ASTContext.h revision b15c8984ea300624fbbde385d3907667ce1043fa
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/Basic/AddressSpaces.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/OperatorKinds.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/VersionTuple.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/LambdaMangleContext.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/TemplateName.h"
29#include "clang/AST/Type.h"
30#include "clang/AST/CanonicalType.h"
31#include "clang/AST/RawCommentList.h"
32#include "clang/AST/CommentCommandTraits.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/FoldingSet.h"
35#include "llvm/ADT/IntrusiveRefCntPtr.h"
36#include "llvm/ADT/OwningPtr.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/TinyPtrVector.h"
39#include "llvm/Support/Allocator.h"
40#include <vector>
41
42namespace llvm {
43  struct fltSemantics;
44}
45
46namespace clang {
47  class FileManager;
48  class ASTRecordLayout;
49  class BlockExpr;
50  class CharUnits;
51  class DiagnosticsEngine;
52  class Expr;
53  class ExternalASTSource;
54  class ASTMutationListener;
55  class IdentifierTable;
56  class SelectorTable;
57  class TargetInfo;
58  class CXXABI;
59  // Decls
60  class DeclContext;
61  class CXXConversionDecl;
62  class CXXMethodDecl;
63  class CXXRecordDecl;
64  class Decl;
65  class FieldDecl;
66  class MangleContext;
67  class ObjCIvarDecl;
68  class ObjCIvarRefExpr;
69  class ObjCPropertyDecl;
70  class ParmVarDecl;
71  class RecordDecl;
72  class StoredDeclsMap;
73  class TagDecl;
74  class TemplateTemplateParmDecl;
75  class TemplateTypeParmDecl;
76  class TranslationUnitDecl;
77  class TypeDecl;
78  class TypedefNameDecl;
79  class UsingDecl;
80  class UsingShadowDecl;
81  class UnresolvedSetIterator;
82
83  namespace Builtin { class Context; }
84
85  namespace comments {
86    class FullComment;
87  }
88
89/// \brief Holds long-lived AST nodes (such as types and decls) that can be
90/// referred to throughout the semantic analysis of a file.
91class ASTContext : public RefCountedBase<ASTContext> {
92  ASTContext &this_() { return *this; }
93
94  mutable std::vector<Type*> Types;
95  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
96  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
97  mutable llvm::FoldingSet<PointerType> PointerTypes;
98  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
99  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
100  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
101  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
102  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
103  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
104  mutable std::vector<VariableArrayType*> VariableArrayTypes;
105  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
106  mutable llvm::FoldingSet<DependentSizedExtVectorType>
107    DependentSizedExtVectorTypes;
108  mutable llvm::FoldingSet<VectorType> VectorTypes;
109  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
110  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
111    FunctionProtoTypes;
112  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
113  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
114  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
115  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
116    SubstTemplateTypeParmTypes;
117  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
118    SubstTemplateTypeParmPackTypes;
119  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
120    TemplateSpecializationTypes;
121  mutable llvm::FoldingSet<ParenType> ParenTypes;
122  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
123  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
124  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
125                                     ASTContext&>
126    DependentTemplateSpecializationTypes;
127  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
128  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
129  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
130  mutable llvm::FoldingSet<AutoType> AutoTypes;
131  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
132  llvm::FoldingSet<AttributedType> AttributedTypes;
133
134  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
135  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
136  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
137    SubstTemplateTemplateParms;
138  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
139                                     ASTContext&>
140    SubstTemplateTemplateParmPacks;
141
142  /// \brief The set of nested name specifiers.
143  ///
144  /// This set is managed by the NestedNameSpecifier class.
145  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
146  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
147  friend class NestedNameSpecifier;
148
149  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
150  ///
151  /// This is lazily created.  This is intentionally not serialized.
152  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
153    ASTRecordLayouts;
154  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
155    ObjCLayouts;
156
157  /// \brief A cache from types to size and alignment information.
158  typedef llvm::DenseMap<const Type*,
159                         std::pair<uint64_t, unsigned> > TypeInfoMap;
160  mutable TypeInfoMap MemoizedTypeInfo;
161
162  /// \brief A cache mapping from CXXRecordDecls to key functions.
163  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
164
165  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
166  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
167
168  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
169  /// interface.
170  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
171
172  /// \brief Mapping from __block VarDecls to their copy initialization expr.
173  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
174
175  /// \brief Mapping from class scope functions specialization to their
176  /// template patterns.
177  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
178    ClassScopeSpecializationPattern;
179
180  /// \brief Representation of a "canonical" template template parameter that
181  /// is used in canonical template names.
182  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
183    TemplateTemplateParmDecl *Parm;
184
185  public:
186    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
187      : Parm(Parm) { }
188
189    TemplateTemplateParmDecl *getParam() const { return Parm; }
190
191    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
192
193    static void Profile(llvm::FoldingSetNodeID &ID,
194                        TemplateTemplateParmDecl *Parm);
195  };
196  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
197    CanonTemplateTemplateParms;
198
199  TemplateTemplateParmDecl *
200    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
201
202  /// \brief The typedef for the __int128_t type.
203  mutable TypedefDecl *Int128Decl;
204
205  /// \brief The typedef for the __uint128_t type.
206  mutable TypedefDecl *UInt128Decl;
207
208  /// \brief The typedef for the target specific predefined
209  /// __builtin_va_list type.
210  mutable TypedefDecl *BuiltinVaListDecl;
211
212  /// \brief The typedef for the predefined \c id type.
213  mutable TypedefDecl *ObjCIdDecl;
214
215  /// \brief The typedef for the predefined \c SEL type.
216  mutable TypedefDecl *ObjCSelDecl;
217
218  /// \brief The typedef for the predefined \c Class type.
219  mutable TypedefDecl *ObjCClassDecl;
220
221  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
222  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
223
224  /// \brief The typedef for the predefined 'BOOL' type.
225  mutable TypedefDecl *BOOLDecl;
226
227  // Typedefs which may be provided defining the structure of Objective-C
228  // pseudo-builtins
229  QualType ObjCIdRedefinitionType;
230  QualType ObjCClassRedefinitionType;
231  QualType ObjCSelRedefinitionType;
232
233  QualType ObjCConstantStringType;
234  mutable RecordDecl *CFConstantStringTypeDecl;
235
236  QualType ObjCNSStringType;
237
238  /// \brief The typedef declaration for the Objective-C "instancetype" type.
239  TypedefDecl *ObjCInstanceTypeDecl;
240
241  /// \brief The type for the C FILE type.
242  TypeDecl *FILEDecl;
243
244  /// \brief The type for the C jmp_buf type.
245  TypeDecl *jmp_bufDecl;
246
247  /// \brief The type for the C sigjmp_buf type.
248  TypeDecl *sigjmp_bufDecl;
249
250  /// \brief The type for the C ucontext_t type.
251  TypeDecl *ucontext_tDecl;
252
253  /// \brief Type for the Block descriptor for Blocks CodeGen.
254  ///
255  /// Since this is only used for generation of debug info, it is not
256  /// serialized.
257  mutable RecordDecl *BlockDescriptorType;
258
259  /// \brief Type for the Block descriptor for Blocks CodeGen.
260  ///
261  /// Since this is only used for generation of debug info, it is not
262  /// serialized.
263  mutable RecordDecl *BlockDescriptorExtendedType;
264
265  /// \brief Declaration for the CUDA cudaConfigureCall function.
266  FunctionDecl *cudaConfigureCallDecl;
267
268  TypeSourceInfo NullTypeSourceInfo;
269
270  /// \brief Keeps track of all declaration attributes.
271  ///
272  /// Since so few decls have attrs, we keep them in a hash map instead of
273  /// wasting space in the Decl class.
274  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
275
276  /// \brief Keeps track of the static data member templates from which
277  /// static data members of class template specializations were instantiated.
278  ///
279  /// This data structure stores the mapping from instantiations of static
280  /// data members to the static data member representations within the
281  /// class template from which they were instantiated along with the kind
282  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
283  ///
284  /// Given the following example:
285  ///
286  /// \code
287  /// template<typename T>
288  /// struct X {
289  ///   static T value;
290  /// };
291  ///
292  /// template<typename T>
293  ///   T X<T>::value = T(17);
294  ///
295  /// int *x = &X<int>::value;
296  /// \endcode
297  ///
298  /// This mapping will contain an entry that maps from the VarDecl for
299  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
300  /// class template X) and will be marked TSK_ImplicitInstantiation.
301  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
302    InstantiatedFromStaticDataMember;
303
304  /// \brief Keeps track of the declaration from which a UsingDecl was
305  /// created during instantiation.
306  ///
307  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
308  /// or an UnresolvedUsingTypenameDecl.
309  ///
310  /// For example:
311  /// \code
312  /// template<typename T>
313  /// struct A {
314  ///   void f();
315  /// };
316  ///
317  /// template<typename T>
318  /// struct B : A<T> {
319  ///   using A<T>::f;
320  /// };
321  ///
322  /// template struct B<int>;
323  /// \endcode
324  ///
325  /// This mapping will contain an entry that maps from the UsingDecl in
326  /// B<int> to the UnresolvedUsingDecl in B<T>.
