ASTContext.h revision a3ccda58913cc1a4b8564e349448b12acc462da7
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/Support/Allocator.h"
31#include <vector>
32
33namespace llvm {
34  struct fltSemantics;
35}
36
37namespace clang {
38  class FileManager;
39  class ASTRecordLayout;
40  class BlockExpr;
41  class Expr;
42  class ExternalASTSource;
43  class IdentifierTable;
44  class SelectorTable;
45  class SourceManager;
46  class TargetInfo;
47  // Decls
48  class CXXMethodDecl;
49  class CXXRecordDecl;
50  class Decl;
51  class FieldDecl;
52  class ObjCIvarDecl;
53  class ObjCIvarRefExpr;
54  class ObjCPropertyDecl;
55  class RecordDecl;
56  class TagDecl;
57  class TemplateTypeParmDecl;
58  class TranslationUnitDecl;
59  class TypeDecl;
60  class TypedefDecl;
61  class UsingDecl;
62  class UsingShadowDecl;
63
64  namespace Builtin { class Context; }
65
66/// ASTContext - This class holds long-lived AST nodes (such as types and
67/// decls) that can be referred to throughout the semantic analysis of a file.
68class ASTContext {
69  std::vector<Type*> Types;
70  llvm::FoldingSet<ExtQuals> ExtQualNodes;
71  llvm::FoldingSet<ComplexType> ComplexTypes;
72  llvm::FoldingSet<PointerType> PointerTypes;
73  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
74  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
75  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
76  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
77  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
78  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
79  std::vector<VariableArrayType*> VariableArrayTypes;
80  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
81  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
82  llvm::FoldingSet<VectorType> VectorTypes;
83  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
84  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
85  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
86  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
87  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
88  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
89  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
90  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
91  llvm::FoldingSet<TypenameType> TypenameTypes;
92  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
93  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
94  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
95
96  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
97  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
98
99  /// \brief The set of nested name specifiers.
100  ///
101  /// This set is managed by the NestedNameSpecifier class.
102  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
103  NestedNameSpecifier *GlobalNestedNameSpecifier;
104  friend class NestedNameSpecifier;
105
106  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
107  ///  This is lazily created.  This is intentionally not serialized.
108  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
109  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
110
111  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
112  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
113
114  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
115  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
116
117  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
118  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
119
120  /// BuiltinVaListType - built-in va list type.
121  /// This is initially null and set by Sema::LazilyCreateBuiltin when
122  /// a builtin that takes a valist is encountered.
123  QualType BuiltinVaListType;
124
125  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
126  QualType ObjCIdTypedefType;
127
128  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
129  QualType ObjCSelTypedefType;
130
131  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
132  QualType ObjCProtoType;
133  const RecordType *ProtoStructType;
134
135  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
136  QualType ObjCClassTypedefType;
137
138  QualType ObjCConstantStringType;
139  RecordDecl *CFConstantStringTypeDecl;
140
141  RecordDecl *ObjCFastEnumerationStateTypeDecl;
142
143  /// \brief The type for the C FILE type.
144  TypeDecl *FILEDecl;
145
146  /// \brief The type for the C jmp_buf type.
147  TypeDecl *jmp_bufDecl;
148
149  /// \brief The type for the C sigjmp_buf type.
150  TypeDecl *sigjmp_bufDecl;
151
152  /// \brief Type for the Block descriptor for Blocks CodeGen.
153  RecordDecl *BlockDescriptorType;
154
155  /// \brief Type for the Block descriptor for Blocks CodeGen.
156  RecordDecl *BlockDescriptorExtendedType;
157
158  /// \brief Keeps track of all declaration attributes.
159  ///
160  /// Since so few decls have attrs, we keep them in a hash map instead of
161  /// wasting space in the Decl class.
162  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
163
164  /// \brief Keeps track of the static data member templates from which
165  /// static data members of class template specializations were instantiated.
166  ///
167  /// This data structure stores the mapping from instantiations of static
168  /// data members to the static data member representations within the
169  /// class template from which they were instantiated along with the kind
170  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
171  ///
172  /// Given the following example:
173  ///
174  /// \code
175  /// template<typename T>
176  /// struct X {
177  ///   static T value;
178  /// };
179  ///
180  /// template<typename T>
181  ///   T X<T>::value = T(17);
182  ///
183  /// int *x = &X<int>::value;
184  /// \endcode
185  ///
186  /// This mapping will contain an entry that maps from the VarDecl for
187  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
188  /// class template X) and will be marked TSK_ImplicitInstantiation.
189  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
190    InstantiatedFromStaticDataMember;
191
192  /// \brief Keeps track of the declaration from which a UsingDecl was
193  /// created during instantiation.  The source declaration is always
194  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
195  /// UnresolvedUsingTypenameDecl.
196  ///
197  /// For example:
198  /// \code
199  /// template<typename T>
200  /// struct A {
201  ///   void f();
202  /// };
203  ///
204  /// template<typename T>
205  /// struct B : A<T> {
206  ///   using A<T>::f;
207  /// };
208  ///
209  /// template struct B<int>;
210  /// \endcode
211  ///
212  /// This mapping will contain an entry that maps from the UsingDecl in
213  /// B<int> to the UnresolvedUsingDecl in B<T>.
