ASTContext.h revision b2969b1e50580344891a98f5b241f8351fe371cf
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/RawCommentList.h"
25#include "clang/AST/TemplateName.h"
26#include "clang/AST/Type.h"
27#include "clang/Basic/AddressSpaces.h"
28#include "clang/Basic/IdentifierTable.h"
29#include "clang/Basic/LangOptions.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/VersionTuple.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/FoldingSet.h"
35#include "llvm/ADT/IntrusiveRefCntPtr.h"
36#include "llvm/ADT/OwningPtr.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/TinyPtrVector.h"
39#include "llvm/Support/Allocator.h"
40#include <vector>
41
42namespace llvm {
43  struct fltSemantics;
44}
45
46namespace clang {
47  class FileManager;
48  class AtomicExpr;
49  class ASTRecordLayout;
50  class BlockExpr;
51  class CharUnits;
52  class DiagnosticsEngine;
53  class Expr;
54  class ExternalASTSource;
55  class ASTMutationListener;
56  class IdentifierTable;
57  class MaterializeTemporaryExpr;
58  class SelectorTable;
59  class TargetInfo;
60  class CXXABI;
61  class MangleNumberingContext;
62  // Decls
63  class MangleContext;
64  class ObjCIvarDecl;
65  class ObjCPropertyDecl;
66  class UnresolvedSetIterator;
67  class UsingDecl;
68  class UsingShadowDecl;
69
70  namespace Builtin { class Context; }
71
72  namespace comments {
73    class FullComment;
74  }
75
76/// \brief Holds long-lived AST nodes (such as types and decls) that can be
77/// referred to throughout the semantic analysis of a file.
78class ASTContext : public RefCountedBase<ASTContext> {
79  ASTContext &this_() { return *this; }
80
81  mutable SmallVector<Type *, 0> Types;
82  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
83  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
84  mutable llvm::FoldingSet<PointerType> PointerTypes;
85  mutable llvm::FoldingSet<DecayedType> DecayedTypes;
86  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92  mutable std::vector<VariableArrayType*> VariableArrayTypes;
93  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94  mutable llvm::FoldingSet<DependentSizedExtVectorType>
95    DependentSizedExtVectorTypes;
96  mutable llvm::FoldingSet<VectorType> VectorTypes;
97  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
98  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
99    FunctionProtoTypes;
100  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
101  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
102  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
103  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
104    SubstTemplateTypeParmTypes;
105  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
106    SubstTemplateTypeParmPackTypes;
107  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
108    TemplateSpecializationTypes;
109  mutable llvm::FoldingSet<ParenType> ParenTypes;
110  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
111  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
112  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
113                                     ASTContext&>
114    DependentTemplateSpecializationTypes;
115  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
116  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
117  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
118  mutable llvm::FoldingSet<AutoType> AutoTypes;
119  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
120  llvm::FoldingSet<AttributedType> AttributedTypes;
121
122  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
123  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
124  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
125    SubstTemplateTemplateParms;
126  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
127                                     ASTContext&>
128    SubstTemplateTemplateParmPacks;
129
130  /// \brief The set of nested name specifiers.
131  ///
132  /// This set is managed by the NestedNameSpecifier class.
133  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
134  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
135  friend class NestedNameSpecifier;
136
137  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
138  ///
139  /// This is lazily created.  This is intentionally not serialized.
140  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
141    ASTRecordLayouts;
142  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
143    ObjCLayouts;
144
145  /// \brief A cache from types to size and alignment information.
146  typedef llvm::DenseMap<const Type*,
147                         std::pair<uint64_t, unsigned> > TypeInfoMap;
148  mutable TypeInfoMap MemoizedTypeInfo;
149
150  /// \brief A cache mapping from CXXRecordDecls to key functions.
151  llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
152
153  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
154  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
155
156  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
157  /// interface.
158  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
159
160  /// \brief Mapping from __block VarDecls to their copy initialization expr.
161  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
162
163  /// \brief Mapping from class scope functions specialization to their
164  /// template patterns.
165  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
166    ClassScopeSpecializationPattern;
167
168  /// \brief Mapping from materialized temporaries with static storage duration
169  /// that appear in constant initializers to their evaluated values.
170  llvm::DenseMap<const MaterializeTemporaryExpr*, APValue>
171    MaterializedTemporaryValues;
172
173  /// \brief Representation of a "canonical" template template parameter that
174  /// is used in canonical template names.
175  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176    TemplateTemplateParmDecl *Parm;
177
178  public:
179    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180      : Parm(Parm) { }
181
182    TemplateTemplateParmDecl *getParam() const { return Parm; }
183
184    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185
186    static void Profile(llvm::FoldingSetNodeID &ID,
187                        TemplateTemplateParmDecl *Parm);
188  };
189  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190    CanonTemplateTemplateParms;
191
192  TemplateTemplateParmDecl *
193    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194
195  /// \brief The typedef for the __int128_t type.
196  mutable TypedefDecl *Int128Decl;
197
198  /// \brief The typedef for the __uint128_t type.
199  mutable TypedefDecl *UInt128Decl;
200
201  /// \brief The typedef for the __float128 stub type.
202  mutable TypeDecl *Float128StubDecl;
203
204  /// \brief The typedef for the target specific predefined
205  /// __builtin_va_list type.
206  mutable TypedefDecl *BuiltinVaListDecl;
207
208  /// \brief The typedef for the predefined \c id type.
209  mutable TypedefDecl *ObjCIdDecl;
210
211  /// \brief The typedef for the predefined \c SEL type.
212  mutable TypedefDecl *ObjCSelDecl;
213
214  /// \brief The typedef for the predefined \c Class type.
215  mutable TypedefDecl *ObjCClassDecl;
216
217  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
218  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
219
220  /// \brief The typedef for the predefined 'BOOL' type.
221  mutable TypedefDecl *BOOLDecl;
222
223  // Typedefs which may be provided defining the structure of Objective-C
224  // pseudo-builtins
225  QualType ObjCIdRedefinitionType;
226  QualType ObjCClassRedefinitionType;
227  QualType ObjCSelRedefinitionType;
228
229  QualType ObjCConstantStringType;
230  mutable RecordDecl *CFConstantStringTypeDecl;
231
232  mutable QualType ObjCSuperType;
233
234  QualType ObjCNSStringType;
235
236  /// \brief The typedef declaration for the Objective-C "instancetype" type.
237  TypedefDecl *ObjCInstanceTypeDecl;
238
239  /// \brief The type for the C FILE type.
240  TypeDecl *FILEDecl;
241
242  /// \brief The type for the C jmp_buf type.
243  TypeDecl *jmp_bufDecl;
244
245  /// \brief The type for the C sigjmp_buf type.
246  TypeDecl *sigjmp_bufDecl;
247
248  /// \brief The type for the C ucontext_t type.
249  TypeDecl *ucontext_tDecl;
250
251  /// \brief Type for the Block descriptor for Blocks CodeGen.
252  ///
253  /// Since this is only used for generation of debug info, it is not
254  /// serialized.
255  mutable RecordDecl *BlockDescriptorType;
256
257  /// \brief Type for the Block descriptor for Blocks CodeGen.
258  ///
259  /// Since this is only used for generation of debug info, it is not
260  /// serialized.
261  mutable RecordDecl *BlockDescriptorExtendedType;
262
263  /// \brief Declaration for the CUDA cudaConfigureCall function.
264  FunctionDecl *cudaConfigureCallDecl;
265
266  TypeSourceInfo NullTypeSourceInfo;
267
268  /// \brief Keeps track of all declaration attributes.
269  ///
270  /// Since so few decls have attrs, we keep them in a hash map instead of
271  /// wasting space in the Decl class.
272  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
273
274  /// \brief A mapping from non-redeclarable declarations in modules that were
275  /// merged with other declarations to the canonical declaration that they were
276  /// merged into.
277  llvm::DenseMap<Decl*, Decl*> MergedDecls;
278
279public:
280  /// \brief A type synonym for the TemplateOrInstantiation mapping.
281  typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
282  TemplateOrSpecializationInfo;
283
284private:
285
286  /// \brief A mapping to contain the template or declaration that
287  /// a variable declaration describes or was instantiated from,
288  /// respectively.
289  ///
290  /// For non-templates, this value will be NULL. For variable
291  /// declarations that describe a variable template, this will be a
292  /// pointer to a VarTemplateDecl. For static data members
293  /// of class template specializations, this will be the
294  /// MemberSpecializationInfo referring to the member variable that was
295  /// instantiated or specialized. Thus, the mapping will keep track of
296  /// the static data member templates from which static data members of
297  /// class template specializations were instantiated.
298  ///
299  /// Given the following example:
300  ///
301  /// \code
302  /// template<typename T>
303  /// struct X {
304  ///   static T value;
305  /// };
306  ///
307  /// template<typename T>
308  ///   T X<T>::value = T(17);
309  ///
310  /// int *x = &X<int>::value;
311  /// \endcode
312  ///
313  /// This mapping will contain an entry that maps from the VarDecl for
314  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
315  /// class template X) and will be marked TSK_ImplicitInstantiation.
316  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
317  TemplateOrInstantiation;
318
319  /// \brief Keeps track of the declaration from which a UsingDecl was
320  /// created during instantiation.
321  ///
322  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
323  /// or an UnresolvedUsingTypenameDecl.
324  ///
325  /// For example:
326  /// \code
327  /// template<typename T>
328  /// struct A {
329  ///   void f();
330  /// };
331  ///
332  /// template<typename T>
333  /// struct B : A<T> {
334  ///   using A<T>::f;
335  /// };
336  ///
337  /// template struct B<int>;
338  /// \endcode
339  ///
340  /// This mapping will contain an entry that maps from the UsingDecl in
341  /// B<int> to the UnresolvedUsingDecl in B<T>.