327  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
328
329  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
330    InstantiatedFromUsingShadowDecl;
331
332  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
333
334  /// \brief Mapping that stores the methods overridden by a given C++
335  /// member function.
336  ///
337  /// Since most C++ member functions aren't virtual and therefore
338  /// don't override anything, we store the overridden functions in
339  /// this map on the side rather than within the CXXMethodDecl structure.
340  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
341  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
342
343  /// \brief Mapping from each declaration context to its corresponding lambda
344  /// mangling context.
345  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
346
347  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
348  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
349
350  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
351  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
352  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
353  ParameterIndexTable ParamIndices;
354
355  ImportDecl *FirstLocalImport;
356  ImportDecl *LastLocalImport;
357
358  TranslationUnitDecl *TUDecl;
359
360  /// \brief The associated SourceManager object.a
361  SourceManager &SourceMgr;
362
363  /// \brief The language options used to create the AST associated with
364  ///  this ASTContext object.
365  LangOptions &LangOpts;
366
367  /// \brief The allocator used to create AST objects.
368  ///
369  /// AST objects are never destructed; rather, all memory associated with the
370  /// AST objects will be released when the ASTContext itself is destroyed.
371  mutable llvm::BumpPtrAllocator BumpAlloc;
372
373  /// \brief Allocator for partial diagnostics.
374  PartialDiagnostic::StorageAllocator DiagAllocator;
375
376  /// \brief The current C++ ABI.
377  OwningPtr<CXXABI> ABI;
378  CXXABI *createCXXABI(const TargetInfo &T);
379
380  /// \brief The logical -> physical address space map.
381  const LangAS::Map *AddrSpaceMap;
382
383  friend class ASTDeclReader;
384  friend class ASTReader;
385  friend class ASTWriter;
386  friend class CXXRecordDecl;
387
388  const TargetInfo *Target;
389  clang::PrintingPolicy PrintingPolicy;
390
391public:
392  IdentifierTable &Idents;
393  SelectorTable &Selectors;
394  Builtin::Context &BuiltinInfo;
395  mutable DeclarationNameTable DeclarationNames;
396  OwningPtr<ExternalASTSource> ExternalSource;
397  ASTMutationListener *Listener;
398
399  const clang::PrintingPolicy &getPrintingPolicy() const {
400    return PrintingPolicy;
401  }
402
403  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
404    PrintingPolicy = Policy;
405  }
406
407  SourceManager& getSourceManager() { return SourceMgr; }
408  const SourceManager& getSourceManager() const { return SourceMgr; }
409
410  llvm::BumpPtrAllocator &getAllocator() const {
411    return BumpAlloc;
412  }
413
414  void *Allocate(unsigned Size, unsigned Align = 8) const {
415    return BumpAlloc.Allocate(Size, Align);
416  }
417  void Deallocate(void *Ptr) const { }
418
419  /// Return the total amount of physical memory allocated for representing
420  /// AST nodes and type information.
421  size_t getASTAllocatedMemory() const {
422    return BumpAlloc.getTotalMemory();
423  }
424  /// Return the total memory used for various side tables.
425  size_t getSideTableAllocatedMemory() const;
426
427  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
428    return DiagAllocator;
429  }
430
431  const TargetInfo &getTargetInfo() const { return *Target; }
432
433  const LangOptions& getLangOpts() const { return LangOpts; }
434
435  DiagnosticsEngine &getDiagnostics() const;
436
437  FullSourceLoc getFullLoc(SourceLocation Loc) const {
438    return FullSourceLoc(Loc,SourceMgr);
439  }
440
441  /// \brief All comments in this translation unit.
442  RawCommentList Comments;
443
444  /// \brief True if comments are already loaded from ExternalASTSource.
445  mutable bool CommentsLoaded;
446
447  class RawCommentAndCacheFlags {
448  public:
449    enum Kind {
450      /// We searched for a comment attached to the particular declaration, but
451      /// didn't find any.
452      ///
453      /// getRaw() == 0.
454      NoCommentInDecl = 0,
455
456      /// We have found a comment attached to this particular declaration.
457      ///
458      /// getRaw() != 0.
459      FromDecl,
460
461      /// This declaration does not have an attached comment, and we have
462      /// searched the redeclaration chain.
463      ///
464      /// If getRaw() == 0, the whole redeclaration chain does not have any
465      /// comments.
466      ///
467      /// If getRaw() != 0, it is a comment propagated from other
468      /// redeclaration.
469      FromRedecl
470    };
471
472    Kind getKind() const LLVM_READONLY {
473      return Data.getInt();
474    }
475
476    void setKind(Kind K) {
477      Data.setInt(K);
478    }
479
480    const RawComment *getRaw() const LLVM_READONLY {
481      return Data.getPointer();
482    }
483
484    void setRaw(const RawComment *RC) {
485      Data.setPointer(RC);
486    }
487
488    const Decl *getOriginalDecl() const LLVM_READONLY {
489      return OriginalDecl;
490    }
491
492    void setOriginalDecl(const Decl *Orig) {
493      OriginalDecl = Orig;
494    }
495
496  private:
497    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
498    const Decl *OriginalDecl;
499  };
500
501  /// \brief Mapping from declarations to comments attached to any
502  /// redeclaration.
503  ///
504  /// Raw comments are owned by Comments list.  This mapping is populated
505  /// lazily.
506  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
507
508  /// \brief Mapping from declarations to parsed comments attached to any
509  /// redeclaration.
510  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
511
512  /// \brief Return the documentation comment attached to a given declaration,
513  /// without looking into cache.
514  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
515
516public:
517  RawCommentList &getRawCommentList() {
518    return Comments;
519  }
520
521  void addComment(const RawComment &RC) {
522    assert(LangOpts.RetainCommentsFromSystemHeaders ||
523           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
524    Comments.addComment(RC, BumpAlloc);
525  }
526
527  /// \brief Return the documentation comment attached to a given declaration.
528  /// Returns NULL if no comment is attached.
529  ///
530  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
531  /// the comment, if the comment we found comes from a redeclaration.
532  const RawComment *getRawCommentForAnyRedecl(
533                                      const Decl *D,
534                                      const Decl **OriginalDecl = NULL) const;
535
536  /// Return parsed documentation comment attached to a given declaration.
537  /// Returns NULL if no comment is attached.
538  ///
539  /// \param PP the Preprocessor used with this TU.  Could be NULL if
540  /// preprocessor is not available.
541  comments::FullComment *getCommentForDecl(const Decl *D,
542                                           const Preprocessor *PP) const;
543
544  comments::FullComment *cloneFullComment(comments::FullComment *FC,
545                                         const Decl *D) const;
546
547private:
548  mutable comments::CommandTraits CommentCommandTraits;
549
550public:
551  comments::CommandTraits &getCommentCommandTraits() const {
552    return CommentCommandTraits;
553  }
554
555  /// \brief Retrieve the attributes for the given declaration.
556  AttrVec& getDeclAttrs(const Decl *D);
557
558  /// \brief Erase the attributes corresponding to the given declaration.
559  void eraseDeclAttrs(const Decl *D);
560
561  /// \brief If this variable is an instantiated static data member of a
562  /// class template specialization, returns the templated static data member
563  /// from which it was instantiated.
564  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
565                                                           const VarDecl *Var);
566
567  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
568
569  void setClassScopeSpecializationPattern(FunctionDecl *FD,
570                                          FunctionDecl *Pattern);
571
572  /// \brief Note that the static data member \p Inst is an instantiation of
573  /// the static data member template \p Tmpl of a class template.
574  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
575                                           TemplateSpecializationKind TSK,
576                        SourceLocation PointOfInstantiation = SourceLocation());
577
578  /// \brief If the given using decl \p Inst is an instantiation of a
579  /// (possibly unresolved) using decl from a template instantiation,
580  /// return it.
581  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
582
583  /// \brief Remember that the using decl \p Inst is an instantiation
584  /// of the using decl \p Pattern of a class template.
585  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
586
587  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
588                                          UsingShadowDecl *Pattern);
589  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
590
591  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
592
593  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
594
595  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
596  /// the non-bitfield \p LastFD.
597  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
598                                      const FieldDecl *LastFD) const;
599
600  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
601  /// the bitfield \p LastFD.
602  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
603                                   const FieldDecl *LastFD) const;
604
605  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
606  /// \p LastFD.
607  bool BitfieldFollowsBitfield(const FieldDecl *FD,
608                               const FieldDecl *LastFD) const;
609
610  /// \brief Return \c true if \p FD is not a bitfield which follows the
611  /// bitfield \p LastFD.
612  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
613                                  const FieldDecl *LastFD) const;
614
615  /// \brief Return \c true if \p FD is a bitfield which follows the
616  /// non-bitfield \p LastFD.
