComment(comments::FullComment *FC,
585                                         const Decl *D) const;
586
587private:
588  mutable comments::CommandTraits CommentCommandTraits;
589
590public:
591  comments::CommandTraits &getCommentCommandTraits() const {
592    return CommentCommandTraits;
593  }
594
595  /// \brief Retrieve the attributes for the given declaration.
596  AttrVec& getDeclAttrs(const Decl *D);
597
598  /// \brief Erase the attributes corresponding to the given declaration.
599  void eraseDeclAttrs(const Decl *D);
600
601  /// \brief If this variable is an instantiated static data member of a
602  /// class template specialization, returns the templated static data member
603  /// from which it was instantiated.
604  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
605                                                           const VarDecl *Var);
606
607  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
608
609  void setClassScopeSpecializationPattern(FunctionDecl *FD,
610                                          FunctionDecl *Pattern);
611
612  /// \brief Note that the static data member \p Inst is an instantiation of
613  /// the static data member template \p Tmpl of a class template.
614  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
615                                           TemplateSpecializationKind TSK,
616                        SourceLocation PointOfInstantiation = SourceLocation());
617
618  /// \brief If the given using decl \p Inst is an instantiation of a
619  /// (possibly unresolved) using decl from a template instantiation,
620  /// return it.
621  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
622
623  /// \brief Remember that the using decl \p Inst is an instantiation
624  /// of the using decl \p Pattern of a class template.
625  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
626
627  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
628                                          UsingShadowDecl *Pattern);
629  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
630
631  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
632
633  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
634
635  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
636  /// the non-bitfield \p LastFD.
637  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
638                                      const FieldDecl *LastFD) const;
639
640  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
641  /// the bitfield \p LastFD.
642  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
643                                   const FieldDecl *LastFD) const;
644
645  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
646  /// \p LastFD.
647  bool BitfieldFollowsBitfield(const FieldDecl *FD,
648                               const FieldDecl *LastFD) const;
649
650  /// \brief Return \c true if \p FD is not a bitfield which follows the
651  /// bitfield \p LastFD.
652  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
653                                  const FieldDecl *LastFD) const;
654
655  /// \brief Return \c true if \p FD is a bitfield which follows the
656  /// non-bitfield \p LastFD.
657  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
658                                  const FieldDecl *LastFD) const;
659
660  // Access to the set of methods overridden by the given C++ method.
661  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
662  overridden_cxx_method_iterator
663  overridden_methods_begin(const CXXMethodDecl *Method) const;
664
665  overridden_cxx_method_iterator
666  overridden_methods_end(const CXXMethodDecl *Method) const;
667
668  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
669
670  /// \brief Note that the given C++ \p Method overrides the given \p
671  /// Overridden method.
672  void addOverriddenMethod(const CXXMethodDecl *Method,
673                           const CXXMethodDecl *Overridden);
674
675  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
676  ///
677  /// An ObjC method is considered to override any method in the class's
678  /// base classes, its protocols, or its categories' protocols, that has
679  /// the same selector and is of the same kind (class or instance).
680  /// A method in an implementation is not considered as overriding the same
681  /// method in the interface or its categories.
682  void getOverriddenMethods(
683                        const NamedDecl *Method,
684                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
685
686  /// \brief Notify the AST context that a new import declaration has been
687  /// parsed or implicitly created within this translation unit.
688  void addedLocalImportDecl(ImportDecl *Import);
689
690  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
691    return Import->NextLocalImport;
692  }
693
694  /// \brief Iterator that visits import declarations.
695  class import_iterator {
696    ImportDecl *Import;
697
698  public:
699    typedef ImportDecl               *value_type;
700    typedef ImportDecl               *reference;
701    typedef ImportDecl               *pointer;
702    typedef int                       difference_type;
703    typedef std::forward_iterator_tag iterator_category;
704
705    import_iterator() : Import() { }
706    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
707
708    reference operator*() const { return Import; }
709    pointer operator->() const { return Import; }
710
711    import_iterator &operator++() {
712      Import = ASTContext::getNextLocalImport(Import);
713      return *this;
714    }
715
716    import_iterator operator++(int) {
717      import_iterator Other(*this);
718      ++(*this);
719      return Other;
720    }
721
722    friend bool operator==(import_iterator X, import_iterator Y) {
723      return X.Import == Y.Import;
724    }
725
726    friend bool operator!=(import_iterator X, import_iterator Y) {
727      return X.Import != Y.Import;
728    }
729  };
730
731  import_iterator local_import_begin() const {
732    return import_iterator(FirstLocalImport);
733  }
734  import_iterator local_import_end() const { return import_iterator(); }
735
736  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
737
738
739  // Builtin Types.
740  CanQualType VoidTy;
741  CanQualType BoolTy;
742  CanQualType CharTy;
743  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
744  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
745  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
746  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
747  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
748  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
749  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
750  CanQualType FloatTy, DoubleTy, LongDoubleTy;
751  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
752  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
753  CanQualType VoidPtrTy, NullPtrTy;
754  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
755  CanQualType BuiltinFnTy;
756  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
757  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
758  CanQualType ObjCBuiltinBoolTy;
759  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
760  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
761  CanQualType OCLImage3dTy;
762  CanQualType OCLSamplerTy, OCLEventTy;
763
764  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
765  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
766  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
767
768  // Type used to help define __builtin_va_list for some targets.
769  // The type is built when constructing 'BuiltinVaListDecl'.
770  mutable QualType VaListTagTy;
771
772  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
773             IdentifierTable &idents, SelectorTable &sels,
774             Builtin::Context &builtins,
775             unsigned size_reserve,
776             bool DelayInitialization = false);
777
778  ~ASTContext();
779
780  /// \brief Attach an external AST source to the AST context.
781  ///
782  /// The external AST source provides the ability to load parts of
783  /// the abstract syntax tree as needed from some external storage,
784  /// e.g., a precompiled header.
785  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
786
787  /// \brief Retrieve a pointer to the external AST source associated
788  /// with this AST context, if any.
789  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
790
791  /// \brief Attach an AST mutation listener to the AST context.
792  ///
793  /// The AST mutation listener provides the ability to track modifications to
794  /// the abstract syntax tree entities committed after they were initially
795  /// created.
796  void setASTMutationListener(ASTMutationListener *Listener) {
797    this->Listener = Listener;
798  }
799
800  /// \brief Retrieve a pointer to the AST mutation listener associated
801  /// with this AST context, if any.
802  ASTMutationListener *getASTMutationListener() const { return Listener; }
803
804  void PrintStats() const;
805  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
806
807  /// \brief Retrieve the declaration for the 128-bit signed integer type.
808  TypedefDecl *getInt128Decl() const;
809
810  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
811  TypedefDecl *getUInt128Decl() const;
812
813  //===--------------------------------------------------------------------===//
814  //                           Type Constructors
815  //===--------------------------------------------------------------------===//
816
817private:
818  /// \brief Return a type with extended qualifiers.
819  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
820
821  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
822
823public:
824  /// \brief Return the uniqued reference to the type for an address space
825  /// qualified type with the specified type and address space.
826  ///
827  /// The resulting type has a union of the qualifiers from T and the address
828  /// space. If T already has an address space specifier, it is silently
829  /// replaced.
830  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
831
832  /// \brief Return the uniqued reference to the type for an Objective-C
833  /// gc-qualified type.
834  ///
835  /// The retulting type has a union of the qualifiers from T and the gc
836  /// attribute.
