ASTContext.h revision e6a365d772a6b455f1e23ac9ae5f40d65a55a18c
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "clang/AST/UsuallyTinyPtrVector.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/FoldingSet.h"
30#include "llvm/ADT/OwningPtr.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/Support/Allocator.h"
33#include <vector>
34
35namespace llvm {
36  struct fltSemantics;
37  class raw_ostream;
38}
39
40namespace clang {
41  class FileManager;
42  class ASTRecordLayout;
43  class BlockExpr;
44  class CharUnits;
45  class Diagnostic;
46  class Expr;
47  class ExternalASTSource;
48  class ASTMutationListener;
49  class IdentifierTable;
50  class SelectorTable;
51  class SourceManager;
52  class TargetInfo;
53  class CXXABI;
54  // Decls
55  class DeclContext;
56  class CXXMethodDecl;
57  class CXXRecordDecl;
58  class Decl;
59  class FieldDecl;
60  class ObjCIvarDecl;
61  class ObjCIvarRefExpr;
62  class ObjCPropertyDecl;
63  class RecordDecl;
64  class StoredDeclsMap;
65  class TagDecl;
66  class TemplateTemplateParmDecl;
67  class TemplateTypeParmDecl;
68  class TranslationUnitDecl;
69  class TypeDecl;
70  class TypedefDecl;
71  class UsingDecl;
72  class UsingShadowDecl;
73  class UnresolvedSetIterator;
74
75  namespace Builtin { class Context; }
76
77/// ASTContext - This class holds long-lived AST nodes (such as types and
78/// decls) that can be referred to throughout the semantic analysis of a file.
79class ASTContext {
80  ASTContext &this_() { return *this; }
81
82  std::vector<Type*> Types;
83  llvm::FoldingSet<ExtQuals> ExtQualNodes;
84  llvm::FoldingSet<ComplexType> ComplexTypes;
85  llvm::FoldingSet<PointerType> PointerTypes;
86  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
87  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
88  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
89  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
90  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
91  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
92  std::vector<VariableArrayType*> VariableArrayTypes;
93  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
94  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
95  llvm::FoldingSet<VectorType> VectorTypes;
96  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
97  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
98  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
99  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
100  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
101  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
102  llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
103    TemplateSpecializationTypes;
104  llvm::FoldingSet<ParenType> ParenTypes;
105  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
106  llvm::FoldingSet<DependentNameType> DependentNameTypes;
107  llvm::ContextualFoldingSet<DependentTemplateSpecializationType, ASTContext&>
108    DependentTemplateSpecializationTypes;
109  llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
110  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
111
112  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
113  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
114
115  /// \brief The set of nested name specifiers.
116  ///
117  /// This set is managed by the NestedNameSpecifier class.
118  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
119  NestedNameSpecifier *GlobalNestedNameSpecifier;
120  friend class NestedNameSpecifier;
121
122  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
123  ///  This is lazily created.  This is intentionally not serialized.
124  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
125  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
126
127  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
128  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
129
130  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
131  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
132
133  /// \brief Mapping from __block VarDecls to their copy initialization expr.
134  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
135
136  /// \brief Representation of a "canonical" template template parameter that
137  /// is used in canonical template names.
138  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
139    TemplateTemplateParmDecl *Parm;
140
141  public:
142    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
143      : Parm(Parm) { }
144
145    TemplateTemplateParmDecl *getParam() const { return Parm; }
146
147    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
148
149    static void Profile(llvm::FoldingSetNodeID &ID,
150                        TemplateTemplateParmDecl *Parm);
151  };
152  llvm::FoldingSet<CanonicalTemplateTemplateParm> CanonTemplateTemplateParms;
153
154  TemplateTemplateParmDecl *getCanonicalTemplateTemplateParmDecl(
155                                               TemplateTemplateParmDecl *TTP);
156
157  /// \brief Whether __[u]int128_t identifier is installed.
158  bool IsInt128Installed;
159
160  /// BuiltinVaListType - built-in va list type.
161  /// This is initially null and set by Sema::LazilyCreateBuiltin when
162  /// a builtin that takes a valist is encountered.
163  QualType BuiltinVaListType;
164
165  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
166  QualType ObjCIdTypedefType;
167
168  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
169  QualType ObjCSelTypedefType;
170
171  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
172  QualType ObjCProtoType;
173  const RecordType *ProtoStructType;
174
175  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
176  QualType ObjCClassTypedefType;
177
178  QualType ObjCConstantStringType;
179  RecordDecl *CFConstantStringTypeDecl;
180
181  RecordDecl *NSConstantStringTypeDecl;
182
183  RecordDecl *ObjCFastEnumerationStateTypeDecl;
184
185  /// \brief The type for the C FILE type.
186  TypeDecl *FILEDecl;
187
188  /// \brief The type for the C jmp_buf type.
189  TypeDecl *jmp_bufDecl;
190
191  /// \brief The type for the C sigjmp_buf type.
192  TypeDecl *sigjmp_bufDecl;
193
194  /// \brief Type for the Block descriptor for Blocks CodeGen.
195  RecordDecl *BlockDescriptorType;
196
197  /// \brief Type for the Block descriptor for Blocks CodeGen.
198  RecordDecl *BlockDescriptorExtendedType;
199
200  TypeSourceInfo NullTypeSourceInfo;
201
202  /// \brief Keeps track of all declaration attributes.