617  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
618                                  const FieldDecl *LastFD) const;
619
620  // Access to the set of methods overridden by the given C++ method.
621  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
622  overridden_cxx_method_iterator
623  overridden_methods_begin(const CXXMethodDecl *Method) const;
624
625  overridden_cxx_method_iterator
626  overridden_methods_end(const CXXMethodDecl *Method) const;
627
628  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
629
630  /// \brief Note that the given C++ \p Method overrides the given \p
631  /// Overridden method.
632  void addOverriddenMethod(const CXXMethodDecl *Method,
633                           const CXXMethodDecl *Overridden);
634
635  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
636  ///
637  /// An ObjC method is considered to override any method in the class's
638  /// base classes, its protocols, or its categories' protocols, that has
639  /// the same selector and is of the same kind (class or instance).
640  /// A method in an implementation is not considered as overriding the same
641  /// method in the interface or its categories.
642  void getOverriddenMethods(
643                        const NamedDecl *Method,
644                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
645
646  /// \brief Notify the AST context that a new import declaration has been
647  /// parsed or implicitly created within this translation unit.
648  void addedLocalImportDecl(ImportDecl *Import);
649
650  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
651    return Import->NextLocalImport;
652  }
653
654  /// \brief Iterator that visits import declarations.
655  class import_iterator {
656    ImportDecl *Import;
657
658  public:
659    typedef ImportDecl               *value_type;
660    typedef ImportDecl               *reference;
661    typedef ImportDecl               *pointer;
662    typedef int                       difference_type;
663    typedef std::forward_iterator_tag iterator_category;
664
665    import_iterator() : Import() { }
666    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
667
668    reference operator*() const { return Import; }
669    pointer operator->() const { return Import; }
670
671    import_iterator &operator++() {
672      Import = ASTContext::getNextLocalImport(Import);
673      return *this;
674    }
675
676    import_iterator operator++(int) {
677      import_iterator Other(*this);
678      ++(*this);
679      return Other;
680    }
681
682    friend bool operator==(import_iterator X, import_iterator Y) {
683      return X.Import == Y.Import;
684    }
685
686    friend bool operator!=(import_iterator X, import_iterator Y) {
687      return X.Import != Y.Import;
688    }
689  };
690
691  import_iterator local_import_begin() const {
692    return import_iterator(FirstLocalImport);
693  }
694  import_iterator local_import_end() const { return import_iterator(); }
695
696  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
697
698
699  // Builtin Types.
700  CanQualType VoidTy;
701  CanQualType BoolTy;
702  CanQualType CharTy;
703  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
704  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
705  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
706  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
707  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
708  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
709  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
710  CanQualType FloatTy, DoubleTy, LongDoubleTy;
711  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
712  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
713  CanQualType VoidPtrTy, NullPtrTy;
714  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
715  CanQualType BuiltinFnTy;
716  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
717  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
718  CanQualType ObjCBuiltinBoolTy;
719
720  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
721  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
722  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
723
724  // Type used to help define __builtin_va_list for some targets.
725  // The type is built when constructing 'BuiltinVaListDecl'.
726  mutable QualType VaListTagTy;
727
728  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
729             IdentifierTable &idents, SelectorTable &sels,
730             Builtin::Context &builtins,
731             unsigned size_reserve,
732             bool DelayInitialization = false);
733
734  ~ASTContext();
735
736  /// \brief Attach an external AST source to the AST context.
737  ///
738  /// The external AST source provides the ability to load parts of
739  /// the abstract syntax tree as needed from some external storage,
740  /// e.g., a precompiled header.
741  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
742
743  /// \brief Retrieve a pointer to the external AST source associated
744  /// with this AST context, if any.
745  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
746
747  /// \brief Attach an AST mutation listener to the AST context.
748  ///
749  /// The AST mutation listener provides the ability to track modifications to
750  /// the abstract syntax tree entities committed after they were initially
751  /// created.
752  void setASTMutationListener(ASTMutationListener *Listener) {
753    this->Listener = Listener;
754  }
755
756  /// \brief Retrieve a pointer to the AST mutation listener associated
757  /// with this AST context, if any.
758  ASTMutationListener *getASTMutationListener() const { return Listener; }
759
760  void PrintStats() const;
761  const std::vector<Type*>& getTypes() const { return Types; }
762
763  /// \brief Retrieve the declaration for the 128-bit signed integer type.
764  TypedefDecl *getInt128Decl() const;
765
766  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
767  TypedefDecl *getUInt128Decl() const;
768
769  //===--------------------------------------------------------------------===//
770  //                           Type Constructors
771  //===--------------------------------------------------------------------===//
772
773private:
774  /// \brief Return a type with extended qualifiers.
775  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
776
777  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
778
779public:
780  /// \brief Return the uniqued reference to the type for an address space
781  /// qualified type with the specified type and address space.
782  ///
783  /// The resulting type has a union of the qualifiers from T and the address
784  /// space. If T already has an address space specifier, it is silently
785  /// replaced.
786  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
787
788  /// \brief Return the uniqued reference to the type for an Objective-C
789  /// gc-qualified type.
790  ///
791  /// The retulting type has a union of the qualifiers from T and the gc
792  /// attribute.
793  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
794
795  /// \brief Return the uniqued reference to the type for a \c restrict
796  /// qualified type.
797  ///
798  /// The resulting type has a union of the qualifiers from \p T and
799  /// \c restrict.
800  QualType getRestrictType(QualType T) const {
801    return T.withFastQualifiers(Qualifiers::Restrict);
802  }
803
804  /// \brief Return the uniqued reference to the type for a \c volatile
805  /// qualified type.
806  ///
807  /// The resulting type has a union of the qualifiers from \p T and
808  /// \c volatile.
809  QualType getVolatileType(QualType T) const {
810    return T.withFastQualifiers(Qualifiers::Volatile);
811  }
812
813  /// \brief Return the uniqued reference to the type for a \c const
814  /// qualified type.
815  ///
816  /// The resulting type has a union of the qualifiers from \p T and \c const.
817  ///
818  /// It can be reasonably expected that this will always be equivalent to
819  /// calling T.withConst().
820  QualType getConstType(QualType T) const { return T.withConst(); }
821
822  /// \brief Change the ExtInfo on a function type.
823  const FunctionType *adjustFunctionType(const FunctionType *Fn,
824                                         FunctionType::ExtInfo EInfo);
825
826  /// \brief Return the uniqued reference to the type for a complex
827  /// number with the specified element type.
828  QualType getComplexType(QualType T) const;
829  CanQualType getComplexType(CanQualType T) const {
830    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
831  }
832
833  /// \brief Return the uniqued reference to the type for a pointer to
834  /// the specified type.
835  QualType getPointerType(QualType T) const;
836  CanQualType getPointerType(CanQualType T) const {
837    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
838  }
839
840  /// \brief Return the uniqued reference to the atomic type for the specified
841  /// type.
842  QualType getAtomicType(QualType T) const;
843
844  /// \brief Return the uniqued reference to the type for a block of the
845  /// specified type.
846  QualType getBlockPointerType(QualType T) const;
847
848  /// Gets the struct used to keep track of the descriptor for pointer to
849  /// blocks.
850  QualType getBlockDescriptorType() const;
851
852  /// Gets the struct used to keep track of the extended descriptor for
853  /// pointer to blocks.
854  QualType getBlockDescriptorExtendedType() const;
855
856  void setcudaConfigureCallDecl(FunctionDecl *FD) {
857    cudaConfigureCallDecl = FD;
858  }
859  FunctionDecl *getcudaConfigureCallDecl() {
860    return cudaConfigureCallDecl;
861  }
862
863  /// Returns true iff we need copy/dispose helpers for the given type.
864  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
865
866
867  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
868  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
869  /// has extended lifetime.
870  bool getByrefLifetime(QualType Ty,
871                        Qualifiers::ObjCLifetime &Lifetime,
872                        bool &HasByrefExtendedLayout) const;
873
874  /// \brief Return the uniqued reference to the type for an lvalue reference
875  /// to the specified type.
876  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
877    const;
878
879  /// \brief Return the uniqued reference to the type for an rvalue reference
880  /// to the specified type.
881  QualType getRValueReferenceType(QualType T) const;
882
883  /// \brief Return the uniqued reference to the type for a member pointer to
884  /// the specified type in the specified class.
885  ///
886  /// The class \p Cls is a \c Type because it could be a dependent name.
887  QualType getMemberPointerType(QualType T, const Type *Cls) const;
888
889  /// \brief Return a non-unique reference to the type for a variable array of
890  /// the specified element type.
891  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
892                                ArrayType::ArraySizeModifier ASM,
893                                unsigned IndexTypeQuals,
894                                SourceRange Brackets) const;
895
896  /// \brief Return a non-unique reference to the type for a dependently-sized
897  /// array of the specified element type.
898  ///
899  /// FIXME: We will need these to be uniqued, or at least comparable, at some
900  /// point.