837  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
838
839  /// \brief Return the uniqued reference to the type for a \c restrict
840  /// qualified type.
841  ///
842  /// The resulting type has a union of the qualifiers from \p T and
843  /// \c restrict.
844  QualType getRestrictType(QualType T) const {
845    return T.withFastQualifiers(Qualifiers::Restrict);
846  }
847
848  /// \brief Return the uniqued reference to the type for a \c volatile
849  /// qualified type.
850  ///
851  /// The resulting type has a union of the qualifiers from \p T and
852  /// \c volatile.
853  QualType getVolatileType(QualType T) const {
854    return T.withFastQualifiers(Qualifiers::Volatile);
855  }
856
857  /// \brief Return the uniqued reference to the type for a \c const
858  /// qualified type.
859  ///
860  /// The resulting type has a union of the qualifiers from \p T and \c const.
861  ///
862  /// It can be reasonably expected that this will always be equivalent to
863  /// calling T.withConst().
864  QualType getConstType(QualType T) const { return T.withConst(); }
865
866  /// \brief Change the ExtInfo on a function type.
867  const FunctionType *adjustFunctionType(const FunctionType *Fn,
868                                         FunctionType::ExtInfo EInfo);
869
870  /// \brief Return the uniqued reference to the type for a complex
871  /// number with the specified element type.
872  QualType getComplexType(QualType T) const;
873  CanQualType getComplexType(CanQualType T) const {
874    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
875  }
876
877  /// \brief Return the uniqued reference to the type for a pointer to
878  /// the specified type.
879  QualType getPointerType(QualType T) const;
880  CanQualType getPointerType(CanQualType T) const {
881    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
882  }
883
884  /// \brief Return the uniqued reference to the atomic type for the specified
885  /// type.
886  QualType getAtomicType(QualType T) const;
887
888  /// \brief Return the uniqued reference to the type for a block of the
889  /// specified type.
890  QualType getBlockPointerType(QualType T) const;
891
892  /// Gets the struct used to keep track of the descriptor for pointer to
893  /// blocks.
894  QualType getBlockDescriptorType() const;
895
896  /// Gets the struct used to keep track of the extended descriptor for
897  /// pointer to blocks.
898  QualType getBlockDescriptorExtendedType() const;
899
900  void setcudaConfigureCallDecl(FunctionDecl *FD) {
901    cudaConfigureCallDecl = FD;
902  }
903  FunctionDecl *getcudaConfigureCallDecl() {
904    return cudaConfigureCallDecl;
905  }
906
907  /// Returns true iff we need copy/dispose helpers for the given type.
908  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
909
910
911  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
912  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
913  /// has extended lifetime.
914  bool getByrefLifetime(QualType Ty,
915                        Qualifiers::ObjCLifetime &Lifetime,
916                        bool &HasByrefExtendedLayout) const;
917
918  /// \brief Return the uniqued reference to the type for an lvalue reference
919  /// to the specified type.
920  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
921    const;
922
923  /// \brief Return the uniqued reference to the type for an rvalue reference
924  /// to the specified type.
925  QualType getRValueReferenceType(QualType T) const;
926
927  /// \brief Return the uniqued reference to the type for a member pointer to
928  /// the specified type in the specified class.
929  ///
930  /// The class \p Cls is a \c Type because it could be a dependent name.
931  QualType getMemberPointerType(QualType T, const Type *Cls) const;
932
933  /// \brief Return a non-unique reference to the type for a variable array of
934  /// the specified element type.
935  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
936                                ArrayType::ArraySizeModifier ASM,
937                                unsigned IndexTypeQuals,
938                                SourceRange Brackets) const;
939
940  /// \brief Return a non-unique reference to the type for a dependently-sized
941  /// array of the specified element type.
942  ///
943  /// FIXME: We will need these to be uniqued, or at least comparable, at some
944  /// point.
945  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
946                                      ArrayType::ArraySizeModifier ASM,
947                                      unsigned IndexTypeQuals,
948                                      SourceRange Brackets) const;
949
950  /// \brief Return a unique reference to the type for an incomplete array of
951  /// the specified element type.
952  QualType getIncompleteArrayType(QualType EltTy,
953                                  ArrayType::ArraySizeModifier ASM,
954                                  unsigned IndexTypeQuals) const;
955
956  /// \brief Return the unique reference to the type for a constant array of
957  /// the specified element type.
958  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
959                                ArrayType::ArraySizeModifier ASM,
960                                unsigned IndexTypeQuals) const;
961
962  /// \brief Returns a vla type where known sizes are replaced with [*].
963  QualType getVariableArrayDecayedType(QualType Ty) const;
964
965  /// \brief Return the unique reference to a vector type of the specified
966  /// element type and size.
967  ///
968  /// \pre \p VectorType must be a built-in type.
969  QualType getVectorType(QualType VectorType, unsigned NumElts,
970                         VectorType::VectorKind VecKind) const;
971
972  /// \brief Return the unique reference to an extended vector type
973  /// of the specified element type and size.
974  ///
975  /// \pre \p VectorType must be a built-in type.
976  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
977
978  /// \pre Return a non-unique reference to the type for a dependently-sized
979  /// vector of the specified element type.
980  ///
981  /// FIXME: We will need these to be uniqued, or at least comparable, at some
982  /// point.
983  QualType getDependentSizedExtVectorType(QualType VectorType,
984                                          Expr *SizeExpr,
985                                          SourceLocation AttrLoc) const;
986
987  /// \brief Return a K&R style C function type like 'int()'.
988  QualType getFunctionNoProtoType(QualType ResultTy,
989                                  const FunctionType::ExtInfo &Info) const;
990
991  QualType getFunctionNoProtoType(QualType ResultTy) const {
992    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
993  }
994
995  /// \brief Return a normal function type with a typed argument list.
996  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
997                           const FunctionProtoType::ExtProtoInfo &EPI) const;
998
999  /// \brief Return the unique reference to the type for the specified type
1000  /// declaration.
1001  QualType getTypeDeclType(const TypeDecl *Decl,
1002                           const TypeDecl *PrevDecl = 0) const {
1003    assert(Decl && "Passed null for Decl param");
1004    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1005
1006    if (PrevDecl) {
1007      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1008      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1009      return QualType(PrevDecl->TypeForDecl, 0);
1010    }
1011
1012    return getTypeDeclTypeSlow(Decl);
1013  }
1014
1015  /// \brief Return the unique reference to the type for the specified
1016  /// typedef-name decl.
