ASTContext.h revision bc5419a2edc4030d1a623576fe339fbd3eed17a6
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/AddressSpaces.h"
18#include "clang/Basic/IdentifierTable.h"
19#include "clang/Basic/LangOptions.h"
20#include "clang/Basic/OperatorKinds.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Basic/VersionTuple.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/LambdaMangleContext.h"
25#include "clang/AST/NestedNameSpecifier.h"
26#include "clang/AST/PrettyPrinter.h"
27#include "clang/AST/TemplateName.h"
28#include "clang/AST/Type.h"
29#include "clang/AST/CanonicalType.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/IntrusiveRefCntPtr.h"
33#include "llvm/ADT/OwningPtr.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/TinyPtrVector.h"
36#include "llvm/Support/Allocator.h"
37#include <vector>
38
39namespace llvm {
40  struct fltSemantics;
41}
42
43namespace clang {
44  class FileManager;
45  class ASTRecordLayout;
46  class BlockExpr;
47  class CharUnits;
48  class DiagnosticsEngine;
49  class Expr;
50  class ExternalASTSource;
51  class ASTMutationListener;
52  class IdentifierTable;
53  class SelectorTable;
54  class SourceManager;
55  class TargetInfo;
56  class CXXABI;
57  // Decls
58  class DeclContext;
59  class CXXConversionDecl;
60  class CXXMethodDecl;
61  class CXXRecordDecl;
62  class Decl;
63  class FieldDecl;
64  class MangleContext;
65  class ObjCIvarDecl;
66  class ObjCIvarRefExpr;
67  class ObjCPropertyDecl;
68  class ParmVarDecl;
69  class RecordDecl;
70  class StoredDeclsMap;
71  class TagDecl;
72  class TemplateTemplateParmDecl;
73  class TemplateTypeParmDecl;
74  class TranslationUnitDecl;
75  class TypeDecl;
76  class TypedefNameDecl;
77  class UsingDecl;
78  class UsingShadowDecl;
79  class UnresolvedSetIterator;
80
81  namespace Builtin { class Context; }
82
83/// ASTContext - This class holds long-lived AST nodes (such as types and
84/// decls) that can be referred to throughout the semantic analysis of a file.
85class ASTContext : public RefCountedBase<ASTContext> {
86  ASTContext &this_() { return *this; }
87
88  mutable std::vector<Type*> Types;
89  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
90  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
91  mutable llvm::FoldingSet<PointerType> PointerTypes;
92  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
93  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
94  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
95  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
96  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
97  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
98  mutable std::vector<VariableArrayType*> VariableArrayTypes;
99  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
100  mutable llvm::FoldingSet<DependentSizedExtVectorType>
101    DependentSizedExtVectorTypes;
102  mutable llvm::FoldingSet<VectorType> VectorTypes;
103  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
104  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
105    FunctionProtoTypes;
106  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
107  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
108  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
109  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
110    SubstTemplateTypeParmTypes;
111  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
112    SubstTemplateTypeParmPackTypes;
113  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
114    TemplateSpecializationTypes;
115  mutable llvm::FoldingSet<ParenType> ParenTypes;
116  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
117  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
118  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
119                                     ASTContext&>
120    DependentTemplateSpecializationTypes;
121  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
122  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
123  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
124  mutable llvm::FoldingSet<AutoType> AutoTypes;
125  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
126  llvm::FoldingSet<AttributedType> AttributedTypes;
127
128  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
129  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
130  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
131    SubstTemplateTemplateParms;
132  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
133                                     ASTContext&>
134    SubstTemplateTemplateParmPacks;
135
136  /// \brief The set of nested name specifiers.
137  ///
138  /// This set is managed by the NestedNameSpecifier class.
139  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
140  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
141  friend class NestedNameSpecifier;
142
143  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
144  ///  This is lazily created.  This is intentionally not serialized.
145  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
146    ASTRecordLayouts;
147  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
148    ObjCLayouts;
149
150  /// TypeInfoMap - A cache from types to size and alignment information.
151  typedef llvm::DenseMap<const Type*,
152                         std::pair<uint64_t, unsigned> > TypeInfoMap;
153  mutable TypeInfoMap MemoizedTypeInfo;
154
155  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
156  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
157
158  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
159  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
160
161  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
162  /// interface.
163  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
164
165  /// \brief Mapping from __block VarDecls to their copy initialization expr.
166  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
167
168  /// \brief Mapping from class scope functions specialization to their
169  ///  template patterns.
170  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
171    ClassScopeSpecializationPattern;
172
173  /// \brief Representation of a "canonical" template template parameter that
174  /// is used in canonical template names.
175  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
176    TemplateTemplateParmDecl *Parm;
177
178  public:
179    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
180      : Parm(Parm) { }
181
182    TemplateTemplateParmDecl *getParam() const { return Parm; }
183
184    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
185
186    static void Profile(llvm::FoldingSetNodeID &ID,
187                        TemplateTemplateParmDecl *Parm);
188  };
189  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
190    CanonTemplateTemplateParms;
191
192  TemplateTemplateParmDecl *
193    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
194
195  /// \brief The typedef for the __int128_t type.
196  mutable TypedefDecl *Int128Decl;
197
198  /// \brief The typedef for the __uint128_t type.
199  mutable TypedefDecl *UInt128Decl;
200
201  /// BuiltinVaListType - built-in va list type.
202  /// This is initially null and set by Sema::LazilyCreateBuiltin when
203  /// a builtin that takes a valist is encountered.
204  QualType BuiltinVaListType;
205
206  /// \brief The typedef for the predefined 'id' type.
207  mutable TypedefDecl *ObjCIdDecl;
208
209  /// \brief The typedef for the predefined 'SEL' type.
210  mutable TypedefDecl *ObjCSelDecl;
211
212  /// \brief The typedef for the predefined 'Class' type.
213  mutable TypedefDecl *ObjCClassDecl;
214
215  /// \brief The typedef for the predefined 'Protocol' class in Objective-C.
216  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
217
218  // Typedefs which may be provided defining the structure of Objective-C
219  // pseudo-builtins
220  QualType ObjCIdRedefinitionType;
221  QualType ObjCClassRedefinitionType;
222  QualType ObjCSelRedefinitionType;
223
224  QualType ObjCConstantStringType;
225  mutable RecordDecl *CFConstantStringTypeDecl;
226
227  QualType ObjCNSStringType;
228
229  /// \brief The typedef declaration for the Objective-C "instancetype" type.
230  TypedefDecl *ObjCInstanceTypeDecl;
231
232  /// \brief The type for the C FILE type.
233  TypeDecl *FILEDecl;
234
235  /// \brief The type for the C jmp_buf type.
236  TypeDecl *jmp_bufDecl;
237
238  /// \brief The type for the C sigjmp_buf type.
239  TypeDecl *sigjmp_bufDecl;
240
241  /// \brief The type for the C ucontext_t type.
242  TypeDecl *ucontext_tDecl;
243
244  /// \brief Type for the Block descriptor for Blocks CodeGen.
245  ///
246  /// Since this is only used for generation of debug info, it is not
247  /// serialized.
248  mutable RecordDecl *BlockDescriptorType;
249
250  /// \brief Type for the Block descriptor for Blocks CodeGen.
251  ///
252  /// Since this is only used for generation of debug info, it is not
253  /// serialized.
254  mutable RecordDecl *BlockDescriptorExtendedType;
255
256  /// \brief Declaration for the CUDA cudaConfigureCall function.
257  FunctionDecl *cudaConfigureCallDecl;
258
259  TypeSourceInfo NullTypeSourceInfo;
260
261  /// \brief Keeps track of all declaration attributes.
262  ///
263  /// Since so few decls have attrs, we keep them in a hash map instead of
264  /// wasting space in the Decl class.
265  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
266
267  /// \brief Keeps track of the static data member templates from which
268  /// static data members of class template specializations were instantiated.
269  ///
270  /// This data structure stores the mapping from instantiations of static
271  /// data members to the static data member representations within the
272  /// class template from which they were instantiated along with the kind
273  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
274  ///
275  /// Given the following example:
276  ///
277  /// \code
278  /// template<typename T>
279  /// struct X {
280  ///   static T value;
281  /// };
282  ///
283  /// template<typename T>
284  ///   T X<T>::value = T(17);
285  ///
286  /// int *x = &X<int>::value;
287  /// \endcode
288  ///
289  /// This mapping will contain an entry that maps from the VarDecl for
290  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
291  /// class template X) and will be marked TSK_ImplicitInstantiation.