203  ///
204  /// Since so few decls have attrs, we keep them in a hash map instead of
205  /// wasting space in the Decl class.
206  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
207
208  /// \brief Keeps track of the static data member templates from which
209  /// static data members of class template specializations were instantiated.
210  ///
211  /// This data structure stores the mapping from instantiations of static
212  /// data members to the static data member representations within the
213  /// class template from which they were instantiated along with the kind
214  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
215  ///
216  /// Given the following example:
217  ///
218  /// \code
219  /// template<typename T>
220  /// struct X {
221  ///   static T value;
222  /// };
223  ///
224  /// template<typename T>
225  ///   T X<T>::value = T(17);
226  ///
227  /// int *x = &X<int>::value;
228  /// \endcode
229  ///
230  /// This mapping will contain an entry that maps from the VarDecl for
231  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
232  /// class template X) and will be marked TSK_ImplicitInstantiation.
233  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
234    InstantiatedFromStaticDataMember;
235
236  /// \brief Keeps track of the declaration from which a UsingDecl was
237  /// created during instantiation.  The source declaration is always
238  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
239  /// UnresolvedUsingTypenameDecl.
240  ///
241  /// For example:
242  /// \code
243  /// template<typename T>
244  /// struct A {
245  ///   void f();
246  /// };
247  ///
248  /// template<typename T>
249  /// struct B : A<T> {
250  ///   using A<T>::f;
251  /// };
252  ///
253  /// template struct B<int>;
254  /// \endcode
255  ///
256  /// This mapping will contain an entry that maps from the UsingDecl in
257  /// B<int> to the UnresolvedUsingDecl in B<T>.
258  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
259
260  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
261    InstantiatedFromUsingShadowDecl;
262
263  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
264
265  /// \brief Mapping that stores the methods overridden by a given C++
266  /// member function.
267  ///
268  /// Since most C++ member functions aren't virtual and therefore
269  /// don't override anything, we store the overridden functions in
270  /// this map on the side rather than within the CXXMethodDecl structure.
271  typedef UsuallyTinyPtrVector<const CXXMethodDecl> CXXMethodVector;
272  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
273
274  TranslationUnitDecl *TUDecl;
275
276  /// SourceMgr - The associated SourceManager object.
277  SourceManager &SourceMgr;
278
279  /// LangOpts - The language options used to create the AST associated with
280  ///  this ASTContext object.
281  LangOptions LangOpts;
282
283  /// \brief The allocator used to create AST objects.
284  ///
285  /// AST objects are never destructed; rather, all memory associated with the
286  /// AST objects will be released when the ASTContext itself is destroyed.
287  llvm::BumpPtrAllocator BumpAlloc;
288
289  /// \brief Allocator for partial diagnostics.
290  PartialDiagnostic::StorageAllocator DiagAllocator;
291
292  /// \brief The current C++ ABI.
293  llvm::OwningPtr<CXXABI> ABI;
294  CXXABI *createCXXABI(const TargetInfo &T);
295
296  friend class ASTDeclReader;
297
298public:
299  const TargetInfo &Target;
300  IdentifierTable &Idents;
301  SelectorTable &Selectors;
302  Builtin::Context &BuiltinInfo;
303  DeclarationNameTable DeclarationNames;
304  llvm::OwningPtr<ExternalASTSource> ExternalSource;
305  ASTMutationListener *Listener;
306  clang::PrintingPolicy PrintingPolicy;
307
308  // Typedefs which may be provided defining the structure of Objective-C
309  // pseudo-builtins
310  QualType ObjCIdRedefinitionType;
311  QualType ObjCClassRedefinitionType;
312  QualType ObjCSelRedefinitionType;
313
314  SourceManager& getSourceManager() { return SourceMgr; }
315  const SourceManager& getSourceManager() const { return SourceMgr; }
316  void *Allocate(unsigned Size, unsigned Align = 8) {
317    return BumpAlloc.Allocate(Size, Align);
318  }
319  void Deallocate(void *Ptr) { }
320
321  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
322    return DiagAllocator;
323  }
324
325  const LangOptions& getLangOptions() const { return LangOpts; }
326
327  Diagnostic &getDiagnostics() const;
328
329  FullSourceLoc getFullLoc(SourceLocation Loc) const {
330    return FullSourceLoc(Loc,SourceMgr);
331  }
332
333  /// \brief Retrieve the attributes for the given declaration.
334  AttrVec& getDeclAttrs(const Decl *D);
335
336  /// \brief Erase the attributes corresponding to the given declaration.
337  void eraseDeclAttrs(const Decl *D);
338
339  /// \brief If this variable is an instantiated static data member of a
340  /// class template specialization, returns the templated static data member
341  /// from which it was instantiated.
342  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
343                                                           const VarDecl *Var);
344
345  /// \brief Note that the static data member \p Inst is an instantiation of
346  /// the static data member template \p Tmpl of a class template.
347  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
348                                           TemplateSpecializationKind TSK,
349                        SourceLocation PointOfInstantiation = SourceLocation());
350
351  /// \brief If the given using decl is an instantiation of a
352  /// (possibly unresolved) using decl from a template instantiation,
353  /// return it.
354  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
355
356  /// \brief Remember that the using decl \p Inst is an instantiation
357  /// of the using decl \p Pattern of a class template.