342  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
343
344  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
345    InstantiatedFromUsingShadowDecl;
346
347  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
348
349  /// \brief Mapping that stores the methods overridden by a given C++
350  /// member function.
351  ///
352  /// Since most C++ member functions aren't virtual and therefore
353  /// don't override anything, we store the overridden functions in
354  /// this map on the side rather than within the CXXMethodDecl structure.
355  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
356  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
357
358  /// \brief Mapping from each declaration context to its corresponding
359  /// mangling numbering context (used for constructs like lambdas which
360  /// need to be consistently numbered for the mangler).
361  llvm::DenseMap<const DeclContext *, MangleNumberingContext *>
362      MangleNumberingContexts;
363
364  /// \brief Side-table of mangling numbers for declarations which rarely
365  /// need them (like static local vars).
366  llvm::DenseMap<const NamedDecl *, unsigned> MangleNumbers;
367
368  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
369  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
370  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
371  ParameterIndexTable ParamIndices;
372
373  ImportDecl *FirstLocalImport;
374  ImportDecl *LastLocalImport;
375
376  TranslationUnitDecl *TUDecl;
377
378  /// \brief The associated SourceManager object.a
379  SourceManager &SourceMgr;
380
381  /// \brief The language options used to create the AST associated with
382  ///  this ASTContext object.
383  LangOptions &LangOpts;
384
385  /// \brief The allocator used to create AST objects.
386  ///
387  /// AST objects are never destructed; rather, all memory associated with the
388  /// AST objects will be released when the ASTContext itself is destroyed.
389  mutable llvm::BumpPtrAllocator BumpAlloc;
390
391  /// \brief Allocator for partial diagnostics.
392  PartialDiagnostic::StorageAllocator DiagAllocator;
393
394  /// \brief The current C++ ABI.
395  OwningPtr<CXXABI> ABI;
396  CXXABI *createCXXABI(const TargetInfo &T);
397
398  /// \brief The logical -> physical address space map.
399  const LangAS::Map *AddrSpaceMap;
400
401  /// \brief Address space map mangling must be used with language specific
402  /// address spaces (e.g. OpenCL/CUDA)
403  bool AddrSpaceMapMangling;
404
405  friend class ASTDeclReader;
406  friend class ASTReader;
407  friend class ASTWriter;
408  friend class CXXRecordDecl;
409
410  const TargetInfo *Target;
411  clang::PrintingPolicy PrintingPolicy;
412
413public:
414  IdentifierTable &Idents;
415  SelectorTable &Selectors;
416  Builtin::Context &BuiltinInfo;
417  mutable DeclarationNameTable DeclarationNames;
418  OwningPtr<ExternalASTSource> ExternalSource;
419  ASTMutationListener *Listener;
420
421  /// \brief Contains parents of a node.
422  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
423
424  /// \brief Maps from a node to its parents.
425  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
426
427  /// \brief Returns the parents of the given node.
428  ///
429  /// Note that this will lazily compute the parents of all nodes
430  /// and store them for later retrieval. Thus, the first call is O(n)
431  /// in the number of AST nodes.
432  ///
433  /// Caveats and FIXMEs:
434  /// Calculating the parent map over all AST nodes will need to load the
435  /// full AST. This can be undesirable in the case where the full AST is
436  /// expensive to create (for example, when using precompiled header
437  /// preambles). Thus, there are good opportunities for optimization here.
438  /// One idea is to walk the given node downwards, looking for references
439  /// to declaration contexts - once a declaration context is found, compute
440  /// the parent map for the declaration context; if that can satisfy the
441  /// request, loading the whole AST can be avoided. Note that this is made
442  /// more complex by statements in templates having multiple parents - those
443  /// problems can be solved by building closure over the templated parts of
444  /// the AST, which also avoids touching large parts of the AST.
445  /// Additionally, we will want to add an interface to already give a hint
446  /// where to search for the parents, for example when looking at a statement
447  /// inside a certain function.
448  ///
449  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
450  /// NestedNameSpecifier or NestedNameSpecifierLoc.
451  template <typename NodeT>
452  ParentVector getParents(const NodeT &Node) {
453    return getParents(ast_type_traits::DynTypedNode::create(Node));
454  }
455
456  ParentVector getParents(const ast_type_traits::DynTypedNode &Node);
457
458  const clang::PrintingPolicy &getPrintingPolicy() const {
459    return PrintingPolicy;
460  }
461
462  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
463    PrintingPolicy = Policy;
464  }
465
466  SourceManager& getSourceManager() { return SourceMgr; }
467  const SourceManager& getSourceManager() const { return SourceMgr; }
468
469  llvm::BumpPtrAllocator &getAllocator() const {
470    return BumpAlloc;
471  }
472
473  void *Allocate(size_t Size, unsigned Align = 8) const {
474    return BumpAlloc.Allocate(Size, Align);
475  }
476  void Deallocate(void *Ptr) const { }
477
478  /// Return the total amount of physical memory allocated for representing
479  /// AST nodes and type information.
480  size_t getASTAllocatedMemory() const {
481    return BumpAlloc.getTotalMemory();
482  }
483  /// Return the total memory used for various side tables.
484  size_t getSideTableAllocatedMemory() const;
485
486  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
487    return DiagAllocator;
488  }
489
490  const TargetInfo &getTargetInfo() const { return *Target; }
491
492  /// getIntTypeForBitwidth -
493  /// sets integer QualTy according to specified details:
494  /// bitwidth, signed/unsigned.
495  /// Returns empty type if there is no appropriate target types.
496  QualType getIntTypeForBitwidth(unsigned DestWidth,
497                                 unsigned Signed) const;
498  /// getRealTypeForBitwidth -
499  /// sets floating point QualTy according to specified bitwidth.
500  /// Returns empty type if there is no appropriate target types.
501  QualType getRealTypeForBitwidth(unsigned DestWidth) const;
502
503  bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
504
505  const LangOptions& getLangOpts() const { return LangOpts; }
506
507  DiagnosticsEngine &getDiagnostics() const;
508
509  FullSourceLoc getFullLoc(SourceLocation Loc) const {
510    return FullSourceLoc(Loc,SourceMgr);
511  }
512
513  /// \brief All comments in this translation unit.
514  RawCommentList Comments;
515
516  /// \brief True if comments are already loaded from ExternalASTSource.
517  mutable bool CommentsLoaded;
518
519  class RawCommentAndCacheFlags {
520  public:
521    enum Kind {
522      /// We searched for a comment attached to the particular declaration, but
523      /// didn't find any.
524      ///
525      /// getRaw() == 0.
526      NoCommentInDecl = 0,
527
528      /// We have found a comment attached to this particular declaration.
529      ///
530      /// getRaw() != 0.
531      FromDecl,
532
533      /// This declaration does not have an attached comment, and we have
534      /// searched the redeclaration chain.
535      ///
536      /// If getRaw() == 0, the whole redeclaration chain does not have any
537      /// comments.
538      ///
539      /// If getRaw() != 0, it is a comment propagated from other
540      /// redeclaration.
541      FromRedecl
542    };
543
544    Kind getKind() const LLVM_READONLY {
545      return Data.getInt();
546    }
547
548    void setKind(Kind K) {
549      Data.setInt(K);
550    }
551
552    const RawComment *getRaw() const LLVM_READONLY {
553      return Data.getPointer();
554    }
555
556    void setRaw(const RawComment *RC) {
557      Data.setPointer(RC);
558    }
559
560    const Decl *getOriginalDecl() const LLVM_READONLY {
561      return OriginalDecl;
562    }
563
564    void setOriginalDecl(const Decl *Orig) {
565      OriginalDecl = Orig;
566    }
567
568  private:
569    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
570    const Decl *OriginalDecl;
571  };
572
573  /// \brief Mapping from declarations to comments attached to any
574  /// redeclaration.
575  ///
576  /// Raw comments are owned by Comments list.  This mapping is populated
577  /// lazily.
578  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
579
580  /// \brief Mapping from declarations to parsed comments attached to any
581  /// redeclaration.
582  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
583
584  /// \brief Return the documentation comment attached to a given declaration,
585  /// without looking into cache.
586  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
587
588public:
589  RawCommentList &getRawCommentList() {
590    return Comments;
591  }
592
593  void addComment(const RawComment &RC) {
594    assert(LangOpts.RetainCommentsFromSystemHeaders ||
595           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
596    Comments.addComment(RC, BumpAlloc);
597  }
598
599  /// \brief Return the documentation comment attached to a given declaration.
600  /// Returns NULL if no comment is attached.
601  ///
602  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
603  /// the comment, if the comment we found comes from a redeclaration.
604  const RawComment *getRawCommentForAnyRedecl(
605                                      const Decl *D,
606                                      const Decl **OriginalDecl = NULL) const;
607
608  /// Return parsed documentation comment attached to a given declaration.
609  /// Returns NULL if no comment is attached.
610  ///
611  /// \param PP the Preprocessor used with this TU.  Could be NULL if
612  /// preprocessor is not available.
613  comments::FullComment *getCommentForDecl(const Decl *D,
614                                           const Preprocessor *PP) const;
615
616  /// Return parsed documentation comment attached to a given declaration.
617  /// Returns NULL if no comment is attached. Does not look at any
618  /// redeclarations of the declaration.
619  comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
620
621  comments::FullComment *cloneFullComment(comments::FullComment *FC,
622                                         const Decl *D) const;
623
624private:
625  mutable comments::CommandTraits CommentCommandTraits;
626
627public:
628  comments::CommandTraits &getCommentCommandTraits() const {
629    return CommentCommandTraits;
630  }
631
632  /// \brief Retrieve the attributes for the given declaration.
633  AttrVec& getDeclAttrs(const Decl *D);
634
635  /// \brief Erase the attributes corresponding to the given declaration.