1017  QualType getTypedefType(const TypedefNameDecl *Decl,
1018                          QualType Canon = QualType()) const;
1019
1020  QualType getRecordType(const RecordDecl *Decl) const;
1021
1022  QualType getEnumType(const EnumDecl *Decl) const;
1023
1024  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1025
1026  QualType getAttributedType(AttributedType::Kind attrKind,
1027                             QualType modifiedType,
1028                             QualType equivalentType);
1029
1030  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1031                                        QualType Replacement) const;
1032  QualType getSubstTemplateTypeParmPackType(
1033                                          const TemplateTypeParmType *Replaced,
1034                                            const TemplateArgument &ArgPack);
1035
1036  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1037                                   bool ParameterPack,
1038                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1039
1040  QualType getTemplateSpecializationType(TemplateName T,
1041                                         const TemplateArgument *Args,
1042                                         unsigned NumArgs,
1043                                         QualType Canon = QualType()) const;
1044
1045  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1046                                                  const TemplateArgument *Args,
1047                                                  unsigned NumArgs) const;
1048
1049  QualType getTemplateSpecializationType(TemplateName T,
1050                                         const TemplateArgumentListInfo &Args,
1051                                         QualType Canon = QualType()) const;
1052
1053  TypeSourceInfo *
1054  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1055                                    const TemplateArgumentListInfo &Args,
1056                                    QualType Canon = QualType()) const;
1057
1058  QualType getParenType(QualType NamedType) const;
1059
1060  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1061                             NestedNameSpecifier *NNS,
1062                             QualType NamedType) const;
1063  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1064                                NestedNameSpecifier *NNS,
1065                                const IdentifierInfo *Name,
1066                                QualType Canon = QualType()) const;
1067
1068  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1069                                                  NestedNameSpecifier *NNS,
1070                                                  const IdentifierInfo *Name,
1071                                    const TemplateArgumentListInfo &Args) const;
1072  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1073                                                  NestedNameSpecifier *NNS,
1074                                                  const IdentifierInfo *Name,
1075                                                  unsigned NumArgs,
1076                                            const TemplateArgument *Args) const;
1077
1078  QualType getPackExpansionType(QualType Pattern,
1079                                Optional<unsigned> NumExpansions);
1080
1081  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1082                                ObjCInterfaceDecl *PrevDecl = 0) const;
1083
1084  QualType getObjCObjectType(QualType Base,
1085                             ObjCProtocolDecl * const *Protocols,
1086                             unsigned NumProtocols) const;
1087
1088  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1089  QualType getObjCObjectPointerType(QualType OIT) const;
1090
1091  /// \brief GCC extension.
1092  QualType getTypeOfExprType(Expr *e) const;
1093  QualType getTypeOfType(QualType t) const;
1094
1095  /// \brief C++11 decltype.
1096  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1097
1098  /// \brief Unary type transforms
1099  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1100                                 UnaryTransformType::UTTKind UKind) const;
1101
1102  /// \brief C++11 deduced auto type.
1103  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto) const;
1104
1105  /// \brief C++11 deduction pattern for 'auto' type.
1106  QualType getAutoDeductType() const;
1107
1108  /// \brief C++11 deduction pattern for 'auto &&' type.
1109  QualType getAutoRRefDeductType() const;
1110
1111  /// \brief Return the unique reference to the type for the specified TagDecl
1112  /// (struct/union/class/enum) decl.
1113  QualType getTagDeclType(const TagDecl *Decl) const;
1114
1115  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1116  /// <stddef.h>.
1117  ///
1118  /// The sizeof operator requires this (C99 6.5.3.4p4).
1119  CanQualType getSizeType() const;
1120
1121  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1122  /// <stdint.h>.
1123  CanQualType getIntMaxType() const;
1124
1125  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1126  /// <stdint.h>.
1127  CanQualType getUIntMaxType() const;
1128
1129  /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1130  /// returns a type compatible with the type defined in <stddef.h> as defined
1131  /// by the target.
1132  QualType getWCharType() const { return WCharTy; }
1133
1134  /// \brief Return the type of "signed wchar_t".
1135  ///
1136  /// Used when in C++, as a GCC extension.
1137  QualType getSignedWCharType() const;
1138
1139  /// \brief Return the type of "unsigned wchar_t".
1140  ///
1141  /// Used when in C++, as a GCC extension.
1142  QualType getUnsignedWCharType() const;
1143
1144  /// \brief In C99, this returns a type compatible with the type
1145  /// defined in <stddef.h> as defined by the target.
1146  QualType getWIntType() const { return WIntTy; }
1147
1148  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1149  /// as defined by the target.
1150  QualType getIntPtrType() const;
1151
1152  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1153  /// as defined by the target.
1154  QualType getUIntPtrType() const;
1155
1156  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1157  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1158  QualType getPointerDiffType() const;
1159
1160  /// \brief Return the unique type for "pid_t" defined in
1161  /// <sys/types.h>. We need this to compute the correct type for vfork().
1162  QualType getProcessIDType() const;
1163
1164  /// \brief Return the C structure type used to represent constant CFStrings.
1165  QualType getCFConstantStringType() const;
1166
1167  /// \brief Returns the C struct type for objc_super
1168  QualType getObjCSuperType() const;
1169  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1170
1171  /// Get the structure type used to representation CFStrings, or NULL
1172  /// if it hasn't yet been built.
1173  QualType getRawCFConstantStringType() const {
1174    if (CFConstantStringTypeDecl)
1175      return getTagDeclType(CFConstantStringTypeDecl);
1176    return QualType();
1177  }
1178  void setCFConstantStringType(QualType T);
1179
1180  // This setter/getter represents the ObjC type for an NSConstantString.
1181  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1182  QualType getObjCConstantStringInterface() const {
1183    return ObjCConstantStringType;
1184  }
1185
1186  QualType getObjCNSStringType() const {
1187    return ObjCNSStringType;
1188  }
1189
1190  void setObjCNSStringType(QualType T) {
1191    ObjCNSStringType = T;
1192  }
1193
1194  /// \brief Retrieve the type that \c id has been defined to, which may be
1195  /// different from the built-in \c id if \c id has been typedef'd.
1196  QualType getObjCIdRedefinitionType() const {
1197    if (ObjCIdRedefinitionType.isNull())
1198      return getObjCIdType();
1199    return ObjCIdRedefinitionType;
1200  }
1201
1202  /// \brief Set the user-written type that redefines \c id.
1203  void setObjCIdRedefinitionType(QualType RedefType) {
1204    ObjCIdRedefinitionType = RedefType;
1205  }
1206
1207  /// \brief Retrieve the type that \c Class has been defined to, which may be
1208  /// different from the built-in \c Class if \c Class has been typedef'd.
1209  QualType getObjCClassRedefinitionType() const {
1210    if (ObjCClassRedefinitionType.isNull())
1211      return getObjCClassType();
1212    return ObjCClassRedefinitionType;
1213  }
1214
1215  /// \brief Set the user-written type that redefines 'SEL'.
1216  void setObjCClassRedefinitionType(QualType RedefType) {
1217    ObjCClassRedefinitionType = RedefType;
1218  }
1219
1220  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1221  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1222  QualType getObjCSelRedefinitionType() const {
1223    if (ObjCSelRedefinitionType.isNull())
1224      return getObjCSelType();
1225    return ObjCSelRedefinitionType;
1226  }
1227
1228
1229  /// \brief Set the user-written type that redefines 'SEL'.
1230  void setObjCSelRedefinitionType(QualType RedefType) {
1231    ObjCSelRedefinitionType = RedefType;
1232  }
1233
1234  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1235  /// otherwise, returns a NULL type;
1236  QualType getObjCInstanceType() {
1237    return getTypeDeclType(getObjCInstanceTypeDecl());
1238  }
1239
1240  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1241  /// "instancetype" type.
1242  TypedefDecl *getObjCInstanceTypeDecl();
1243
1244  /// \brief Set the type for the C FILE type.
1245  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1246
1247  /// \brief Retrieve the C FILE type.
1248  QualType getFILEType() const {
1249    if (FILEDecl)
1250      return getTypeDeclType(FILEDecl);
1251    return QualType();
1252  }
1253
1254  /// \brief Set the type for the C jmp_buf type.
1255  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1256    this->jmp_bufDecl = jmp_bufDecl;
1257  }
1258
1259  /// \brief Retrieve the C jmp_buf type.
1260  QualType getjmp_bufType() const {
1261    if (jmp_bufDecl)
1262      return getTypeDeclType(jmp_bufDecl);
1263    return QualType();
1264  }
1265
1266  /// \brief Set the type for the C sigjmp_buf type.
1267  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1268    this->sigjmp_bufDecl = sigjmp_bufDecl;
1269  }
1270
1271  /// \brief Retrieve the C sigjmp_buf type.
1272  QualType getsigjmp_bufType() const {
1273    if (sigjmp_bufDecl)
1274      return getTypeDeclType(sigjmp_bufDecl);
1275    return QualType();
1276  }
1277
1278  /// \brief Set the type for the C ucontext_t type.
1279  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1280    this->ucontext_tDecl = ucontext_tDecl;
1281  }
1282
1283  /// \brief Retrieve the C ucontext_t type.
1284  QualType getucontext_tType() const {
1285    if (ucontext_tDecl)
1286      return getTypeDeclType(ucontext_tDecl);
1287    return QualType();
1288  }
1289
1290  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1291  QualType getLogicalOperationType() const {
1292    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1293  }
1294
1295  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1296  /// \p S.
1297  ///
1298  /// If \p Field is specified then record field names are also encoded.
1299  void getObjCEncodingForType(QualType T, std::string &S,
1300                              const FieldDecl *Field=0) const;
1301
1302  void getLegacyIntegralTypeEncoding(QualType &t) const;
1303
1304  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1305  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1306                                       std::string &S) const;
1307
1308  /// \brief Emit the encoded type for the function \p Decl into \p S.
1309  ///
1310  /// This is in the same format as Objective-C method encodings.
1311  ///
1312  /// \returns true if an error occurred (e.g., because one of the parameter
1313  /// types is incomplete), false otherwise.
1314  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1315
1316  /// \brief Emit the encoded type for the method declaration \p Decl into
1317  /// \p S.
1318  ///
1319  /// \returns true if an error occurred (e.g., because one of the parameter
1320  /// types is incomplete), false otherwise.
1321  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1322                                    bool Extended = false)
1323    const;
1324
1325  /// \brief Return the encoded type for this block declaration.
1326  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1327
1328  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1329  /// this method declaration. If non-NULL, Container must be either
1330  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1331  /// only be NULL when getting encodings for protocol properties.
1332  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1333                                      const Decl *Container,
1334                                      std::string &S) const;
1335
1336  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1337                                      ObjCProtocolDecl *rProto) const;
1338
1339  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1340  /// in characters.
1341  CharUnits getObjCEncodingTypeSize(QualType T) const;
1342
1343  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1344  /// in Objective-C.
1345  TypedefDecl *getObjCIdDecl() const;
1346
1347  /// \brief Represents the Objective-CC \c id type.
1348  ///
1349  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1350  /// pointer type, a pointer to a struct.
1351  QualType getObjCIdType() const {
1352    return getTypeDeclType(getObjCIdDecl());
1353  }
1354
1355  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1356  /// in Objective-C.
1357  TypedefDecl *getObjCSelDecl() const;
1358
1359  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1360  /// 'SEL' type.
1361  QualType getObjCSelType() const {
1362    return getTypeDeclType(getObjCSelDecl());
1363  }
1364
1365  /// \brief Retrieve the typedef declaration corresponding to the predefined
1366  /// Objective-C 'Class' type.
1367  TypedefDecl *getObjCClassDecl() const;
1368
1369  /// \brief Represents the Objective-C \c Class type.
1370  ///
1371  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1372  /// pointer type, a pointer to a struct.
1373  QualType getObjCClassType() const {
1374    return getTypeDeclType(getObjCClassDecl());
1375  }
1376
1377  /// \brief Retrieve the Objective-C class declaration corresponding to
1378  /// the predefined \c Protocol class.
1379  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1380
1381  /// \brief Retrieve declaration of 'BOOL' typedef
1382  TypedefDecl *getBOOLDecl() const {
1383    return BOOLDecl;
1384  }
1385
1386  /// \brief Save declaration of 'BOOL' typedef
1387  void setBOOLDecl(TypedefDecl *TD) {
1388    BOOLDecl = TD;
1389  }
1390
1391  /// \brief type of 'BOOL' type.
1392  QualType getBOOLType() const {
1393    return getTypeDeclType(getBOOLDecl());
1394  }
1395
1396  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1397  QualType getObjCProtoType() const {
1398    return getObjCInterfaceType(getObjCProtocolDecl());
1399  }
1400
1401  /// \brief Retrieve the C type declaration corresponding to the predefined
1402  /// \c __builtin_va_list type.
1403  TypedefDecl *getBuiltinVaListDecl() const;
1404
1405  /// \brief Retrieve the type of the \c __builtin_va_list type.
1406  QualType getBuiltinVaListType() const {
1407    return getTypeDeclType(getBuiltinVaListDecl());
1408  }
1409
1410  /// \brief Retrieve the C type declaration corresponding to the predefined
1411  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1412  /// for some targets.
1413  QualType getVaListTagType() const;
1414
1415  /// \brief Return a type with additional \c const, \c volatile, or
1416  /// \c restrict qualifiers.
1417  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1418    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1419  }
1420
1421  /// \brief Un-split a SplitQualType.
1422  QualType getQualifiedType(SplitQualType split) const {
1423    return getQualifiedType(split.Ty, split.Quals);
1424  }
1425
1426  /// \brief Return a type with additional qualifiers.
1427  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1428    if (!Qs.hasNonFastQualifiers())
1429      return T.withFastQualifiers(Qs.getFastQualifiers());
1430    QualifierCollector Qc(Qs);
1431    const Type *Ptr = Qc.strip(T);
1432    return getExtQualType(Ptr, Qc);
1433  }
1434
1435  /// \brief Return a type with additional qualifiers.
1436  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1437    if (!Qs.hasNonFastQualifiers())
1438      return QualType(T, Qs.getFastQualifiers());
1439    return getExtQualType(T, Qs);
1440  }
1441
1442  /// \brief Return a type with the given lifetime qualifier.
1443  ///
1444  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1445  QualType getLifetimeQualifiedType(QualType type,
1446                                    Qualifiers::ObjCLifetime lifetime) {
1447    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1448    assert(lifetime != Qualifiers::OCL_None);
1449
1450    Qualifiers qs;
1451    qs.addObjCLifetime(lifetime);
1452    return getQualifiedType(type, qs);
1453  }
1454
1455  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1456                                         SourceLocation NameLoc) const;
1457
1458  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1459                                         UnresolvedSetIterator End) const;
1460
1461  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1462                                        bool TemplateKeyword,
1463                                        TemplateDecl *Template) const;
1464
1465  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1466                                        const IdentifierInfo *Name) const;
1467  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1468                                        OverloadedOperatorKind Operator) const;
1469  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1470                                            TemplateName replacement) const;
1471  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1472                                        const TemplateArgument &ArgPack) const;
1473
1474  enum GetBuiltinTypeError {
1475    GE_None,              ///< No error
1476    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1477    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1478    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1479  };
1480
1481  /// \brief Return the type for the specified builtin.
1482  ///
1483  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1484  /// arguments to the builtin that are required to be integer constant
1485  /// expressions.