358  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
359
360  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
361                                          UsingShadowDecl *Pattern);
362  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
363
364  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
365
366  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
367
368  // Access to the set of methods overridden by the given C++ method.
369  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
370  overridden_cxx_method_iterator
371  overridden_methods_begin(const CXXMethodDecl *Method) const;
372
373  overridden_cxx_method_iterator
374  overridden_methods_end(const CXXMethodDecl *Method) const;
375
376  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
377
378  /// \brief Note that the given C++ \p Method overrides the given \p
379  /// Overridden method.
380  void addOverriddenMethod(const CXXMethodDecl *Method,
381                           const CXXMethodDecl *Overridden);
382
383  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
384
385
386  // Builtin Types.
387  CanQualType VoidTy;
388  CanQualType BoolTy;
389  CanQualType CharTy;
390  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
391  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
392  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
393  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
394  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
395  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
396  CanQualType FloatTy, DoubleTy, LongDoubleTy;
397  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
398  CanQualType VoidPtrTy, NullPtrTy;
399  CanQualType OverloadTy, UndeducedAutoTy;
400  CanQualType DependentTy;
401  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
402
403  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
404             IdentifierTable &idents, SelectorTable &sels,
405             Builtin::Context &builtins,
406             unsigned size_reserve);
407
408  ~ASTContext();
409
410  /// \brief Attach an external AST source to the AST context.
411  ///
412  /// The external AST source provides the ability to load parts of
413  /// the abstract syntax tree as needed from some external storage,
414  /// e.g., a precompiled header.
415  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
416
417  /// \brief Retrieve a pointer to the external AST source associated
418  /// with this AST context, if any.
419  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
420
421  /// \brief Attach an AST mutation listener to the AST context.
422  ///
423  /// The AST mutation listener provides the ability to track modifications to
424  /// the abstract syntax tree entities committed after they were initially
425  /// created.
426  void setASTMutationListener(ASTMutationListener *Listener) {
427    this->Listener = Listener;
428  }
429
430  /// \brief Retrieve a pointer to the AST mutation listener associated
431  /// with this AST context, if any.
432  ASTMutationListener *getASTMutationListener() const { return Listener; }
433
434  void PrintStats() const;
435  const std::vector<Type*>& getTypes() const { return Types; }
436
437  //===--------------------------------------------------------------------===//
438  //                           Type Constructors
439  //===--------------------------------------------------------------------===//
440
441private:
442  /// getExtQualType - Return a type with extended qualifiers.
443  QualType getExtQualType(const Type *Base, Qualifiers Quals);
444
445  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
446
447public:
448  /// getAddSpaceQualType - Return the uniqued reference to the type for an
449  /// address space qualified type with the specified type and address space.
450  /// The resulting type has a union of the qualifiers from T and the address
451  /// space. If T already has an address space specifier, it is silently
452  /// replaced.
453  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
454
455  /// getObjCGCQualType - Returns the uniqued reference to the type for an
456  /// objc gc qualified type. The retulting type has a union of the qualifiers
457  /// from T and the gc attribute.
458  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
459
460  /// getRestrictType - Returns the uniqued reference to the type for a
461  /// 'restrict' qualified type.  The resulting type has a union of the
462  /// qualifiers from T and 'restrict'.
463  QualType getRestrictType(QualType T) {
464    return T.withFastQualifiers(Qualifiers::Restrict);
465  }
466
467  /// getVolatileType - Returns the uniqued reference to the type for a
468  /// 'volatile' qualified type.  The resulting type has a union of the
469  /// qualifiers from T and 'volatile'.
470  QualType getVolatileType(QualType T) {
471    return T.withFastQualifiers(Qualifiers::Volatile);
472  }
473
474  /// getConstType - Returns the uniqued reference to the type for a
475  /// 'const' qualified type.  The resulting type has a union of the
476  /// qualifiers from T and 'const'.
477  ///
478  /// It can be reasonably expected that this will always be
479  /// equivalent to calling T.withConst().
480  QualType getConstType(QualType T) { return T.withConst(); }
481
482  /// adjustFunctionType - Change the ExtInfo on a function type.
483  const FunctionType *adjustFunctionType(const FunctionType *Fn,
484                                         FunctionType::ExtInfo EInfo);
485
486  /// getNoReturnType - Add or remove the noreturn attribute to the given type
487  /// which must be a FunctionType or a pointer to an allowable type or a
488  /// BlockPointer.
489  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
490
491  /// getComplexType - Return the uniqued reference to the type for a complex
492  /// number with the specified element type.
493  QualType getComplexType(QualType T);
494  CanQualType getComplexType(CanQualType T) {
495    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
496  }
497
498  /// getPointerType - Return the uniqued reference to the type for a pointer to
499  /// the specified type.
500  QualType getPointerType(QualType T);
501  CanQualType getPointerType(CanQualType T) {
502    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
503  }
504
505  /// getBlockPointerType - Return the uniqued reference to the type for a block
506  /// of the specified type.
507  QualType getBlockPointerType(QualType T);
508
509  /// This gets the struct used to keep track of the descriptor for pointer to
510  /// blocks.
511  QualType getBlockDescriptorType();
512
513  // Set the type for a Block descriptor type.