636  void eraseDeclAttrs(const Decl *D);
637
638  /// \brief If this variable is an instantiated static data member of a
639  /// class template specialization, returns the templated static data member
640  /// from which it was instantiated.
641  // FIXME: Remove ?
642  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
643                                                           const VarDecl *Var);
644
645  TemplateOrSpecializationInfo
646  getTemplateOrSpecializationInfo(const VarDecl *Var);
647
648  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
649
650  void setClassScopeSpecializationPattern(FunctionDecl *FD,
651                                          FunctionDecl *Pattern);
652
653  /// \brief Note that the static data member \p Inst is an instantiation of
654  /// the static data member template \p Tmpl of a class template.
655  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
656                                           TemplateSpecializationKind TSK,
657                        SourceLocation PointOfInstantiation = SourceLocation());
658
659  void setTemplateOrSpecializationInfo(VarDecl *Inst,
660                                       TemplateOrSpecializationInfo TSI);
661
662  /// \brief If the given using decl \p Inst is an instantiation of a
663  /// (possibly unresolved) using decl from a template instantiation,
664  /// return it.
665  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
666
667  /// \brief Remember that the using decl \p Inst is an instantiation
668  /// of the using decl \p Pattern of a class template.
669  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
670
671  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
672                                          UsingShadowDecl *Pattern);
673  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
674
675  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
676
677  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
678
679  // Access to the set of methods overridden by the given C++ method.
680  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
681  overridden_cxx_method_iterator
682  overridden_methods_begin(const CXXMethodDecl *Method) const;
683
684  overridden_cxx_method_iterator
685  overridden_methods_end(const CXXMethodDecl *Method) const;
686
687  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
688
689  /// \brief Note that the given C++ \p Method overrides the given \p
690  /// Overridden method.
691  void addOverriddenMethod(const CXXMethodDecl *Method,
692                           const CXXMethodDecl *Overridden);
693
694  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
695  ///
696  /// An ObjC method is considered to override any method in the class's
697  /// base classes, its protocols, or its categories' protocols, that has
698  /// the same selector and is of the same kind (class or instance).
699  /// A method in an implementation is not considered as overriding the same
700  /// method in the interface or its categories.
701  void getOverriddenMethods(
702                        const NamedDecl *Method,
703                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
704
705  /// \brief Notify the AST context that a new import declaration has been
706  /// parsed or implicitly created within this translation unit.
707  void addedLocalImportDecl(ImportDecl *Import);
708
709  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
710    return Import->NextLocalImport;
711  }
712
713  /// \brief Iterator that visits import declarations.
714  class import_iterator {
715    ImportDecl *Import;
716
717  public:
718    typedef ImportDecl               *value_type;
719    typedef ImportDecl               *reference;
720    typedef ImportDecl               *pointer;
721    typedef int                       difference_type;
722    typedef std::forward_iterator_tag iterator_category;
723
724    import_iterator() : Import() { }
725    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
726
727    reference operator*() const { return Import; }
728    pointer operator->() const { return Import; }
729
730    import_iterator &operator++() {
731      Import = ASTContext::getNextLocalImport(Import);
732      return *this;
733    }
734
735    import_iterator operator++(int) {
736      import_iterator Other(*this);
737      ++(*this);
738      return Other;
739    }
740
741    friend bool operator==(import_iterator X, import_iterator Y) {
742      return X.Import == Y.Import;
743    }
744
745    friend bool operator!=(import_iterator X, import_iterator Y) {
746      return X.Import != Y.Import;
747    }
748  };
749
750  import_iterator local_import_begin() const {
751    return import_iterator(FirstLocalImport);
752  }
753  import_iterator local_import_end() const { return import_iterator(); }
754
755  Decl *getPrimaryMergedDecl(Decl *D) {
756    Decl *Result = MergedDecls.lookup(D);
757    return Result ? Result : D;
758  }
759  void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
760    MergedDecls[D] = Primary;
761  }
762
763  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
764
765
766  // Builtin Types.
767  CanQualType VoidTy;
768  CanQualType BoolTy;
769  CanQualType CharTy;
770  CanQualType WCharTy;  // [C++ 3.9.1p5].
771  CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
772  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
773  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
774  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
775  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
776  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
777  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
778  CanQualType FloatTy, DoubleTy, LongDoubleTy;
779  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
780  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
781  CanQualType VoidPtrTy, NullPtrTy;
782  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
783  CanQualType BuiltinFnTy;
784  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
785  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
786  CanQualType ObjCBuiltinBoolTy;
787  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
788  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
789  CanQualType OCLImage3dTy;
790  CanQualType OCLSamplerTy, OCLEventTy;
791
792  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
793  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
794  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
795
796  // Type used to help define __builtin_va_list for some targets.
797  // The type is built when constructing 'BuiltinVaListDecl'.
798  mutable QualType VaListTagTy;
799
800  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
801             IdentifierTable &idents, SelectorTable &sels,
802             Builtin::Context &builtins,
803             unsigned size_reserve,
804             bool DelayInitialization = false);
805
806  ~ASTContext();
807
808  /// \brief Attach an external AST source to the AST context.
809  ///
810  /// The external AST source provides the ability to load parts of
811  /// the abstract syntax tree as needed from some external storage,
812  /// e.g., a precompiled header.
813  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
814
815  /// \brief Retrieve a pointer to the external AST source associated
816  /// with this AST context, if any.
817  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
818
819  /// \brief Attach an AST mutation listener to the AST context.
820  ///
821  /// The AST mutation listener provides the ability to track modifications to
822  /// the abstract syntax tree entities committed after they were initially
823  /// created.
824  void setASTMutationListener(ASTMutationListener *Listener) {
825    this->Listener = Listener;
826  }
827
828  /// \brief Retrieve a pointer to the AST mutation listener associated
829  /// with this AST context, if any.
830  ASTMutationListener *getASTMutationListener() const { return Listener; }
831
832  void PrintStats() const;
833  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
834
835  /// \brief Retrieve the declaration for the 128-bit signed integer type.
836  TypedefDecl *getInt128Decl() const;
837
838  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
839  TypedefDecl *getUInt128Decl() const;
840
841  /// \brief Retrieve the declaration for a 128-bit float stub type.
842  TypeDecl *getFloat128StubType() const;
843
844  //===--------------------------------------------------------------------===//
845  //                           Type Constructors
846  //===--------------------------------------------------------------------===//
847
848private:
849  /// \brief Return a type with extended qualifiers.
850  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
851
852  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
853
854public:
855  /// \brief Return the uniqued reference to the type for an address space
856  /// qualified type with the specified type and address space.
857  ///
858  /// The resulting type has a union of the qualifiers from T and the address
859  /// space. If T already has an address space specifier, it is silently
860  /// replaced.
861  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
862
863  /// \brief Return the uniqued reference to the type for an Objective-C
864  /// gc-qualified type.
865  ///
866  /// The retulting type has a union of the qualifiers from T and the gc
867  /// attribute.
868  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
869
870  /// \brief Return the uniqued reference to the type for a \c restrict
871  /// qualified type.
872  ///
873  /// The resulting type has a union of the qualifiers from \p T and
874  /// \c restrict.
875  QualType getRestrictType(QualType T) const {
876    return T.withFastQualifiers(Qualifiers::Restrict);
877  }
878
879  /// \brief Return the uniqued reference to the type for a \c volatile
880  /// qualified type.
881  ///
882  /// The resulting type has a union of the qualifiers from \p T and
883  /// \c volatile.
884  QualType getVolatileType(QualType T) const {
885    return T.withFastQualifiers(Qualifiers::Volatile);
886  }
887
888  /// \brief Return the uniqued reference to the type for a \c const
889  /// qualified type.
890  ///
891  /// The resulting type has a union of the qualifiers from \p T and \c const.
892  ///
893  /// It can be reasonably expected that this will always be equivalent to
894  /// calling T.withConst().
895  QualType getConstType(QualType T) const { return T.withConst(); }
896
897  /// \brief Change the ExtInfo on a function type.
898  const FunctionType *adjustFunctionType(const FunctionType *Fn,
899                                         FunctionType::ExtInfo EInfo);
900
901  /// \brief Change the result type of a function type once it is deduced.
902  void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
903
904  /// \brief Return the uniqued reference to the type for a complex
905  /// number with the specified element type.
906  QualType getComplexType(QualType T) const;
907  CanQualType getComplexType(CanQualType T) const {
908    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
909  }
910
911  /// \brief Return the uniqued reference to the type for a pointer to
912  /// the specified type.
913  QualType getPointerType(QualType T) const;
914  CanQualType getPointerType(CanQualType T) const {
915    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
916  }
917
918  /// \brief Return the uniqued reference to the decayed version of the given
919  /// type.  Can only be called on array and function types which decay to
920  /// pointer types.
921  QualType getDecayedType(QualType T) const;
922  CanQualType getDecayedType(CanQualType T) const {
923    return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
924  }
925
926  /// \brief Return the uniqued reference to the atomic type for the specified
927  /// type.
928  QualType getAtomicType(QualType T) const;
929
930  /// \brief Return the uniqued reference to the type for a block of the
931  /// specified type.
932  QualType getBlockPointerType(QualType T) const;
933
934  /// Gets the struct used to keep track of the descriptor for pointer to
935  /// blocks.
936  QualType getBlockDescriptorType() const;
937
938  /// Gets the struct used to keep track of the extended descriptor for
939  /// pointer to blocks.
940  QualType getBlockDescriptorExtendedType() const;
941
942  void setcudaConfigureCallDecl(FunctionDecl *FD) {
943    cudaConfigureCallDecl = FD;
944  }
945  FunctionDecl *getcudaConfigureCallDecl() {
946    return cudaConfigureCallDecl;
947  }
948
949  /// Returns true iff we need copy/dispose helpers for the given type.