292  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
293    InstantiatedFromStaticDataMember;
294
295  /// \brief Keeps track of the declaration from which a UsingDecl was
296  /// created during instantiation.  The source declaration is always
297  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
298  /// UnresolvedUsingTypenameDecl.
299  ///
300  /// For example:
301  /// \code
302  /// template<typename T>
303  /// struct A {
304  ///   void f();
305  /// };
306  ///
307  /// template<typename T>
308  /// struct B : A<T> {
309  ///   using A<T>::f;
310  /// };
311  ///
312  /// template struct B<int>;
313  /// \endcode
314  ///
315  /// This mapping will contain an entry that maps from the UsingDecl in
316  /// B<int> to the UnresolvedUsingDecl in B<T>.
317  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
318
319  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
320    InstantiatedFromUsingShadowDecl;
321
322  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
323
324  /// \brief Mapping that stores the methods overridden by a given C++
325  /// member function.
326  ///
327  /// Since most C++ member functions aren't virtual and therefore
328  /// don't override anything, we store the overridden functions in
329  /// this map on the side rather than within the CXXMethodDecl structure.
330  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
331  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
332
333  /// \brief Mapping from each declaration context to its corresponding lambda
334  /// mangling context.
335  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
336
337  /// \brief Mapping that stores parameterIndex values for ParmVarDecls
338  /// when that value exceeds the bitfield size of
339  /// ParmVarDeclBits.ParameterIndex.
340  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
341  ParameterIndexTable ParamIndices;
342
343  ImportDecl *FirstLocalImport;
344  ImportDecl *LastLocalImport;
345
346  TranslationUnitDecl *TUDecl;
347
348  /// SourceMgr - The associated SourceManager object.
349  SourceManager &SourceMgr;
350
351  /// LangOpts - The language options used to create the AST associated with
352  ///  this ASTContext object.
353  LangOptions &LangOpts;
354
355  /// \brief The allocator used to create AST objects.
356  ///
357  /// AST objects are never destructed; rather, all memory associated with the
358  /// AST objects will be released when the ASTContext itself is destroyed.
359  mutable llvm::BumpPtrAllocator BumpAlloc;
360
361  /// \brief Allocator for partial diagnostics.
362  PartialDiagnostic::StorageAllocator DiagAllocator;
363
364  /// \brief The current C++ ABI.
365  OwningPtr<CXXABI> ABI;
366  CXXABI *createCXXABI(const TargetInfo &T);
367
368  /// \brief The logical -> physical address space map.
369  const LangAS::Map *AddrSpaceMap;
370
371  friend class ASTDeclReader;
372  friend class ASTReader;
373  friend class ASTWriter;
374  friend class CXXRecordDecl;
375
376  const TargetInfo *Target;
377  clang::PrintingPolicy PrintingPolicy;
378
379public:
380  IdentifierTable &Idents;
381  SelectorTable &Selectors;
382  Builtin::Context &BuiltinInfo;
383  mutable DeclarationNameTable DeclarationNames;
384  OwningPtr<ExternalASTSource> ExternalSource;
385  ASTMutationListener *Listener;
386
387  clang::PrintingPolicy getPrintingPolicy() const { return PrintingPolicy; }
388
389  void setPrintingPolicy(clang::PrintingPolicy Policy) {
390    PrintingPolicy = Policy;
391  }
392
393  SourceManager& getSourceManager() { return SourceMgr; }
394  const SourceManager& getSourceManager() const { return SourceMgr; }
395  void *Allocate(unsigned Size, unsigned Align = 8) const {
396    return BumpAlloc.Allocate(Size, Align);
397  }
398  void Deallocate(void *Ptr) const { }
399
400  /// Return the total amount of physical memory allocated for representing
401  /// AST nodes and type information.
402  size_t getASTAllocatedMemory() const {
403    return BumpAlloc.getTotalMemory();
404  }
405  /// Return the total memory used for various side tables.
406  size_t getSideTableAllocatedMemory() const;
407
408  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
409    return DiagAllocator;
410  }
411
412  const TargetInfo &getTargetInfo() const { return *Target; }
413
414  const LangOptions& getLangOptions() const { return LangOpts; }
415
416  DiagnosticsEngine &getDiagnostics() const;
417
418  FullSourceLoc getFullLoc(SourceLocation Loc) const {
419    return FullSourceLoc(Loc,SourceMgr);
420  }
421
422  /// \brief Retrieve the attributes for the given declaration.
423  AttrVec& getDeclAttrs(const Decl *D);
424
425  /// \brief Erase the attributes corresponding to the given declaration.
426  void eraseDeclAttrs(const Decl *D);
427
428  /// \brief If this variable is an instantiated static data member of a
429  /// class template specialization, returns the templated static data member
430  /// from which it was instantiated.
431  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
432                                                           const VarDecl *Var);
433
434  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
435
436  void setClassScopeSpecializationPattern(FunctionDecl *FD,
437                                          FunctionDecl *Pattern);
438
439  /// \brief Note that the static data member \p Inst is an instantiation of
440  /// the static data member template \p Tmpl of a class template.
441  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
442                                           TemplateSpecializationKind TSK,
443                        SourceLocation PointOfInstantiation = SourceLocation());
444
445  /// \brief If the given using decl is an instantiation of a
446  /// (possibly unresolved) using decl from a template instantiation,
447  /// return it.
448  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
449
450  /// \brief Remember that the using decl \p Inst is an instantiation
451  /// of the using decl \p Pattern of a class template.
452  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
453
454  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
455                                          UsingShadowDecl *Pattern);
456  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
457
458  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
459
460  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
461
462  /// ZeroBitfieldFollowsNonBitfield - return 'true" if 'FD' is a zero-length
463  /// bitfield which follows the non-bitfield 'LastFD'.
464  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
465                                      const FieldDecl *LastFD) const;
466
467  /// ZeroBitfieldFollowsBitfield - return 'true" if 'FD' is a zero-length
468  /// bitfield which follows the bitfield 'LastFD'.
469  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
470                                   const FieldDecl *LastFD) const;
471
472  /// BitfieldFollowsBitfield - return 'true" if 'FD' is a
473  /// bitfield which follows the bitfield 'LastFD'.
474  bool BitfieldFollowsBitfield(const FieldDecl *FD,
475                               const FieldDecl *LastFD) const;
476
477  /// NonBitfieldFollowsBitfield - return 'true" if 'FD' is not a
478  /// bitfield which follows the bitfield 'LastFD'.
479  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
480                                  const FieldDecl *LastFD) const;
481
482  /// BitfieldFollowsNonBitfield - return 'true" if 'FD' is a
483  /// bitfield which follows the none bitfield 'LastFD'.
484  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
485                                  const FieldDecl *LastFD) const;
486
487  // Access to the set of methods overridden by the given C++ method.
488  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
489  overridden_cxx_method_iterator
490  overridden_methods_begin(const CXXMethodDecl *Method) const;
491
492  overridden_cxx_method_iterator
493  overridden_methods_end(const CXXMethodDecl *Method) const;
494
495  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
496
497  /// \brief Note that the given C++ \p Method overrides the given \p
498  /// Overridden method.
499  void addOverriddenMethod(const CXXMethodDecl *Method,
500                           const CXXMethodDecl *Overridden);
501
502  /// \brief Notify the AST context that a new import declaration has been
503  /// parsed or implicitly created within this translation unit.
504  void addedLocalImportDecl(ImportDecl *Import);
505
506  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
507    return Import->NextLocalImport;
508  }
509
510  /// \brief Iterator that visits import declarations.
511  class import_iterator {
512    ImportDecl *Import;
513
514  public:
515    typedef ImportDecl               *value_type;
516    typedef ImportDecl               *reference;
517    typedef ImportDecl               *pointer;
518    typedef int                       difference_type;
519    typedef std::forward_iterator_tag iterator_category;
520
521    import_iterator() : Import() { }
522    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
523
524    reference operator*() const { return Import; }
525    pointer operator->() const { return Import; }
526
527    import_iterator &operator++() {
528      Import = ASTContext::getNextLocalImport(Import);
529      return *this;
530    }
531
532    import_iterator operator++(int) {
533      import_iterator Other(*this);
534      ++(*this);
535      return Other;
536    }
537
538    friend bool operator==(import_iterator X, import_iterator Y) {
539      return X.Import == Y.Import;
540    }
541
542    friend bool operator!=(import_iterator X, import_iterator Y) {
543      return X.Import != Y.Import;
544    }
545  };
546
547  import_iterator local_import_begin() const {
548    return import_iterator(FirstLocalImport);
549  }
550  import_iterator local_import_end() const { return import_iterator(); }
551
552  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
553
554
555  // Builtin Types.