901  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
902                                      ArrayType::ArraySizeModifier ASM,
903                                      unsigned IndexTypeQuals,
904                                      SourceRange Brackets) const;
905
906  /// \brief Return a unique reference to the type for an incomplete array of
907  /// the specified element type.
908  QualType getIncompleteArrayType(QualType EltTy,
909                                  ArrayType::ArraySizeModifier ASM,
910                                  unsigned IndexTypeQuals) const;
911
912  /// \brief Return the unique reference to the type for a constant array of
913  /// the specified element type.
914  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
915                                ArrayType::ArraySizeModifier ASM,
916                                unsigned IndexTypeQuals) const;
917
918  /// \brief Returns a vla type where known sizes are replaced with [*].
919  QualType getVariableArrayDecayedType(QualType Ty) const;
920
921  /// \brief Return the unique reference to a vector type of the specified
922  /// element type and size.
923  ///
924  /// \pre \p VectorType must be a built-in type.
925  QualType getVectorType(QualType VectorType, unsigned NumElts,
926                         VectorType::VectorKind VecKind) const;
927
928  /// \brief Return the unique reference to an extended vector type
929  /// of the specified element type and size.
930  ///
931  /// \pre \p VectorType must be a built-in type.
932  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
933
934  /// \pre Return a non-unique reference to the type for a dependently-sized
935  /// vector of the specified element type.
936  ///
937  /// FIXME: We will need these to be uniqued, or at least comparable, at some
938  /// point.
939  QualType getDependentSizedExtVectorType(QualType VectorType,
940                                          Expr *SizeExpr,
941                                          SourceLocation AttrLoc) const;
942
943  /// \brief Return a K&R style C function type like 'int()'.
944  QualType getFunctionNoProtoType(QualType ResultTy,
945                                  const FunctionType::ExtInfo &Info) const;
946
947  QualType getFunctionNoProtoType(QualType ResultTy) const {
948    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
949  }
950
951  /// \brief Return a normal function type with a typed argument list.
952  QualType getFunctionType(QualType ResultTy,
953                           const QualType *Args, unsigned NumArgs,
954                           const FunctionProtoType::ExtProtoInfo &EPI) const;
955
956  /// \brief Return the unique reference to the type for the specified type
957  /// declaration.
958  QualType getTypeDeclType(const TypeDecl *Decl,
959                           const TypeDecl *PrevDecl = 0) const {
960    assert(Decl && "Passed null for Decl param");
961    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
962
963    if (PrevDecl) {
964      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
965      Decl->TypeForDecl = PrevDecl->TypeForDecl;
966      return QualType(PrevDecl->TypeForDecl, 0);
967    }
968
969    return getTypeDeclTypeSlow(Decl);
970  }
971
972  /// \brief Return the unique reference to the type for the specified
973  /// typedef-name decl.
974  QualType getTypedefType(const TypedefNameDecl *Decl,
975                          QualType Canon = QualType()) const;
976
977  QualType getRecordType(const RecordDecl *Decl) const;
978
979  QualType getEnumType(const EnumDecl *Decl) const;
980
981  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
982
983  QualType getAttributedType(AttributedType::Kind attrKind,
984                             QualType modifiedType,
985                             QualType equivalentType);
986
987  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
988                                        QualType Replacement) const;
989  QualType getSubstTemplateTypeParmPackType(
990                                          const TemplateTypeParmType *Replaced,
991                                            const TemplateArgument &ArgPack);
992
993  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
994                                   bool ParameterPack,
995                                   TemplateTypeParmDecl *ParmDecl = 0) const;
996
997  QualType getTemplateSpecializationType(TemplateName T,
998                                         const TemplateArgument *Args,
999                                         unsigned NumArgs,
1000                                         QualType Canon = QualType()) const;
1001
1002  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1003                                                  const TemplateArgument *Args,
1004                                                  unsigned NumArgs) const;
1005
1006  QualType getTemplateSpecializationType(TemplateName T,
1007                                         const TemplateArgumentListInfo &Args,
1008                                         QualType Canon = QualType()) const;
1009
1010  TypeSourceInfo *
1011  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1012                                    const TemplateArgumentListInfo &Args,
1013                                    QualType Canon = QualType()) const;
1014
1015  QualType getParenType(QualType NamedType) const;
1016
1017  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1018                             NestedNameSpecifier *NNS,
1019                             QualType NamedType) const;
1020  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1021                                NestedNameSpecifier *NNS,
1022                                const IdentifierInfo *Name,
1023                                QualType Canon = QualType()) const;
1024
1025  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1026                                                  NestedNameSpecifier *NNS,
1027                                                  const IdentifierInfo *Name,
1028                                    const TemplateArgumentListInfo &Args) const;
1029  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1030                                                  NestedNameSpecifier *NNS,
1031                                                  const IdentifierInfo *Name,
1032                                                  unsigned NumArgs,
1033                                            const TemplateArgument *Args) const;
1034
1035  QualType getPackExpansionType(QualType Pattern,
1036                                llvm::Optional<unsigned> NumExpansions);
1037
1038  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1039                                ObjCInterfaceDecl *PrevDecl = 0) const;
1040
1041  QualType getObjCObjectType(QualType Base,
1042                             ObjCProtocolDecl * const *Protocols,
1043                             unsigned NumProtocols) const;
1044
1045  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1046  QualType getObjCObjectPointerType(QualType OIT) const;
1047
1048  /// \brief GCC extension.
1049  QualType getTypeOfExprType(Expr *e) const;
1050  QualType getTypeOfType(QualType t) const;
1051
1052  /// \brief C++11 decltype.
1053  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1054
1055  /// \brief Unary type transforms
1056  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1057                                 UnaryTransformType::UTTKind UKind) const;
1058
1059  /// \brief C++11 deduced auto type.
1060  QualType getAutoType(QualType DeducedType) const;
1061
1062  /// \brief C++11 deduction pattern for 'auto' type.
1063  QualType getAutoDeductType() const;
1064
1065  /// \brief C++11 deduction pattern for 'auto &&' type.
1066  QualType getAutoRRefDeductType() const;
1067
1068  /// \brief Return the unique reference to the type for the specified TagDecl
1069  /// (struct/union/class/enum) decl.
1070  QualType getTagDeclType(const TagDecl *Decl) const;
1071
1072  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1073  /// <stddef.h>.
1074  ///
1075  /// The sizeof operator requires this (C99 6.5.3.4p4).
1076  CanQualType getSizeType() const;
1077
1078  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1079  /// <stdint.h>.
1080  CanQualType getIntMaxType() const;
1081
1082  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1083  /// <stdint.h>.
1084  CanQualType getUIntMaxType() const;
1085
1086  /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1087  /// returns a type compatible with the type defined in <stddef.h> as defined
1088  /// by the target.
1089  QualType getWCharType() const { return WCharTy; }
1090
1091  /// \brief Return the type of "signed wchar_t".
1092  ///
1093  /// Used when in C++, as a GCC extension.
1094  QualType getSignedWCharType() const;
1095
1096  /// \brief Return the type of "unsigned wchar_t".
1097  ///
1098  /// Used when in C++, as a GCC extension.
1099  QualType getUnsignedWCharType() const;
1100
1101  /// \brief In C99, this returns a type compatible with the type
1102  /// defined in <stddef.h> as defined by the target.
1103  QualType getWIntType() const { return WIntTy; }
1104
1105  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1106  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1107  QualType getPointerDiffType() const;
1108
1109  /// \brief Return the unique type for "pid_t" defined in
1110  /// <sys/types.h>. We need this to compute the correct type for vfork().
1111  QualType getProcessIDType() const;
1112
1113  /// \brief Return the C structure type used to represent constant CFStrings.
1114  QualType getCFConstantStringType() const;
1115
1116  /// Get the structure type used to representation CFStrings, or NULL
1117  /// if it hasn't yet been built.
1118  QualType getRawCFConstantStringType() const {
1119    if (CFConstantStringTypeDecl)
1120      return getTagDeclType(CFConstantStringTypeDecl);
1121    return QualType();
1122  }
1123  void setCFConstantStringType(QualType T);
1124
1125  // This setter/getter represents the ObjC type for an NSConstantString.
1126  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1127  QualType getObjCConstantStringInterface() const {
1128    return ObjCConstantStringType;
1129  }
1130
1131  QualType getObjCNSStringType() const {
1132    return ObjCNSStringType;
1133  }
1134
1135  void setObjCNSStringType(QualType T) {
1136    ObjCNSStringType = T;
1137  }
1138
1139  /// \brief Retrieve the type that \c id has been defined to, which may be
1140  /// different from the built-in \c id if \c id has been typedef'd.
1141  QualType getObjCIdRedefinitionType() const {
1142    if (ObjCIdRedefinitionType.isNull())
1143      return getObjCIdType();
1144    return ObjCIdRedefinitionType;
1145  }
1146
1147  /// \brief Set the user-written type that redefines \c id.