950  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
951
952
953  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
954  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
955  /// has extended lifetime.
956  bool getByrefLifetime(QualType Ty,
957                        Qualifiers::ObjCLifetime &Lifetime,
958                        bool &HasByrefExtendedLayout) const;
959
960  /// \brief Return the uniqued reference to the type for an lvalue reference
961  /// to the specified type.
962  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
963    const;
964
965  /// \brief Return the uniqued reference to the type for an rvalue reference
966  /// to the specified type.
967  QualType getRValueReferenceType(QualType T) const;
968
969  /// \brief Return the uniqued reference to the type for a member pointer to
970  /// the specified type in the specified class.
971  ///
972  /// The class \p Cls is a \c Type because it could be a dependent name.
973  QualType getMemberPointerType(QualType T, const Type *Cls) const;
974
975  /// \brief Return a non-unique reference to the type for a variable array of
976  /// the specified element type.
977  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
978                                ArrayType::ArraySizeModifier ASM,
979                                unsigned IndexTypeQuals,
980                                SourceRange Brackets) const;
981
982  /// \brief Return a non-unique reference to the type for a dependently-sized
983  /// array of the specified element type.
984  ///
985  /// FIXME: We will need these to be uniqued, or at least comparable, at some
986  /// point.
987  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
988                                      ArrayType::ArraySizeModifier ASM,
989                                      unsigned IndexTypeQuals,
990                                      SourceRange Brackets) const;
991
992  /// \brief Return a unique reference to the type for an incomplete array of
993  /// the specified element type.
994  QualType getIncompleteArrayType(QualType EltTy,
995                                  ArrayType::ArraySizeModifier ASM,
996                                  unsigned IndexTypeQuals) const;
997
998  /// \brief Return the unique reference to the type for a constant array of
999  /// the specified element type.
1000  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1001                                ArrayType::ArraySizeModifier ASM,
1002                                unsigned IndexTypeQuals) const;
1003
1004  /// \brief Returns a vla type where known sizes are replaced with [*].
1005  QualType getVariableArrayDecayedType(QualType Ty) const;
1006
1007  /// \brief Return the unique reference to a vector type of the specified
1008  /// element type and size.
1009  ///
1010  /// \pre \p VectorType must be a built-in type.
1011  QualType getVectorType(QualType VectorType, unsigned NumElts,
1012                         VectorType::VectorKind VecKind) const;
1013
1014  /// \brief Return the unique reference to an extended vector type
1015  /// of the specified element type and size.
1016  ///
1017  /// \pre \p VectorType must be a built-in type.
1018  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1019
1020  /// \pre Return a non-unique reference to the type for a dependently-sized
1021  /// vector of the specified element type.
1022  ///
1023  /// FIXME: We will need these to be uniqued, or at least comparable, at some
1024  /// point.
1025  QualType getDependentSizedExtVectorType(QualType VectorType,
1026                                          Expr *SizeExpr,
1027                                          SourceLocation AttrLoc) const;
1028
1029  /// \brief Return a K&R style C function type like 'int()'.
1030  QualType getFunctionNoProtoType(QualType ResultTy,
1031                                  const FunctionType::ExtInfo &Info) const;
1032
1033  QualType getFunctionNoProtoType(QualType ResultTy) const {
1034    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1035  }
1036
1037  /// \brief Return a normal function type with a typed argument list.
1038  QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1039                           const FunctionProtoType::ExtProtoInfo &EPI) const;
1040
1041  /// \brief Return the unique reference to the type for the specified type
1042  /// declaration.
1043  QualType getTypeDeclType(const TypeDecl *Decl,
1044                           const TypeDecl *PrevDecl = 0) const {
1045    assert(Decl && "Passed null for Decl param");
1046    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1047
1048    if (PrevDecl) {
1049      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1050      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1051      return QualType(PrevDecl->TypeForDecl, 0);
1052    }
1053
1054    return getTypeDeclTypeSlow(Decl);
1055  }
1056
1057  /// \brief Return the unique reference to the type for the specified
1058  /// typedef-name decl.
1059  QualType getTypedefType(const TypedefNameDecl *Decl,
1060                          QualType Canon = QualType()) const;
1061
1062  QualType getRecordType(const RecordDecl *Decl) const;
1063
1064  QualType getEnumType(const EnumDecl *Decl) const;
1065
1066  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1067
1068  QualType getAttributedType(AttributedType::Kind attrKind,
1069                             QualType modifiedType,
1070                             QualType equivalentType);
1071
1072  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1073                                        QualType Replacement) const;
1074  QualType getSubstTemplateTypeParmPackType(
1075                                          const TemplateTypeParmType *Replaced,
1076                                            const TemplateArgument &ArgPack);
1077
1078  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1079                                   bool ParameterPack,
1080                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1081
1082  QualType getTemplateSpecializationType(TemplateName T,
1083                                         const TemplateArgument *Args,
1084                                         unsigned NumArgs,
1085                                         QualType Canon = QualType()) const;
1086
1087  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1088                                                  const TemplateArgument *Args,
1089                                                  unsigned NumArgs) const;
1090
1091  QualType getTemplateSpecializationType(TemplateName T,
1092                                         const TemplateArgumentListInfo &Args,
1093                                         QualType Canon = QualType()) const;
1094
1095  TypeSourceInfo *
1096  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1097                                    const TemplateArgumentListInfo &Args,
1098                                    QualType Canon = QualType()) const;
1099
1100  QualType getParenType(QualType NamedType) const;
1101
1102  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1103                             NestedNameSpecifier *NNS,
1104                             QualType NamedType) const;
1105  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1106                                NestedNameSpecifier *NNS,
1107                                const IdentifierInfo *Name,
1108                                QualType Canon = QualType()) const;
1109
1110  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1111                                                  NestedNameSpecifier *NNS,
1112                                                  const IdentifierInfo *Name,
1113                                    const TemplateArgumentListInfo &Args) const;
1114  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1115                                                  NestedNameSpecifier *NNS,
1116                                                  const IdentifierInfo *Name,
1117                                                  unsigned NumArgs,
1118                                            const TemplateArgument *Args) const;
1119
1120  QualType getPackExpansionType(QualType Pattern,
1121                                Optional<unsigned> NumExpansions);
1122
1123  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1124                                ObjCInterfaceDecl *PrevDecl = 0) const;
1125
1126  QualType getObjCObjectType(QualType Base,
1127                             ObjCProtocolDecl * const *Protocols,
1128                             unsigned NumProtocols) const;
1129
1130  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1131  QualType getObjCObjectPointerType(QualType OIT) const;
1132
1133  /// \brief GCC extension.
1134  QualType getTypeOfExprType(Expr *e) const;
1135  QualType getTypeOfType(QualType t) const;
1136
1137  /// \brief C++11 decltype.
1138  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1139
1140  /// \brief Unary type transforms
1141  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1142                                 UnaryTransformType::UTTKind UKind) const;
1143
1144  /// \brief C++11 deduced auto type.
1145  QualType getAutoType(QualType DeducedType, bool IsDecltypeAuto,
1146                       bool IsDependent) const;
1147
1148  /// \brief C++11 deduction pattern for 'auto' type.
1149  QualType getAutoDeductType() const;
1150
1151  /// \brief C++11 deduction pattern for 'auto &&' type.
1152  QualType getAutoRRefDeductType() const;
1153
1154  /// \brief Return the unique reference to the type for the specified TagDecl
1155  /// (struct/union/class/enum) decl.
1156  QualType getTagDeclType(const TagDecl *Decl) const;
1157
1158  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1159  /// <stddef.h>.
1160  ///
1161  /// The sizeof operator requires this (C99 6.5.3.4p4).
1162  CanQualType getSizeType() const;
1163
1164  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1165  /// <stdint.h>.
1166  CanQualType getIntMaxType() const;
1167
1168  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1169  /// <stdint.h>.
1170  CanQualType getUIntMaxType() const;
1171
1172  /// \brief Return the unique wchar_t type available in C++ (and available as
1173  /// __wchar_t as a Microsoft extension).
1174  QualType getWCharType() const { return WCharTy; }
1175
1176  /// \brief Return the type of wide characters. In C++, this returns the
1177  /// unique wchar_t type. In C99, this returns a type compatible with the type
1178  /// defined in <stddef.h> as defined by the target.
1179  QualType getWideCharType() const { return WideCharTy; }
1180
1181  /// \brief Return the type of "signed wchar_t".
1182  ///
1183  /// Used when in C++, as a GCC extension.
1184  QualType getSignedWCharType() const;
1185
1186  /// \brief Return the type of "unsigned wchar_t".
1187  ///
1188  /// Used when in C++, as a GCC extension.
1189  QualType getUnsignedWCharType() const;
1190
1191  /// \brief In C99, this returns a type compatible with the type
1192  /// defined in <stddef.h> as defined by the target.
1193  QualType getWIntType() const { return WIntTy; }
1194
1195  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1196  /// as defined by the target.
1197  QualType getIntPtrType() const;
1198
1199  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1200  /// as defined by the target.
1201  QualType getUIntPtrType() const;
1202
1203  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1204  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1205  QualType getPointerDiffType() const;
1206
1207  /// \brief Return the unique type for "pid_t" defined in
1208  /// <sys/types.h>. We need this to compute the correct type for vfork().
1209  QualType getProcessIDType() const;
1210
1211  /// \brief Return the C structure type used to represent constant CFStrings.
1212  QualType getCFConstantStringType() const;
1213
1214  /// \brief Returns the C struct type for objc_super
1215  QualType getObjCSuperType() const;
1216  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1217
1218  /// Get the structure type used to representation CFStrings, or NULL
1219  /// if it hasn't yet been built.
1220  QualType getRawCFConstantStringType() const {
1221    if (CFConstantStringTypeDecl)
1222      return getTagDeclType(CFConstantStringTypeDecl);
1223    return QualType();
1224  }
1225  void setCFConstantStringType(QualType T);
1226
1227  // This setter/getter represents the ObjC type for an NSConstantString.
1228  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1229  QualType getObjCConstantStringInterface() const {
1230    return ObjCConstantStringType;
1231  }
1232
1233  QualType getObjCNSStringType() const {
1234    return ObjCNSStringType;
1235  }
1236
1237  void setObjCNSStringType(QualType T) {
1238    ObjCNSStringType = T;
1239  }
1240
1241  /// \brief Retrieve the type that \c id has been defined to, which may be
1242  /// different from the built-in \c id if \c id has been typedef'd.
1243  QualType getObjCIdRedefinitionType() const {
1244    if (ObjCIdRedefinitionType.isNull())
1245      return getObjCIdType();
1246    return ObjCIdRedefinitionType;
1247  }
1248
1249  /// \brief Set the user-written type that redefines \c id.
1250  void setObjCIdRedefinitionType(QualType RedefType) {
1251    ObjCIdRedefinitionType = RedefType;
1252  }
1253
1254  /// \brief Retrieve the type that \c Class has been defined to, which may be
1255  /// different from the built-in \c Class if \c Class has been typedef'd.
1256  QualType getObjCClassRedefinitionType() const {
1257    if (ObjCClassRedefinitionType.isNull())
1258      return getObjCClassType();
1259    return ObjCClassRedefinitionType;
1260  }
1261
1262  /// \brief Set the user-written type that redefines 'SEL'.
1263  void setObjCClassRedefinitionType(QualType RedefType) {
1264    ObjCClassRedefinitionType = RedefType;
1265  }
1266
1267  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1268  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1269  QualType getObjCSelRedefinitionType() const {
1270    if (ObjCSelRedefinitionType.isNull())
1271      return getObjCSelType();
1272    return ObjCSelRedefinitionType;
1273  }
1274
1275
1276  /// \brief Set the user-written type that redefines 'SEL'.
1277  void setObjCSelRedefinitionType(QualType RedefType) {
1278    ObjCSelRedefinitionType = RedefType;
1279  }
1280
1281  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1282  /// otherwise, returns a NULL type;
1283  QualType getObjCInstanceType() {
1284    return getTypeDeclType(getObjCInstanceTypeDecl());
1285  }
1286
1287  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1288  /// "instancetype" type.
1289  TypedefDecl *getObjCInstanceTypeDecl();
1290
1291  /// \brief Set the type for the C FILE type.
1292  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1293
1294  /// \brief Retrieve the C FILE type.
1295  QualType getFILEType() const {
1296    if (FILEDecl)
1297      return getTypeDeclType(FILEDecl);
1298    return QualType();
1299  }
1300
1301  /// \brief Set the type for the C jmp_buf type.
1302  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1303    this->jmp_bufDecl = jmp_bufDecl;
1304  }
1305
1306  /// \brief Retrieve the C jmp_buf type.
1307  QualType getjmp_bufType() const {
1308    if (jmp_bufDecl)
1309      return getTypeDeclType(jmp_bufDecl);
1310    return QualType();
1311  }
1312
1313  /// \brief Set the type for the C sigjmp_buf type.
1314  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1315    this->sigjmp_bufDecl = sigjmp_bufDecl;
1316  }
1317
1318  /// \brief Retrieve the C sigjmp_buf type.
1319  QualType getsigjmp_bufType() const {
1320    if (sigjmp_bufDecl)
1321      return getTypeDeclType(sigjmp_bufDecl);
1322    return QualType();
1323  }
1324
1325  /// \brief Set the type for the C ucontext_t type.
1326  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1327    this->ucontext_tDecl = ucontext_tDecl;
1328  }
1329
1330  /// \brief Retrieve the C ucontext_t type.
1331  QualType getucontext_tType() const {
1332    if (ucontext_tDecl)
1333      return getTypeDeclType(ucontext_tDecl);
1334    return QualType();
1335  }
1336
1337  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1338  QualType getLogicalOperationType() const {
1339    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1340  }
1341
1342  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1343  /// \p S.
1344  ///
1345  /// If \p Field is specified then record field names are also encoded.
1346  void getObjCEncodingForType(QualType T, std::string &S,
1347                              const FieldDecl *Field=0) const;
1348
1349  void getLegacyIntegralTypeEncoding(QualType &t) const;
1350
1351  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1352  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1353                                       std::string &S) const;
1354
1355  /// \brief Emit the encoded type for the function \p Decl into \p S.
1356  ///
1357  /// This is in the same format as Objective-C method encodings.
1358  ///
1359  /// \returns true if an error occurred (e.g., because one of the parameter
1360  /// types is incomplete), false otherwise.
1361  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1362
1363  /// \brief Emit the encoded type for the method declaration \p Decl into
1364  /// \p S.
1365  ///
1366  /// \returns true if an error occurred (e.g., because one of the parameter
1367  /// types is incomplete), false otherwise.
1368  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1369                                    bool Extended = false)
1370    const;
1371
1372  /// \brief Return the encoded type for this block declaration.
1373  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1374
1375  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1376  /// this method declaration. If non-NULL, Container must be either
1377  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1378  /// only be NULL when getting encodings for protocol properties.
1379  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1380                                      const Decl *Container,
1381                                      std::string &S) const;
1382
1383  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1384                                      ObjCProtocolDecl *rProto) const;
1385
1386  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1387  /// in characters.
1388  CharUnits getObjCEncodingTypeSize(QualType T) const;
1389
1390  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1391  /// in Objective-C.
1392  TypedefDecl *getObjCIdDecl() const;
1393
1394  /// \brief Represents the Objective-CC \c id type.
1395  ///
1396  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1397  /// pointer type, a pointer to a struct.
1398  QualType getObjCIdType() const {
1399    return getTypeDeclType(getObjCIdDecl());
1400  }
1401
1402  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1403  /// in Objective-C.
1404  TypedefDecl *getObjCSelDecl() const;
1405
1406  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1407  /// 'SEL' type.
1408  QualType getObjCSelType() const {
1409    return getTypeDeclType(getObjCSelDecl());
1410  }
1411
1412  /// \brief Retrieve the typedef declaration corresponding to the predefined
1413  /// Objective-C 'Class' type.
1414  TypedefDecl *getObjCClassDecl() const;
1415
1416  /// \brief Represents the Objective-C \c Class type.
1417  ///
1418  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1419  /// pointer type, a pointer to a struct.
1420  QualType getObjCClassType() const {
1421    return getTypeDeclType(getObjCClassDecl());
1422  }
1423
1424  /// \brief Retrieve the Objective-C class declaration corresponding to
1425  /// the predefined \c Protocol class.
1426  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1427
1428  /// \brief Retrieve declaration of 'BOOL' typedef
1429  TypedefDecl *getBOOLDecl() const {
1430    return BOOLDecl;
1431  }
1432
1433  /// \brief Save declaration of 'BOOL' typedef
1434  void setBOOLDecl(TypedefDecl *TD) {
1435    BOOLDecl = TD;
1436  }
1437
1438  /// \brief type of 'BOOL' type.
1439  QualType getBOOLType() const {
1440    return getTypeDeclType(getBOOLDecl());
1441  }
1442
1443  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1444  QualType getObjCProtoType() const {
1445    return getObjCInterfaceType(getObjCProtocolDecl());
1446  }
1447
1448  /// \brief Retrieve the C type declaration corresponding to the predefined
1449  /// \c __builtin_va_list type.
1450  TypedefDecl *getBuiltinVaListDecl() const;
1451
1452  /// \brief Retrieve the type of the \c __builtin_va_list type.
1453  QualType getBuiltinVaListType() const {
1454    return getTypeDeclType(getBuiltinVaListDecl());
1455  }
1456
1457  /// \brief Retrieve the C type declaration corresponding to the predefined
1458  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1459  /// for some targets.
1460  QualType getVaListTagType() const;
1461
1462  /// \brief Return a type with additional \c const, \c volatile, or
1463  /// \c restrict qualifiers.
1464  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1465    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1466  }
1467
1468  /// \brief Un-split a SplitQualType.
1469  QualType getQualifiedType(SplitQualType split) const {
1470    return getQualifiedType(split.Ty, split.Quals);
1471  }
1472
1473  /// \brief Return a type with additional qualifiers.
1474  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1475    if (!Qs.hasNonFastQualifiers())
1476      return T.withFastQualifiers(Qs.getFastQualifiers());
1477    QualifierCollector Qc(Qs);
1478    const Type *Ptr = Qc.strip(T);
1479    return getExtQualType(Ptr, Qc);
1480  }
1481
1482  /// \brief Return a type with additional qualifiers.
1483  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1484    if (!Qs.hasNonFastQualifiers())
1485      return QualType(T, Qs.getFastQualifiers());
1486    return getExtQualType(T, Qs);
1487  }
1488
1489  /// \brief Return a type with the given lifetime qualifier.
1490  ///
1491  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1492  QualType getLifetimeQualifiedType(QualType type,
1493                                    Qualifiers::ObjCLifetime lifetime) {
1494    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1495    assert(lifetime != Qualifiers::OCL_None);
1496
1497    Qualifiers qs;
1498    qs.addObjCLifetime(lifetime);
1499    return getQualifiedType(type, qs);
1500  }
1501
1502  /// getUnqualifiedObjCPointerType - Returns version of
1503  /// Objective-C pointer type with lifetime qualifier removed.