214  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
215
216  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
217    InstantiatedFromUsingShadowDecl;
218
219  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
220
221  TranslationUnitDecl *TUDecl;
222
223  /// SourceMgr - The associated SourceManager object.
224  SourceManager &SourceMgr;
225
226  /// LangOpts - The language options used to create the AST associated with
227  ///  this ASTContext object.
228  LangOptions LangOpts;
229
230  /// \brief Whether we have already loaded comment source ranges from an
231  /// external source.
232  bool LoadedExternalComments;
233
234  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
235  bool FreeMemory;
236  llvm::MallocAllocator MallocAlloc;
237  llvm::BumpPtrAllocator BumpAlloc;
238
239  /// \brief Mapping from declarations to their comments, once we have
240  /// already looked up the comment associated with a given declaration.
241  llvm::DenseMap<const Decl *, std::string> DeclComments;
242
243public:
244  const TargetInfo &Target;
245  IdentifierTable &Idents;
246  SelectorTable &Selectors;
247  Builtin::Context &BuiltinInfo;
248  DeclarationNameTable DeclarationNames;
249  llvm::OwningPtr<ExternalASTSource> ExternalSource;
250  clang::PrintingPolicy PrintingPolicy;
251
252  // Typedefs which may be provided defining the structure of Objective-C
253  // pseudo-builtins
254  QualType ObjCIdRedefinitionType;
255  QualType ObjCClassRedefinitionType;
256  QualType ObjCSelRedefinitionType;
257
258  /// \brief Source ranges for all of the comments in the source file,
259  /// sorted in order of appearance in the translation unit.
260  std::vector<SourceRange> Comments;
261
262  SourceManager& getSourceManager() { return SourceMgr; }
263  const SourceManager& getSourceManager() const { return SourceMgr; }
264  void *Allocate(unsigned Size, unsigned Align = 8) {
265    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
266                        BumpAlloc.Allocate(Size, Align);
267  }
268  void Deallocate(void *Ptr) {
269    if (FreeMemory)
270      MallocAlloc.Deallocate(Ptr);
271  }
272  const LangOptions& getLangOptions() const { return LangOpts; }
273
274  FullSourceLoc getFullLoc(SourceLocation Loc) const {
275    return FullSourceLoc(Loc,SourceMgr);
276  }
277
278  /// \brief Retrieve the attributes for the given declaration.
279  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
280
281  /// \brief Erase the attributes corresponding to the given declaration.
282  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
283
284  /// \brief If this variable is an instantiated static data member of a
285  /// class template specialization, returns the templated static data member
286  /// from which it was instantiated.
287  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
288                                                           const VarDecl *Var);
289
290  /// \brief Note that the static data member \p Inst is an instantiation of
291  /// the static data member template \p Tmpl of a class template.
292  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
293                                           TemplateSpecializationKind TSK);
294
295  /// \brief If the given using decl is an instantiation of a
296  /// (possibly unresolved) using decl from a template instantiation,
297  /// return it.
298  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
299
300  /// \brief Remember that the using decl \p Inst is an instantiation
301  /// of the using decl \p Pattern of a class template.
302  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
303
304  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
305                                          UsingShadowDecl *Pattern);
306  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
307
308  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
309
310  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
311
312  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
313
314
315  const char *getCommentForDecl(const Decl *D);
316
317  // Builtin Types.
318  CanQualType VoidTy;
319  CanQualType BoolTy;
320  CanQualType CharTy;
321  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
322  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
323  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
324  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
325  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
326  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
327  CanQualType FloatTy, DoubleTy, LongDoubleTy;
328  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
329  CanQualType VoidPtrTy, NullPtrTy;
330  CanQualType OverloadTy;
331  CanQualType DependentTy;
332  CanQualType UndeducedAutoTy;
333  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
334
335  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
336             IdentifierTable &idents, SelectorTable &sels,
337             Builtin::Context &builtins,
338             bool FreeMemory = true, unsigned size_reserve=0);
339
340  ~ASTContext();
341
342  /// \brief Attach an external AST source to the AST context.
343  ///
344  /// The external AST source provides the ability to load parts of
345  /// the abstract syntax tree as needed from some external storage,
346  /// e.g., a precompiled header.
347  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
348
349  /// \brief Retrieve a pointer to the external AST source associated
350  /// with this AST context, if any.
351  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
352
353  void PrintStats() const;
354  const std::vector<Type*>& getTypes() const { return Types; }
355
356  //===--------------------------------------------------------------------===//
357  //                           Type Constructors
358  //===--------------------------------------------------------------------===//
359
360private:
361  /// getExtQualType - Return a type with extended qualifiers.
362  QualType getExtQualType(const Type *Base, Qualifiers Quals);
363
364public:
365  /// getAddSpaceQualType - Return the uniqued reference to the type for an
366  /// address space qualified type with the specified type and address space.
367  /// The resulting type has a union of the qualifiers from T and the address
368  /// space. If T already has an address space specifier, it is silently
369  /// replaced.
370  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
371
372  /// getObjCGCQualType - Returns the uniqued reference to the type for an
373  /// objc gc qualified type. The retulting type has a union of the qualifiers
374  /// from T and the gc attribute.
375  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
376
377  /// getRestrictType - Returns the uniqued reference to the type for a
378  /// 'restrict' qualified type.  The resulting type has a union of the
379  /// qualifiers from T and 'restrict'.
380  QualType getRestrictType(QualType T) {
381    return T.withFastQualifiers(Qualifiers::Restrict);
382  }
383
384  /// getVolatileType - Returns the uniqued reference to the type for a
385  /// 'volatile' qualified type.  The resulting type has a union of the
386  /// qualifiers from T and 'volatile'.
387  QualType getVolatileType(QualType T);
388
389  /// getConstType - Returns the uniqued reference to the type for a
390  /// 'const' qualified type.  The resulting type has a union of the
391  /// qualifiers from T and 'const'.
392  ///
393  /// It can be reasonably expected that this will always be
394  /// equivalent to calling T.withConst().
395  QualType getConstType(QualType T) { return T.withConst(); }
396
397  /// getNoReturnType - Add or remove the noreturn attribute to the given type
398  /// which must be a FunctionType or a pointer to an allowable type or a
399  /// BlockPointer.
400  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
401
402  /// getComplexType - Return the uniqued reference to the type for a complex
403  /// number with the specified element type.
404  QualType getComplexType(QualType T);
405  CanQualType getComplexType(CanQualType T) {
406    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
407  }
408
409  /// getPointerType - Return the uniqued reference to the type for a pointer to
410  /// the specified type.
411  QualType getPointerType(QualType T);
412  CanQualType getPointerType(CanQualType T) {
413    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
414  }
415
416  /// getBlockPointerType - Return the uniqued reference to the type for a block
417  /// of the specified type.
418  QualType getBlockPointerType(QualType T);
419
420  /// This gets the struct used to keep track of the descriptor for pointer to
421  /// blocks.
422  QualType getBlockDescriptorType();
423
424  // Set the type for a Block descriptor type.
425  void setBlockDescriptorType(QualType T);
426  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
427  QualType getRawBlockdescriptorType() {
428    if (BlockDescriptorType)
429      return getTagDeclType(BlockDescriptorType);
430    return QualType();
431  }
432
433  /// This gets the struct used to keep track of the extended descriptor for
434  /// pointer to blocks.
435  QualType getBlockDescriptorExtendedType();
436
437  // Set the type for a Block descriptor extended type.
438  void setBlockDescriptorExtendedType(QualType T);
439  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
440  /// built.
441  QualType getRawBlockdescriptorExtendedType() {
442    if (BlockDescriptorExtendedType)
443      return getTagDeclType(BlockDescriptorExtendedType);
444    return QualType();
445  }
446
447  /// This gets the struct used to keep track of pointer to blocks, complete
448  /// with captured variables.
449  QualType getBlockParmType(bool BlockHasCopyDispose,
450                            llvm::SmallVector<const Expr *, 8> &BDRDs);
451
452  /// This builds the struct used for __block variables.
453  QualType BuildByRefType(const char *DeclName, QualType Ty);
454
455  /// Returns true iff we need copy/dispose helpers for the given type.
456  bool BlockRequiresCopying(QualType Ty);
457
458  /// getLValueReferenceType - Return the uniqued reference to the type for an
459  /// lvalue reference to the specified type.
460  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
461
462  /// getRValueReferenceType - Return the uniqued reference to the type for an
463  /// rvalue reference to the specified type.
464  QualType getRValueReferenceType(QualType T);
465
466  /// getMemberPointerType - Return the uniqued reference to the type for a
467  /// member pointer to the specified type in the specified class. The class
468  /// is a Type because it could be a dependent name.
469  QualType getMemberPointerType(QualType T, const Type *Cls);
470
471  /// getVariableArrayType - Returns a non-unique reference to the type for a
472  /// variable array of the specified element type.
473  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
474                                ArrayType::ArraySizeModifier ASM,
475                                unsigned EltTypeQuals,
476                                SourceRange Brackets);
477
478  /// getDependentSizedArrayType - Returns a non-unique reference to
479  /// the type for a dependently-sized array of the specified element
480  /// type. FIXME: We will need these to be uniqued, or at least
481  /// comparable, at some point.
482  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
483                                      ArrayType::ArraySizeModifier ASM,
484                                      unsigned EltTypeQuals,
485                                      SourceRange Brackets);
486
487  /// getIncompleteArrayType - Returns a unique reference to the type for a
488  /// incomplete array of the specified element type.
489  QualType getIncompleteArrayType(QualType EltTy,
490                                  ArrayType::ArraySizeModifier ASM,
491                                  unsigned EltTypeQuals);
492
493  /// getConstantArrayType - Return the unique reference to the type for a
494  /// constant array of the specified element type.
495  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
496                                ArrayType::ArraySizeModifier ASM,
497                                unsigned EltTypeQuals);
498
499  /// getVectorType - Return the unique reference to a vector type of
500  /// the specified element type and size. VectorType must be a built-in type.