1148  void setObjCIdRedefinitionType(QualType RedefType) {
1149    ObjCIdRedefinitionType = RedefType;
1150  }
1151
1152  /// \brief Retrieve the type that \c Class has been defined to, which may be
1153  /// different from the built-in \c Class if \c Class has been typedef'd.
1154  QualType getObjCClassRedefinitionType() const {
1155    if (ObjCClassRedefinitionType.isNull())
1156      return getObjCClassType();
1157    return ObjCClassRedefinitionType;
1158  }
1159
1160  /// \brief Set the user-written type that redefines 'SEL'.
1161  void setObjCClassRedefinitionType(QualType RedefType) {
1162    ObjCClassRedefinitionType = RedefType;
1163  }
1164
1165  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1166  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1167  QualType getObjCSelRedefinitionType() const {
1168    if (ObjCSelRedefinitionType.isNull())
1169      return getObjCSelType();
1170    return ObjCSelRedefinitionType;
1171  }
1172
1173
1174  /// \brief Set the user-written type that redefines 'SEL'.
1175  void setObjCSelRedefinitionType(QualType RedefType) {
1176    ObjCSelRedefinitionType = RedefType;
1177  }
1178
1179  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1180  /// otherwise, returns a NULL type;
1181  QualType getObjCInstanceType() {
1182    return getTypeDeclType(getObjCInstanceTypeDecl());
1183  }
1184
1185  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1186  /// "instancetype" type.
1187  TypedefDecl *getObjCInstanceTypeDecl();
1188
1189  /// \brief Set the type for the C FILE type.
1190  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1191
1192  /// \brief Retrieve the C FILE type.
1193  QualType getFILEType() const {
1194    if (FILEDecl)
1195      return getTypeDeclType(FILEDecl);
1196    return QualType();
1197  }
1198
1199  /// \brief Set the type for the C jmp_buf type.
1200  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1201    this->jmp_bufDecl = jmp_bufDecl;
1202  }
1203
1204  /// \brief Retrieve the C jmp_buf type.
1205  QualType getjmp_bufType() const {
1206    if (jmp_bufDecl)
1207      return getTypeDeclType(jmp_bufDecl);
1208    return QualType();
1209  }
1210
1211  /// \brief Set the type for the C sigjmp_buf type.
1212  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1213    this->sigjmp_bufDecl = sigjmp_bufDecl;
1214  }
1215
1216  /// \brief Retrieve the C sigjmp_buf type.
1217  QualType getsigjmp_bufType() const {
1218    if (sigjmp_bufDecl)
1219      return getTypeDeclType(sigjmp_bufDecl);
1220    return QualType();
1221  }
1222
1223  /// \brief Set the type for the C ucontext_t type.
1224  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1225    this->ucontext_tDecl = ucontext_tDecl;
1226  }
1227
1228  /// \brief Retrieve the C ucontext_t type.
1229  QualType getucontext_tType() const {
1230    if (ucontext_tDecl)
1231      return getTypeDeclType(ucontext_tDecl);
1232    return QualType();
1233  }
1234
1235  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1236  QualType getLogicalOperationType() const {
1237    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1238  }
1239
1240  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1241  /// \p S.
1242  ///
1243  /// If \p Field is specified then record field names are also encoded.
1244  void getObjCEncodingForType(QualType T, std::string &S,
1245                              const FieldDecl *Field=0) const;
1246
1247  void getLegacyIntegralTypeEncoding(QualType &t) const;
1248
1249  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1250  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1251                                       std::string &S) const;
1252
1253  /// \brief Emit the encoded type for the function \p Decl into \p S.
1254  ///
1255  /// This is in the same format as Objective-C method encodings.
1256  ///
1257  /// \returns true if an error occurred (e.g., because one of the parameter
1258  /// types is incomplete), false otherwise.
1259  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1260
1261  /// \brief Emit the encoded type for the method declaration \p Decl into
1262  /// \p S.
1263  ///
1264  /// \returns true if an error occurred (e.g., because one of the parameter
1265  /// types is incomplete), false otherwise.
1266  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1267                                    bool Extended = false)
1268    const;
1269
1270  /// \brief Return the encoded type for this block declaration.
1271  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1272
1273  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1274  /// this method declaration. If non-NULL, Container must be either
1275  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1276  /// only be NULL when getting encodings for protocol properties.
1277  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1278                                      const Decl *Container,
1279                                      std::string &S) const;
1280
1281  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1282                                      ObjCProtocolDecl *rProto) const;
1283
1284  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1285  /// in characters.
1286  CharUnits getObjCEncodingTypeSize(QualType T) const;
1287
1288  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1289  /// in Objective-C.
1290  TypedefDecl *getObjCIdDecl() const;
1291
1292  /// \brief Represents the Objective-CC \c id type.
1293  ///
1294  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1295  /// pointer type, a pointer to a struct.
1296  QualType getObjCIdType() const {
1297    return getTypeDeclType(getObjCIdDecl());
1298  }
1299
1300  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1301  /// in Objective-C.
1302  TypedefDecl *getObjCSelDecl() const;
1303
1304  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1305  /// 'SEL' type.
1306  QualType getObjCSelType() const {
1307    return getTypeDeclType(getObjCSelDecl());
1308  }
1309
1310  /// \brief Retrieve the typedef declaration corresponding to the predefined
1311  /// Objective-C 'Class' type.
1312  TypedefDecl *getObjCClassDecl() const;
1313
1314  /// \brief Represents the Objective-C \c Class type.
1315  ///
1316  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1317  /// pointer type, a pointer to a struct.
1318  QualType getObjCClassType() const {
1319    return getTypeDeclType(getObjCClassDecl());
1320  }
1321
1322  /// \brief Retrieve the Objective-C class declaration corresponding to
1323  /// the predefined \c Protocol class.
1324  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1325
1326  /// \brief Retrieve declaration of 'BOOL' typedef
1327  TypedefDecl *getBOOLDecl() const {
1328    return BOOLDecl;
1329  }
1330
1331  /// \brief Save declaration of 'BOOL' typedef
1332  void setBOOLDecl(TypedefDecl *TD) {
1333    BOOLDecl = TD;
1334  }
1335
1336  /// \brief type of 'BOOL' type.
1337  QualType getBOOLType() const {
1338    return getTypeDeclType(getBOOLDecl());
1339  }
1340
1341  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1342  QualType getObjCProtoType() const {
1343    return getObjCInterfaceType(getObjCProtocolDecl());
1344  }
1345
1346  /// \brief Retrieve the C type declaration corresponding to the predefined
1347  /// \c __builtin_va_list type.
1348  TypedefDecl *getBuiltinVaListDecl() const;
1349
1350  /// \brief Retrieve the type of the \c __builtin_va_list type.
1351  QualType getBuiltinVaListType() const {
1352    return getTypeDeclType(getBuiltinVaListDecl());
1353  }
1354
1355  /// \brief Retrieve the C type declaration corresponding to the predefined
1356  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1357  /// for some targets.
1358  QualType getVaListTagType() const;
1359
1360  /// \brief Return a type with additional \c const, \c volatile, or
1361  /// \c restrict qualifiers.
1362  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1363    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1364  }
1365
1366  /// \brief Un-split a SplitQualType.
1367  QualType getQualifiedType(SplitQualType split) const {
1368    return getQualifiedType(split.Ty, split.Quals);
1369  }
1370
1371  /// \brief Return a type with additional qualifiers.
1372  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1373    if (!Qs.hasNonFastQualifiers())
1374      return T.withFastQualifiers(Qs.getFastQualifiers());
1375    QualifierCollector Qc(Qs);
1376    const Type *Ptr = Qc.strip(T);
1377    return getExtQualType(Ptr, Qc);
1378  }
1379
1380  /// \brief Return a type with additional qualifiers.
1381  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1382    if (!Qs.hasNonFastQualifiers())
1383      return QualType(T, Qs.getFastQualifiers());
1384    return getExtQualType(T, Qs);
1385  }
1386
1387  /// \brief Return a type with the given lifetime qualifier.
1388  ///
1389  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1390  QualType getLifetimeQualifiedType(QualType type,
1391                                    Qualifiers::ObjCLifetime lifetime) {
1392    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1393    assert(lifetime != Qualifiers::OCL_None);
1394
1395    Qualifiers qs;
1396    qs.addObjCLifetime(lifetime);
1397    return getQualifiedType(type, qs);
1398  }
1399
1400  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1401                                         SourceLocation NameLoc) const;
1402
1403  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1404                                         UnresolvedSetIterator End) const;
1405
1406  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1407                                        bool TemplateKeyword,
1408                                        TemplateDecl *Template) const;
1409
1410  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1411                                        const IdentifierInfo *Name) const;
1412  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1413                                        OverloadedOperatorKind Operator) const;
1414  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1415                                            TemplateName replacement) const;
1416  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1417                                        const TemplateArgument &ArgPack) const;
1418
1419  enum GetBuiltinTypeError {
1420    GE_None,              ///< No error
1421    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1422    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1423    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1424  };
1425
1426  /// \brief Return the type for the specified builtin.