556  CanQualType VoidTy;
557  CanQualType BoolTy;
558  CanQualType CharTy;
559  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
560  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
561  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
562  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
563  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
564  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
565  CanQualType FloatTy, DoubleTy, LongDoubleTy;
566  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
567  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
568  CanQualType VoidPtrTy, NullPtrTy;
569  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
570  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
571  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
572  CanQualType ObjCBuiltinBoolTy;
573
574  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
575  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
576  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
577
578  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
579             IdentifierTable &idents, SelectorTable &sels,
580             Builtin::Context &builtins,
581             unsigned size_reserve,
582             bool DelayInitialization = false);
583
584  ~ASTContext();
585
586  /// \brief Attach an external AST source to the AST context.
587  ///
588  /// The external AST source provides the ability to load parts of
589  /// the abstract syntax tree as needed from some external storage,
590  /// e.g., a precompiled header.
591  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
592
593  /// \brief Retrieve a pointer to the external AST source associated
594  /// with this AST context, if any.
595  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
596
597  /// \brief Attach an AST mutation listener to the AST context.
598  ///
599  /// The AST mutation listener provides the ability to track modifications to
600  /// the abstract syntax tree entities committed after they were initially
601  /// created.
602  void setASTMutationListener(ASTMutationListener *Listener) {
603    this->Listener = Listener;
604  }
605
606  /// \brief Retrieve a pointer to the AST mutation listener associated
607  /// with this AST context, if any.
608  ASTMutationListener *getASTMutationListener() const { return Listener; }
609
610  void PrintStats() const;
611  const std::vector<Type*>& getTypes() const { return Types; }
612
613  /// \brief Retrieve the declaration for the 128-bit signed integer type.
614  TypedefDecl *getInt128Decl() const;
615
616  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
617  TypedefDecl *getUInt128Decl() const;
618
619  //===--------------------------------------------------------------------===//
620  //                           Type Constructors
621  //===--------------------------------------------------------------------===//
622
623private:
624  /// getExtQualType - Return a type with extended qualifiers.
625  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
626
627  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
628
629public:
630  /// getAddSpaceQualType - Return the uniqued reference to the type for an
631  /// address space qualified type with the specified type and address space.
632  /// The resulting type has a union of the qualifiers from T and the address
633  /// space. If T already has an address space specifier, it is silently
634  /// replaced.
635  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
636
637  /// getObjCGCQualType - Returns the uniqued reference to the type for an
638  /// objc gc qualified type. The retulting type has a union of the qualifiers
639  /// from T and the gc attribute.
640  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
641
642  /// getRestrictType - Returns the uniqued reference to the type for a
643  /// 'restrict' qualified type.  The resulting type has a union of the
644  /// qualifiers from T and 'restrict'.
645  QualType getRestrictType(QualType T) const {
646    return T.withFastQualifiers(Qualifiers::Restrict);
647  }
648
649  /// getVolatileType - Returns the uniqued reference to the type for a
650  /// 'volatile' qualified type.  The resulting type has a union of the
651  /// qualifiers from T and 'volatile'.
652  QualType getVolatileType(QualType T) const {
653    return T.withFastQualifiers(Qualifiers::Volatile);
654  }
655
656  /// getConstType - Returns the uniqued reference to the type for a
657  /// 'const' qualified type.  The resulting type has a union of the
658  /// qualifiers from T and 'const'.
659  ///
660  /// It can be reasonably expected that this will always be
661  /// equivalent to calling T.withConst().
662  QualType getConstType(QualType T) const { return T.withConst(); }
663
664  /// adjustFunctionType - Change the ExtInfo on a function type.
665  const FunctionType *adjustFunctionType(const FunctionType *Fn,
666                                         FunctionType::ExtInfo EInfo);
667
668  /// getComplexType - Return the uniqued reference to the type for a complex
669  /// number with the specified element type.
670  QualType getComplexType(QualType T) const;
671  CanQualType getComplexType(CanQualType T) const {
672    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
673  }
674
675  /// getPointerType - Return the uniqued reference to the type for a pointer to
676  /// the specified type.
677  QualType getPointerType(QualType T) const;
678  CanQualType getPointerType(CanQualType T) const {
679    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
680  }
681
682  /// getAtomicType - Return the uniqued reference to the atomic type for
683  /// the specified type.
684  QualType getAtomicType(QualType T) const;
685
686  /// getBlockPointerType - Return the uniqued reference to the type for a block
687  /// of the specified type.
688  QualType getBlockPointerType(QualType T) const;
689
690  /// This gets the struct used to keep track of the descriptor for pointer to
691  /// blocks.
692  QualType getBlockDescriptorType() const;
693
694  /// This gets the struct used to keep track of the extended descriptor for
695  /// pointer to blocks.
696  QualType getBlockDescriptorExtendedType() const;
697
698  void setcudaConfigureCallDecl(FunctionDecl *FD) {
699    cudaConfigureCallDecl = FD;
700  }
701  FunctionDecl *getcudaConfigureCallDecl() {
702    return cudaConfigureCallDecl;
703  }
704
705  /// This builds the struct used for __block variables.
706  QualType BuildByRefType(StringRef DeclName, QualType Ty) const;
707
708  /// Returns true iff we need copy/dispose helpers for the given type.
709  bool BlockRequiresCopying(QualType Ty) const;
710
711  /// getLValueReferenceType - Return the uniqued reference to the type for an
712  /// lvalue reference to the specified type.
713  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
714    const;
715
716  /// getRValueReferenceType - Return the uniqued reference to the type for an
717  /// rvalue reference to the specified type.
718  QualType getRValueReferenceType(QualType T) const;
719
720  /// getMemberPointerType - Return the uniqued reference to the type for a
721  /// member pointer to the specified type in the specified class. The class
722  /// is a Type because it could be a dependent name.
723  QualType getMemberPointerType(QualType T, const Type *Cls) const;
724
725  /// getVariableArrayType - Returns a non-unique reference to the type for a
726  /// variable array of the specified element type.
727  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
728                                ArrayType::ArraySizeModifier ASM,
729                                unsigned IndexTypeQuals,
730                                SourceRange Brackets) const;
731
732  /// getDependentSizedArrayType - Returns a non-unique reference to
733  /// the type for a dependently-sized array of the specified element
734  /// type. FIXME: We will need these to be uniqued, or at least
735  /// comparable, at some point.
736  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
737                                      ArrayType::ArraySizeModifier ASM,
738                                      unsigned IndexTypeQuals,
739                                      SourceRange Brackets) const;
740
741  /// getIncompleteArrayType - Returns a unique reference to the type for a
742  /// incomplete array of the specified element type.
743  QualType getIncompleteArrayType(QualType EltTy,
744                                  ArrayType::ArraySizeModifier ASM,
745                                  unsigned IndexTypeQuals) const;
746
747  /// getConstantArrayType - Return the unique reference to the type for a
748  /// constant array of the specified element type.
749  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
750                                ArrayType::ArraySizeModifier ASM,
751                                unsigned IndexTypeQuals) const;
752
753  /// getVariableArrayDecayedType - Returns a vla type where known sizes
754  /// are replaced with [*].
755  QualType getVariableArrayDecayedType(QualType Ty) const;
756
757  /// getVectorType - Return the unique reference to a vector type of
758  /// the specified element type and size. VectorType must be a built-in type.
759  QualType getVectorType(QualType VectorType, unsigned NumElts,
760                         VectorType::VectorKind VecKind) const;
761
762  /// getExtVectorType - Return the unique reference to an extended vector type
763  /// of the specified element type and size.  VectorType must be a built-in
764  /// type.
765  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
766
767  /// getDependentSizedExtVectorType - Returns a non-unique reference to
768  /// the type for a dependently-sized vector of the specified element
769  /// type. FIXME: We will need these to be uniqued, or at least
770  /// comparable, at some point.
771  QualType getDependentSizedExtVectorType(QualType VectorType,
772                                          Expr *SizeExpr,
773                                          SourceLocation AttrLoc) const;
774
775  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
776  ///
777  QualType getFunctionNoProtoType(QualType ResultTy,
778                                  const FunctionType::ExtInfo &Info) const;
779
780  QualType getFunctionNoProtoType(QualType ResultTy) const {
781    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
782  }
783
784  /// getFunctionType - Return a normal function type with a typed
785  /// argument list.