501  QualType getVectorType(QualType VectorType, unsigned NumElts);
502
503  /// getExtVectorType - Return the unique reference to an extended vector type
504  /// of the specified element type and size.  VectorType must be a built-in
505  /// type.
506  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
507
508  /// getDependentSizedExtVectorType - Returns a non-unique reference to
509  /// the type for a dependently-sized vector of the specified element
510  /// type. FIXME: We will need these to be uniqued, or at least
511  /// comparable, at some point.
512  QualType getDependentSizedExtVectorType(QualType VectorType,
513                                          Expr *SizeExpr,
514                                          SourceLocation AttrLoc);
515
516  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
517  ///
518  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false);
519
520  /// getFunctionType - Return a normal function type with a typed argument
521  /// list.  isVariadic indicates whether the argument list includes '...'.
522  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
523                           unsigned NumArgs, bool isVariadic,
524                           unsigned TypeQuals, bool hasExceptionSpec = false,
525                           bool hasAnyExceptionSpec = false,
526                           unsigned NumExs = 0, const QualType *ExArray = 0,
527                           bool NoReturn = false);
528
529  /// getTypeDeclType - Return the unique reference to the type for
530  /// the specified type declaration.
531  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
532
533  /// getTypedefType - Return the unique reference to the type for the
534  /// specified typename decl.
535  QualType getTypedefType(TypedefDecl *Decl);
536
537  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
538                                        QualType Replacement);
539
540  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
541                                   bool ParameterPack,
542                                   IdentifierInfo *Name = 0);
543
544  QualType getTemplateSpecializationType(TemplateName T,
545                                         const TemplateArgument *Args,
546                                         unsigned NumArgs,
547                                         QualType Canon = QualType());
548
549  QualType getTemplateSpecializationType(TemplateName T,
550                                         const TemplateArgumentListInfo &Args,
551                                         QualType Canon = QualType());
552
553  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
554                                QualType NamedType);
555  QualType getTypenameType(NestedNameSpecifier *NNS,
556                           const IdentifierInfo *Name,
557                           QualType Canon = QualType());
558  QualType getTypenameType(NestedNameSpecifier *NNS,
559                           const TemplateSpecializationType *TemplateId,
560                           QualType Canon = QualType());
561  QualType getElaboratedType(QualType UnderlyingType,
562                             ElaboratedType::TagKind Tag);
563
564  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
565                                ObjCProtocolDecl **Protocols = 0,
566                                unsigned NumProtocols = 0);
567
568  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
569  /// given interface decl and the conforming protocol list.
570  QualType getObjCObjectPointerType(QualType OIT,
571                                    ObjCProtocolDecl **ProtocolList = 0,
572                                    unsigned NumProtocols = 0);
573
574  /// getTypeOfType - GCC extension.
575  QualType getTypeOfExprType(Expr *e);
576  QualType getTypeOfType(QualType t);
577
578  /// getDecltypeType - C++0x decltype.
579  QualType getDecltypeType(Expr *e);
580
581  /// getTagDeclType - Return the unique reference to the type for the
582  /// specified TagDecl (struct/union/class/enum) decl.
583  QualType getTagDeclType(const TagDecl *Decl);
584
585  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
586  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
587  CanQualType getSizeType() const;
588
589  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
590  /// returns a type compatible with the type defined in <stddef.h> as defined
591  /// by the target.
592  QualType getWCharType() const { return WCharTy; }
593
594  /// getSignedWCharType - Return the type of "signed wchar_t".
595  /// Used when in C++, as a GCC extension.
596  QualType getSignedWCharType() const;
597
598  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
599  /// Used when in C++, as a GCC extension.
600  QualType getUnsignedWCharType() const;
601
602  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
603  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
604  QualType getPointerDiffType() const;
605
606  // getCFConstantStringType - Return the C structure type used to represent
607  // constant CFStrings.
608  QualType getCFConstantStringType();
609
610  /// Get the structure type used to representation CFStrings, or NULL
611  /// if it hasn't yet been built.
612  QualType getRawCFConstantStringType() {
613    if (CFConstantStringTypeDecl)
614      return getTagDeclType(CFConstantStringTypeDecl);
615    return QualType();
616  }
617  void setCFConstantStringType(QualType T);
618
619  // This setter/getter represents the ObjC type for an NSConstantString.
620  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
621  QualType getObjCConstantStringInterface() const {
622    return ObjCConstantStringType;
623  }
624
625  //// This gets the struct used to keep track of fast enumerations.
626  QualType getObjCFastEnumerationStateType();
627
628  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
629  /// been built.
630  QualType getRawObjCFastEnumerationStateType() {
631    if (ObjCFastEnumerationStateTypeDecl)
632      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
633    return QualType();
634  }
635
636  void setObjCFastEnumerationStateType(QualType T);
637
638  /// \brief Set the type for the C FILE type.
639  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
640
641  /// \brief Retrieve the C FILE type.
642  QualType getFILEType() {
643    if (FILEDecl)
644      return getTypeDeclType(FILEDecl);
645    return QualType();
646  }
647
648  /// \brief Set the type for the C jmp_buf type.
649  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
650    this->jmp_bufDecl = jmp_bufDecl;
651  }
652
653  /// \brief Retrieve the C jmp_buf type.
654  QualType getjmp_bufType() {
655    if (jmp_bufDecl)
656      return getTypeDeclType(jmp_bufDecl);
657    return QualType();
658  }
659
660  /// \brief Set the type for the C sigjmp_buf type.
661  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
662    this->sigjmp_bufDecl = sigjmp_bufDecl;
663  }
664
665  /// \brief Retrieve the C sigjmp_buf type.
666  QualType getsigjmp_bufType() {
667    if (sigjmp_bufDecl)
668      return getTypeDeclType(sigjmp_bufDecl);
669    return QualType();
670  }
671
672  /// getObjCEncodingForType - Emit the ObjC type encoding for the
673  /// given type into \arg S. If \arg NameFields is specified then
674  /// record field names are also encoded.
675  void getObjCEncodingForType(QualType t, std::string &S,
676                              const FieldDecl *Field=0);
677
678  void getLegacyIntegralTypeEncoding(QualType &t) const;
679
680  // Put the string version of type qualifiers into S.
681  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
682                                       std::string &S) const;
683
684  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
685  /// declaration.
686  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
687
688  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
689  /// declaration.
690  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
691
692  /// getObjCEncodingForPropertyDecl - Return the encoded type for
693  /// this method declaration. If non-NULL, Container must be either
694  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
695  /// only be NULL when getting encodings for protocol properties.
696  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
697                                      const Decl *Container,
698                                      std::string &S);
699
700  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
701                                      ObjCProtocolDecl *rProto);
702
703  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
704  /// purpose.
705  int getObjCEncodingTypeSize(QualType t);
706
707  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
708  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
709  QualType getObjCIdType() const { return ObjCIdTypedefType; }
710  void setObjCIdType(QualType T);
711
712  void setObjCSelType(QualType T);
713  QualType getObjCSelType() const { return ObjCSelTypedefType; }
714
715  void setObjCProtoType(QualType QT);
716  QualType getObjCProtoType() const { return ObjCProtoType; }
717
718  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
719  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
720  /// struct.
721  QualType getObjCClassType() const { return ObjCClassTypedefType; }
722  void setObjCClassType(QualType T);
723
724  void setBuiltinVaListType(QualType T);
725  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
726
727  QualType getFixedWidthIntType(unsigned Width, bool Signed);
728
729  /// getCVRQualifiedType - Returns a type with additional const,
730  /// volatile, or restrict qualifiers.
731  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
732    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
733  }
734
735  /// getQualifiedType - Returns a type with additional qualifiers.
736  QualType getQualifiedType(QualType T, Qualifiers Qs) {
737    if (!Qs.hasNonFastQualifiers())
738      return T.withFastQualifiers(Qs.getFastQualifiers());
739    QualifierCollector Qc(Qs);
740    const Type *Ptr = Qc.strip(T);
741    return getExtQualType(Ptr, Qc);
742  }
743
744  /// getQualifiedType - Returns a type with additional qualifiers.
745  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
746    if (!Qs.hasNonFastQualifiers())
747      return QualType(T, Qs.getFastQualifiers());
748    return getExtQualType(T, Qs);
749  }
750
751  DeclarationName getNameForTemplate(TemplateName Name);
752
753  TemplateName getOverloadedTemplateName(NamedDecl * const *Begin,
754                                         NamedDecl * const *End);
755
756  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
757                                        bool TemplateKeyword,
758                                        TemplateDecl *Template);
759
760  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
761                                        const IdentifierInfo *Name);
762  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
763                                        OverloadedOperatorKind Operator);
764
765  enum GetBuiltinTypeError {
766    GE_None,              //< No error
767    GE_Missing_stdio,     //< Missing a type from <stdio.h>
768    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
769  };
770
771  /// GetBuiltinType - Return the type for the specified builtin.
772  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
773
774private:
775  CanQualType getFromTargetType(unsigned Type) const;
776
777  //===--------------------------------------------------------------------===//
778  //                         Type Predicates.
779  //===--------------------------------------------------------------------===//
780
781public:
782  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
783  /// garbage collection attribute.
784  ///
785  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
786
787  /// isObjCNSObjectType - Return true if this is an NSObject object with
788  /// its NSObject attribute set.
789  bool isObjCNSObjectType(QualType Ty) const;
790
791  //===--------------------------------------------------------------------===//
792  //                         Type Sizing and Analysis
793  //===--------------------------------------------------------------------===//
794
795  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
796  /// scalar floating point type.
797  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
798
799  /// getTypeInfo - Get the size and alignment of the specified complete type in
800  /// bits.
801  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
802  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
803    return getTypeInfo(T.getTypePtr());
804  }
805
806  /// getTypeSize - Return the size of the specified type, in bits.  This method
807  /// does not work on incomplete types.
808  uint64_t getTypeSize(QualType T) {
809    return getTypeInfo(T).first;
810  }
811  uint64_t getTypeSize(const Type *T) {
812    return getTypeInfo(T).first;
813  }
814
815  /// getByteWidth - Return the size of a byte, in bits
816  uint64_t getByteSize() {
817    return getTypeSize(CharTy);
818  }
819
820  /// getTypeSizeInBytes - Return the size of the specified type, in bytes.
821  /// This method does not work on incomplete types.
822  uint64_t getTypeSizeInBytes(QualType T) {
823    return getTypeSize(T) / getByteSize();
824  }
825  uint64_t getTypeSizeInBytes(const Type *T) {
826    return getTypeSize(T) / getByteSize();
827  }
828
829  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
830  /// This method does not work on incomplete types.
831  unsigned getTypeAlign(QualType T) {
832    return getTypeInfo(T).second;
833  }
834  unsigned getTypeAlign(const Type *T) {
835    return getTypeInfo(T).second;
836  }
837
838  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
839  /// type for the current target in bits.  This can be different than the ABI
840  /// alignment in cases where it is beneficial for performance to overalign
841  /// a data type.
842  unsigned getPreferredTypeAlign(const Type *T);
843
844  unsigned getDeclAlignInBytes(const Decl *D, bool RefAsPointee = false);
845
846  /// getASTRecordLayout - Get or compute information about the layout of the
847  /// specified record (struct/union/class), which indicates its size and field
848  /// position information.
849  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
850
851  /// getASTObjCInterfaceLayout - Get or compute information about the
852  /// layout of the specified Objective-C interface.
853  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
854
855  /// getASTObjCImplementationLayout - Get or compute information about
856  /// the layout of the specified Objective-C implementation. This may
857  /// differ from the interface if synthesized ivars are present.
858  const ASTRecordLayout &
859  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
860
861  /// getKeyFunction - Get the key function for the given record decl.
862  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
863  ///
864  /// ...the first non-pure virtual function that is not inline at the point
865  /// of class definition.
866  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
867
868  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
869                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
870
871  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
872                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
873                               bool CollectSynthesized = true);
874  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
875                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
876  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
877                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
878  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
879  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
880  void CollectInheritedProtocols(const Decl *CDecl,
881                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols);
882
883  //===--------------------------------------------------------------------===//
884  //                            Type Operators
885  //===--------------------------------------------------------------------===//
886
887  /// getCanonicalType - Return the canonical (structural) type corresponding to
888  /// the specified potentially non-canonical type.  The non-canonical version
889  /// of a type may have many "decorated" versions of types.  Decorators can
890  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
891  /// to be free of any of these, allowing two canonical types to be compared
892  /// for exact equality with a simple pointer comparison.
893  CanQualType getCanonicalType(QualType T);
894  const Type *getCanonicalType(const Type *T) {
895    return T->getCanonicalTypeInternal().getTypePtr();
896  }
897
898  /// getCanonicalParamType - Return the canonical parameter type
899  /// corresponding to the specific potentially non-canonical one.
900  /// Qualifiers are stripped off, functions are turned into function
901  /// pointers, and arrays decay one level into pointers.
902  CanQualType getCanonicalParamType(QualType T);
903
904  /// \brief Determine whether the given types are equivalent.
905  bool hasSameType(QualType T1, QualType T2) {
906    return getCanonicalType(T1) == getCanonicalType(T2);
907  }
908
909  /// \brief Determine whether the given types are equivalent after
910  /// cvr-qualifiers have been removed.
911  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
912    CanQualType CT1 = getCanonicalType(T1);
913    CanQualType CT2 = getCanonicalType(T2);
914    return CT1.getUnqualifiedType() == CT2.getUnqualifiedType();
915  }
916
917  /// \brief Retrieves the "canonical" declaration of
918
919  /// \brief Retrieves the "canonical" nested name specifier for a
920  /// given nested name specifier.
921  ///
922  /// The canonical nested name specifier is a nested name specifier
923  /// that uniquely identifies a type or namespace within the type
924  /// system. For example, given:
925  ///
926  /// \code
927  /// namespace N {
928  ///   struct S {
929  ///     template<typename T> struct X { typename T* type; };
930  ///   };
931  /// }
932  ///
933  /// template<typename T> struct Y {
934  ///   typename N::S::X<T>::type member;
935  /// };
936  /// \endcode
937  ///
938  /// Here, the nested-name-specifier for N::S::X<T>:: will be
939  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
940  /// by declarations in the type system and the canonical type for
941  /// the template type parameter 'T' is template-param-0-0.
942  NestedNameSpecifier *
943  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
944
945  /// \brief Retrieves the "canonical" template name that refers to a
946  /// given template.
947  ///
948  /// The canonical template name is the simplest expression that can
949  /// be used to refer to a given template. For most templates, this
950  /// expression is just the template declaration itself. For example,
951  /// the template std::vector can be referred to via a variety of
952  /// names---std::vector, ::std::vector, vector (if vector is in
953  /// scope), etc.---but all of these names map down to the same
954  /// TemplateDecl, which is used to form the canonical template name.
955  ///
956  /// Dependent template names are more interesting. Here, the
957  /// template name could be something like T::template apply or
958  /// std::allocator<T>::template rebind, where the nested name
959  /// specifier itself is dependent. In this case, the canonical
960  /// template name uses the shortest form of the dependent
961  /// nested-name-specifier, which itself contains all canonical
962  /// types, values, and templates.
963  TemplateName getCanonicalTemplateName(TemplateName Name);
964
965  /// \brief Determine whether the given template names refer to the same
966  /// template.
967  bool hasSameTemplateName(TemplateName X, TemplateName Y);
968
969  /// \brief Retrieve the "canonical" template argument.
970  ///
971  /// The canonical template argument is the simplest template argument
972  /// (which may be a type, value, expression, or declaration) that
973  /// expresses the value of the argument.
974  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
975
976  /// Type Query functions.  If the type is an instance of the specified class,
977  /// return the Type pointer for the underlying maximally pretty type.  This
978  /// is a member of ASTContext because this may need to do some amount of
979  /// canonicalization, e.g. to move type qualifiers into the element type.
980  const ArrayType *getAsArrayType(QualType T);
981  const ConstantArrayType *getAsConstantArrayType(QualType T) {
982    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
983  }
984  const VariableArrayType *getAsVariableArrayType(QualType T) {
985    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
986  }
987  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
988    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
989  }
990
991  /// getBaseElementType - Returns the innermost element type of an array type.
992  /// For example, will return "int" for int[m][n]
993  QualType getBaseElementType(const ArrayType *VAT);
994
995  /// getBaseElementType - Returns the innermost element type of a type
996  /// (which needn't actually be an array type).
997  QualType getBaseElementType(QualType QT);
998
999  /// getConstantArrayElementCount - Returns number of constant array elements.
1000  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1001
1002  /// getArrayDecayedType - Return the properly qualified result of decaying the
1003  /// specified array type to a pointer.  This operation is non-trivial when
1004  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1005  /// this returns a pointer to a properly qualified element of the array.
1006  ///
1007  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1008  QualType getArrayDecayedType(QualType T);
1009
1010  /// getPromotedIntegerType - Returns the type that Promotable will
1011  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1012  /// integer type.
1013  QualType getPromotedIntegerType(QualType PromotableType);
1014
1015  /// \brief Whether this is a promotable bitfield reference according
1016  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1017  ///
1018  /// \returns the type this bit-field will promote to, or NULL if no
1019  /// promotion occurs.
1020  QualType isPromotableBitField(Expr *E);
1021
1022  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1023  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1024  /// LHS < RHS, return -1.
1025  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1026
1027  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1028  /// point types, ignoring the domain of the type (i.e. 'double' ==
1029  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1030  /// LHS < RHS, return -1.
1031  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1032
1033  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1034  /// point or a complex type (based on typeDomain/typeSize).
1035  /// 'typeDomain' is a real floating point or complex type.
1036  /// 'typeSize' is a real floating point or complex type.
1037  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1038                                             QualType typeDomain) const;
1039
1040private:
1041  // Helper for integer ordering
1042  unsigned getIntegerRank(Type* T);
1043
1044public:
1045
1046  //===--------------------------------------------------------------------===//
1047  //                    Type Compatibility Predicates
1048  //===--------------------------------------------------------------------===//
1049
1050  /// Compatibility predicates used to check assignment expressions.
1051  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1052
1053  bool isObjCIdType(QualType T) const {
1054    return T == ObjCIdTypedefType;
1055  }
1056  bool isObjCClassType(QualType T) const {
1057    return T == ObjCClassTypedefType;
1058  }
1059  bool isObjCSelType(QualType T) const {
1060    return T == ObjCSelTypedefType;
1061  }
1062  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1063  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1064                                         bool ForCompare);
1065
1066  // Check the safety of assignment from LHS to RHS
1067  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1068                               const ObjCObjectPointerType *RHSOPT);
1069  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1070                               const ObjCInterfaceType *RHS);
1071  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1072  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1073                                   const ObjCObjectPointerType *RHSOPT);
1074
1075  // Functions for calculating composite types
1076  QualType mergeTypes(QualType, QualType);
1077  QualType mergeFunctionTypes(QualType, QualType);
1078
1079  /// UsualArithmeticConversionsType - handles the various conversions
1080  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1081  /// and returns the result type of that conversion.
1082  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1083
1084  //===--------------------------------------------------------------------===//
1085  //                    Integer Predicates
1086  //===--------------------------------------------------------------------===//
1087
1088  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1089  // of bits in an integer type excluding any padding bits.
1090  unsigned getIntWidth(QualType T);
1091
1092  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1093  // unsigned integer type.  This method takes a signed type, and returns the
1094  // corresponding unsigned integer type.
1095  QualType getCorrespondingUnsignedType(QualType T);
1096
1097  //===--------------------------------------------------------------------===//
1098  //                    Type Iterators.
1099  //===--------------------------------------------------------------------===//
1100
1101  typedef std::vector<Type*>::iterator       type_iterator;
1102  typedef std::vector<Type*>::const_iterator const_type_iterator;
1103
1104  type_iterator types_begin() { return Types.begin(); }
1105  type_iterator types_end() { return Types.end(); }
1106  const_type_iterator types_begin() const { return Types.begin(); }
1107  const_type_iterator types_end() const { return Types.end(); }
1108
1109  //===--------------------------------------------------------------------===//
1110  //                    Integer Values
1111  //===--------------------------------------------------------------------===//
1112
1113  /// MakeIntValue - Make an APSInt of the appropriate width and
1114  /// signedness for the given \arg Value and integer \arg Type.
1115  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1116    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1117    Res = Value;
1118    return Res;
1119  }
1120
1121  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1122  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1123  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1124  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1125
1126  /// \brief Set the implementation of ObjCInterfaceDecl.
1127  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1128                             ObjCImplementationDecl *ImplD);
1129  /// \brief Set the implementation of ObjCCategoryDecl.
1130  void setObjCImplementation(ObjCCategoryDecl *CatD,
1131                             ObjCCategoryImplDecl *ImplD);
1132
1133  /// \brief Allocate an uninitialized TypeSourceInfo.
1134  ///
1135  /// The caller should initialize the memory held by TypeSourceInfo using
1136  /// the TypeLoc wrappers.
1137  ///
1138  /// \param T the type that will be the basis for type source info. This type
1139  /// should refer to how the declarator was written in source code, not to
1140  /// what type semantic analysis resolved the declarator to.
1141  ///
1142  /// \param Size the size of the type info to create, or 0 if the size
1143  /// should be calculated based on the type.
1144  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1145
1146  /// \brief Allocate a TypeSourceInfo where all locations have been
1147  /// initialized to a given location, which defaults to the empty
1148  /// location.
1149  TypeSourceInfo *
1150  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1151
1152private:
1153  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1154  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1155
1156  void InitBuiltinTypes();
1157  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1158
1159  // Return the ObjC type encoding for a given type.
1160  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1161                                  bool ExpandPointedToStructures,
1162                                  bool ExpandStructures,
1163                                  const FieldDecl *Field,
1164                                  bool OutermostType = false,
1165                                  bool EncodingProperty = false);
1166
1167  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1168                                       const ObjCImplementationDecl *Impl);
1169};
1170
1171/// @brief Utility function for constructing a nullary selector.
1172static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1173  IdentifierInfo* II = &Ctx.Idents.get(name);
1174  return Ctx.Selectors.getSelector(0, &II);
1175}
1176
1177/// @brief Utility function for constructing an unary selector.
1178static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1179  IdentifierInfo* II = &Ctx.Idents.get(name);
1180  return Ctx.Selectors.getSelector(1, &II);
1181}
1182
1183}  // end namespace clang
1184
1185// operator new and delete aren't allowed inside namespaces.
1186// The throw specifications are mandated by the standard.
1187/// @brief Placement new for using the ASTContext's allocator.
1188///
1189/// This placement form of operator new uses the ASTContext's allocator for
1190/// obtaining memory. It is a non-throwing new, which means that it returns
1191/// null on error. (If that is what the allocator does. The current does, so if
1192/// this ever changes, this operator will have to be changed, too.)
1193/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1194/// @code
1195/// // Default alignment (16)
1196/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1197/// // Specific alignment
1198/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
1199/// @endcode
1200/// Please note that you cannot use delete on the pointer; it must be
1201/// deallocated using an explicit destructor call followed by
1202/// @c Context.Deallocate(Ptr).
1203///
1204/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1205/// @param C The ASTContext that provides the allocator.
1206/// @param Alignment The alignment of the allocated memory (if the underlying
1207///                  allocator supports it).
1208/// @return The allocated memory. Could be NULL.
1209inline void *operator new(size_t Bytes, clang::ASTContext &C,
1210                          size_t Alignment) throw () {
1211  return C.Allocate(Bytes, Alignment);
1212}
1213/// @brief Placement delete companion to the new above.
1214///
1215/// This operator is just a companion to the new above. There is no way of
1216/// invoking it directly; see the new operator for more details. This operator
1217/// is called implicitly by the compiler if a placement new expression using
1218/// the ASTContext throws in the object constructor.
1219inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1220              throw () {
1221  C.Deallocate(Ptr);
1222}
1223
1224/// This placement form of operator new[] uses the ASTContext's allocator for
1225/// obtaining memory. It is a non-throwing new[], which means that it returns
1226/// null on error.
1227/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1228/// @code
1229/// // Default alignment (16)
1230/// char *data = new (Context) char[10];
1231/// // Specific alignment
1232/// char *data = new (Context, 8) char[10];
1233/// @endcode
1234/// Please note that you cannot use delete on the pointer; it must be
1235/// deallocated using an explicit destructor call followed by
1236/// @c Context.Deallocate(Ptr).
1237///
1238/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1239/// @param C The ASTContext that provides the allocator.
1240/// @param Alignment The alignment of the allocated memory (if the underlying
1241///                  allocator supports it).
1242/// @return The allocated memory. Could be NULL.
1243inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1244                            size_t Alignment = 16) throw () {
1245  return C.Allocate(Bytes, Alignment);
1246}
1247
1248/// @brief Placement delete[] companion to the new[] above.
1249///
1250/// This operator is just a companion to the new[] above. There is no way of
1251/// invoking it directly; see the new[] operator for more details. This operator
1252/// is called implicitly by the compiler if a placement new[] expression using
1253/// the ASTContext throws in the object constructor.
1254inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
1255  C.Deallocate(Ptr);
1256}
1257
1258#endif
1259