1486  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1487                          unsigned *IntegerConstantArgs = 0) const;
1488
1489private:
1490  CanQualType getFromTargetType(unsigned Type) const;
1491  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1492
1493  //===--------------------------------------------------------------------===//
1494  //                         Type Predicates.
1495  //===--------------------------------------------------------------------===//
1496
1497public:
1498  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1499  /// collection attributes.
1500  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1501
1502  /// \brief Return true if the given vector types are of the same unqualified
1503  /// type or if they are equivalent to the same GCC vector type.
1504  ///
1505  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1506  /// types.
1507  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1508
1509  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1510  /// attribute set.
1511  static bool isObjCNSObjectType(QualType Ty) {
1512    return Ty->isObjCNSObjectType();
1513  }
1514
1515  //===--------------------------------------------------------------------===//
1516  //                         Type Sizing and Analysis
1517  //===--------------------------------------------------------------------===//
1518
1519  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1520  /// point type.
1521  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1522
1523  /// \brief Get the size and alignment of the specified complete type in bits.
1524  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1525  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1526    return getTypeInfo(T.getTypePtr());
1527  }
1528
1529  /// \brief Return the size of the specified (complete) type \p T, in bits.
1530  uint64_t getTypeSize(QualType T) const {
1531    return getTypeInfo(T).first;
1532  }
1533  uint64_t getTypeSize(const Type *T) const {
1534    return getTypeInfo(T).first;
1535  }
1536
1537  /// \brief Return the size of the character type, in bits.
1538  uint64_t getCharWidth() const {
1539    return getTypeSize(CharTy);
1540  }
1541
1542  /// \brief Convert a size in bits to a size in characters.
1543  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1544
1545  /// \brief Convert a size in characters to a size in bits.
1546  int64_t toBits(CharUnits CharSize) const;
1547
1548  /// \brief Return the size of the specified (complete) type \p T, in
1549  /// characters.
1550  CharUnits getTypeSizeInChars(QualType T) const;
1551  CharUnits getTypeSizeInChars(const Type *T) const;
1552
1553  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1554  /// bits.
1555  unsigned getTypeAlign(QualType T) const {
1556    return getTypeInfo(T).second;
1557  }
1558  unsigned getTypeAlign(const Type *T) const {
1559    return getTypeInfo(T).second;
1560  }
1561
1562  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1563  /// characters.
1564  CharUnits getTypeAlignInChars(QualType T) const;
1565  CharUnits getTypeAlignInChars(const Type *T) const;
1566
1567  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1568  // type is a record, its data size is returned.
1569  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1570
1571  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1572  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1573
1574  /// \brief Return the "preferred" alignment of the specified type \p T for
1575  /// the current target, in bits.
1576  ///
1577  /// This can be different than the ABI alignment in cases where it is
1578  /// beneficial for performance to overalign a data type.
1579  unsigned getPreferredTypeAlign(const Type *T) const;
1580
1581  /// \brief Return a conservative estimate of the alignment of the specified
1582  /// decl \p D.
1583  ///
1584  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1585  /// alignment.
1586  ///
1587  /// If \p RefAsPointee, references are treated like their underlying type
1588  /// (for alignof), else they're treated like pointers (for CodeGen).
1589  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1590
1591  /// \brief Get or compute information about the layout of the specified
1592  /// record (struct/union/class) \p D, which indicates its size and field
1593  /// position information.
1594  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1595
1596  /// \brief Get or compute information about the layout of the specified
1597  /// Objective-C interface.
1598  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1599    const;
1600
1601  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1602                        bool Simple = false) const;
1603
1604  /// \brief Get or compute information about the layout of the specified
1605  /// Objective-C implementation.
1606  ///
1607  /// This may differ from the interface if synthesized ivars are present.
1608  const ASTRecordLayout &
1609  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1610
1611  /// \brief Get our current best idea for the key function of the
1612  /// given record decl, or NULL if there isn't one.
1613  ///
1614  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1615  ///   ...the first non-pure virtual function that is not inline at the
1616  ///   point of class definition.
1617  ///
1618  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1619  /// virtual functions that are defined 'inline', which means that
1620  /// the result of this computation can change.
1621  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1622
1623  /// \brief Observe that the given method cannot be a key function.
1624  /// Checks the key-function cache for the method's class and clears it
1625  /// if matches the given declaration.
1626  ///
1627  /// This is used in ABIs where out-of-line definitions marked
1628  /// inline are not considered to be key functions.
1629  ///
1630  /// \param method should be the declaration from the class definition
1631  void setNonKeyFunction(const CXXMethodDecl *method);
1632
1633  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1634  uint64_t getFieldOffset(const ValueDecl *FD) const;
1635
1636  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1637
1638  MangleContext *createMangleContext();
1639
1640  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1641                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1642
1643  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1644  void CollectInheritedProtocols(const Decl *CDecl,
1645                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1646
1647  //===--------------------------------------------------------------------===//
1648  //                            Type Operators
1649  //===--------------------------------------------------------------------===//
1650
1651  /// \brief Return the canonical (structural) type corresponding to the
1652  /// specified potentially non-canonical type \p T.
1653  ///
1654  /// The non-canonical version of a type may have many "decorated" versions of
1655  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1656  /// returned type is guaranteed to be free of any of these, allowing two
1657  /// canonical types to be compared for exact equality with a simple pointer
1658  /// comparison.
1659  CanQualType getCanonicalType(QualType T) const {
1660    return CanQualType::CreateUnsafe(T.getCanonicalType());
1661  }
1662
1663  const Type *getCanonicalType(const Type *T) const {
1664    return T->getCanonicalTypeInternal().getTypePtr();
1665  }
1666
1667  /// \brief Return the canonical parameter type corresponding to the specific
1668  /// potentially non-canonical one.
1669  ///
1670  /// Qualifiers are stripped off, functions are turned into function
1671  /// pointers, and arrays decay one level into pointers.
1672  CanQualType getCanonicalParamType(QualType T) const;
1673
1674  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1675  bool hasSameType(QualType T1, QualType T2) const {
1676    return getCanonicalType(T1) == getCanonicalType(T2);
1677  }
1678
1679  /// \brief Return this type as a completely-unqualified array type,
1680  /// capturing the qualifiers in \p Quals.
1681  ///
1682  /// This will remove the minimal amount of sugaring from the types, similar
1683  /// to the behavior of QualType::getUnqualifiedType().
1684  ///
1685  /// \param T is the qualified type, which may be an ArrayType
1686  ///
1687  /// \param Quals will receive the full set of qualifiers that were
1688  /// applied to the array.
1689  ///
1690  /// \returns if this is an array type, the completely unqualified array type
1691  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1692  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1693
1694  /// \brief Determine whether the given types are equivalent after
1695  /// cvr-qualifiers have been removed.
1696  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1697    return getCanonicalType(T1).getTypePtr() ==
1698           getCanonicalType(T2).getTypePtr();
1699  }
1700
1701  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1702
1703  /// \brief Retrieves the "canonical" nested name specifier for a
1704  /// given nested name specifier.
1705  ///
1706  /// The canonical nested name specifier is a nested name specifier
1707  /// that uniquely identifies a type or namespace within the type
1708  /// system. For example, given:
1709  ///
1710  /// \code
1711  /// namespace N {
1712  ///   struct S {
1713  ///     template<typename T> struct X { typename T* type; };
1714  ///   };
1715  /// }
1716  ///
1717  /// template<typename T> struct Y {
1718  ///   typename N::S::X<T>::type member;
1719  /// };
1720  /// \endcode
1721  ///
1722  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1723  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1724  /// by declarations in the type system and the canonical type for
1725  /// the template type parameter 'T' is template-param-0-0.