786  QualType getFunctionType(QualType ResultTy,
787                           const QualType *Args, unsigned NumArgs,
788                           const FunctionProtoType::ExtProtoInfo &EPI) const;
789
790  /// getTypeDeclType - Return the unique reference to the type for
791  /// the specified type declaration.
792  QualType getTypeDeclType(const TypeDecl *Decl,
793                           const TypeDecl *PrevDecl = 0) const {
794    assert(Decl && "Passed null for Decl param");
795    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
796
797    if (PrevDecl) {
798      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
799      Decl->TypeForDecl = PrevDecl->TypeForDecl;
800      return QualType(PrevDecl->TypeForDecl, 0);
801    }
802
803    return getTypeDeclTypeSlow(Decl);
804  }
805
806  /// getTypedefType - Return the unique reference to the type for the
807  /// specified typedef-name decl.
808  QualType getTypedefType(const TypedefNameDecl *Decl,
809                          QualType Canon = QualType()) const;
810
811  QualType getRecordType(const RecordDecl *Decl) const;
812
813  QualType getEnumType(const EnumDecl *Decl) const;
814
815  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
816
817  QualType getAttributedType(AttributedType::Kind attrKind,
818                             QualType modifiedType,
819                             QualType equivalentType);
820
821  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
822                                        QualType Replacement) const;
823  QualType getSubstTemplateTypeParmPackType(
824                                          const TemplateTypeParmType *Replaced,
825                                            const TemplateArgument &ArgPack);
826
827  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
828                                   bool ParameterPack,
829                                   TemplateTypeParmDecl *ParmDecl = 0) const;
830
831  QualType getTemplateSpecializationType(TemplateName T,
832                                         const TemplateArgument *Args,
833                                         unsigned NumArgs,
834                                         QualType Canon = QualType()) const;
835
836  QualType getCanonicalTemplateSpecializationType(TemplateName T,
837                                                  const TemplateArgument *Args,
838                                                  unsigned NumArgs) const;
839
840  QualType getTemplateSpecializationType(TemplateName T,
841                                         const TemplateArgumentListInfo &Args,
842                                         QualType Canon = QualType()) const;
843
844  TypeSourceInfo *
845  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
846                                    const TemplateArgumentListInfo &Args,
847                                    QualType Canon = QualType()) const;
848
849  QualType getParenType(QualType NamedType) const;
850
851  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
852                             NestedNameSpecifier *NNS,
853                             QualType NamedType) const;
854  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
855                                NestedNameSpecifier *NNS,
856                                const IdentifierInfo *Name,
857                                QualType Canon = QualType()) const;
858
859  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
860                                                  NestedNameSpecifier *NNS,
861                                                  const IdentifierInfo *Name,
862                                    const TemplateArgumentListInfo &Args) const;
863  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
864                                                  NestedNameSpecifier *NNS,
865                                                  const IdentifierInfo *Name,
866                                                  unsigned NumArgs,
867                                            const TemplateArgument *Args) const;
868
869  QualType getPackExpansionType(QualType Pattern,
870                                llvm::Optional<unsigned> NumExpansions);
871
872  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
873                                ObjCInterfaceDecl *PrevDecl = 0) const;
874
875  QualType getObjCObjectType(QualType Base,
876                             ObjCProtocolDecl * const *Protocols,
877                             unsigned NumProtocols) const;
878
879  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
880  /// for the given ObjCObjectType.
881  QualType getObjCObjectPointerType(QualType OIT) const;
882
883  /// getTypeOfType - GCC extension.
884  QualType getTypeOfExprType(Expr *e) const;
885  QualType getTypeOfType(QualType t) const;
886
887  /// getDecltypeType - C++0x decltype.
888  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
889
890  /// getUnaryTransformType - unary type transforms
891  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
892                                 UnaryTransformType::UTTKind UKind) const;
893
894  /// getAutoType - C++0x deduced auto type.
895  QualType getAutoType(QualType DeducedType) const;
896
897  /// getAutoDeductType - C++0x deduction pattern for 'auto' type.
898  QualType getAutoDeductType() const;
899
900  /// getAutoRRefDeductType - C++0x deduction pattern for 'auto &&' type.
901  QualType getAutoRRefDeductType() const;
902
903  /// getTagDeclType - Return the unique reference to the type for the
904  /// specified TagDecl (struct/union/class/enum) decl.
905  QualType getTagDeclType(const TagDecl *Decl) const;
906
907  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
908  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
909  CanQualType getSizeType() const;
910
911  /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5),
912  /// defined in <stdint.h>.
913  CanQualType getIntMaxType() const;
914
915  /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5),
916  /// defined in <stdint.h>.
917  CanQualType getUIntMaxType() const;
918
919  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
920  /// returns a type compatible with the type defined in <stddef.h> as defined
921  /// by the target.
922  QualType getWCharType() const { return WCharTy; }
923
924  /// getSignedWCharType - Return the type of "signed wchar_t".
925  /// Used when in C++, as a GCC extension.
926  QualType getSignedWCharType() const;
927
928  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
929  /// Used when in C++, as a GCC extension.
930  QualType getUnsignedWCharType() const;
931
932  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
933  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
934  QualType getPointerDiffType() const;
935
936  // getCFConstantStringType - Return the C structure type used to represent
937  // constant CFStrings.
938  QualType getCFConstantStringType() const;
939
940  /// Get the structure type used to representation CFStrings, or NULL
941  /// if it hasn't yet been built.
942  QualType getRawCFConstantStringType() const {
943    if (CFConstantStringTypeDecl)
944      return getTagDeclType(CFConstantStringTypeDecl);
945    return QualType();
946  }
947  void setCFConstantStringType(QualType T);
948
949  // This setter/getter represents the ObjC type for an NSConstantString.
950  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
951  QualType getObjCConstantStringInterface() const {
952    return ObjCConstantStringType;
953  }
954
955  QualType getObjCNSStringType() const {
956    return ObjCNSStringType;
957  }
958
959  void setObjCNSStringType(QualType T) {
960    ObjCNSStringType = T;
961  }
962
963  /// \brief Retrieve the type that 'id' has been defined to, which may be
964  /// different from the built-in 'id' if 'id' has been typedef'd.
965  QualType getObjCIdRedefinitionType() const {
966    if (ObjCIdRedefinitionType.isNull())
967      return getObjCIdType();
968    return ObjCIdRedefinitionType;
969  }
970
971  /// \brief Set the user-written type that redefines 'id'.
972  void setObjCIdRedefinitionType(QualType RedefType) {
973    ObjCIdRedefinitionType = RedefType;
974  }
975
976  /// \brief Retrieve the type that 'Class' has been defined to, which may be
977  /// different from the built-in 'Class' if 'Class' has been typedef'd.
978  QualType getObjCClassRedefinitionType() const {
979    if (ObjCClassRedefinitionType.isNull())
980      return getObjCClassType();
981    return ObjCClassRedefinitionType;
982  }
983
984  /// \brief Set the user-written type that redefines 'SEL'.
985  void setObjCClassRedefinitionType(QualType RedefType) {
986    ObjCClassRedefinitionType = RedefType;
987  }
988
989  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
990  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
991  QualType getObjCSelRedefinitionType() const {
992    if (ObjCSelRedefinitionType.isNull())
993      return getObjCSelType();
994    return ObjCSelRedefinitionType;
995  }
996
997
998  /// \brief Set the user-written type that redefines 'SEL'.
999  void setObjCSelRedefinitionType(QualType RedefType) {
1000    ObjCSelRedefinitionType = RedefType;
1001  }
1002
1003  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1004  /// otherwise, returns a NULL type;
1005  QualType getObjCInstanceType() {
1006    return getTypeDeclType(getObjCInstanceTypeDecl());
1007  }
1008
1009  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1010  /// "instancetype" type.
1011  TypedefDecl *getObjCInstanceTypeDecl();
1012
1013  /// \brief Set the type for the C FILE type.
1014  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1015
1016  /// \brief Retrieve the C FILE type.
1017  QualType getFILEType() const {
1018    if (FILEDecl)
1019      return getTypeDeclType(FILEDecl);
1020    return QualType();
1021  }
1022
1023  /// \brief Set the type for the C jmp_buf type.
1024  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1025    this->jmp_bufDecl = jmp_bufDecl;
1026  }
1027
1028  /// \brief Retrieve the C jmp_buf type.
1029  QualType getjmp_bufType() const {
1030    if (jmp_bufDecl)
1031      return getTypeDeclType(jmp_bufDecl);
1032    return QualType();
1033  }
1034
1035  /// \brief Set the type for the C sigjmp_buf type.
1036  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1037    this->sigjmp_bufDecl = sigjmp_bufDecl;
1038  }
1039
1040  /// \brief Retrieve the C sigjmp_buf type.
1041  QualType getsigjmp_bufType() const {
1042    if (sigjmp_bufDecl)
1043      return getTypeDeclType(sigjmp_bufDecl);
1044    return QualType();
1045  }
1046
1047  /// \brief Set the type for the C ucontext_t type.
1048  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1049    this->ucontext_tDecl = ucontext_tDecl;
1050  }
1051
1052  /// \brief Retrieve the C ucontext_t type.
1053  QualType getucontext_tType() const {
1054    if (ucontext_tDecl)
1055      return getTypeDeclType(ucontext_tDecl);
1056    return QualType();
1057  }
1058
1059  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1060  QualType getLogicalOperationType() const {
1061    return getLangOptions().CPlusPlus ? BoolTy : IntTy;
1062  }
1063
1064  /// getObjCEncodingForType - Emit the ObjC type encoding for the
1065  /// given type into \arg S. If \arg NameFields is specified then
1066  /// record field names are also encoded.
1067  void getObjCEncodingForType(QualType t, std::string &S,
1068                              const FieldDecl *Field=0) const;
1069
1070  void getLegacyIntegralTypeEncoding(QualType &t) const;
1071
1072  // Put the string version of type qualifiers into S.
1073  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1074                                       std::string &S) const;
1075
1076  /// getObjCEncodingForFunctionDecl - Returns the encoded type for this
1077  /// function.  This is in the same format as Objective-C method encodings.
1078  ///
1079  /// \returns true if an error occurred (e.g., because one of the parameter
1080  /// types is incomplete), false otherwise.
1081  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1082
1083  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
1084  /// declaration.
1085  ///
1086  /// \returns true if an error occurred (e.g., because one of the parameter
1087  /// types is incomplete), false otherwise.
1088  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1089                                    bool Extended = false)
1090    const;
1091
1092  /// getObjCEncodingForBlock - Return the encoded type for this block
1093  /// declaration.
1094  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1095
1096  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1097  /// this method declaration. If non-NULL, Container must be either
1098  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1099  /// only be NULL when getting encodings for protocol properties.
1100  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1101                                      const Decl *Container,
1102                                      std::string &S) const;
1103
1104  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1105                                      ObjCProtocolDecl *rProto) const;
1106
1107  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
1108  /// purpose in characters.
1109  CharUnits getObjCEncodingTypeSize(QualType t) const;
1110
1111  /// \brief Retrieve the typedef corresponding to the predefined 'id' type
1112  /// in Objective-C.
1113  TypedefDecl *getObjCIdDecl() const;
1114
1115  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
1116  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
1117  QualType getObjCIdType() const {
1118    return getTypeDeclType(getObjCIdDecl());
1119  }
1120
1121  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1122  /// in Objective-C.
1123  TypedefDecl *getObjCSelDecl() const;
1124
1125  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1126  /// 'SEL' type.
1127  QualType getObjCSelType() const {
1128    return getTypeDeclType(getObjCSelDecl());
1129  }
1130
1131  /// \brief Retrieve the typedef declaration corresponding to the predefined
1132  /// Objective-C 'Class' type.
1133  TypedefDecl *getObjCClassDecl() const;
1134
1135  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
1136  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
1137  /// struct.
1138  QualType getObjCClassType() const {
1139    return getTypeDeclType(getObjCClassDecl());
1140  }
1141
1142  /// \brief Retrieve the Objective-C class declaration corresponding to
1143  /// the predefined 'Protocol' class.
1144  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1145
1146  /// \brief Retrieve the type of the Objective-C "Protocol" class.
1147  QualType getObjCProtoType() const {
1148    return getObjCInterfaceType(getObjCProtocolDecl());
1149  }
1150
1151  void setBuiltinVaListType(QualType T);
1152  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
1153
1154  /// getCVRQualifiedType - Returns a type with additional const,
1155  /// volatile, or restrict qualifiers.
1156  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1157    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1158  }
1159
1160  /// getQualifiedType - Un-split a SplitQualType.
1161  QualType getQualifiedType(SplitQualType split) const {
1162    return getQualifiedType(split.Ty, split.Quals);
1163  }
1164
1165  /// getQualifiedType - Returns a type with additional qualifiers.
1166  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1167    if (!Qs.hasNonFastQualifiers())
1168      return T.withFastQualifiers(Qs.getFastQualifiers());
1169    QualifierCollector Qc(Qs);
1170    const Type *Ptr = Qc.strip(T);
1171    return getExtQualType(Ptr, Qc);
1172  }
1173
1174  /// getQualifiedType - Returns a type with additional qualifiers.
1175  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1176    if (!Qs.hasNonFastQualifiers())
1177      return QualType(T, Qs.getFastQualifiers());
1178    return getExtQualType(T, Qs);
1179  }
1180
1181  /// getLifetimeQualifiedType - Returns a type with the given
1182  /// lifetime qualifier.
1183  QualType getLifetimeQualifiedType(QualType type,
1184                                    Qualifiers::ObjCLifetime lifetime) {
1185    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1186    assert(lifetime != Qualifiers::OCL_None);
1187
1188    Qualifiers qs;
1189    qs.addObjCLifetime(lifetime);
1190    return getQualifiedType(type, qs);
1191  }
1192
1193  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1194                                         SourceLocation NameLoc) const;
1195
1196  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1197                                         UnresolvedSetIterator End) const;
1198
1199  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1200                                        bool TemplateKeyword,
1201                                        TemplateDecl *Template) const;
1202
1203  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1204                                        const IdentifierInfo *Name) const;
1205  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1206                                        OverloadedOperatorKind Operator) const;
1207  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1208                                            TemplateName replacement) const;
1209  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1210                                        const TemplateArgument &ArgPack) const;
1211
1212  enum GetBuiltinTypeError {
1213    GE_None,              //< No error
1214    GE_Missing_stdio,     //< Missing a type from <stdio.h>
1215    GE_Missing_setjmp,    //< Missing a type from <setjmp.h>
1216    GE_Missing_ucontext   //< Missing a type from <ucontext.h>
1217  };
1218
1219  /// GetBuiltinType - Return the type for the specified builtin.  If
1220  /// IntegerConstantArgs is non-null, it is filled in with a bitmask of
1221  /// arguments to the builtin that are required to be integer constant
1222  /// expressions.
1223  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1224                          unsigned *IntegerConstantArgs = 0) const;
1225
1226private:
1227  CanQualType getFromTargetType(unsigned Type) const;
1228  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1229
1230  //===--------------------------------------------------------------------===//
1231  //                         Type Predicates.
1232  //===--------------------------------------------------------------------===//
1233
1234public:
1235  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
1236  /// garbage collection attribute.
1237  ///
1238  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1239
1240  /// areCompatibleVectorTypes - Return true if the given vector types
1241  /// are of the same unqualified type or if they are equivalent to the same
1242  /// GCC vector type, ignoring whether they are target-specific (AltiVec or
1243  /// Neon) types.
1244  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1245
1246  /// isObjCNSObjectType - Return true if this is an NSObject object with
1247  /// its NSObject attribute set.
1248  static bool isObjCNSObjectType(QualType Ty) {
1249    return Ty->isObjCNSObjectType();
1250  }
1251
1252  //===--------------------------------------------------------------------===//
1253  //                         Type Sizing and Analysis
1254  //===--------------------------------------------------------------------===//
1255
1256  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1257  /// scalar floating point type.
1258  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1259
1260  /// getTypeInfo - Get the size and alignment of the specified complete type in
1261  /// bits.
1262  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1263  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1264    return getTypeInfo(T.getTypePtr());
1265  }
1266
1267  /// getTypeSize - Return the size of the specified type, in bits.  This method
1268  /// does not work on incomplete types.
1269  uint64_t getTypeSize(QualType T) const {
1270    return getTypeInfo(T).first;
1271  }
1272  uint64_t getTypeSize(const Type *T) const {
1273    return getTypeInfo(T).first;
1274  }
1275
1276  /// getCharWidth - Return the size of the character type, in bits
1277  uint64_t getCharWidth() const {
1278    return getTypeSize(CharTy);
1279  }
1280
1281  /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
1282  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1283
1284  /// toBits - Convert a size in characters to a size in bits.
1285  int64_t toBits(CharUnits CharSize) const;
1286
1287  /// getTypeSizeInChars - Return the size of the specified type, in characters.
1288  /// This method does not work on incomplete types.