514  void setBlockDescriptorType(QualType T);
515  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
516  QualType getRawBlockdescriptorType() {
517    if (BlockDescriptorType)
518      return getTagDeclType(BlockDescriptorType);
519    return QualType();
520  }
521
522  /// This gets the struct used to keep track of the extended descriptor for
523  /// pointer to blocks.
524  QualType getBlockDescriptorExtendedType();
525
526  // Set the type for a Block descriptor extended type.
527  void setBlockDescriptorExtendedType(QualType T);
528  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
529  /// built.
530  QualType getRawBlockdescriptorExtendedType() {
531    if (BlockDescriptorExtendedType)
532      return getTagDeclType(BlockDescriptorExtendedType);
533    return QualType();
534  }
535
536  /// This gets the struct used to keep track of pointer to blocks, complete
537  /// with captured variables.
538  QualType getBlockParmType(bool BlockHasCopyDispose,
539                            llvm::SmallVectorImpl<const Expr *> &Layout);
540
541  /// This builds the struct used for __block variables.
542  QualType BuildByRefType(llvm::StringRef DeclName, QualType Ty);
543
544  /// Returns true iff we need copy/dispose helpers for the given type.
545  bool BlockRequiresCopying(QualType Ty);
546
547  /// getLValueReferenceType - Return the uniqued reference to the type for an
548  /// lvalue reference to the specified type.
549  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
550
551  /// getRValueReferenceType - Return the uniqued reference to the type for an
552  /// rvalue reference to the specified type.
553  QualType getRValueReferenceType(QualType T);
554
555  /// getMemberPointerType - Return the uniqued reference to the type for a
556  /// member pointer to the specified type in the specified class. The class
557  /// is a Type because it could be a dependent name.
558  QualType getMemberPointerType(QualType T, const Type *Cls);
559
560  /// getVariableArrayType - Returns a non-unique reference to the type for a
561  /// variable array of the specified element type.
562  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
563                                ArrayType::ArraySizeModifier ASM,
564                                unsigned EltTypeQuals,
565                                SourceRange Brackets);
566
567  /// getDependentSizedArrayType - Returns a non-unique reference to
568  /// the type for a dependently-sized array of the specified element
569  /// type. FIXME: We will need these to be uniqued, or at least
570  /// comparable, at some point.
571  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
572                                      ArrayType::ArraySizeModifier ASM,
573                                      unsigned EltTypeQuals,
574                                      SourceRange Brackets);
575
576  /// getIncompleteArrayType - Returns a unique reference to the type for a
577  /// incomplete array of the specified element type.
578  QualType getIncompleteArrayType(QualType EltTy,
579                                  ArrayType::ArraySizeModifier ASM,
580                                  unsigned EltTypeQuals);
581
582  /// getConstantArrayType - Return the unique reference to the type for a
583  /// constant array of the specified element type.
584  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
585                                ArrayType::ArraySizeModifier ASM,
586                                unsigned EltTypeQuals);
587
588  /// getUnknownSizeVariableArrayType - Return a variable array type with
589  /// all variable indices replaced with unknow [*] size.
590  QualType getUnknownSizeVariableArrayType(QualType Ty);
591
592  /// getVariableArrayDecayedType - Returns a vla type where known sizes
593  /// are replaced with [*]
594  QualType getVariableArrayDecayedType(QualType Ty);
595
596  /// getVectorType - Return the unique reference to a vector type of
597  /// the specified element type and size. VectorType must be a built-in type.
598  QualType getVectorType(QualType VectorType, unsigned NumElts,
599                         VectorType::VectorKind VecKind);
600
601  /// getExtVectorType - Return the unique reference to an extended vector type
602  /// of the specified element type and size.  VectorType must be a built-in
603  /// type.
604  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
605
606  /// getDependentSizedExtVectorType - Returns a non-unique reference to
607  /// the type for a dependently-sized vector of the specified element
608  /// type. FIXME: We will need these to be uniqued, or at least
609  /// comparable, at some point.
610  QualType getDependentSizedExtVectorType(QualType VectorType,
611                                          Expr *SizeExpr,
612                                          SourceLocation AttrLoc);
613
614  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
615  ///
616  QualType getFunctionNoProtoType(QualType ResultTy,
617                                  const FunctionType::ExtInfo &Info);
618
619  QualType getFunctionNoProtoType(QualType ResultTy) {
620    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
621  }
622
623  /// getFunctionType - Return a normal function type with a typed
624  /// argument list.
625  QualType getFunctionType(QualType ResultTy,
626                           const QualType *Args, unsigned NumArgs,
627                           const FunctionProtoType::ExtProtoInfo &EPI);
628
629  /// getTypeDeclType - Return the unique reference to the type for
630  /// the specified type declaration.
631  QualType getTypeDeclType(const TypeDecl *Decl,
632                           const TypeDecl *PrevDecl = 0) {
633    assert(Decl && "Passed null for Decl param");
634    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
635
636    if (PrevDecl) {
637      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
638      Decl->TypeForDecl = PrevDecl->TypeForDecl;
639      return QualType(PrevDecl->TypeForDecl, 0);
640    }
641
642    return getTypeDeclTypeSlow(Decl);
643  }
644
645  /// getTypedefType - Return the unique reference to the type for the
646  /// specified typename decl.
647  QualType getTypedefType(const TypedefDecl *Decl, QualType Canon = QualType());
648
649  QualType getRecordType(const RecordDecl *Decl);
650
651  QualType getEnumType(const EnumDecl *Decl);
652
653  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
654
655  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
656                                        QualType Replacement);
657
658  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
659                                   bool ParameterPack,
660                                   IdentifierInfo *Name = 0);
661
662  QualType getTemplateSpecializationType(TemplateName T,
663                                         const TemplateArgument *Args,
664                                         unsigned NumArgs,
665                                         QualType Canon = QualType());
666
667  QualType getCanonicalTemplateSpecializationType(TemplateName T,
668                                                  const TemplateArgument *Args,
669                                                  unsigned NumArgs);
670
671  QualType getTemplateSpecializationType(TemplateName T,
672                                         const TemplateArgumentListInfo &Args,
673                                         QualType Canon = QualType());
674
675  TypeSourceInfo *
676  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
677                                    const TemplateArgumentListInfo &Args,
678                                    QualType Canon = QualType());
679
680  QualType getParenType(QualType NamedType);
681
682  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
683                             NestedNameSpecifier *NNS,
684                             QualType NamedType);
685  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
686                                NestedNameSpecifier *NNS,
687                                const IdentifierInfo *Name,
688                                QualType Canon = QualType());
689
690  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
691                                                  NestedNameSpecifier *NNS,
692                                                  const IdentifierInfo *Name,
693                                          const TemplateArgumentListInfo &Args);
694  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
695                                                  NestedNameSpecifier *NNS,
696                                                  const IdentifierInfo *Name,
697                                                  unsigned NumArgs,
698                                                  const TemplateArgument *Args);
699
700  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl);
701
702  QualType getObjCObjectType(QualType Base,
703                             ObjCProtocolDecl * const *Protocols,
704                             unsigned NumProtocols);
705
706  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type
707  /// for the given ObjCObjectType.
708  QualType getObjCObjectPointerType(QualType OIT);
709
710  /// getTypeOfType - GCC extension.
711  QualType getTypeOfExprType(Expr *e);
712  QualType getTypeOfType(QualType t);
713
714  /// getDecltypeType - C++0x decltype.
715  QualType getDecltypeType(Expr *e);
716
717  /// getTagDeclType - Return the unique reference to the type for the
718  /// specified TagDecl (struct/union/class/enum) decl.
719  QualType getTagDeclType(const TagDecl *Decl);
720
721  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
722  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
723  CanQualType getSizeType() const;
724
725  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
726  /// returns a type compatible with the type defined in <stddef.h> as defined
727  /// by the target.
728  QualType getWCharType() const { return WCharTy; }
729
730  /// getSignedWCharType - Return the type of "signed wchar_t".
731  /// Used when in C++, as a GCC extension.
732  QualType getSignedWCharType() const;
733
734  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
735  /// Used when in C++, as a GCC extension.
736  QualType getUnsignedWCharType() const;
737
738  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
739  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
740  QualType getPointerDiffType() const;
741
742  // getCFConstantStringType - Return the C structure type used to represent
743  // constant CFStrings.
744  QualType getCFConstantStringType();
745
746  // getNSConstantStringType - Return the C structure type used to represent
747  // constant NSStrings.
748  QualType getNSConstantStringType();
749  /// Get the structure type used to representation NSStrings, or NULL
750  /// if it hasn't yet been built.
751  QualType getRawNSConstantStringType() {
752    if (NSConstantStringTypeDecl)
753      return getTagDeclType(NSConstantStringTypeDecl);
754    return QualType();
755  }
756  void setNSConstantStringType(QualType T);
757
758
759  /// Get the structure type used to representation CFStrings, or NULL
760  /// if it hasn't yet been built.
761  QualType getRawCFConstantStringType() {
762    if (CFConstantStringTypeDecl)
763      return getTagDeclType(CFConstantStringTypeDecl);
764    return QualType();
765  }
766  void setCFConstantStringType(QualType T);
767
768  // This setter/getter represents the ObjC type for an NSConstantString.
769  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
770  QualType getObjCConstantStringInterface() const {
771    return ObjCConstantStringType;
772  }
773
774  //// This gets the struct used to keep track of fast enumerations.
775  QualType getObjCFastEnumerationStateType();
776
777  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
778  /// been built.
779  QualType getRawObjCFastEnumerationStateType() {
780    if (ObjCFastEnumerationStateTypeDecl)
781      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
782    return QualType();
783  }
784
785  void setObjCFastEnumerationStateType(QualType T);
786
787  /// \brief Set the type for the C FILE type.
788  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
789
790  /// \brief Retrieve the C FILE type.
791  QualType getFILEType() {
792    if (FILEDecl)
793      return getTypeDeclType(FILEDecl);
794    return QualType();
795  }
796
797  /// \brief Set the type for the C jmp_buf type.
798  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
799    this->jmp_bufDecl = jmp_bufDecl;
800  }
801
802  /// \brief Retrieve the C jmp_buf type.
803  QualType getjmp_bufType() {
804    if (jmp_bufDecl)
805      return getTypeDeclType(jmp_bufDecl);
806    return QualType();
807  }
808
809  /// \brief Set the type for the C sigjmp_buf type.
810  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
811    this->sigjmp_bufDecl = sigjmp_bufDecl;
812  }
813
814  /// \brief Retrieve the C sigjmp_buf type.
815  QualType getsigjmp_bufType() {
816    if (sigjmp_bufDecl)
817      return getTypeDeclType(sigjmp_bufDecl);
818    return QualType();
819  }
820
821  /// getObjCEncodingForType - Emit the ObjC type encoding for the
822  /// given type into \arg S. If \arg NameFields is specified then
823  /// record field names are also encoded.
824  void getObjCEncodingForType(QualType t, std::string &S,
825                              const FieldDecl *Field=0);
826
827  void getLegacyIntegralTypeEncoding(QualType &t) const;
828
829  // Put the string version of type qualifiers into S.
830  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
831                                       std::string &S) const;
832
833  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
834  /// declaration.
835  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
836
837  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
838  /// declaration.
839  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
840
841  /// getObjCEncodingForPropertyDecl - Return the encoded type for
842  /// this method declaration. If non-NULL, Container must be either
843  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
844  /// only be NULL when getting encodings for protocol properties.
845  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
846                                      const Decl *Container,
847                                      std::string &S);
848
849  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
850                                      ObjCProtocolDecl *rProto);
851
852  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
853  /// purpose in characters.
854  CharUnits getObjCEncodingTypeSize(QualType t);
855
856  /// \brief Whether __[u]int128_t identifier is installed.
857  bool isInt128Installed() const { return IsInt128Installed; }
858  void setInt128Installed() { IsInt128Installed = true; }
859
860  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
861  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
862  QualType getObjCIdType() const { return ObjCIdTypedefType; }
863  void setObjCIdType(QualType T);
864
865  void setObjCSelType(QualType T);
866  QualType getObjCSelType() const { return ObjCSelTypedefType; }
867
868  void setObjCProtoType(QualType QT);
869  QualType getObjCProtoType() const { return ObjCProtoType; }
870
871  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
872  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
873  /// struct.
874  QualType getObjCClassType() const { return ObjCClassTypedefType; }
875  void setObjCClassType(QualType T);
876
877  void setBuiltinVaListType(QualType T);
878  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
879
880  /// getCVRQualifiedType - Returns a type with additional const,
881  /// volatile, or restrict qualifiers.
882  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
883    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
884  }
885
886  /// getQualifiedType - Returns a type with additional qualifiers.
887  QualType getQualifiedType(QualType T, Qualifiers Qs) {
888    if (!Qs.hasNonFastQualifiers())
889      return T.withFastQualifiers(Qs.getFastQualifiers());
890    QualifierCollector Qc(Qs);
891    const Type *Ptr = Qc.strip(T);
892    return getExtQualType(Ptr, Qc);
893  }
894
895  /// getQualifiedType - Returns a type with additional qualifiers.
896  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
897    if (!Qs.hasNonFastQualifiers())
898      return QualType(T, Qs.getFastQualifiers());
899    return getExtQualType(T, Qs);
900  }
901
902  DeclarationNameInfo getNameForTemplate(TemplateName Name,
903                                         SourceLocation NameLoc);
904
905  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
906                                         UnresolvedSetIterator End);
907
908  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
909                                        bool TemplateKeyword,
910                                        TemplateDecl *Template);
911
912  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
913                                        const IdentifierInfo *Name);
914  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
915                                        OverloadedOperatorKind Operator);
916
917  enum GetBuiltinTypeError {
918    GE_None,              //< No error
919    GE_Missing_stdio,     //< Missing a type from <stdio.h>
920    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
921  };
922
923  /// GetBuiltinType - Return the type for the specified builtin.  If
924  /// IntegerConstantArgs is non-null, it is filled in with a bitmask of
925  /// arguments to the builtin that are required to be integer constant
926  /// expressions.
927  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
928                          unsigned *IntegerConstantArgs = 0);
929
930private:
931  CanQualType getFromTargetType(unsigned Type) const;
932
933  //===--------------------------------------------------------------------===//
934  //                         Type Predicates.
935  //===--------------------------------------------------------------------===//
936
937public:
938  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
939  /// garbage collection attribute.
940  ///
941  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
942
943  /// areCompatibleVectorTypes - Return true if the given vector types
944  /// are of the same unqualified type or if they are equivalent to the same
945  /// GCC vector type, ignoring whether they are target-specific (AltiVec or
946  /// Neon) types.
947  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
948
949  /// isObjCNSObjectType - Return true if this is an NSObject object with
950  /// its NSObject attribute set.
951  bool isObjCNSObjectType(QualType Ty) const;
952
953  //===--------------------------------------------------------------------===//
954  //                         Type Sizing and Analysis
955  //===--------------------------------------------------------------------===//
956
957  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
958  /// scalar floating point type.
959  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
960
961  /// getTypeInfo - Get the size and alignment of the specified complete type in
962  /// bits.
963  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
964  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
965    return getTypeInfo(T.getTypePtr());
966  }
967
968  /// getTypeSize - Return the size of the specified type, in bits.  This method
969  /// does not work on incomplete types.
970  uint64_t getTypeSize(QualType T) {
971    return getTypeInfo(T).first;
972  }
973  uint64_t getTypeSize(const Type *T) {
974    return getTypeInfo(T).first;
975  }
976
977  /// getCharWidth - Return the size of the character type, in bits
978  uint64_t getCharWidth() {
979    return getTypeSize(CharTy);
980  }
981
982  /// getTypeSizeInChars - Return the size of the specified type, in characters.
983  /// This method does not work on incomplete types.
984  CharUnits getTypeSizeInChars(QualType T);
985  CharUnits getTypeSizeInChars(const Type *T);
986
987  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
988  /// This method does not work on incomplete types.
989  unsigned getTypeAlign(QualType T) {
990    return getTypeInfo(T).second;
991  }
992  unsigned getTypeAlign(const Type *T) {
993    return getTypeInfo(T).second;
994  }
995
996  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
997  /// characters. This method does not work on incomplete types.
998  CharUnits getTypeAlignInChars(QualType T);
999  CharUnits getTypeAlignInChars(const Type *T);
1000
1001  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T);
1002  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T);
1003
1004  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
1005  /// type for the current target in bits.  This can be different than the ABI
1006  /// alignment in cases where it is beneficial for performance to overalign
1007  /// a data type.
1008  unsigned getPreferredTypeAlign(const Type *T);
1009
1010  /// getDeclAlign - Return a conservative estimate of the alignment of
1011  /// the specified decl.  Note that bitfields do not have a valid alignment, so
1012  /// this method will assert on them.
1013  /// If @p RefAsPointee, references are treated like their underlying type
1014  /// (for alignof), else they're treated like pointers (for CodeGen).
1015  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
1016
1017  /// getASTRecordLayout - Get or compute information about the layout of the
1018  /// specified record (struct/union/class), which indicates its size and field
1019  /// position information.
1020  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
1021
1022  /// getASTObjCInterfaceLayout - Get or compute information about the
1023  /// layout of the specified Objective-C interface.
1024  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
1025
1026  void DumpRecordLayout(const RecordDecl *RD, llvm::raw_ostream &OS);
1027
1028  /// getASTObjCImplementationLayout - Get or compute information about
1029  /// the layout of the specified Objective-C implementation. This may
1030  /// differ from the interface if synthesized ivars are present.
1031  const ASTRecordLayout &
1032  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
1033
1034  /// getKeyFunction - Get the key function for the given record decl, or NULL
1035  /// if there isn't one.  The key function is, according to the Itanium C++ ABI
1036  /// section 5.2.3:
1037  ///
1038  /// ...the first non-pure virtual function that is not inline at the point
1039  /// of class definition.
1040  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
1041
1042  bool isNearlyEmpty(const CXXRecordDecl *RD);
1043
1044  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
1045                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
1046
1047  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1048                            llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
1049
1050  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI);
1051  void CollectInheritedProtocols(const Decl *CDecl,
1052                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1053
1054  //===--------------------------------------------------------------------===//
1055  //                            Type Operators
1056  //===--------------------------------------------------------------------===//
1057
1058  /// getCanonicalType - Return the canonical (structural) type corresponding to
1059  /// the specified potentially non-canonical type.  The non-canonical version
1060  /// of a type may have many "decorated" versions of types.  Decorators can
1061  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
1062  /// to be free of any of these, allowing two canonical types to be compared
1063  /// for exact equality with a simple pointer comparison.
1064  CanQualType getCanonicalType(QualType T);
1065  const Type *getCanonicalType(const Type *T) {
1066    return T->getCanonicalTypeInternal().getTypePtr();
1067  }
1068
1069  /// getCanonicalParamType - Return the canonical parameter type
1070  /// corresponding to the specific potentially non-canonical one.
1071  /// Qualifiers are stripped off, functions are turned into function
1072  /// pointers, and arrays decay one level into pointers.
1073  CanQualType getCanonicalParamType(QualType T);
1074
1075  /// \brief Determine whether the given types are equivalent.
1076  bool hasSameType(QualType T1, QualType T2) {
1077    return getCanonicalType(T1) == getCanonicalType(T2);
1078  }
1079
1080  /// \brief Returns this type as a completely-unqualified array type,
1081  /// capturing the qualifiers in Quals. This will remove the minimal amount of
1082  /// sugaring from the types, similar to the behavior of
1083  /// QualType::getUnqualifiedType().
1084  ///
1085  /// \param T is the qualified type, which may be an ArrayType
1086  ///
1087  /// \param Quals will receive the full set of qualifiers that were
1088  /// applied to the array.
1089  ///
1090  /// \returns if this is an array type, the completely unqualified array type
1091  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1092  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1093
1094  /// \brief Determine whether the given types are equivalent after
1095  /// cvr-qualifiers have been removed.
1096  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1097    CanQualType CT1 = getCanonicalType(T1);
1098    CanQualType CT2 = getCanonicalType(T2);
1099
1100    Qualifiers Quals;
1101    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1102    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1103    return UnqualT1 == UnqualT2;
1104  }
1105
1106  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1107
1108  /// \brief Retrieves the "canonical" nested name specifier for a
1109  /// given nested name specifier.
1110  ///
1111  /// The canonical nested name specifier is a nested name specifier
1112  /// that uniquely identifies a type or namespace within the type
1113  /// system. For example, given:
1114  ///
1115  /// \code
1116  /// namespace N {
1117  ///   struct S {
1118  ///     template<typename T> struct X { typename T* type; };
1119  ///   };
1120  /// }
1121  ///
1122  /// template<typename T> struct Y {
1123  ///   typename N::S::X<T>::type member;
1124  /// };
1125  /// \endcode
1126  ///
1127  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1128  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1129  /// by declarations in the type system and the canonical type for
1130  /// the template type parameter 'T' is template-param-0-0.
1131  NestedNameSpecifier *
1132  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1133
1134  /// \brief Retrieves the default calling convention to use for
1135  /// C++ instance methods.
1136  CallingConv getDefaultMethodCallConv();
1137
1138  /// \brief Retrieves the canonical representation of the given
1139  /// calling convention.
1140  CallingConv getCanonicalCallConv(CallingConv CC) {
1141    if (CC == CC_C)
1142      return CC_Default;
1143    return CC;
1144  }
1145
1146  /// \brief Determines whether two calling conventions name the same
1147  /// calling convention.
1148  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1149    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1150  }
1151
1152  /// \brief Retrieves the "canonical" template name that refers to a
1153  /// given template.
1154  ///
1155  /// The canonical template name is the simplest expression that can
1156  /// be used to refer to a given template. For most templates, this
1157  /// expression is just the template declaration itself. For example,
1158  /// the template std::vector can be referred to via a variety of
1159  /// names---std::vector, ::std::vector, vector (if vector is in
1160  /// scope), etc.---but all of these names map down to the same
1161  /// TemplateDecl, which is used to form the canonical template name.
1162  ///
1163  /// Dependent template names are more interesting. Here, the
1164  /// template name could be something like T::template apply or
1165  /// std::allocator<T>::template rebind, where the nested name
1166  /// specifier itself is dependent. In this case, the canonical
1167  /// template name uses the shortest form of the dependent
1168  /// nested-name-specifier, which itself contains all canonical
1169  /// types, values, and templates.
1170  TemplateName getCanonicalTemplateName(TemplateName Name);
1171
1172  /// \brief Determine whether the given template names refer to the same
1173  /// template.
1174  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1175
1176  /// \brief Retrieve the "canonical" template argument.
1177  ///
1178  /// The canonical template argument is the simplest template argument
1179  /// (which may be a type, value, expression, or declaration) that
1180  /// expresses the value of the argument.
1181  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1182
1183  /// Type Query functions.  If the type is an instance of the specified class,
1184  /// return the Type pointer for the underlying maximally pretty type.  This
1185  /// is a member of ASTContext because this may need to do some amount of
1186  /// canonicalization, e.g. to move type qualifiers into the element type.
1187  const ArrayType *getAsArrayType(QualType T);
1188  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1189    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1190  }
1191  const VariableArrayType *getAsVariableArrayType(QualType T) {
1192    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1193  }
1194  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1195    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1196  }
1197  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1198    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1199  }
1200
1201  /// getBaseElementType - Returns the innermost element type of an array type.
1202  /// For example, will return "int" for int[m][n]
1203  QualType getBaseElementType(const ArrayType *VAT);
1204
1205  /// getBaseElementType - Returns the innermost element type of a type
1206  /// (which needn't actually be an array type).
1207  QualType getBaseElementType(QualType QT);
1208
1209  /// getConstantArrayElementCount - Returns number of constant array elements.
1210  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1211
1212  /// getArrayDecayedType - Return the properly qualified result of decaying the
1213  /// specified array type to a pointer.  This operation is non-trivial when
1214  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1215  /// this returns a pointer to a properly qualified element of the array.
1216  ///
1217  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1218  QualType getArrayDecayedType(QualType T);
1219
1220  /// getPromotedIntegerType - Returns the type that Promotable will
1221  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1222  /// integer type.
1223  QualType getPromotedIntegerType(QualType PromotableType);
1224
1225  /// \brief Whether this is a promotable bitfield reference according
1226  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1227  ///
1228  /// \returns the type this bit-field will promote to, or NULL if no
1229  /// promotion occurs.
1230  QualType isPromotableBitField(Expr *E);
1231
1232  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1233  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1234  /// LHS < RHS, return -1.
1235  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1236
1237  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1238  /// point types, ignoring the domain of the type (i.e. 'double' ==
1239  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1240  /// LHS < RHS, return -1.
1241  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1242
1243  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1244  /// point or a complex type (based on typeDomain/typeSize).
1245  /// 'typeDomain' is a real floating point or complex type.
1246  /// 'typeSize' is a real floating point or complex type.
1247  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1248                                             QualType typeDomain) const;
1249
1250private:
1251  // Helper for integer ordering
1252  unsigned getIntegerRank(Type* T);
1253
1254public:
1255
1256  //===--------------------------------------------------------------------===//
1257  //                    Type Compatibility Predicates
1258  //===--------------------------------------------------------------------===//
1259
1260  /// Compatibility predicates used to check assignment expressions.
1261  bool typesAreCompatible(QualType T1, QualType T2,
1262                          bool CompareUnqualified = false); // C99 6.2.7p1
1263
1264  bool typesAreBlockPointerCompatible(QualType, QualType);
1265
1266  bool isObjCIdType(QualType T) const {
1267    return T == ObjCIdTypedefType;
1268  }
1269  bool isObjCClassType(QualType T) const {
1270    return T == ObjCClassTypedefType;
1271  }
1272  bool isObjCSelType(QualType T) const {
1273    return T == ObjCSelTypedefType;
1274  }
1275  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1276  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1277                                         bool ForCompare);
1278
1279  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1280
1281  // