ASTContext.h revision d57959af02b4af695276f4204443afe6e5d86bd8
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/Type.h"
23#include "clang/Basic/SourceLocation.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/Bitcode/SerializationFwd.h"
27#include "llvm/Support/Allocator.h"
28#include <vector>
29
30namespace llvm {
31  struct fltSemantics;
32}
33
34namespace clang {
35  class ASTRecordLayout;
36  class Expr;
37  class IdentifierTable;
38  class SelectorTable;
39  class SourceManager;
40  class TargetInfo;
41  // Decls
42  class Decl;
43  class ObjCPropertyDecl;
44  class RecordDecl;
45  class TagDecl;
46  class TranslationUnitDecl;
47  class TypeDecl;
48  class TypedefDecl;
49  class TemplateTypeParmDecl;
50  class FieldDecl;
51  class ObjCIvarRefExpr;
52  class ObjCIvarDecl;
53
54/// ASTContext - This class holds long-lived AST nodes (such as types and
55/// decls) that can be referred to throughout the semantic analysis of a file.
56class ASTContext {
57  std::vector<Type*> Types;
58  llvm::FoldingSet<ExtQualType> ExtQualTypes;
59  llvm::FoldingSet<ComplexType> ComplexTypes;
60  llvm::FoldingSet<PointerType> PointerTypes;
61  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
62  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
63  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
64  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
65  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
66  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
67  std::vector<VariableArrayType*> VariableArrayTypes;
68  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
69  llvm::FoldingSet<VectorType> VectorTypes;
70  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
71  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
72  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
73  llvm::FoldingSet<ClassTemplateSpecializationType>
74    ClassTemplateSpecializationTypes;
75  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
76  llvm::FoldingSet<TypenameType> TypenameTypes;
77  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
78  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
79
80  /// \brief The set of nested name specifiers.
81  ///
82  /// This set is managed by the NestedNameSpecifier class.
83  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
84  NestedNameSpecifier *GlobalNestedNameSpecifier;
85  friend class NestedNameSpecifier;
86
87  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
88  ///  This is lazily created.  This is intentionally not serialized.
89  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
90  llvm::DenseMap<const ObjCInterfaceDecl*,
91                 const ASTRecordLayout*> ASTObjCInterfaces;
92
93  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
94  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
95
96  // FIXME: Shouldn't ASTRecordForInterface/ASTFieldForIvarRef and
97  // addRecordToClass/getFieldDecl be part of the backend (i.e. CodeGenTypes and
98  // CodeGenFunction)?
99  llvm::DenseMap<const ObjCInterfaceDecl*,
100                 const RecordDecl*> ASTRecordForInterface;
101  llvm::DenseMap<const ObjCIvarRefExpr*, const FieldDecl*> ASTFieldForIvarRef;
102
103  /// BuiltinVaListType - built-in va list type.
104  /// This is initially null and set by Sema::LazilyCreateBuiltin when
105  /// a builtin that takes a valist is encountered.
106  QualType BuiltinVaListType;
107
108  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
109  QualType ObjCIdType;
110  const RecordType *IdStructType;
111
112  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
113  QualType ObjCSelType;
114  const RecordType *SelStructType;
115
116  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
117  QualType ObjCProtoType;
118  const RecordType *ProtoStructType;
119
120  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
121  QualType ObjCClassType;
122  const RecordType *ClassStructType;
123
124  QualType ObjCConstantStringType;
125  RecordDecl *CFConstantStringTypeDecl;
126
127  RecordDecl *ObjCFastEnumerationStateTypeDecl;
128
129  TranslationUnitDecl *TUDecl;
130
131  /// SourceMgr - The associated SourceManager object.
132  SourceManager &SourceMgr;
133
134  /// LangOpts - The language options used to create the AST associated with
135  ///  this ASTContext object.
136  LangOptions LangOpts;
137
138  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
139  bool FreeMemory;
140  llvm::MallocAllocator MallocAlloc;
141  llvm::BumpPtrAllocator BumpAlloc;
142public:
143  TargetInfo &Target;
144  IdentifierTable &Idents;
145  SelectorTable &Selectors;
146  DeclarationNameTable DeclarationNames;
147
148  SourceManager& getSourceManager() { return SourceMgr; }
149  void *Allocate(unsigned Size, unsigned Align = 8) {
150    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
151                        BumpAlloc.Allocate(Size, Align);
152  }
153  void Deallocate(void *Ptr) {
154    if (FreeMemory)
155      MallocAlloc.Deallocate(Ptr);
156  }
157  const LangOptions& getLangOptions() const { return LangOpts; }
158
159  FullSourceLoc getFullLoc(SourceLocation Loc) const {
160    return FullSourceLoc(Loc,SourceMgr);
161  }
162
163  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
164
165  /// This is intentionally not serialized.  It is populated by the
166  /// ASTContext ctor, and there are no external pointers/references to
167  /// internal variables of BuiltinInfo.
168  Builtin::Context BuiltinInfo;
169
170  // Builtin Types.
171  QualType VoidTy;
172  QualType BoolTy;
173  QualType CharTy;
174  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
175  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy;
176  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
177  QualType UnsignedLongLongTy;
178  QualType FloatTy, DoubleTy, LongDoubleTy;
179  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
180  QualType VoidPtrTy;
181  QualType OverloadTy;
182  QualType DependentTy;
183
184  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
185             IdentifierTable &idents, SelectorTable &sels,
186             bool FreeMemory = true, unsigned size_reserve=0);
187
188  ~ASTContext();
189
190  void PrintStats() const;
191  const std::vector<Type*>& getTypes() const { return Types; }
192
193  //===--------------------------------------------------------------------===//
194  //                           Type Constructors
195  //===--------------------------------------------------------------------===//
196
197  /// getAddSpaceQualType - Return the uniqued reference to the type for an
198  /// address space qualified type with the specified type and address space.
199  /// The resulting type has a union of the qualifiers from T and the address
200  /// space. If T already has an address space specifier, it is silently
201  /// replaced.
202  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
203
204  /// getObjCGCQualType - Returns the uniqued reference to the type for an
205  /// objc gc qualified type. The retulting type has a union of the qualifiers
206  /// from T and the gc attribute.
207  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
208
209  /// getComplexType - Return the uniqued reference to the type for a complex
210  /// number with the specified element type.
211  QualType getComplexType(QualType T);
212
213  /// getPointerType - Return the uniqued reference to the type for a pointer to
214  /// the specified type.
215  QualType getPointerType(QualType T);
216
217  /// getBlockPointerType - Return the uniqued reference to the type for a block
218  /// of the specified type.
219  QualType getBlockPointerType(QualType T);
220
221  /// getLValueReferenceType - Return the uniqued reference to the type for an
222  /// lvalue reference to the specified type.
223  QualType getLValueReferenceType(QualType T);
224
225  /// getRValueReferenceType - Return the uniqued reference to the type for an
226  /// rvalue reference to the specified type.
227  QualType getRValueReferenceType(QualType T);
228
229  /// getMemberPointerType - Return the uniqued reference to the type for a
230  /// member pointer to the specified type in the specified class. The class
231  /// is a Type because it could be a dependent name.
232  QualType getMemberPointerType(QualType T, const Type *Cls);
233
234  /// getVariableArrayType - Returns a non-unique reference to the type for a
235  /// variable array of the specified element type.
236  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
237                                ArrayType::ArraySizeModifier ASM,
238                                unsigned EltTypeQuals);
239
240  /// getDependentSizedArrayType - Returns a non-unique reference to
241  /// the type for a dependently-sized array of the specified element
242  /// type. FIXME: We will need these to be uniqued, or at least
243  /// comparable, at some point.
244  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
245                                      ArrayType::ArraySizeModifier ASM,
246                                      unsigned EltTypeQuals);
247
248  /// getIncompleteArrayType - Returns a unique reference to the type for a
249  /// incomplete array of the specified element type.
250  QualType getIncompleteArrayType(QualType EltTy,
251                                  ArrayType::ArraySizeModifier ASM,
252                                  unsigned EltTypeQuals);
253
254  /// getConstantArrayType - Return the unique reference to the type for a
255  /// constant array of the specified element type.
256  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
257                                ArrayType::ArraySizeModifier ASM,
258                                unsigned EltTypeQuals);
259
260  /// getVectorType - Return the unique reference to a vector type of
261  /// the specified element type and size. VectorType must be a built-in type.
262  QualType getVectorType(QualType VectorType, unsigned NumElts);
263
264  /// getExtVectorType - Return the unique reference to an extended vector type
265  /// of the specified element type and size.  VectorType must be a built-in
266  /// type.
267  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
268
269  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
270  ///
271  QualType getFunctionNoProtoType(QualType ResultTy);
272
273  /// getFunctionType - Return a normal function type with a typed argument
274  /// list.  isVariadic indicates whether the argument list includes '...'.
275  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
276                           unsigned NumArgs, bool isVariadic,
277                           unsigned TypeQuals);
278
279  /// getTypeDeclType - Return the unique reference to the type for
280  /// the specified type declaration.
281  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
282
283  /// getTypedefType - Return the unique reference to the type for the
284  /// specified typename decl.
285  QualType getTypedefType(TypedefDecl *Decl);
286  QualType getObjCInterfaceType(ObjCInterfaceDecl *Decl);
287  QualType buildObjCInterfaceType(ObjCInterfaceDecl *Decl);
288
289  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
290                                   IdentifierInfo *Name = 0);
291
292  QualType getClassTemplateSpecializationType(TemplateDecl *Template,
293                                              const TemplateArgument *Args,
294                                              unsigned NumArgs,
295                                              QualType Canon = QualType());
296
297  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
298                                QualType NamedType);
299  QualType getTypenameType(NestedNameSpecifier *NNS,
300                           const IdentifierInfo *Name,
301                           QualType Canon = QualType());
302
303  /// getObjCQualifiedInterfaceType - Return a
304  /// ObjCQualifiedInterfaceType type for the given interface decl and
305  /// the conforming protocol list.
306  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
307                                         ObjCProtocolDecl **ProtocolList,
308                                         unsigned NumProtocols);
309
310  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
311  /// given 'id' and conforming protocol list.
312  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
313                                  unsigned NumProtocols);
314
315
316  /// getTypeOfType - GCC extension.
317  QualType getTypeOfExprType(Expr *e);
318  QualType getTypeOfType(QualType t);
319
320  /// getTagDeclType - Return the unique reference to the type for the
321  /// specified TagDecl (struct/union/class/enum) decl.
322  QualType getTagDeclType(TagDecl *Decl);
323
324  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
325  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
326  QualType getSizeType() const;
327
328  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
329  /// returns a type compatible with the type defined in <stddef.h> as defined
330  /// by the target.
331  QualType getWCharType() const { return WCharTy; }
332
333  /// getSignedWCharType - Return the type of "signed wchar_t".
334  /// Used when in C++, as a GCC extension.
335  QualType getSignedWCharType() const;
336
337  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
338  /// Used when in C++, as a GCC extension.
339  QualType getUnsignedWCharType() const;
340
341  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
342  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
343  QualType getPointerDiffType() const;
344
345  // getCFConstantStringType - Return the C structure type used to represent
346  // constant CFStrings.
347  QualType getCFConstantStringType();
348
349  // This setter/getter represents the ObjC type for an NSConstantString.
350  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
351  QualType getObjCConstantStringInterface() const {
352    return ObjCConstantStringType;
353  }
354
355  //// This gets the struct used to keep track of fast enumerations.
356  QualType getObjCFastEnumerationStateType();
357
358  /// getObjCEncodingForType - Emit the ObjC type encoding for the
359  /// given type into \arg S. If \arg NameFields is specified then
360  /// record field names are also encoded.
361  void getObjCEncodingForType(QualType t, std::string &S,
362                              FieldDecl *Field=NULL) const;
363
364  void getLegacyIntegralTypeEncoding(QualType &t) const;
365
366  // Put the string version of type qualifiers into S.
367  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
368                                       std::string &S) const;
369
370  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
371  /// declaration.
372  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
373
374  /// getObjCEncodingForPropertyDecl - Return the encoded type for
375  /// this method declaration. If non-NULL, Container must be either
376  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
377  /// only be NULL when getting encodings for protocol properties.
378  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
379                                      const Decl *Container,
380                                      std::string &S);
381
382  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
383  /// purpose.
384  int getObjCEncodingTypeSize(QualType t);
385
386  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
387  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
388  QualType getObjCIdType() const { return ObjCIdType; }
389  void setObjCIdType(TypedefDecl *Decl);
390
391  void setObjCSelType(TypedefDecl *Decl);
392  QualType getObjCSelType() const { return ObjCSelType; }
393
394  void setObjCProtoType(QualType QT);
395  QualType getObjCProtoType() const { return ObjCProtoType; }
396
397  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
398  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
399  /// struct.
400  QualType getObjCClassType() const { return ObjCClassType; }
401  void setObjCClassType(TypedefDecl *Decl);
402
403  void setBuiltinVaListType(QualType T);
404  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
405
406  QualType getFixedWidthIntType(unsigned Width, bool Signed);
407
408private:
409  QualType getFromTargetType(unsigned Type) const;
410
411  //===--------------------------------------------------------------------===//
412  //                         Type Predicates.
413  //===--------------------------------------------------------------------===//
414
415public:
416  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
417  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
418  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
419  /// ID type).
420  bool isObjCObjectPointerType(QualType Ty) const;
421
422  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
423  /// garbage collection attribute.
424  ///
425  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
426
427  /// isObjCNSObjectType - Return true if this is an NSObject object with
428  /// its NSObject attribute set.
429  bool isObjCNSObjectType(QualType Ty) const;
430
431  //===--------------------------------------------------------------------===//
432  //                         Type Sizing and Analysis
433  //===--------------------------------------------------------------------===//
434
435  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
436  /// scalar floating point type.
437  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
438
439  /// getTypeInfo - Get the size and alignment of the specified complete type in
440  /// bits.
441  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
442  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
443    return getTypeInfo(T.getTypePtr());
444  }
445
446  /// getTypeSize - Return the size of the specified type, in bits.  This method
447  /// does not work on incomplete types.
448  uint64_t getTypeSize(QualType T) {
449    return getTypeInfo(T).first;
450  }
451  uint64_t getTypeSize(const Type *T) {
452    return getTypeInfo(T).first;
453  }
454
455  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
456  /// This method does not work on incomplete types.
457  unsigned getTypeAlign(QualType T) {
458    return getTypeInfo(T).second;
459  }
460  unsigned getTypeAlign(const Type *T) {
461    return getTypeInfo(T).second;
462  }
463
464  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
465  /// type for the current target in bits.  This can be different than the ABI
466  /// alignment in cases where it is beneficial for performance to overalign
467  /// a data type.
468  unsigned getPreferredTypeAlign(const Type *T);
469
470  /// getDeclAlignInBytes - Return the alignment of the specified decl
471  /// that should be returned by __alignof().  Note that bitfields do
472  /// not have a valid alignment, so this method will assert on them.
473  unsigned getDeclAlignInBytes(const Decl *D);
474
475  /// getASTRecordLayout - Get or compute information about the layout of the
476  /// specified record (struct/union/class), which indicates its size and field
477  /// position information.
478  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
479
480  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
481  const RecordDecl *addRecordToClass(const ObjCInterfaceDecl *D);
482  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
483                        std::vector<FieldDecl*> &Fields) const;
484  const FieldDecl *getFieldDecl(const ObjCIvarRefExpr *MRef) {
485    llvm::DenseMap<const ObjCIvarRefExpr *, const FieldDecl*>::iterator I
486      = ASTFieldForIvarRef.find(MRef);
487    assert (I != ASTFieldForIvarRef.end()  && "Unable to find field_decl");
488    return I->second;
489  }
490  void setFieldDecl(const ObjCInterfaceDecl *OI,
491                    const ObjCIvarDecl *Ivar,
492                    const ObjCIvarRefExpr *MRef);
493  //===--------------------------------------------------------------------===//
494  //                            Type Operators
495  //===--------------------------------------------------------------------===//
496
497  /// getCanonicalType - Return the canonical (structural) type corresponding to
498  /// the specified potentially non-canonical type.  The non-canonical version
499  /// of a type may have many "decorated" versions of types.  Decorators can
500  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
501  /// to be free of any of these, allowing two canonical types to be compared
502  /// for exact equality with a simple pointer comparison.
503  QualType getCanonicalType(QualType T);
504  const Type *getCanonicalType(const Type *T) {
505    return T->getCanonicalTypeInternal().getTypePtr();
506  }
507
508  /// \brief Determine whether the given types are equivalent.
509  bool hasSameType(QualType T1, QualType T2) {
510    return getCanonicalType(T1) == getCanonicalType(T2);
511  }
512
513  /// \brief Determine whether the given types are equivalent after
514  /// cvr-qualifiers have been removed.
515  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
516    T1 = getCanonicalType(T1);
517    T2 = getCanonicalType(T2);
518    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
519  }
520
521  /// \brief Retrieves the "canonical" declaration of the given tag
522  /// declaration.
523  ///
524  /// The canonical declaration for the given tag declaration is
525  /// either the definition of the tag (if it is a complete type) or
526  /// the first declaration of that tag.
527  TagDecl *getCanonicalDecl(TagDecl *Tag) {
528    QualType T = getTagDeclType(Tag);
529    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
530                           ->getDecl());
531  }
532
533  /// \brief Retrieves the "canonical" nested name specifier for a
534  /// given nested name specifier.
535  ///
536  /// The canonical nested name specifier is a nested name specifier
537  /// that uniquely identifies a type or namespace within the type
538  /// system. For example, given:
539  ///
540  /// \code
541  /// namespace N {
542  ///   struct S {
543  ///     template<typename T> struct X { typename T* type; };
544  ///   };
545  /// }
546  ///
547  /// template<typename T> struct Y {
548  ///   typename N::S::X<T>::type member;
549  /// };
550  /// \endcode
551  ///
552  /// Here, the nested-name-specifier for N::S::X<T>:: will be
553  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
554  /// by declarations in the type system and the canonical type for
555  /// the template type parameter 'T' is template-param-0-0.
556  NestedNameSpecifier *
557  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
558
559  /// Type Query functions.  If the type is an instance of the specified class,
560  /// return the Type pointer for the underlying maximally pretty type.  This
561  /// is a member of ASTContext because this may need to do some amount of
562  /// canonicalization, e.g. to move type qualifiers into the element type.
563  const ArrayType *getAsArrayType(QualType T);
564  const ConstantArrayType *getAsConstantArrayType(QualType T) {
565    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
566  }
567  const VariableArrayType *getAsVariableArrayType(QualType T) {
568    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
569  }
570  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
571    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
572  }
573
574  /// getBaseElementType - Returns the innermost element type of a variable
575  /// length array type. For example, will return "int" for int[m][n]
576  QualType getBaseElementType(const VariableArrayType *VAT);
577
578  /// getArrayDecayedType - Return the properly qualified result of decaying the
579  /// specified array type to a pointer.  This operation is non-trivial when
580  /// handling typedefs etc.  The canonical type of "T" must be an array type,
581  /// this returns a pointer to a properly qualified element of the array.
582  ///
583  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
584  QualType getArrayDecayedType(QualType T);
585
586  /// getIntegerTypeOrder - Returns the highest ranked integer type:
587  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
588  /// LHS < RHS, return -1.
589  int getIntegerTypeOrder(QualType LHS, QualType RHS);
590
591  /// getFloatingTypeOrder - Compare the rank of the two specified floating
592  /// point types, ignoring the domain of the type (i.e. 'double' ==
593  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
594  /// LHS < RHS, return -1.
595  int getFloatingTypeOrder(QualType LHS, QualType RHS);
596
597  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
598  /// point or a complex type (based on typeDomain/typeSize).
599  /// 'typeDomain' is a real floating point or complex type.
600  /// 'typeSize' is a real floating point or complex type.
601  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
602                                             QualType typeDomain) const;
603
604private:
605  // Helper for integer ordering
606  unsigned getIntegerRank(Type* T);
607
608public:
609
610  //===--------------------------------------------------------------------===//
611  //                    Type Compatibility Predicates
612  //===--------------------------------------------------------------------===//
613
614  /// Compatibility predicates used to check assignment expressions.
615  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
616  bool typesAreBlockCompatible(QualType lhs, QualType rhs);
617
618  bool isObjCIdType(QualType T) const {
619    return T == ObjCIdType;
620  }
621  bool isObjCIdStructType(QualType T) const {
622    if (!IdStructType) // ObjC isn't enabled
623      return false;
624    return T->getAsStructureType() == IdStructType;
625  }
626  bool isObjCClassType(QualType T) const {
627    return T == ObjCClassType;
628  }
629  bool isObjCClassStructType(QualType T) const {
630    if (!ClassStructType) // ObjC isn't enabled
631      return false;
632    return T->getAsStructureType() == ClassStructType;
633  }
634  bool isObjCSelType(QualType T) const {
635    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
636    return T->getAsStructureType() == SelStructType;
637  }
638
639  // Check the safety of assignment from LHS to RHS
640  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
641                               const ObjCInterfaceType *RHS);
642  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
643
644  // Functions for calculating composite types
645  QualType mergeTypes(QualType, QualType);
646  QualType mergeFunctionTypes(QualType, QualType);
647
648  //===--------------------------------------------------------------------===//
649  //                    Integer Predicates
650  //===--------------------------------------------------------------------===//
651
652  // The width of an integer, as defined in C99 6.2.6.2. This is the number
653  // of bits in an integer type excluding any padding bits.
654  unsigned getIntWidth(QualType T);
655
656  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
657  // unsigned integer type.  This method takes a signed type, and returns the
658  // corresponding unsigned integer type.
659  QualType getCorrespondingUnsignedType(QualType T);
660
661  //===--------------------------------------------------------------------===//
662  //                    Type Iterators.
663  //===--------------------------------------------------------------------===//
664
665  typedef std::vector<Type*>::iterator       type_iterator;
666  typedef std::vector<Type*>::const_iterator const_type_iterator;
667
668  type_iterator types_begin() { return Types.begin(); }
669  type_iterator types_end() { return Types.end(); }
670  const_type_iterator types_begin() const { return Types.begin(); }
671  const_type_iterator types_end() const { return Types.end(); }
672
673  //===--------------------------------------------------------------------===//
674  //                    Serialization
675  //===--------------------------------------------------------------------===//
676
677  void Emit(llvm::Serializer& S) const;
678  static ASTContext* Create(llvm::Deserializer& D);
679
680  //===--------------------------------------------------------------------===//
681  //                    Integer Values
682  //===--------------------------------------------------------------------===//
683
684  /// MakeIntValue - Make an APSInt of the appropriate width and
685  /// signedness for the given \arg Value and integer \arg Type.
686  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
687    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
688    Res = Value;
689    return Res;
690  }
691
692private:
693  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
694  void operator=(const ASTContext&); // DO NOT IMPLEMENT
695
696  void InitBuiltinTypes();
697  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
698
699  // Return the ObjC type encoding for a given type.
700  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
701                                  bool ExpandPointedToStructures,
702                                  bool ExpandStructures,
703                                  FieldDecl *Field,
704                                  bool OutermostType = false,
705                                  bool EncodingProperty = false) const;
706
707};
708
709}  // end namespace clang
710
711// operator new and delete aren't allowed inside namespaces.
712// The throw specifications are mandated by the standard.
713/// @brief Placement new for using the ASTContext's allocator.
714///
715/// This placement form of operator new uses the ASTContext's allocator for
716/// obtaining memory. It is a non-throwing new, which means that it returns
717/// null on error. (If that is what the allocator does. The current does, so if
718/// this ever changes, this operator will have to be changed, too.)
719/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
720/// @code
721/// // Default alignment (16)
722/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
723/// // Specific alignment
724/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
725/// @endcode
726/// Please note that you cannot use delete on the pointer; it must be
727/// deallocated using an explicit destructor call followed by
728/// @c Context.Deallocate(Ptr).
729///
730/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
731/// @param C The ASTContext that provides the allocator.
732/// @param Alignment The alignment of the allocated memory (if the underlying
733///                  allocator supports it).
734/// @return The allocated memory. Could be NULL.
735inline void *operator new(size_t Bytes, clang::ASTContext &C,
736                          size_t Alignment = 16) throw () {
737  return C.Allocate(Bytes, Alignment);
738}
739/// @brief Placement delete companion to the new above.
740///
741/// This operator is just a companion to the new above. There is no way of
742/// invoking it directly; see the new operator for more details. This operator
743/// is called implicitly by the compiler if a placement new expression using
744/// the ASTContext throws in the object constructor.
745inline void operator delete(void *Ptr, clang::ASTContext &C)
746              throw () {
747  C.Deallocate(Ptr);
748}
749
750/// This placement form of operator new[] uses the ASTContext's allocator for
751/// obtaining memory. It is a non-throwing new[], which means that it returns
752/// null on error.
753/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
754/// @code
755/// // Default alignment (16)
756/// char *data = new (Context) char[10];
757/// // Specific alignment
758/// char *data = new (Context, 8) char[10];
759/// @endcode
760/// Please note that you cannot use delete on the pointer; it must be
761/// deallocated using an explicit destructor call followed by
762/// @c Context.Deallocate(Ptr).
763///
764/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
765/// @param C The ASTContext that provides the allocator.
766/// @param Alignment The alignment of the allocated memory (if the underlying
767///                  allocator supports it).
768/// @return The allocated memory. Could be NULL.
769inline void *operator new[](size_t Bytes, clang::ASTContext& C,
770                            size_t Alignment = 16) throw () {
771  return C.Allocate(Bytes, Alignment);
772}
773
774/// @brief Placement delete[] companion to the new[] above.
775///
776/// This operator is just a companion to the new[] above. There is no way of
777/// invoking it directly; see the new[] operator for more details. This operator
778/// is called implicitly by the compiler if a placement new[] expression using
779/// the ASTContext throws in the object constructor.
780inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
781  C.Deallocate(Ptr);
782}
783
784#endif
785