1289  CharUnits getTypeSizeInChars(QualType T) const;
1290  CharUnits getTypeSizeInChars(const Type *T) const;
1291
1292  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
1293  /// This method does not work on incomplete types.
1294  unsigned getTypeAlign(QualType T) const {
1295    return getTypeInfo(T).second;
1296  }
1297  unsigned getTypeAlign(const Type *T) const {
1298    return getTypeInfo(T).second;
1299  }
1300
1301  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
1302  /// characters. This method does not work on incomplete types.
1303  CharUnits getTypeAlignInChars(QualType T) const;
1304  CharUnits getTypeAlignInChars(const Type *T) const;
1305
1306  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1307  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1308
1309  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1310  /// type for the current target in bits.  This can be different than the ABI
1311  /// alignment in cases where it is beneficial for performance to overalign
1312  /// a data type.
1313  unsigned getPreferredTypeAlign(const Type *T) const;
1314
1315  /// getDeclAlign - Return a conservative estimate of the alignment of
1316  /// the specified decl.  Note that bitfields do not have a valid alignment, so
1317  /// this method will assert on them.
1318  /// If @p RefAsPointee, references are treated like their underlying type
1319  /// (for alignof), else they're treated like pointers (for CodeGen).
1320  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1321
1322  /// getASTRecordLayout - Get or compute information about the layout of the
1323  /// specified record (struct/union/class), which indicates its size and field
1324  /// position information.
1325  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1326
1327  /// getASTObjCInterfaceLayout - Get or compute information about the
1328  /// layout of the specified Objective-C interface.
1329  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1330    const;
1331
1332  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1333                        bool Simple = false) const;
1334
1335  /// getASTObjCImplementationLayout - Get or compute information about
1336  /// the layout of the specified Objective-C implementation. This may
1337  /// differ from the interface if synthesized ivars are present.
1338  const ASTRecordLayout &
1339  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1340
1341  /// getKeyFunction - Get the key function for the given record decl, or NULL
1342  /// if there isn't one.  The key function is, according to the Itanium C++ ABI
1343  /// section 5.2.3:
1344  ///
1345  /// ...the first non-pure virtual function that is not inline at the point
1346  /// of class definition.
1347  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1348
1349  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1350  uint64_t getFieldOffset(const ValueDecl *FD) const;
1351
1352  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1353
1354  MangleContext *createMangleContext();
1355
1356  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1357                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1358
1359  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1360  void CollectInheritedProtocols(const Decl *CDecl,
1361                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1362
1363  //===--------------------------------------------------------------------===//
1364  //                            Type Operators
1365  //===--------------------------------------------------------------------===//
1366
1367  /// getCanonicalType - Return the canonical (structural) type corresponding to
1368  /// the specified potentially non-canonical type.  The non-canonical version
1369  /// of a type may have many "decorated" versions of types.  Decorators can
1370  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1371  /// to be free of any of these, allowing two canonical types to be compared
1372  /// for exact equality with a simple pointer comparison.
1373  CanQualType getCanonicalType(QualType T) const {
1374    return CanQualType::CreateUnsafe(T.getCanonicalType());
1375  }
1376
1377  const Type *getCanonicalType(const Type *T) const {
1378    return T->getCanonicalTypeInternal().getTypePtr();
1379  }
1380
1381  /// getCanonicalParamType - Return the canonical parameter type
1382  /// corresponding to the specific potentially non-canonical one.
1383  /// Qualifiers are stripped off, functions are turned into function
1384  /// pointers, and arrays decay one level into pointers.
1385  CanQualType getCanonicalParamType(QualType T) const;
1386
1387  /// \brief Determine whether the given types are equivalent.
1388  bool hasSameType(QualType T1, QualType T2) const {
1389    return getCanonicalType(T1) == getCanonicalType(T2);
1390  }
1391
1392  /// \brief Returns this type as a completely-unqualified array type,
1393  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1394  /// sugaring from the types, similar to the behavior of
1395  /// QualType::getUnqualifiedType().
1396  ///
1397  /// \param T is the qualified type, which may be an ArrayType
1398  ///
1399  /// \param Quals will receive the full set of qualifiers that were
1400  /// applied to the array.
1401  ///
1402  /// \returns if this is an array type, the completely unqualified array type
1403  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1404  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1405
1406  /// \brief Determine whether the given types are equivalent after
1407  /// cvr-qualifiers have been removed.
1408  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1409    return getCanonicalType(T1).getTypePtr() ==
1410           getCanonicalType(T2).getTypePtr();
1411  }
1412
1413  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1414
1415  /// \brief Retrieves the "canonical" nested name specifier for a
1416  /// given nested name specifier.
1417  ///
1418  /// The canonical nested name specifier is a nested name specifier
1419  /// that uniquely identifies a type or namespace within the type
1420  /// system. For example, given:
1421  ///
1422  /// \code
1423  /// namespace N {
1424  ///   struct S {
1425  ///     template<typename T> struct X { typename T* type; };
1426  ///   };
1427  /// }
1428  ///
1429  /// template<typename T> struct Y {
1430  ///   typename N::S::X<T>::type member;
1431  /// };
1432  /// \endcode
1433  ///
1434  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1435  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1436  /// by declarations in the type system and the canonical type for
1437  /// the template type parameter 'T' is template-param-0-0.
1438  NestedNameSpecifier *
1439  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1440
1441  /// \brief Retrieves the default calling convention to use for
1442  /// C++ instance methods.
1443  CallingConv getDefaultMethodCallConv();
1444
1445  /// \brief Retrieves the canonical representation of the given
1446  /// calling convention.
1447  CallingConv getCanonicalCallConv(CallingConv CC) const {
1448    if (!LangOpts.MRTD && CC == CC_C)
1449      return CC_Default;
1450    return CC;
1451  }
1452
1453  /// \brief Determines whether two calling conventions name the same
1454  /// calling convention.
1455  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1456    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1457  }
1458
1459  /// \brief Retrieves the "canonical" template name that refers to a
1460  /// given template.
1461  ///
1462  /// The canonical template name is the simplest expression that can
1463  /// be used to refer to a given template. For most templates, this
1464  /// expression is just the template declaration itself. For example,
1465  /// the template std::vector can be referred to via a variety of
1466  /// names---std::vector, ::std::vector, vector (if vector is in
1467  /// scope), etc.---but all of these names map down to the same
1468  /// TemplateDecl, which is used to form the canonical template name.
1469  ///
1470  /// Dependent template names are more interesting. Here, the
1471  /// template name could be something like T::template apply or
1472  /// std::allocator<T>::template rebind, where the nested name
1473  /// specifier itself is dependent. In this case, the canonical
1474  /// template name uses the shortest form of the dependent
1475  /// nested-name-specifier, which itself contains all canonical
1476  /// types, values, and templates.
1477  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1478
1479  /// \brief Determine whether the given template names refer to the same
1480  /// template.
1481  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1482
1483  /// \brief Retrieve the "canonical" template argument.
1484  ///
1485  /// The canonical template argument is the simplest template argument
1486  /// (which may be a type, value, expression, or declaration) that
1487  /// expresses the value of the argument.
1488  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1489    const;
1490
1491  /// Type Query functions.  If the type is an instance of the specified class,
1492  /// return the Type pointer for the underlying maximally pretty type.  This
1493  /// is a member of ASTContext because this may need to do some amount of
1494  /// canonicalization, e.g. to move type qualifiers into the element type.
1495  const ArrayType *getAsArrayType(QualType T) const;
1496  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1497    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1498  }
1499  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1500    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1501  }
1502  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1503    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1504  }
1505  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1506    const {
1507    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1508  }
1509
1510  /// getBaseElementType - Returns the innermost element type of an array type.
1511  /// For example, will return "int" for int[m][n]
1512  QualType getBaseElementType(const ArrayType *VAT) const;
1513
1514  /// getBaseElementType - Returns the innermost element type of a type
1515  /// (which needn't actually be an array type).
1516  QualType getBaseElementType(QualType QT) const;
1517
1518  /// getConstantArrayElementCount - Returns number of constant array elements.
1519  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1520
1521  /// \brief Perform adjustment on the parameter type of a function.
1522  ///
1523  /// This routine adjusts the given parameter type @p T to the actual
1524  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1525  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1526  QualType getAdjustedParameterType(QualType T);
1527
1528  /// \brief Retrieve the parameter type as adjusted for use in the signature
1529  /// of a function, decaying array and function types and removing top-level
1530  /// cv-qualifiers.
1531  QualType getSignatureParameterType(QualType T);
1532
1533  /// getArrayDecayedType - Return the properly qualified result of decaying the
1534  /// specified array type to a pointer.  This operation is non-trivial when
1535  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1536  /// this returns a pointer to a properly qualified element of the array.
1537  ///
1538  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1539  QualType getArrayDecayedType(QualType T) const;
1540
1541  /// getPromotedIntegerType - Returns the type that Promotable will
1542  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1543  /// integer type.
1544  QualType getPromotedIntegerType(QualType PromotableType) const;
1545
1546  /// \brief Recurses in pointer/array types until it finds an objc retainable
1547  /// type and returns its ownership.
1548  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1549
1550  /// \brief Whether this is a promotable bitfield reference according
1551  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1552  ///
1553  /// \returns the type this bit-field will promote to, or NULL if no
1554  /// promotion occurs.
1555  QualType isPromotableBitField(Expr *E) const;
1556
1557  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1558  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1559  /// LHS < RHS, return -1.
1560  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1561
1562  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1563  /// point types, ignoring the domain of the type (i.e. 'double' ==
1564  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1565  /// LHS < RHS, return -1.
1566  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1567
1568  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1569  /// point or a complex type (based on typeDomain/typeSize).
1570  /// 'typeDomain' is a real floating point or complex type.
1571  /// 'typeSize' is a real floating point or complex type.
1572  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1573                                             QualType typeDomain) const;
1574
1575  unsigned getTargetAddressSpace(QualType T) const {
1576    return getTargetAddressSpace(T.getQualifiers());
1577  }
1578
1579  unsigned getTargetAddressSpace(Qualifiers Q) const {
1580    return getTargetAddressSpace(Q.getAddressSpace());
1581  }
1582
1583  unsigned getTargetAddressSpace(unsigned AS) const {
1584    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1585      return AS;
1586    else
1587      return (*AddrSpaceMap)[AS - LangAS::Offset];
1588  }
1589
1590private:
1591  // Helper for integer ordering
1592  unsigned getIntegerRank(const Type *T) const;
1593
1594public:
1595
1596  //===--------------------------------------------------------------------===//
1597  //                    Type Compatibility Predicates
1598  //===--------------------------------------------------------------------===//
1599
1600  /// Compatibility predicates used to check assignment expressions.
1601  bool typesAreCompatible(QualType T1, QualType T2,
1602                          bool CompareUnqualified = false); // C99 6.2.7p1
1603
1604  bool propertyTypesAreCompatible(QualType, QualType);
1605  bool typesAreBlockPointerCompatible(QualType, QualType);
1606
1607  bool isObjCIdType(QualType T) const {
1608    return T == getObjCIdType();
1609  }
1610  bool isObjCClassType(QualType T) const {
1611    return T == getObjCClassType();
1612  }
1613  bool isObjCSelType(QualType T) const {
1614    return T == getObjCSelType();
1615  }
1616  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1617  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1618                                         bool ForCompare);
1619
1620  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1621
1622  // Check the safety of assignment from LHS to RHS
1623  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1624                               const ObjCObjectPointerType *RHSOPT);
1625  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1626                               const ObjCObjectType *RHS);
1627  bool canAssignObjCInterfacesInBlockPointer(
1628                                          const ObjCObjectPointerType *LHSOPT,
1629                                          const ObjCObjectPointerType *RHSOPT,
1630                                          bool BlockReturnType);
1631  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1632  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1633                                   const ObjCObjectPointerType *RHSOPT);
1634  bool canBindObjCObjectType(QualType To, QualType From);
1635
1636  // Functions for calculating composite types
1637  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1638                      bool Unqualified = false, bool BlockReturnType = false);
1639  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1640                              bool Unqualified = false);
1641  QualType mergeFunctionArgumentTypes(QualType, QualType,
1642                                      bool OfBlockPointer=false,
1643                                      bool Unqualified = false);
1644  QualType mergeTransparentUnionType(QualType, QualType,
1645                                     bool OfBlockPointer=false,
1646                                     bool Unqualified = false);
1647
1648  QualType mergeObjCGCQualifiers(QualType, QualType);
1649
1650  bool FunctionTypesMatchOnNSConsumedAttrs(
1651         const FunctionProtoType *FromFunctionType,
1652         const FunctionProtoType *ToFunctionType);
1653
1654  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1655    ObjCLayouts[CD] = 0;
1656  }
1657
1658  //===--------------------------------------------------------------------===//
1659  //                    Integer Predicates
1660  //===--------------------------------------------------------------------===//
1661
1662  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1663  // of bits in an integer type excluding any padding bits.
1664  unsigned getIntWidth(QualType T) const;
1665
1666  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1667  // unsigned integer type.  This method takes a signed type, and returns the
1668  // corresponding unsigned integer type.
1669  QualType getCorrespondingUnsignedType(QualType T);
1670
1671  //===--------------------------------------------------------------------===//
1672  //                    Type Iterators.
1673  //===--------------------------------------------------------------------===//
1674
1675  typedef std::vector<Type*>::iterator       type_iterator;
1676  typedef std::vector<Type*>::const_iterator const_type_iterator;
1677
1678  type_iterator types_begin() { return Types.begin(); }
1679  type_iterator types_end() { return Types.end(); }
1680  const_type_iterator types_begin() const { return Types.begin(); }
1681  const_type_iterator types_end() const { return Types.end(); }
1682
1683  //===--------------------------------------------------------------------===//
1684  //                    Integer Values
1685  //===--------------------------------------------------------------------===//
1686
1687  /// MakeIntValue - Make an APSInt of the appropriate width and
1688  /// signedness for the given \arg Value and integer \arg Type.
1689  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1690    llvm::APSInt Res(getIntWidth(Type),
1691                     !Type->isSignedIntegerOrEnumerationType());
1692    Res = Value;
1693    return Res;
1694  }
1695
1696  bool isSentinelNullExpr(const Expr *E);
1697
1698  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1699  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1700  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1701  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1702
1703  /// \brief returns true if there is at lease one @implementation in TU.
1704  bool AnyObjCImplementation() {
1705    return !ObjCImpls.empty();
1706  }
1707
1708  /// \brief Set the implementation of ObjCInterfaceDecl.
1709  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1710                             ObjCImplementationDecl *ImplD);
1711  /// \brief Set the implementation of ObjCCategoryDecl.
1712  void setObjCImplementation(ObjCCategoryDecl *CatD,
1713                             ObjCCategoryImplDecl *ImplD);
1714
1715  /// \brief Get the duplicate declaration of a ObjCMethod in the same
1716  /// interface, or null if non exists.
1717  const ObjCMethodDecl *getObjCMethodRedeclaration(
1718                                               const ObjCMethodDecl *MD) const {
1719    llvm::DenseMap<const ObjCMethodDecl*, const ObjCMethodDecl*>::const_iterator
1720      I = ObjCMethodRedecls.find(MD);
1721    if (I == ObjCMethodRedecls.end())
1722      return 0;
1723    return I->second;
1724  }
1725
1726  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
1727                                  const ObjCMethodDecl *Redecl) {
1728    ObjCMethodRedecls[MD] = Redecl;
1729  }
1730
1731  /// \brief Returns the objc interface that \arg ND belongs to if it is a
1732  /// objc method/property/ivar etc. that is part of an interface,
1733  /// otherwise returns null.
1734  ObjCInterfaceDecl *getObjContainingInterface(NamedDecl *ND) const;
1735
1736  /// \brief Set the copy inialization expression of a block var decl.
1737  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1738  /// \brief Get the copy initialization expression of VarDecl,or NULL if
1739  /// none exists.
1740  Expr *getBlockVarCopyInits(const VarDecl*VD);
1741
1742  /// \brief Allocate an uninitialized TypeSourceInfo.
1743  ///
1744  /// The caller should initialize the memory held by TypeSourceInfo using
1745  /// the TypeLoc wrappers.
1746  ///
1747  /// \param T the type that will be the basis for type source info. This type
1748  /// should refer to how the declarator was written in source code, not to
1749  /// what type semantic analysis resolved the declarator to.
1750  ///
1751  /// \param Size the size of the type info to create, or 0 if the size
1752  /// should be calculated based on the type.
1753  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
1754
1755  /// \brief Allocate a TypeSourceInfo where all locations have been
1756  /// initialized to a given location, which defaults to the empty
1757  /// location.
1758  TypeSourceInfo *
1759  getTrivialTypeSourceInfo(QualType T,
1760                           SourceLocation Loc = SourceLocation()) const;
1761
1762  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1763
1764  /// \brief Add a deallocation callback that will be invoked when the
1765  /// ASTContext is destroyed.
1766  ///
1767  /// \brief Callback A callback function that will be invoked on destruction.
1768  ///
1769  /// \brief Data Pointer data that will be provided to the callback function
1770  /// when it is called.
1771  void AddDeallocation(void (*Callback)(void*), void *Data);
1772
1773  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1774  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1775
1776  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1777  /// lazily, only when used; this is only relevant for function or file scoped
1778  /// var definitions.
1779  ///
1780  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1781  /// it is not used.
1782  bool DeclMustBeEmitted(const Decl *D);
1783
1784  /// \brief Retrieve the lambda mangling number for a lambda expression.
1785  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
1786
1787  /// \brief Used by ParmVarDecl to store on the side the
1788  /// index of the parameter when it exceeds the size of the normal bitfield.
1789  void setParameterIndex(const ParmVarDecl *D, unsigned index);
1790
1791  /// \brief Used by ParmVarDecl to retrieve on the side the
1792  /// index of the parameter when it exceeds the size of the normal bitfield.
1793  unsigned getParameterIndex(const ParmVarDecl *D) const;
1794
1795  //===--------------------------------------------------------------------===//
1796  //                    Statistics
1797  //===--------------------------------------------------------------------===//
1798
1799  /// \brief The number of implicitly-declared default constructors.
1800  static unsigned NumImplicitDefaultConstructors;
1801
1802  /// \brief The number of implicitly-declared default constructors for
1803  /// which declarations were built.
1804  static unsigned NumImplicitDefaultConstructorsDeclared;
1805
1806  /// \brief The number of implicitly-declared copy constructors.
1807  static unsigned NumImplicitCopyConstructors;
1808
1809  /// \brief The number of implicitly-declared copy constructors for
1810  /// which declarations were built.
1811  static unsigned NumImplicitCopyConstructorsDeclared;
1812
1813  /// \brief The number of implicitly-declared move constructors.
1814  static unsigned NumImplicitMoveConstructors;
1815
1816  /// \brief The number of implicitly-declared move constructors for
1817  /// which declarations were built.
1818  static unsigned NumImplicitMoveConstructorsDeclared;
1819
1820  /// \brief The number of implicitly-declared copy assignment operators.
1821  static unsigned NumImplicitCopyAssignmentOperators;
1822
1823  /// \brief The number of implicitly-declared copy assignment operators for
1824  /// which declarations were built.
1825  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1826
1827  /// \brief The number of implicitly-declared move assignment operators.
1828  static unsigned NumImplicitMoveAssignmentOperators;
1829
1830  /// \brief The number of implicitly-declared move assignment operators for
1831  /// which declarations were built.
1832  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
1833
1834  /// \brief The number of implicitly-declared destructors.
1835  static unsigned NumImplicitDestructors;
1836
1837  /// \brief The number of implicitly-declared destructors for which
1838  /// declarations were built.
1839  static unsigned NumImplicitDestructorsDeclared;
1840
1841private:
1842  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1843  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1844
1845public:
1846  /// \brief Initialize built-in types.
1847  ///
1848  /// This routine may only be invoked once for a given ASTContext object.
1849  /// It is normally invoked by the ASTContext constructor. However, the
1850  /// constructor can be asked to delay initialization, which places the burden
1851  /// of calling this function on the user of that object.
1852  ///
1853  /// \param Target The target
1854  void InitBuiltinTypes(const TargetInfo &Target);
1855
1856private:
1857  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1858
1859  // Return the ObjC type encoding for a given type.
1860  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1861                                  bool ExpandPointedToStructures,
1862                                  bool ExpandStructures,
1863                                  const FieldDecl *Field,
1864                                  bool OutermostType = false,
1865                                  bool EncodingProperty = false,
1866                                  bool StructField = false,
1867                                  bool EncodeBlockParameters = false,
1868                                  bool EncodeClassNames = false) const;
1869
1870  // Adds the encoding of the structure's members.
1871  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
1872                                       const FieldDecl *Field,
1873                                       bool includeVBases = true) const;
1874
1875  // Adds the encoding of a method parameter or return type.
1876  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
1877                                         QualType T, std::string& S,
1878                                         bool Extended) const;
1879
1880  const ASTRecordLayout &
1881  getObjCLayout(const ObjCInterfaceDecl *D,
1882                const ObjCImplementationDecl *Impl) const;
1883
1884private:
1885  /// \brief A set of deallocations that should be performed when the
1886  /// ASTContext is destroyed.
1887  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1888
1889  // FIXME: This currently contains the set of StoredDeclMaps used
1890  // by DeclContext objects.  This probably should not be in ASTContext,
1891  // but we include it here so that ASTContext can quickly deallocate them.
1892  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1893
1894  /// \brief A counter used to uniquely identify "blocks".
1895  mutable unsigned int UniqueBlockByRefTypeID;
1896
1897  friend class DeclContext;
1898  friend class DeclarationNameTable;
1899  void ReleaseDeclContextMaps();
1900};
1901
1902/// @brief Utility function for constructing a nullary selector.
1903static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
1904  IdentifierInfo* II = &Ctx.Idents.get(name);
1905  return Ctx.Selectors.getSelector(0, &II);
1906}
1907
1908/// @brief Utility function for constructing an unary selector.
1909static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
1910  IdentifierInfo* II = &Ctx.Idents.get(name);
1911  return Ctx.Selectors.getSelector(1, &II);
1912}
1913
1914}  // end namespace clang
1915
1916// operator new and delete aren't allowed inside namespaces.
1917
1918/// @brief Placement new for using the ASTContext's allocator.
1919///
1920/// This placement form of operator new uses the ASTContext's allocator for
1921/// obtaining memory.
1922///
1923/// IMPORTANT: These are also declared in clang/AST/Attr.h! Any changes here
1924/// need to also be made there.
1925///
1926/// We intentionally avoid using a nothrow specification here so that the calls
1927/// to this operator will not perform a null check on the result -- the
1928/// underlying allocator never returns null pointers.
1929///
1930/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1931/// @code
1932/// // Default alignment (8)
1933/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1934/// // Specific alignment
1935/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1936/// @endcode
1937/// Please note that you cannot use delete on the pointer; it must be
1938/// deallocated using an explicit destructor call followed by
1939/// @c Context.Deallocate(Ptr).
1940///
1941/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1942/// @param C The ASTContext that provides the allocator.
1943/// @param Alignment The alignment of the allocated memory (if the underlying
1944///                  allocator supports it).
1945/// @return The allocated memory. Could be NULL.
1946inline void *operator new(size_t Bytes, const clang::ASTContext &C,
1947                          size_t Alignment) {
1948  return C.Allocate(Bytes, Alignment);
1949}
1950/// @brief Placement delete companion to the new above.
1951///
1952/// This operator is just a companion to the new above. There is no way of
1953/// invoking it directly; see the new operator for more details. This operator
1954/// is called implicitly by the compiler if a placement new expression using
1955/// the ASTContext throws in the object constructor.
1956inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
1957  C.Deallocate(Ptr);
1958}
1959
1960/// This placement form of operator new[] uses the ASTContext's allocator for
1961/// obtaining memory.
1962///
1963/// We intentionally avoid using a nothrow specification here so that the calls
1964/// to this operator will not perform a null check on the result -- the
1965/// underlying allocator never returns null pointers.
1966///
1967/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1968/// @code
1969/// // Default alignment (8)
1970/// char *data = new (Context) char[10];
1971/// // Specific alignment
1972/// char *data = new (Context, 4) char[10];
1973/// @endcode
1974/// Please note that you cannot use delete on the pointer; it must be
1975/// deallocated using an explicit destructor call followed by
1976/// @c Context.Deallocate(Ptr).
1977///
1978/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1979/// @param C The ASTContext that provides the allocator.
1980/// @param Alignment The alignment of the allocated memory (if the underlying
1981///                  allocator supports it).
1982/// @return The allocated memory. Could be NULL.
1983inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
1984                            size_t Alignment = 8) {
1985  return C.Allocate(Bytes, Alignment);
1986}
1987
1988/// @brief Placement delete[] companion to the new[] above.
1989///
1990/// This operator is just a companion to the new[] above. There is no way of
1991/// invoking it directly; see the new[] operator for more details. This operator
1992/// is called implicitly by the compiler if a placement new[] expression using
1993/// the ASTContext throws in the object constructor.
1994inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
1995  C.Deallocate(Ptr);
1996}
1997
1998#endif
1999