1726  NestedNameSpecifier *
1727  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1728
1729  /// \brief Retrieves the default calling convention to use for
1730  /// C++ instance methods.
1731  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1732
1733  /// \brief Retrieves the canonical representation of the given
1734  /// calling convention.
1735  CallingConv getCanonicalCallConv(CallingConv CC) const;
1736
1737  /// \brief Determines whether two calling conventions name the same
1738  /// calling convention.
1739  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1740    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1741  }
1742
1743  /// \brief Retrieves the "canonical" template name that refers to a
1744  /// given template.
1745  ///
1746  /// The canonical template name is the simplest expression that can
1747  /// be used to refer to a given template. For most templates, this
1748  /// expression is just the template declaration itself. For example,
1749  /// the template std::vector can be referred to via a variety of
1750  /// names---std::vector, \::std::vector, vector (if vector is in
1751  /// scope), etc.---but all of these names map down to the same
1752  /// TemplateDecl, which is used to form the canonical template name.
1753  ///
1754  /// Dependent template names are more interesting. Here, the
1755  /// template name could be something like T::template apply or
1756  /// std::allocator<T>::template rebind, where the nested name
1757  /// specifier itself is dependent. In this case, the canonical
1758  /// template name uses the shortest form of the dependent
1759  /// nested-name-specifier, which itself contains all canonical
1760  /// types, values, and templates.
1761  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1762
1763  /// \brief Determine whether the given template names refer to the same
1764  /// template.
1765  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1766
1767  /// \brief Retrieve the "canonical" template argument.
1768  ///
1769  /// The canonical template argument is the simplest template argument
1770  /// (which may be a type, value, expression, or declaration) that
1771  /// expresses the value of the argument.
1772  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1773    const;
1774
1775  /// Type Query functions.  If the type is an instance of the specified class,
1776  /// return the Type pointer for the underlying maximally pretty type.  This
1777  /// is a member of ASTContext because this may need to do some amount of
1778  /// canonicalization, e.g. to move type qualifiers into the element type.
1779  const ArrayType *getAsArrayType(QualType T) const;
1780  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1781    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1782  }
1783  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1784    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1785  }
1786  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1787    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1788  }
1789  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1790    const {
1791    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1792  }
1793
1794  /// \brief Return the innermost element type of an array type.
1795  ///
1796  /// For example, will return "int" for int[m][n]
1797  QualType getBaseElementType(const ArrayType *VAT) const;
1798
1799  /// \brief Return the innermost element type of a type (which needn't
1800  /// actually be an array type).
1801  QualType getBaseElementType(QualType QT) const;
1802
1803  /// \brief Return number of constant array elements.
1804  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1805
1806  /// \brief Perform adjustment on the parameter type of a function.
1807  ///
1808  /// This routine adjusts the given parameter type @p T to the actual
1809  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1810  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1811  QualType getAdjustedParameterType(QualType T) const;
1812
1813  /// \brief Retrieve the parameter type as adjusted for use in the signature
1814  /// of a function, decaying array and function types and removing top-level
1815  /// cv-qualifiers.
1816  QualType getSignatureParameterType(QualType T) const;
1817
1818  /// \brief Return the properly qualified result of decaying the specified
1819  /// array type to a pointer.
1820  ///
1821  /// This operation is non-trivial when handling typedefs etc.  The canonical
1822  /// type of \p T must be an array type, this returns a pointer to a properly
1823  /// qualified element of the array.
1824  ///
1825  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1826  QualType getArrayDecayedType(QualType T) const;
1827
1828  /// \brief Return the type that \p PromotableType will promote to: C99
1829  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1830  QualType getPromotedIntegerType(QualType PromotableType) const;
1831
1832  /// \brief Recurses in pointer/array types until it finds an Objective-C
1833  /// retainable type and returns its ownership.
1834  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1835
1836  /// \brief Whether this is a promotable bitfield reference according
1837  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1838  ///
1839  /// \returns the type this bit-field will promote to, or NULL if no
1840  /// promotion occurs.
1841  QualType isPromotableBitField(Expr *E) const;
1842
1843  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1844  ///
1845  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1846  /// \p LHS < \p RHS, return -1.
1847  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1848
1849  /// \brief Compare the rank of the two specified floating point types,
1850  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1851  ///
1852  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1853  /// \p LHS < \p RHS, return -1.
1854  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1855
1856  /// \brief Return a real floating point or a complex type (based on
1857  /// \p typeDomain/\p typeSize).
1858  ///
1859  /// \param typeDomain a real floating point or complex type.
1860  /// \param typeSize a real floating point or complex type.
1861  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1862                                             QualType typeDomain) const;
1863
1864  unsigned getTargetAddressSpace(QualType T) const {
1865    return getTargetAddressSpace(T.getQualifiers());
1866  }
1867
1868  unsigned getTargetAddressSpace(Qualifiers Q) const {
1869    return getTargetAddressSpace(Q.getAddressSpace());
1870  }
1871
1872  unsigned getTargetAddressSpace(unsigned AS) const {
1873    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1874      return AS;
1875    else
1876      return (*AddrSpaceMap)[AS - LangAS::Offset];
1877  }
1878
1879private:
1880  // Helper for integer ordering
1881  unsigned getIntegerRank(const Type *T) const;
1882
1883public:
1884
1885  //===--------------------------------------------------------------------===//
1886  //                    Type Compatibility Predicates
1887  //===--------------------------------------------------------------------===//
1888
1889  /// Compatibility predicates used to check assignment expressions.
1890  bool typesAreCompatible(QualType T1, QualType T2,
1891                          bool CompareUnqualified = false); // C99 6.2.7p1
1892
1893  bool propertyTypesAreCompatible(QualType, QualType);
1894  bool typesAreBlockPointerCompatible(QualType, QualType);
1895
1896  bool isObjCIdType(QualType T) const {
1897    return T == getObjCIdType();
1898  }
1899  bool isObjCClassType(QualType T) const {
1900    return T == getObjCClassType();
1901  }
1902  bool isObjCSelType(QualType T) const {
1903    return T == getObjCSelType();
1904  }
1905  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1906  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1907                                         bool ForCompare);
1908
1909  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1910
1911  // Check the safety of assignment from LHS to RHS
1912  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1913                               const ObjCObjectPointerType *RHSOPT);
1914  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1915                               const ObjCObjectType *RHS);
1916  bool canAssignObjCInterfacesInBlockPointer(
1917                                          const ObjCObjectPointerType *LHSOPT,
1918                                          const ObjCObjectPointerType *RHSOPT,
1919                                          bool BlockReturnType);
1920  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1921  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1922                                   const ObjCObjectPointerType *RHSOPT);
1923  bool canBindObjCObjectType(QualType To, QualType From);
1924
1925  // Functions for calculating composite types
1926  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1927                      bool Unqualified = false, bool BlockReturnType = false);
1928  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1929                              bool Unqualified = false);
1930  QualType mergeFunctionArgumentTypes(QualType, QualType,
1931                                      bool OfBlockPointer=false,
1932                                      bool Unqualified = false);
1933  QualType mergeTransparentUnionType(QualType, QualType,
1934                                     bool OfBlockPointer=false,
1935                                     bool Unqualified = false);
1936
1937  QualType mergeObjCGCQualifiers(QualType, QualType);
1938
1939  bool FunctionTypesMatchOnNSConsumedAttrs(
1940         const FunctionProtoType *FromFunctionType,
1941         const FunctionProtoType *ToFunctionType);
1942
1943  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1944    ObjCLayouts[CD] = 0;
1945  }
1946
1947  //===--------------------------------------------------------------------===//
1948  //                    Integer Predicates
1949  //===--------------------------------------------------------------------===//
1950
1951  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1952  // of bits in an integer type excluding any padding bits.