1504  QualType getUnqualifiedObjCPointerType(QualType type) const {
1505    if (!type.getTypePtr()->isObjCObjectPointerType() ||
1506        !type.getQualifiers().hasObjCLifetime())
1507      return type;
1508    Qualifiers Qs = type.getQualifiers();
1509    Qs.removeObjCLifetime();
1510    return getQualifiedType(type.getUnqualifiedType(), Qs);
1511  }
1512
1513  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1514                                         SourceLocation NameLoc) const;
1515
1516  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1517                                         UnresolvedSetIterator End) const;
1518
1519  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1520                                        bool TemplateKeyword,
1521                                        TemplateDecl *Template) const;
1522
1523  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1524                                        const IdentifierInfo *Name) const;
1525  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1526                                        OverloadedOperatorKind Operator) const;
1527  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1528                                            TemplateName replacement) const;
1529  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1530                                        const TemplateArgument &ArgPack) const;
1531
1532  enum GetBuiltinTypeError {
1533    GE_None,              ///< No error
1534    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1535    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1536    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1537  };
1538
1539  /// \brief Return the type for the specified builtin.
1540  ///
1541  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1542  /// arguments to the builtin that are required to be integer constant
1543  /// expressions.
1544  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1545                          unsigned *IntegerConstantArgs = 0) const;
1546
1547private:
1548  CanQualType getFromTargetType(unsigned Type) const;
1549  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1550
1551  //===--------------------------------------------------------------------===//
1552  //                         Type Predicates.
1553  //===--------------------------------------------------------------------===//
1554
1555public:
1556  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1557  /// collection attributes.
1558  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1559
1560  /// \brief Return true if the given vector types are of the same unqualified
1561  /// type or if they are equivalent to the same GCC vector type.
1562  ///
1563  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1564  /// types.
1565  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1566
1567  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1568  /// attribute set.
1569  static bool isObjCNSObjectType(QualType Ty) {
1570    return Ty->isObjCNSObjectType();
1571  }
1572
1573  //===--------------------------------------------------------------------===//
1574  //                         Type Sizing and Analysis
1575  //===--------------------------------------------------------------------===//
1576
1577  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1578  /// point type.
1579  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1580
1581  /// \brief Get the size and alignment of the specified complete type in bits.
1582  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1583  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1584    return getTypeInfo(T.getTypePtr());
1585  }
1586
1587  /// \brief Return the size of the specified (complete) type \p T, in bits.
1588  uint64_t getTypeSize(QualType T) const {
1589    return getTypeInfo(T).first;
1590  }
1591  uint64_t getTypeSize(const Type *T) const {
1592    return getTypeInfo(T).first;
1593  }
1594
1595  /// \brief Return the size of the character type, in bits.
1596  uint64_t getCharWidth() const {
1597    return getTypeSize(CharTy);
1598  }
1599
1600  /// \brief Convert a size in bits to a size in characters.
1601  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1602
1603  /// \brief Convert a size in characters to a size in bits.
1604  int64_t toBits(CharUnits CharSize) const;
1605
1606  /// \brief Return the size of the specified (complete) type \p T, in
1607  /// characters.
1608  CharUnits getTypeSizeInChars(QualType T) const;
1609  CharUnits getTypeSizeInChars(const Type *T) const;
1610
1611  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1612  /// bits.
1613  unsigned getTypeAlign(QualType T) const {
1614    return getTypeInfo(T).second;
1615  }
1616  unsigned getTypeAlign(const Type *T) const {
1617    return getTypeInfo(T).second;
1618  }
1619
1620  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1621  /// characters.
1622  CharUnits getTypeAlignInChars(QualType T) const;
1623  CharUnits getTypeAlignInChars(const Type *T) const;
1624
1625  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1626  // type is a record, its data size is returned.
1627  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1628
1629  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1630  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1631
1632  /// \brief Return the "preferred" alignment of the specified type \p T for
1633  /// the current target, in bits.
1634  ///
1635  /// This can be different than the ABI alignment in cases where it is
1636  /// beneficial for performance to overalign a data type.
1637  unsigned getPreferredTypeAlign(const Type *T) const;
1638
1639  /// \brief Return the alignment in bits that should be given to a
1640  /// global variable with type \p T.
1641  unsigned getAlignOfGlobalVar(QualType T) const;
1642
1643  /// \brief Return the alignment in characters that should be given to a
1644  /// global variable with type \p T.
1645  CharUnits getAlignOfGlobalVarInChars(QualType T) const;
1646
1647  /// \brief Return a conservative estimate of the alignment of the specified
1648  /// decl \p D.
1649  ///
1650  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1651  /// alignment.
1652  ///
1653  /// If \p ForAlignof, references are treated like their underlying type
1654  /// and  large arrays don't get any special treatment. If not \p ForAlignof
1655  /// it computes the value expected by CodeGen: references are treated like
1656  /// pointers and large arrays get extra alignment.
1657  CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
1658
1659  /// \brief Get or compute information about the layout of the specified
1660  /// record (struct/union/class) \p D, which indicates its size and field
1661  /// position information.
1662  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1663  const ASTRecordLayout *BuildMicrosoftASTRecordLayout(const RecordDecl *D) const;
1664
1665  /// \brief Get or compute information about the layout of the specified
1666  /// Objective-C interface.
1667  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1668    const;
1669
1670  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1671                        bool Simple = false) const;
1672
1673  /// \brief Get or compute information about the layout of the specified
1674  /// Objective-C implementation.
1675  ///
1676  /// This may differ from the interface if synthesized ivars are present.
1677  const ASTRecordLayout &
1678  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1679
1680  /// \brief Get our current best idea for the key function of the
1681  /// given record decl, or NULL if there isn't one.
1682  ///
1683  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1684  ///   ...the first non-pure virtual function that is not inline at the
1685  ///   point of class definition.
1686  ///
1687  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1688  /// virtual functions that are defined 'inline', which means that
1689  /// the result of this computation can change.
1690  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1691
1692  /// \brief Observe that the given method cannot be a key function.
1693  /// Checks the key-function cache for the method's class and clears it
1694  /// if matches the given declaration.
1695  ///
1696  /// This is used in ABIs where out-of-line definitions marked
1697  /// inline are not considered to be key functions.
1698  ///
1699  /// \param method should be the declaration from the class definition
1700  void setNonKeyFunction(const CXXMethodDecl *method);
1701
1702  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1703  uint64_t getFieldOffset(const ValueDecl *FD) const;
1704
1705  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1706
1707  MangleContext *createMangleContext();
1708
1709  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1710                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1711
1712  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1713  void CollectInheritedProtocols(const Decl *CDecl,
1714                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1715
1716  //===--------------------------------------------------------------------===//
1717  //                            Type Operators
1718  //===--------------------------------------------------------------------===//
1719
1720  /// \brief Return the canonical (structural) type corresponding to the
1721  /// specified potentially non-canonical type \p T.
1722  ///
1723  /// The non-canonical version of a type may have many "decorated" versions of
1724  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1725  /// returned type is guaranteed to be free of any of these, allowing two
1726  /// canonical types to be compared for exact equality with a simple pointer
1727  /// comparison.
1728  CanQualType getCanonicalType(QualType T) const {
1729    return CanQualType::CreateUnsafe(T.getCanonicalType());
1730  }
1731
1732  const Type *getCanonicalType(const Type *T) const {
1733    return T->getCanonicalTypeInternal().getTypePtr();
1734  }
1735
1736  /// \brief Return the canonical parameter type corresponding to the specific
1737  /// potentially non-canonical one.
1738  ///
1739  /// Qualifiers are stripped off, functions are turned into function
1740  /// pointers, and arrays decay one level into pointers.
1741  CanQualType getCanonicalParamType(QualType T) const;
1742
1743  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1744  bool hasSameType(QualType T1, QualType T2) const {
1745    return getCanonicalType(T1) == getCanonicalType(T2);
1746  }
1747
1748  /// \brief Return this type as a completely-unqualified array type,
1749  /// capturing the qualifiers in \p Quals.
1750  ///
1751  /// This will remove the minimal amount of sugaring from the types, similar
1752  /// to the behavior of QualType::getUnqualifiedType().
1753  ///
1754  /// \param T is the qualified type, which may be an ArrayType
1755  ///
1756  /// \param Quals will receive the full set of qualifiers that were
1757  /// applied to the array.
1758  ///
1759  /// \returns if this is an array type, the completely unqualified array type
1760  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1761  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1762
1763  /// \brief Determine whether the given types are equivalent after
1764  /// cvr-qualifiers have been removed.
1765  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1766    return getCanonicalType(T1).getTypePtr() ==
1767           getCanonicalType(T2).getTypePtr();
1768  }
1769
1770  bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
1771                           const ObjCMethodDecl *MethodImp);
1772
1773  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1774
1775  /// \brief Retrieves the "canonical" nested name specifier for a
1776  /// given nested name specifier.
1777  ///
1778  /// The canonical nested name specifier is a nested name specifier
1779  /// that uniquely identifies a type or namespace within the type
1780  /// system. For example, given:
1781  ///
1782  /// \code
1783  /// namespace N {
1784  ///   struct S {
1785  ///     template<typename T> struct X { typename T* type; };
1786  ///   };
1787  /// }
1788  ///
1789  /// template<typename T> struct Y {
1790  ///   typename N::S::X<T>::type member;
1791  /// };
1792  /// \endcode
1793  ///
1794  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1795  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1796  /// by declarations in the type system and the canonical type for
1797  /// the template type parameter 'T' is template-param-0-0.
1798  NestedNameSpecifier *
1799  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1800
1801  /// \brief Retrieves the default calling convention for the current target.
1802  CallingConv getDefaultCallingConvention(bool isVariadic,
1803                                          bool IsCXXMethod) const;
1804
1805  /// \brief Retrieves the "canonical" template name that refers to a
1806  /// given template.
1807  ///
1808  /// The canonical template name is the simplest expression that can
1809  /// be used to refer to a given template. For most templates, this
1810  /// expression is just the template declaration itself. For example,
1811  /// the template std::vector can be referred to via a variety of
1812  /// names---std::vector, \::std::vector, vector (if vector is in
1813  /// scope), etc.---but all of these names map down to the same
1814  /// TemplateDecl, which is used to form the canonical template name.