1427  ///
1428  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1429  /// arguments to the builtin that are required to be integer constant
1430  /// expressions.
1431  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1432                          unsigned *IntegerConstantArgs = 0) const;
1433
1434private:
1435  CanQualType getFromTargetType(unsigned Type) const;
1436  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1437
1438  //===--------------------------------------------------------------------===//
1439  //                         Type Predicates.
1440  //===--------------------------------------------------------------------===//
1441
1442public:
1443  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1444  /// collection attributes.
1445  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1446
1447  /// \brief Return true if the given vector types are of the same unqualified
1448  /// type or if they are equivalent to the same GCC vector type.
1449  ///
1450  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1451  /// types.
1452  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1453
1454  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1455  /// attribute set.
1456  static bool isObjCNSObjectType(QualType Ty) {
1457    return Ty->isObjCNSObjectType();
1458  }
1459
1460  //===--------------------------------------------------------------------===//
1461  //                         Type Sizing and Analysis
1462  //===--------------------------------------------------------------------===//
1463
1464  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1465  /// point type.
1466  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1467
1468  /// \brief Get the size and alignment of the specified complete type in bits.
1469  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1470  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1471    return getTypeInfo(T.getTypePtr());
1472  }
1473
1474  /// \brief Return the size of the specified (complete) type \p T, in bits.
1475  uint64_t getTypeSize(QualType T) const {
1476    return getTypeInfo(T).first;
1477  }
1478  uint64_t getTypeSize(const Type *T) const {
1479    return getTypeInfo(T).first;
1480  }
1481
1482  /// \brief Return the size of the character type, in bits.
1483  uint64_t getCharWidth() const {
1484    return getTypeSize(CharTy);
1485  }
1486
1487  /// \brief Convert a size in bits to a size in characters.
1488  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1489
1490  /// \brief Convert a size in characters to a size in bits.
1491  int64_t toBits(CharUnits CharSize) const;
1492
1493  /// \brief Return the size of the specified (complete) type \p T, in
1494  /// characters.
1495  CharUnits getTypeSizeInChars(QualType T) const;
1496  CharUnits getTypeSizeInChars(const Type *T) const;
1497
1498  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1499  /// bits.
1500  unsigned getTypeAlign(QualType T) const {
1501    return getTypeInfo(T).second;
1502  }
1503  unsigned getTypeAlign(const Type *T) const {
1504    return getTypeInfo(T).second;
1505  }
1506
1507  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1508  /// characters.
1509  CharUnits getTypeAlignInChars(QualType T) const;
1510  CharUnits getTypeAlignInChars(const Type *T) const;
1511
1512  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1513  // type is a record, its data size is returned.
1514  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1515
1516  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1517  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1518
1519  /// \brief Return the "preferred" alignment of the specified type \p T for
1520  /// the current target, in bits.
1521  ///
1522  /// This can be different than the ABI alignment in cases where it is
1523  /// beneficial for performance to overalign a data type.
1524  unsigned getPreferredTypeAlign(const Type *T) const;
1525
1526  /// \brief Return a conservative estimate of the alignment of the specified
1527  /// decl \p D.
1528  ///
1529  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1530  /// alignment.
1531  ///
1532  /// If \p RefAsPointee, references are treated like their underlying type
1533  /// (for alignof), else they're treated like pointers (for CodeGen).
1534  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1535
1536  /// \brief Get or compute information about the layout of the specified
1537  /// record (struct/union/class) \p D, which indicates its size and field
1538  /// position information.
1539  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1540
1541  /// \brief Get or compute information about the layout of the specified
1542  /// Objective-C interface.
1543  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1544    const;
1545
1546  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1547                        bool Simple = false) const;
1548
1549  /// \brief Get or compute information about the layout of the specified
1550  /// Objective-C implementation.
1551  ///
1552  /// This may differ from the interface if synthesized ivars are present.
1553  const ASTRecordLayout &
1554  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1555
1556  /// \brief Get the key function for the given record decl, or NULL if there
1557  /// isn't one.
1558  ///
1559  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1560  ///
1561  /// ...the first non-pure virtual function that is not inline at the point
1562  /// of class definition.
1563  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1564
1565  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1566  uint64_t getFieldOffset(const ValueDecl *FD) const;
1567
1568  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1569
1570  MangleContext *createMangleContext();
1571
1572  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1573                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1574
1575  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1576  void CollectInheritedProtocols(const Decl *CDecl,
1577                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1578
1579  //===--------------------------------------------------------------------===//
1580  //                            Type Operators
1581  //===--------------------------------------------------------------------===//
1582
1583  /// \brief Return the canonical (structural) type corresponding to the
1584  /// specified potentially non-canonical type \p T.
1585  ///
1586  /// The non-canonical version of a type may have many "decorated" versions of
1587  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1588  /// returned type is guaranteed to be free of any of these, allowing two
1589  /// canonical types to be compared for exact equality with a simple pointer
1590  /// comparison.
1591  CanQualType getCanonicalType(QualType T) const {
1592    return CanQualType::CreateUnsafe(T.getCanonicalType());
1593  }
1594
1595  const Type *getCanonicalType(const Type *T) const {
1596    return T->getCanonicalTypeInternal().getTypePtr();
1597  }
1598
1599  /// \brief Return the canonical parameter type corresponding to the specific
1600  /// potentially non-canonical one.
1601  ///
1602  /// Qualifiers are stripped off, functions are turned into function
1603  /// pointers, and arrays decay one level into pointers.
1604  CanQualType getCanonicalParamType(QualType T) const;
1605
1606  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1607  bool hasSameType(QualType T1, QualType T2) const {
1608    return getCanonicalType(T1) == getCanonicalType(T2);
1609  }
1610
1611  /// \brief Return this type as a completely-unqualified array type,
1612  /// capturing the qualifiers in \p Quals.
1613  ///
1614  /// This will remove the minimal amount of sugaring from the types, similar
1615  /// to the behavior of QualType::getUnqualifiedType().
1616  ///
1617  /// \param T is the qualified type, which may be an ArrayType
1618  ///
1619  /// \param Quals will receive the full set of qualifiers that were
1620  /// applied to the array.
1621  ///
1622  /// \returns if this is an array type, the completely unqualified array type
1623  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1624  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1625
1626  /// \brief Determine whether the given types are equivalent after
1627  /// cvr-qualifiers have been removed.
1628  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1629    return getCanonicalType(T1).getTypePtr() ==
1630           getCanonicalType(T2).getTypePtr();
1631  }
1632
1633  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1634
1635  /// \brief Retrieves the "canonical" nested name specifier for a
1636  /// given nested name specifier.
1637  ///
1638  /// The canonical nested name specifier is a nested name specifier
1639  /// that uniquely identifies a type or namespace within the type
1640  /// system. For example, given:
1641  ///
1642  /// \code
1643  /// namespace N {
1644  ///   struct S {
1645  ///     template<typename T> struct X { typename T* type; };
1646  ///   };
1647  /// }
1648  ///
1649  /// template<typename T> struct Y {
1650  ///   typename N::S::X<T>::type member;
1651  /// };
1652  /// \endcode
1653  ///
1654  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1655  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1656  /// by declarations in the type system and the canonical type for
1657  /// the template type parameter 'T' is template-param-0-0.
1658  NestedNameSpecifier *
1659  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1660
1661  /// \brief Retrieves the default calling convention to use for
1662  /// C++ instance methods.
1663  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1664
1665  /// \brief Retrieves the canonical representation of the given
1666  /// calling convention.
1667  CallingConv getCanonicalCallConv(CallingConv CC) const;
1668
1669  /// \brief Determines whether two calling conventions name the same
1670  /// calling convention.
1671  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1672    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1673  }
1674
1675  /// \brief Retrieves the "canonical" template name that refers to a
1676  /// given template.
1677  ///
1678  /// The canonical template name is the simplest expression that can
1679  /// be used to refer to a given template. For most templates, this
1680  /// expression is just the template declaration itself. For example,
1681  /// the template std::vector can be referred to via a variety of
1682  /// names---std::vector, \::std::vector, vector (if vector is in
1683  /// scope), etc.---but all of these names map down to the same
1684  /// TemplateDecl, which is used to form the canonical template name.
1685  ///
1686  /// Dependent template names are more interesting. Here, the
1687  /// template name could be something like T::template apply or
1688  /// std::allocator<T>::template rebind, where the nested name
1689  /// specifier itself is dependent. In this case, the canonical
1690  /// template name uses the shortest form of the dependent
1691  /// nested-name-specifier, which itself contains all canonical
1692  /// types, values, and templates.
1693  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1694
1695  /// \brief Determine whether the given template names refer to the same
1696  /// template.
1697  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1698
1699  /// \brief Retrieve the "canonical" template argument.
1700  ///
1701  /// The canonical template argument is the simplest template argument
1702  /// (which may be a type, value, expression, or declaration) that
1703  /// expresses the value of the argument.