1953  unsigned getIntWidth(QualType T) const;
1954
1955  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1956  // unsigned integer type.  This method takes a signed type, and returns the
1957  // corresponding unsigned integer type.
1958  QualType getCorrespondingUnsignedType(QualType T) const;
1959
1960  //===--------------------------------------------------------------------===//
1961  //                    Type Iterators.
1962  //===--------------------------------------------------------------------===//
1963
1964  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
1965  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
1966
1967  type_iterator types_begin() { return Types.begin(); }
1968  type_iterator types_end() { return Types.end(); }
1969  const_type_iterator types_begin() const { return Types.begin(); }
1970  const_type_iterator types_end() const { return Types.end(); }
1971
1972  //===--------------------------------------------------------------------===//
1973  //                    Integer Values
1974  //===--------------------------------------------------------------------===//
1975
1976  /// \brief Make an APSInt of the appropriate width and signedness for the
1977  /// given \p Value and integer \p Type.
1978  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1979    llvm::APSInt Res(getIntWidth(Type),
1980                     !Type->isSignedIntegerOrEnumerationType());
1981    Res = Value;
1982    return Res;
1983  }
1984
1985  bool isSentinelNullExpr(const Expr *E);
1986
1987  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1988  /// none exists.
1989  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1990  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1991  /// none exists.
1992  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1993
1994  /// \brief Return true if there is at least one \@implementation in the TU.
1995  bool AnyObjCImplementation() {
1996    return !ObjCImpls.empty();
1997  }
1998
1999  /// \brief Set the implementation of ObjCInterfaceDecl.
2000  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2001                             ObjCImplementationDecl *ImplD);
2002  /// \brief Set the implementation of ObjCCategoryDecl.
2003  void setObjCImplementation(ObjCCategoryDecl *CatD,
2004                             ObjCCategoryImplDecl *ImplD);
2005
2006  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2007  /// interface, or null if none exists.
2008  const ObjCMethodDecl *getObjCMethodRedeclaration(
2009                                               const ObjCMethodDecl *MD) const {
2010    return ObjCMethodRedecls.lookup(MD);
2011  }
2012
2013  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2014                                  const ObjCMethodDecl *Redecl) {
2015    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2016    ObjCMethodRedecls[MD] = Redecl;
2017  }
2018
2019  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2020  /// an Objective-C method/property/ivar etc. that is part of an interface,
2021  /// otherwise returns null.
2022  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2023
2024  /// \brief Set the copy inialization expression of a block var decl.
2025  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2026  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2027  /// NULL if none exists.
2028  Expr *getBlockVarCopyInits(const VarDecl* VD);
2029
2030  /// \brief Allocate an uninitialized TypeSourceInfo.
2031  ///
2032  /// The caller should initialize the memory held by TypeSourceInfo using
2033  /// the TypeLoc wrappers.
2034  ///
2035  /// \param T the type that will be the basis for type source info. This type
2036  /// should refer to how the declarator was written in source code, not to
2037  /// what type semantic analysis resolved the declarator to.
2038  ///
2039  /// \param Size the size of the type info to create, or 0 if the size
2040  /// should be calculated based on the type.
2041  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2042
2043  /// \brief Allocate a TypeSourceInfo where all locations have been
2044  /// initialized to a given location, which defaults to the empty
2045  /// location.
2046  TypeSourceInfo *
2047  getTrivialTypeSourceInfo(QualType T,
2048                           SourceLocation Loc = SourceLocation()) const;
2049
2050  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2051
2052  /// \brief Add a deallocation callback that will be invoked when the
2053  /// ASTContext is destroyed.
2054  ///
2055  /// \param Callback A callback function that will be invoked on destruction.
2056  ///
2057  /// \param Data Pointer data that will be provided to the callback function
2058  /// when it is called.
2059  void AddDeallocation(void (*Callback)(void*), void *Data);
2060
2061  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2062  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2063
2064  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2065  /// lazily, only when used; this is only relevant for function or file scoped
2066  /// var definitions.
2067  ///
2068  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2069  /// it is not used.
2070  bool DeclMustBeEmitted(const Decl *D);
2071
2072  void addUnnamedTag(const TagDecl *Tag);
2073  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2074
2075  /// \brief Retrieve the lambda mangling number for a lambda expression.
2076  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2077
2078  /// \brief Used by ParmVarDecl to store on the side the
2079  /// index of the parameter when it exceeds the size of the normal bitfield.
2080  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2081
2082  /// \brief Used by ParmVarDecl to retrieve on the side the
2083  /// index of the parameter when it exceeds the size of the normal bitfield.
2084  unsigned getParameterIndex(const ParmVarDecl *D) const;
2085
2086  //===--------------------------------------------------------------------===//
2087  //                    Statistics
2088  //===--------------------------------------------------------------------===//
2089
2090  /// \brief The number of implicitly-declared default constructors.
2091  static unsigned NumImplicitDefaultConstructors;
2092
2093  /// \brief The number of implicitly-declared default constructors for
2094  /// which declarations were built.
2095  static unsigned NumImplicitDefaultConstructorsDeclared;
2096
2097  /// \brief The number of implicitly-declared copy constructors.
2098  static unsigned NumImplicitCopyConstructors;
2099
2100  /// \brief The number of implicitly-declared copy constructors for
2101  /// which declarations were built.
2102  static unsigned NumImplicitCopyConstructorsDeclared;
2103
2104  /// \brief The number of implicitly-declared move constructors.
2105  static unsigned NumImplicitMoveConstructors;
2106
2107  /// \brief The number of implicitly-declared move constructors for
2108  /// which declarations were built.
2109  static unsigned NumImplicitMoveConstructorsDeclared;
2110
2111  /// \brief The number of implicitly-declared copy assignment operators.
2112  static unsigned NumImplicitCopyAssignmentOperators;
2113
2114  /// \brief The number of implicitly-declared copy assignment operators for
2115  /// which declarations were built.
2116  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2117
2118  /// \brief The number of implicitly-declared move assignment operators.
2119  static unsigned NumImplicitMoveAssignmentOperators;
2120
2121  /// \brief The number of implicitly-declared move assignment operators for
2122  /// which declarations were built.
2123  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2124
2125  /// \brief The number of implicitly-declared destructors.
2126  static unsigned NumImplicitDestructors;
2127
2128  /// \brief The number of implicitly-declared destructors for which
2129  /// declarations were built.
2130  static unsigned NumImplicitDestructorsDeclared;
2131
2132private:
2133  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2134  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2135
2136public:
2137  /// \brief Initialize built-in types.
2138  ///
2139  /// This routine may only be invoked once for a given ASTContext object.
2140  /// It is normally invoked by the ASTContext constructor. However, the
2141  /// constructor can be asked to delay initialization, which places the burden
2142  /// of calling this function on the user of that object.