1815  ///
1816  /// Dependent template names are more interesting. Here, the
1817  /// template name could be something like T::template apply or
1818  /// std::allocator<T>::template rebind, where the nested name
1819  /// specifier itself is dependent. In this case, the canonical
1820  /// template name uses the shortest form of the dependent
1821  /// nested-name-specifier, which itself contains all canonical
1822  /// types, values, and templates.
1823  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1824
1825  /// \brief Determine whether the given template names refer to the same
1826  /// template.
1827  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1828
1829  /// \brief Retrieve the "canonical" template argument.
1830  ///
1831  /// The canonical template argument is the simplest template argument
1832  /// (which may be a type, value, expression, or declaration) that
1833  /// expresses the value of the argument.
1834  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1835    const;
1836
1837  /// Type Query functions.  If the type is an instance of the specified class,
1838  /// return the Type pointer for the underlying maximally pretty type.  This
1839  /// is a member of ASTContext because this may need to do some amount of
1840  /// canonicalization, e.g. to move type qualifiers into the element type.
1841  const ArrayType *getAsArrayType(QualType T) const;
1842  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1843    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1844  }
1845  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1846    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1847  }
1848  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1849    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1850  }
1851  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1852    const {
1853    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1854  }
1855
1856  /// \brief Return the innermost element type of an array type.
1857  ///
1858  /// For example, will return "int" for int[m][n]
1859  QualType getBaseElementType(const ArrayType *VAT) const;
1860
1861  /// \brief Return the innermost element type of a type (which needn't
1862  /// actually be an array type).
1863  QualType getBaseElementType(QualType QT) const;
1864
1865  /// \brief Return number of constant array elements.
1866  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1867
1868  /// \brief Perform adjustment on the parameter type of a function.
1869  ///
1870  /// This routine adjusts the given parameter type @p T to the actual
1871  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1872  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1873  QualType getAdjustedParameterType(QualType T) const;
1874
1875  /// \brief Retrieve the parameter type as adjusted for use in the signature
1876  /// of a function, decaying array and function types and removing top-level
1877  /// cv-qualifiers.
1878  QualType getSignatureParameterType(QualType T) const;
1879
1880  /// \brief Return the properly qualified result of decaying the specified
1881  /// array type to a pointer.
1882  ///
1883  /// This operation is non-trivial when handling typedefs etc.  The canonical
1884  /// type of \p T must be an array type, this returns a pointer to a properly
1885  /// qualified element of the array.
1886  ///
1887  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1888  QualType getArrayDecayedType(QualType T) const;
1889
1890  /// \brief Return the type that \p PromotableType will promote to: C99
1891  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1892  QualType getPromotedIntegerType(QualType PromotableType) const;
1893
1894  /// \brief Recurses in pointer/array types until it finds an Objective-C
1895  /// retainable type and returns its ownership.
1896  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1897
1898  /// \brief Whether this is a promotable bitfield reference according
1899  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1900  ///
1901  /// \returns the type this bit-field will promote to, or NULL if no
1902  /// promotion occurs.
1903  QualType isPromotableBitField(Expr *E) const;
1904
1905  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1906  ///
1907  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1908  /// \p LHS < \p RHS, return -1.
1909  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1910
1911  /// \brief Compare the rank of the two specified floating point types,
1912  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1913  ///
1914  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1915  /// \p LHS < \p RHS, return -1.
1916  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1917
1918  /// \brief Return a real floating point or a complex type (based on
1919  /// \p typeDomain/\p typeSize).
1920  ///
1921  /// \param typeDomain a real floating point or complex type.
1922  /// \param typeSize a real floating point or complex type.
1923  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1924                                             QualType typeDomain) const;
1925
1926  unsigned getTargetAddressSpace(QualType T) const {
1927    return getTargetAddressSpace(T.getQualifiers());
1928  }
1929
1930  unsigned getTargetAddressSpace(Qualifiers Q) const {
1931    return getTargetAddressSpace(Q.getAddressSpace());
1932  }
1933
1934  unsigned getTargetAddressSpace(unsigned AS) const {
1935    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1936      return AS;
1937    else
1938      return (*AddrSpaceMap)[AS - LangAS::Offset];
1939  }
1940
1941  bool addressSpaceMapManglingFor(unsigned AS) const {
1942    return AddrSpaceMapMangling ||
1943           AS < LangAS::Offset ||
1944           AS >= LangAS::Offset + LangAS::Count;
1945  }
1946
1947private:
1948  // Helper for integer ordering
1949  unsigned getIntegerRank(const Type *T) const;
1950
1951public:
1952
1953  //===--------------------------------------------------------------------===//
1954  //                    Type Compatibility Predicates
1955  //===--------------------------------------------------------------------===//
1956
1957  /// Compatibility predicates used to check assignment expressions.
1958  bool typesAreCompatible(QualType T1, QualType T2,
1959                          bool CompareUnqualified = false); // C99 6.2.7p1
1960
1961  bool propertyTypesAreCompatible(QualType, QualType);
1962  bool typesAreBlockPointerCompatible(QualType, QualType);
1963
1964  bool isObjCIdType(QualType T) const {
1965    return T == getObjCIdType();
1966  }
1967  bool isObjCClassType(QualType T) const {
1968    return T == getObjCClassType();
1969  }
1970  bool isObjCSelType(QualType T) const {
1971    return T == getObjCSelType();
1972  }
1973  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1974                                         bool ForCompare);
1975
1976  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1977
1978  // Check the safety of assignment from LHS to RHS
1979  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1980                               const ObjCObjectPointerType *RHSOPT);
1981  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1982                               const ObjCObjectType *RHS);
1983  bool canAssignObjCInterfacesInBlockPointer(
1984                                          const ObjCObjectPointerType *LHSOPT,
1985                                          const ObjCObjectPointerType *RHSOPT,
1986                                          bool BlockReturnType);
1987  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1988  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1989                                   const ObjCObjectPointerType *RHSOPT);
1990  bool canBindObjCObjectType(QualType To, QualType From);
1991
1992  // Functions for calculating composite types
1993  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1994                      bool Unqualified = false, bool BlockReturnType = false);
1995  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1996                              bool Unqualified = false);
1997  QualType mergeFunctionArgumentTypes(QualType, QualType,
1998                                      bool OfBlockPointer=false,
1999                                      bool Unqualified = false);
2000  QualType mergeTransparentUnionType(QualType, QualType,
2001                                     bool OfBlockPointer=false,
2002                                     bool Unqualified = false);
2003
2004  QualType mergeObjCGCQualifiers(QualType, QualType);
2005
2006  bool FunctionTypesMatchOnNSConsumedAttrs(
2007         const FunctionProtoType *FromFunctionType,
2008         const FunctionProtoType *ToFunctionType);
2009
2010  void ResetObjCLayout(const ObjCContainerDecl *CD) {
2011    ObjCLayouts[CD] = 0;
2012  }
2013
2014  //===--------------------------------------------------------------------===//
2015  //                    Integer Predicates
2016  //===--------------------------------------------------------------------===//
2017
2018  // The width of an integer, as defined in C99 6.2.6.2. This is the number
2019  // of bits in an integer type excluding any padding bits.
2020  unsigned getIntWidth(QualType T) const;
2021
2022  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2023  // unsigned integer type.  This method takes a signed type, and returns the
2024  // corresponding unsigned integer type.
2025  QualType getCorrespondingUnsignedType(QualType T) const;
2026
2027  //===--------------------------------------------------------------------===//
2028  //                    Type Iterators.
2029  //===--------------------------------------------------------------------===//
2030
2031  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
2032  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
2033
2034  type_iterator types_begin() { return Types.begin(); }
2035  type_iterator types_end() { return Types.end(); }
2036  const_type_iterator types_begin() const { return Types.begin(); }
2037  const_type_iterator types_end() const { return Types.end(); }
2038
2039  //===--------------------------------------------------------------------===//
2040  //                    Integer Values
2041  //===--------------------------------------------------------------------===//
2042
2043  /// \brief Make an APSInt of the appropriate width and signedness for the
2044  /// given \p Value and integer \p Type.
2045  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2046    llvm::APSInt Res(getIntWidth(Type),
2047                     !Type->isSignedIntegerOrEnumerationType());
2048    Res = Value;
2049    return Res;
2050  }
2051
2052  bool isSentinelNullExpr(const Expr *E);
2053
2054  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
2055  /// none exists.
2056  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2057  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
2058  /// none exists.
2059  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
2060
2061  /// \brief Return true if there is at least one \@implementation in the TU.
2062  bool AnyObjCImplementation() {
2063    return !ObjCImpls.empty();
2064  }
2065
2066  /// \brief Set the implementation of ObjCInterfaceDecl.
2067  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2068                             ObjCImplementationDecl *ImplD);
2069  /// \brief Set the implementation of ObjCCategoryDecl.
2070  void setObjCImplementation(ObjCCategoryDecl *CatD,
2071                             ObjCCategoryImplDecl *ImplD);
2072
2073  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2074  /// interface, or null if none exists.
2075  const ObjCMethodDecl *getObjCMethodRedeclaration(
2076                                               const ObjCMethodDecl *MD) const {
2077    return ObjCMethodRedecls.lookup(MD);
2078  }
2079
2080  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2081                                  const ObjCMethodDecl *Redecl) {
2082    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2083    ObjCMethodRedecls[MD] = Redecl;
2084  }
2085
2086  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2087  /// an Objective-C method/property/ivar etc. that is part of an interface,
2088  /// otherwise returns null.
2089  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2090
2091  /// \brief Set the copy inialization expression of a block var decl.
2092  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2093  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2094  /// NULL if none exists.