1704  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1705    const;
1706
1707  /// Type Query functions.  If the type is an instance of the specified class,
1708  /// return the Type pointer for the underlying maximally pretty type.  This
1709  /// is a member of ASTContext because this may need to do some amount of
1710  /// canonicalization, e.g. to move type qualifiers into the element type.
1711  const ArrayType *getAsArrayType(QualType T) const;
1712  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1713    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1714  }
1715  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1716    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1717  }
1718  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1719    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1720  }
1721  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1722    const {
1723    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1724  }
1725
1726  /// \brief Return the innermost element type of an array type.
1727  ///
1728  /// For example, will return "int" for int[m][n]
1729  QualType getBaseElementType(const ArrayType *VAT) const;
1730
1731  /// \brief Return the innermost element type of a type (which needn't
1732  /// actually be an array type).
1733  QualType getBaseElementType(QualType QT) const;
1734
1735  /// \brief Return number of constant array elements.
1736  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1737
1738  /// \brief Perform adjustment on the parameter type of a function.
1739  ///
1740  /// This routine adjusts the given parameter type @p T to the actual
1741  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1742  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1743  QualType getAdjustedParameterType(QualType T) const;
1744
1745  /// \brief Retrieve the parameter type as adjusted for use in the signature
1746  /// of a function, decaying array and function types and removing top-level
1747  /// cv-qualifiers.
1748  QualType getSignatureParameterType(QualType T) const;
1749
1750  /// \brief Return the properly qualified result of decaying the specified
1751  /// array type to a pointer.
1752  ///
1753  /// This operation is non-trivial when handling typedefs etc.  The canonical
1754  /// type of \p T must be an array type, this returns a pointer to a properly
1755  /// qualified element of the array.
1756  ///
1757  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1758  QualType getArrayDecayedType(QualType T) const;
1759
1760  /// \brief Return the type that \p PromotableType will promote to: C99
1761  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1762  QualType getPromotedIntegerType(QualType PromotableType) const;
1763
1764  /// \brief Recurses in pointer/array types until it finds an Objective-C
1765  /// retainable type and returns its ownership.
1766  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1767
1768  /// \brief Whether this is a promotable bitfield reference according
1769  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1770  ///
1771  /// \returns the type this bit-field will promote to, or NULL if no
1772  /// promotion occurs.
1773  QualType isPromotableBitField(Expr *E) const;
1774
1775  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1776  ///
1777  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1778  /// \p LHS < \p RHS, return -1.
1779  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1780
1781  /// \brief Compare the rank of the two specified floating point types,
1782  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1783  ///
1784  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1785  /// \p LHS < \p RHS, return -1.
1786  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1787
1788  /// \brief Return a real floating point or a complex type (based on
1789  /// \p typeDomain/\p typeSize).
1790  ///
1791  /// \param typeDomain a real floating point or complex type.
1792  /// \param typeSize a real floating point or complex type.
1793  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1794                                             QualType typeDomain) const;
1795
1796  unsigned getTargetAddressSpace(QualType T) const {
1797    return getTargetAddressSpace(T.getQualifiers());
1798  }
1799
1800  unsigned getTargetAddressSpace(Qualifiers Q) const {
1801    return getTargetAddressSpace(Q.getAddressSpace());
1802  }
1803
1804  unsigned getTargetAddressSpace(unsigned AS) const {
1805    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1806      return AS;
1807    else
1808      return (*AddrSpaceMap)[AS - LangAS::Offset];
1809  }
1810
1811private:
1812  // Helper for integer ordering
1813  unsigned getIntegerRank(const Type *T) const;
1814
1815public:
1816
1817  //===--------------------------------------------------------------------===//
1818  //                    Type Compatibility Predicates
1819  //===--------------------------------------------------------------------===//
1820
1821  /// Compatibility predicates used to check assignment expressions.
1822  bool typesAreCompatible(QualType T1, QualType T2,
1823                          bool CompareUnqualified = false); // C99 6.2.7p1
1824
1825  bool propertyTypesAreCompatible(QualType, QualType);
1826  bool typesAreBlockPointerCompatible(QualType, QualType);
1827
1828  bool isObjCIdType(QualType T) const {
1829    return T == getObjCIdType();
1830  }
1831  bool isObjCClassType(QualType T) const {
1832    return T == getObjCClassType();
1833  }
1834  bool isObjCSelType(QualType T) const {
1835    return T == getObjCSelType();
1836  }
1837  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1838  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1839                                         bool ForCompare);
1840
1841  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1842
1843  // Check the safety of assignment from LHS to RHS
1844  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1845                               const ObjCObjectPointerType *RHSOPT);
1846  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1847                               const ObjCObjectType *RHS);
1848  bool canAssignObjCInterfacesInBlockPointer(
1849                                          const ObjCObjectPointerType *LHSOPT,
1850                                          const ObjCObjectPointerType *RHSOPT,
1851                                          bool BlockReturnType);
1852  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1853  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1854                                   const ObjCObjectPointerType *RHSOPT);
1855  bool canBindObjCObjectType(QualType To, QualType From);
1856
1857  // Functions for calculating composite types
1858  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1859                      bool Unqualified = false, bool BlockReturnType = false);
1860  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1861                              bool Unqualified = false);
1862  QualType mergeFunctionArgumentTypes(QualType, QualType,
1863                                      bool OfBlockPointer=false,
1864                                      bool Unqualified = false);
1865  QualType mergeTransparentUnionType(QualType, QualType,
1866                                     bool OfBlockPointer=false,
1867                                     bool Unqualified = false);
1868
1869  QualType mergeObjCGCQualifiers(QualType, QualType);
1870
1871  bool FunctionTypesMatchOnNSConsumedAttrs(
1872         const FunctionProtoType *FromFunctionType,
1873         const FunctionProtoType *ToFunctionType);
1874
1875  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1876    ObjCLayouts[CD] = 0;
1877  }
1878
1879  //===--------------------------------------------------------------------===//
1880  //                    Integer Predicates
1881  //===--------------------------------------------------------------------===//
1882
1883  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1884  // of bits in an integer type excluding any padding bits.
1885  unsigned getIntWidth(QualType T) const;
1886
1887  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1888  // unsigned integer type.  This method takes a signed type, and returns the
1889  // corresponding unsigned integer type.
1890  QualType getCorrespondingUnsignedType(QualType T) const;
1891
1892  //===--------------------------------------------------------------------===//
1893  //                    Type Iterators.
1894  //===--------------------------------------------------------------------===//
1895
1896  typedef std::vector<Type*>::iterator       type_iterator;
1897  typedef std::vector<Type*>::const_iterator const_type_iterator;
1898
1899  type_iterator types_begin() { return Types.begin(); }
1900  type_iterator types_end() { return Types.end(); }
1901  const_type_iterator types_begin() const { return Types.begin(); }
1902  const_type_iterator types_end() const { return Types.end(); }
1903
1904  //===--------------------------------------------------------------------===//
1905  //                    Integer Values
1906  //===--------------------------------------------------------------------===//
1907
1908  /// \brief Make an APSInt of the appropriate width and signedness for the
1909  /// given \p Value and integer \p Type.
1910  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1911    llvm::APSInt Res(getIntWidth(Type),
1912                     !Type->isSignedIntegerOrEnumerationType());
1913    Res = Value;
1914    return Res;
1915  }
1916
1917  bool isSentinelNullExpr(const Expr *E);
1918
1919  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1920  /// none exists.
1921  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1922  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1923  /// none exists.
1924  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1925
1926  /// \brief Return true if there is at least one \@implementation in the TU.
1927  bool AnyObjCImplementation() {
1928    return !ObjCImpls.empty();
1929  }
1930
1931  /// \brief Set the implementation of ObjCInterfaceDecl.
1932  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1933                             ObjCImplementationDecl *ImplD);
1934  /// \brief Set the implementation of ObjCCategoryDecl.
1935  void setObjCImplementation(ObjCCategoryDecl *CatD,
1936                             ObjCCategoryImplDecl *ImplD);
1937
1938  /// \brief Get the duplicate declaration of a ObjCMethod in the same
1939  /// interface, or null if none exists.
1940  const ObjCMethodDecl *getObjCMethodRedeclaration(
1941                                               const ObjCMethodDecl *MD) const {
1942    return ObjCMethodRedecls.lookup(MD);
1943  }
1944
1945  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1946                                  const ObjCMethodDecl *Redecl) {
1947    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
1948    ObjCMethodRedecls[MD] = Redecl;
1949  }
1950
1951  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
1952  /// an Objective-C method/property/ivar etc. that is part of an interface,
1953  /// otherwise returns null.
1954  ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1955
1956  /// \brief Set the copy inialization expression of a block var decl.
1957  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1958  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
1959  /// NULL if none exists.
1960  Expr *getBlockVarCopyInits(const VarDecl* VD);
1961
1962  /// \brief Allocate an uninitialized TypeSourceInfo.
1963  ///
1964  /// The caller should initialize the memory held by TypeSourceInfo using
1965  /// the TypeLoc wrappers.
1966  ///
1967  /// \param T the type that will be the basis for type source info. This type
1968  /// should refer to how the declarator was written in source code, not to
1969  /// what type semantic analysis resolved the declarator to.
1970  ///
1971  /// \param Size the size of the type info to create, or 0 if the size
1972  /// should be calculated based on the type.
1973  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1974
1975  /// \brief Allocate a TypeSourceInfo where all locations have been
1976  /// initialized to a given location, which defaults to the empty
1977  /// location.
1978  TypeSourceInfo *
1979  getTrivialTypeSourceInfo(QualType T,
1980                           SourceLocation Loc = SourceLocation()) const;
1981
1982  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1983
1984  /// \brief Add a deallocation callback that will be invoked when the
1985  /// ASTContext is destroyed.
1986  ///
1987  /// \param Callback A callback function that will be invoked on destruction.
1988  ///
1989  /// \param Data Pointer data that will be provided to the callback function
1990  /// when it is called.
1991  void AddDeallocation(void (*Callback)(void*), void *Data);
1992
1993  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1994  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1995
1996  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1997  /// lazily, only when used; this is only relevant for function or file scoped
1998  /// var definitions.
1999  ///
2000  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2001  /// it is not used.
2002  bool DeclMustBeEmitted(const Decl *D);
2003
2004  void addUnnamedTag(const TagDecl *Tag);
2005  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2006
2007  /// \brief Retrieve the lambda mangling number for a lambda expression.
2008  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2009
2010  /// \brief Used by ParmVarDecl to store on the side the
2011  /// index of the parameter when it exceeds the size of the normal bitfield.
2012  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2013
2014  /// \brief Used by ParmVarDecl to retrieve on the side the
2015  /// index of the parameter when it exceeds the size of the normal bitfield.
2016  unsigned getParameterIndex(const ParmVarDecl *D) const;
2017
2018  //===--------------------------------------------------------------------===//
2019  //                    Statistics
2020  //===--------------------------------------------------------------------===//
2021
2022  /// \brief The number of implicitly-declared default constructors.
2023  static unsigned NumImplicitDefaultConstructors;
2024
2025  /// \brief The number of implicitly-declared default constructors for
2026  /// which declarations were built.
2027  static unsigned NumImplicitDefaultConstructorsDeclared;
2028
2029  /// \brief The number of implicitly-declared copy constructors.
2030  static unsigned NumImplicitCopyConstructors;
2031
2032  /// \brief The number of implicitly-declared copy constructors for
2033  /// which declarations were built.
2034  static unsigned NumImplicitCopyConstructorsDeclared;
2035
2036  /// \brief The number of implicitly-declared move constructors.
2037  static unsigned NumImplicitMoveConstructors;
2038
2039  /// \brief The number of implicitly-declared move constructors for
2040  /// which declarations were built.
2041  static unsigned NumImplicitMoveConstructorsDeclared;
2042
2043  /// \brief The number of implicitly-declared copy assignment operators.
2044  static unsigned NumImplicitCopyAssignmentOperators;
2045
2046  /// \brief The number of implicitly-declared copy assignment operators for
2047  /// which declarations were built.
2048  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2049
2050  /// \brief The number of implicitly-declared move assignment operators.
2051  static unsigned NumImplicitMoveAssignmentOperators;
2052
2053  /// \brief The number of implicitly-declared move assignment operators for
2054  /// which declarations were built.
2055  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2056
2057  /// \brief The number of implicitly-declared destructors.
2058  static unsigned NumImplicitDestructors;
2059
2060  /// \brief The number of implicitly-declared destructors for which
2061  /// declarations were built.
2062  static unsigned NumImplicitDestructorsDeclared;
2063
2064private:
2065  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2066  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2067
2068public:
2069  /// \brief Initialize built-in types.
2070  ///
2071  /// This routine may only be invoked once for a given ASTContext object.
2072  /// It is normally invoked by the ASTContext constructor. However, the
2073  /// constructor can be asked to delay initialization, which places the burden
2074  /// of calling this function on the user of that object.
2075  ///
2076  /// \param Target The target
2077  void InitBuiltinTypes(const TargetInfo &Target);
2078
2079private:
2080  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2081
2082  // Return the Objective-C type encoding for a given type.
2083  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2084                                  bool ExpandPointedToStructures,
2085                                  bool ExpandStructures,
2086                                  const FieldDecl *Field,
2087                                  bool OutermostType = false,
2088                                  bool EncodingProperty = false,
2089                                  bool StructField = false,
2090                                  bool EncodeBlockParameters = false,
2091                                  bool EncodeClassNames = false) const;
2092
2093  // Adds the encoding of the structure's members.
2094  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2095                                       const FieldDecl *Field,
2096                                       bool includeVBases = true) const;
2097
2098  // Adds the encoding of a method parameter or return type.
2099  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2100                                         QualType T, std::string& S,
2101                                         bool Extended) const;
2102
2103  const ASTRecordLayout &
2104  getObjCLayout(const ObjCInterfaceDecl *D,
2105                const ObjCImplementationDecl *Impl) const;
2106
2107private:
2108  /// \brief A set of deallocations that should be performed when the
2109  /// ASTContext is destroyed.
2110  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2111
2112  // FIXME: This currently contains the set of StoredDeclMaps used
2113  // by DeclContext objects.  This probably should not be in ASTContext,
2114  // but we include it here so that ASTContext can quickly deallocate them.
2115  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2116
2117  /// \brief A counter used to uniquely identify "blocks".
2118  mutable unsigned int UniqueBlockByRefTypeID;
2119
2120  friend class DeclContext;
2121  friend class DeclarationNameTable;
2122  void ReleaseDeclContextMaps();
2123};
2124
2125/// \brief Utility function for constructing a nullary selector.
2126static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2127  IdentifierInfo* II = &Ctx.Idents.get(name);
2128  return Ctx.Selectors.getSelector(0, &II);
2129}
2130
2131/// \brief Utility function for constructing an unary selector.
2132static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2133  IdentifierInfo* II = &Ctx.Idents.get(name);
2134  return Ctx.Selectors.getSelector(1, &II);
2135}
2136
2137}  // end namespace clang
2138
2139// operator new and delete aren't allowed inside namespaces.
2140
2141/// @brief Placement new for using the ASTContext's allocator.
2142///
2143/// This placement form of operator new uses the ASTContext's allocator for
2144/// obtaining memory.
2145///
2146/// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
2147/// need to also be made there.
2148///
2149/// We intentionally avoid using a nothrow specification here so that the calls
2150/// to this operator will not perform a null check on the result -- the
2151/// underlying allocator never returns null pointers.
2152///
2153/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2154/// @code
2155/// // Default alignment (8)
2156/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2157/// // Specific alignment
2158/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2159/// @endcode
2160/// Please note that you cannot use delete on the pointer; it must be
2161/// deallocated using an explicit destructor call followed by
2162/// @c Context.Deallocate(Ptr).
2163///
2164/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2165/// @param C The ASTContext that provides the allocator.
2166/// @param Alignment The alignment of the allocated memory (if the underlying
2167///                  allocator supports it).
2168/// @return The allocated memory. Could be NULL.
2169inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2170                          size_t Alignment) {
2171  return C.Allocate(Bytes, Alignment);
2172}
2173/// @brief Placement delete companion to the new above.
2174///
2175/// This operator is just a companion to the new above. There is no way of
2176/// invoking it directly; see the new operator for more details. This operator
2177/// is called implicitly by the compiler if a placement new expression using
2178/// the ASTContext throws in the object constructor.
2179inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2180  C.Deallocate(Ptr);
2181}
2182
2183/// This placement form of operator new[] uses the ASTContext's allocator for
2184/// obtaining memory.
2185///
2186/// We intentionally avoid using a nothrow specification here so that the calls
2187/// to this operator will not perform a null check on the result -- the
2188/// underlying allocator never returns null pointers.
2189///
2190/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2191/// @code
2192/// // Default alignment (8)
2193/// char *data = new (Context) char[10];
2194/// // Specific alignment
2195/// char *data = new (Context, 4) char[10];
2196/// @endcode
2197/// Please note that you cannot use delete on the pointer; it must be
2198/// deallocated using an explicit destructor call followed by
2199/// @c Context.Deallocate(Ptr).
2200///
2201/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2202/// @param C The ASTContext that provides the allocator.
2203/// @param Alignment The alignment of the allocated memory (if the underlying
2204///                  allocator supports it).
2205/// @return The allocated memory. Could be NULL.
2206inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2207                            size_t Alignment = 8) {
2208  return C.Allocate(Bytes, Alignment);
2209}
2210
2211/// @brief Placement delete[] companion to the new[] above.
2212///
2213/// This operator is just a companion to the new[] above. There is no way of
2214/// invoking it directly; see the new[] operator for more details. This operator
2215/// is called implicitly by the compiler if a placement new[] expression using
2216/// the ASTContext throws in the object constructor.
2217inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2218  C.Deallocate(Ptr);
2219}
2220
2221#endif
2222