2143  ///
2144  /// \param Target The target
2145  void InitBuiltinTypes(const TargetInfo &Target);
2146
2147private:
2148  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2149
2150  // Return the Objective-C type encoding for a given type.
2151  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2152                                  bool ExpandPointedToStructures,
2153                                  bool ExpandStructures,
2154                                  const FieldDecl *Field,
2155                                  bool OutermostType = false,
2156                                  bool EncodingProperty = false,
2157                                  bool StructField = false,
2158                                  bool EncodeBlockParameters = false,
2159                                  bool EncodeClassNames = false,
2160                                  bool EncodePointerToObjCTypedef = false) const;
2161
2162  // Adds the encoding of the structure's members.
2163  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2164                                       const FieldDecl *Field,
2165                                       bool includeVBases = true) const;
2166
2167  // Adds the encoding of a method parameter or return type.
2168  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2169                                         QualType T, std::string& S,
2170                                         bool Extended) const;
2171
2172  const ASTRecordLayout &
2173  getObjCLayout(const ObjCInterfaceDecl *D,
2174                const ObjCImplementationDecl *Impl) const;
2175
2176private:
2177  /// \brief A set of deallocations that should be performed when the
2178  /// ASTContext is destroyed.
2179  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2180
2181  // FIXME: This currently contains the set of StoredDeclMaps used
2182  // by DeclContext objects.  This probably should not be in ASTContext,
2183  // but we include it here so that ASTContext can quickly deallocate them.
2184  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2185
2186  /// \brief A counter used to uniquely identify "blocks".
2187  mutable unsigned int UniqueBlockByRefTypeID;
2188
2189  friend class DeclContext;
2190  friend class DeclarationNameTable;
2191  void ReleaseDeclContextMaps();
2192
2193  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
2194  /// parents as defined by the \c RecursiveASTVisitor.
2195  ///
2196  /// Note that the relationship described here is purely in terms of AST
2197  /// traversal - there are other relationships (for example declaration context)
2198  /// in the AST that are better modeled by special matchers.
2199  ///
2200  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
2201  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
2202  public:
2203    /// \brief Builds and returns the translation unit's parent map.
2204    ///
2205    ///  The caller takes ownership of the returned \c ParentMap.
2206    static ParentMap *buildMap(TranslationUnitDecl &TU) {
2207      ParentMapASTVisitor Visitor(new ParentMap);
2208      Visitor.TraverseDecl(&TU);
2209      return Visitor.Parents;
2210    }
2211
2212  private:
2213    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
2214
2215    ParentMapASTVisitor(ParentMap *Parents) : Parents(Parents) {
2216    }
2217
2218    bool shouldVisitTemplateInstantiations() const {
2219      return true;
2220    }
2221    bool shouldVisitImplicitCode() const {
2222      return true;
2223    }
2224    // Disables data recursion. We intercept Traverse* methods in the RAV, which
2225    // are not triggered during data recursion.
2226    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
2227      return false;
2228    }
2229
2230    template <typename T>
2231    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
2232      if (Node == NULL)
2233        return true;
2234      if (ParentStack.size() > 0)
2235        // FIXME: Currently we add the same parent multiple times, for example
2236        // when we visit all subexpressions of template instantiations; this is
2237        // suboptimal, bug benign: the only way to visit those is with
2238        // hasAncestor / hasParent, and those do not create new matches.
2239        // The plan is to enable DynTypedNode to be storable in a map or hash
2240        // map. The main problem there is to implement hash functions /
2241        // comparison operators for all types that DynTypedNode supports that
2242        // do not have pointer identity.
2243        (*Parents)[Node].push_back(ParentStack.back());
2244      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
2245      bool Result = (this ->* traverse) (Node);
2246      ParentStack.pop_back();
2247      return Result;
2248    }
2249
2250    bool TraverseDecl(Decl *DeclNode) {
2251      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
2252    }
2253
2254    bool TraverseStmt(Stmt *StmtNode) {
2255      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
2256    }
2257
2258    ParentMap *Parents;
2259    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
2260
2261    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
2262  };
2263
2264  llvm::OwningPtr<ParentMap> AllParents;
2265};
2266
2267/// \brief Utility function for constructing a nullary selector.
2268static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2269  IdentifierInfo* II = &Ctx.Idents.get(name);
2270  return Ctx.Selectors.getSelector(0, &II);
2271}
2272
2273/// \brief Utility function for constructing an unary selector.
2274static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2275  IdentifierInfo* II = &Ctx.Idents.get(name);
2276  return Ctx.Selectors.getSelector(1, &II);
2277}
2278
2279}  // end namespace clang
2280
2281// operator new and delete aren't allowed inside namespaces.
2282
2283/// @brief Placement new for using the ASTContext's allocator.
2284///
2285/// This placement form of operator new uses the ASTContext's allocator for
2286/// obtaining memory.
2287///
2288/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2289/// here need to also be made there.
2290///
2291/// We intentionally avoid using a nothrow specification here so that the calls
2292/// to this operator will not perform a null check on the result -- the
2293/// underlying allocator never returns null pointers.
2294///
2295/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2296/// @code
2297/// // Default alignment (8)
2298/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2299/// // Specific alignment
2300/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2301/// @endcode
2302/// Please note that you cannot use delete on the pointer; it must be
2303/// deallocated using an explicit destructor call followed by
2304/// @c Context.Deallocate(Ptr).
2305///
2306/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2307/// @param C The ASTContext that provides the allocator.
2308/// @param Alignment The alignment of the allocated memory (if the underlying
2309///                  allocator supports it).
2310/// @return The allocated memory. Could be NULL.
2311inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2312                          size_t Alignment) {
2313  return C.Allocate(Bytes, Alignment);
2314}
2315/// @brief Placement delete companion to the new above.
2316///
2317/// This operator is just a companion to the new above. There is no way of
2318/// invoking it directly; see the new operator for more details. This operator
2319/// is called implicitly by the compiler if a placement new expression using
2320/// the ASTContext throws in the object constructor.
2321inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2322  C.Deallocate(Ptr);
2323}
2324
2325/// This placement form of operator new[] uses the ASTContext's allocator for
2326/// obtaining memory.
2327///
2328/// We intentionally avoid using a nothrow specification here so that the calls
2329/// to this operator will not perform a null check on the result -- the
2330/// underlying allocator never returns null pointers.
2331///
2332/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2333/// @code
2334/// // Default alignment (8)
2335/// char *data = new (Context) char[10];
2336/// // Specific alignment
2337/// char *data = new (Context, 4) char[10];
2338/// @endcode
2339/// Please note that you cannot use delete on the pointer; it must be
2340/// deallocated using an explicit destructor call followed by
2341/// @c Context.Deallocate(Ptr).
2342///
2343/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2344/// @param C The ASTContext that provides the allocator.
2345/// @param Alignment The alignment of the allocated memory (if the underlying
2346///                  allocator supports it).
2347/// @return The allocated memory. Could be NULL.
2348inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2349                            size_t Alignment = 8) {
2350  return C.Allocate(Bytes, Alignment);
2351}
2352
2353/// @brief Placement delete[] companion to the new[] above.
2354///
2355/// This operator is just a companion to the new[] above. There is no way of
2356/// invoking it directly; see the new[] operator for more details. This operator
2357/// is called implicitly by the compiler if a placement new[] expression using
2358/// the ASTContext throws in the object constructor.
2359inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2360  C.Deallocate(Ptr);
2361}
2362
2363#endif
2364