2095  Expr *getBlockVarCopyInits(const VarDecl* VD);
2096
2097  /// \brief Allocate an uninitialized TypeSourceInfo.
2098  ///
2099  /// The caller should initialize the memory held by TypeSourceInfo using
2100  /// the TypeLoc wrappers.
2101  ///
2102  /// \param T the type that will be the basis for type source info. This type
2103  /// should refer to how the declarator was written in source code, not to
2104  /// what type semantic analysis resolved the declarator to.
2105  ///
2106  /// \param Size the size of the type info to create, or 0 if the size
2107  /// should be calculated based on the type.
2108  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2109
2110  /// \brief Allocate a TypeSourceInfo where all locations have been
2111  /// initialized to a given location, which defaults to the empty
2112  /// location.
2113  TypeSourceInfo *
2114  getTrivialTypeSourceInfo(QualType T,
2115                           SourceLocation Loc = SourceLocation()) const;
2116
2117  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2118
2119  /// \brief Add a deallocation callback that will be invoked when the
2120  /// ASTContext is destroyed.
2121  ///
2122  /// \param Callback A callback function that will be invoked on destruction.
2123  ///
2124  /// \param Data Pointer data that will be provided to the callback function
2125  /// when it is called.
2126  void AddDeallocation(void (*Callback)(void*), void *Data);
2127
2128  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2129  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2130
2131  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2132  /// lazily, only when used; this is only relevant for function or file scoped
2133  /// var definitions.
2134  ///
2135  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2136  /// it is not used.
2137  bool DeclMustBeEmitted(const Decl *D);
2138
2139  void setManglingNumber(const NamedDecl *ND, unsigned Number);
2140  unsigned getManglingNumber(const NamedDecl *ND) const;
2141
2142  /// \brief Retrieve the context for computing mangling numbers in the given
2143  /// DeclContext.
2144  MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2145
2146  MangleNumberingContext *createMangleNumberingContext() const;
2147
2148  /// \brief Used by ParmVarDecl to store on the side the
2149  /// index of the parameter when it exceeds the size of the normal bitfield.
2150  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2151
2152  /// \brief Used by ParmVarDecl to retrieve on the side the
2153  /// index of the parameter when it exceeds the size of the normal bitfield.
2154  unsigned getParameterIndex(const ParmVarDecl *D) const;
2155
2156  /// \brief Get the storage for the constant value of a materialized temporary
2157  /// of static storage duration.
2158  APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
2159                                         bool MayCreate);
2160
2161  //===--------------------------------------------------------------------===//
2162  //                    Statistics
2163  //===--------------------------------------------------------------------===//
2164
2165  /// \brief The number of implicitly-declared default constructors.
2166  static unsigned NumImplicitDefaultConstructors;
2167
2168  /// \brief The number of implicitly-declared default constructors for
2169  /// which declarations were built.
2170  static unsigned NumImplicitDefaultConstructorsDeclared;
2171
2172  /// \brief The number of implicitly-declared copy constructors.
2173  static unsigned NumImplicitCopyConstructors;
2174
2175  /// \brief The number of implicitly-declared copy constructors for
2176  /// which declarations were built.
2177  static unsigned NumImplicitCopyConstructorsDeclared;
2178
2179  /// \brief The number of implicitly-declared move constructors.
2180  static unsigned NumImplicitMoveConstructors;
2181
2182  /// \brief The number of implicitly-declared move constructors for
2183  /// which declarations were built.
2184  static unsigned NumImplicitMoveConstructorsDeclared;
2185
2186  /// \brief The number of implicitly-declared copy assignment operators.
2187  static unsigned NumImplicitCopyAssignmentOperators;
2188
2189  /// \brief The number of implicitly-declared copy assignment operators for
2190  /// which declarations were built.
2191  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2192
2193  /// \brief The number of implicitly-declared move assignment operators.
2194  static unsigned NumImplicitMoveAssignmentOperators;
2195
2196  /// \brief The number of implicitly-declared move assignment operators for
2197  /// which declarations were built.
2198  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2199
2200  /// \brief The number of implicitly-declared destructors.
2201  static unsigned NumImplicitDestructors;
2202
2203  /// \brief The number of implicitly-declared destructors for which
2204  /// declarations were built.
2205  static unsigned NumImplicitDestructorsDeclared;
2206
2207private:
2208  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2209  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2210
2211public:
2212  /// \brief Initialize built-in types.
2213  ///
2214  /// This routine may only be invoked once for a given ASTContext object.
2215  /// It is normally invoked by the ASTContext constructor. However, the
2216  /// constructor can be asked to delay initialization, which places the burden
2217  /// of calling this function on the user of that object.
2218  ///
2219  /// \param Target The target
2220  void InitBuiltinTypes(const TargetInfo &Target);
2221
2222private:
2223  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2224
2225  // Return the Objective-C type encoding for a given type.
2226  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2227                                  bool ExpandPointedToStructures,
2228                                  bool ExpandStructures,
2229                                  const FieldDecl *Field,
2230                                  bool OutermostType = false,
2231                                  bool EncodingProperty = false,
2232                                  bool StructField = false,
2233                                  bool EncodeBlockParameters = false,
2234                                  bool EncodeClassNames = false,
2235                                  bool EncodePointerToObjCTypedef = false) const;
2236
2237  // Adds the encoding of the structure's members.
2238  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2239                                       const FieldDecl *Field,
2240                                       bool includeVBases = true) const;
2241
2242  // Adds the encoding of a method parameter or return type.
2243  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2244                                         QualType T, std::string& S,
2245                                         bool Extended) const;
2246
2247  const ASTRecordLayout &
2248  getObjCLayout(const ObjCInterfaceDecl *D,
2249                const ObjCImplementationDecl *Impl) const;
2250
2251private:
2252  /// \brief A set of deallocations that should be performed when the
2253  /// ASTContext is destroyed.
2254  typedef llvm::SmallDenseMap<void(*)(void*), llvm::SmallVector<void*, 16> >
2255    DeallocationMap;
2256  DeallocationMap Deallocations;
2257
2258  // FIXME: This currently contains the set of StoredDeclMaps used
2259  // by DeclContext objects.  This probably should not be in ASTContext,
2260  // but we include it here so that ASTContext can quickly deallocate them.
2261  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2262
2263  friend class DeclContext;
2264  friend class DeclarationNameTable;
2265  void ReleaseDeclContextMaps();
2266
2267  llvm::OwningPtr<ParentMap> AllParents;
2268};
2269
2270/// \brief Utility function for constructing a nullary selector.
2271static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2272  IdentifierInfo* II = &Ctx.Idents.get(name);
2273  return Ctx.Selectors.getSelector(0, &II);
2274}
2275
2276/// \brief Utility function for constructing an unary selector.
2277static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2278  IdentifierInfo* II = &Ctx.Idents.get(name);
2279  return Ctx.Selectors.getSelector(1, &II);
2280}
2281
2282}  // end namespace clang
2283
2284// operator new and delete aren't allowed inside namespaces.
2285
2286/// @brief Placement new for using the ASTContext's allocator.
2287///
2288/// This placement form of operator new uses the ASTContext's allocator for
2289/// obtaining memory.
2290///
2291/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2292/// here need to also be made there.
2293///
2294/// We intentionally avoid using a nothrow specification here so that the calls
2295/// to this operator will not perform a null check on the result -- the
2296/// underlying allocator never returns null pointers.
2297///
2298/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2299/// @code
2300/// // Default alignment (8)
2301/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2302/// // Specific alignment
2303/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2304/// @endcode
2305/// Please note that you cannot use delete on the pointer; it must be
2306/// deallocated using an explicit destructor call followed by
2307/// @c Context.Deallocate(Ptr).
2308///
2309/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2310/// @param C The ASTContext that provides the allocator.
2311/// @param Alignment The alignment of the allocated memory (if the underlying
2312///                  allocator supports it).
2313/// @return The allocated memory. Could be NULL.
2314inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2315                          size_t Alignment) {
2316  return C.Allocate(Bytes, Alignment);
2317}
2318/// @brief Placement delete companion to the new above.
2319///
2320/// This operator is just a companion to the new above. There is no way of
2321/// invoking it directly; see the new operator for more details. This operator
2322/// is called implicitly by the compiler if a placement new expression using
2323/// the ASTContext throws in the object constructor.
2324inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2325  C.Deallocate(Ptr);
2326}
2327
2328/// This placement form of operator new[] uses the ASTContext's allocator for
2329/// obtaining memory.
2330///
2331/// We intentionally avoid using a nothrow specification here so that the calls
2332/// to this operator will not perform a null check on the result -- the
2333/// underlying allocator never returns null pointers.
2334///
2335/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2336/// @code
2337/// // Default alignment (8)
2338/// char *data = new (Context) char[10];
2339/// // Specific alignment
2340/// char *data = new (Context, 4) char[10];
2341/// @endcode
2342/// Please note that you cannot use delete on the pointer; it must be
2343/// deallocated using an explicit destructor call followed by
2344/// @c Context.Deallocate(Ptr).
2345///
2346/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2347/// @param C The ASTContext that provides the allocator.
2348/// @param Alignment The alignment of the allocated memory (if the underlying
2349///                  allocator supports it).
2350/// @return The allocated memory. Could be NULL.
2351inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2352                            size_t Alignment = 8) {
2353  return C.Allocate(Bytes, Alignment);
2354}
2355
2356/// @brief Placement delete[] companion to the new[] above.
2357///
2358/// This operator is just a companion to the new[] above. There is no way of
2359/// invoking it directly; see the new[] operator for more details. This operator
2360/// is called implicitly by the compiler if a placement new[] expression using
2361/// the ASTContext throws in the object constructor.
2362inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2363  C.Deallocate(Ptr);
2364}
2365
2366#endif
2367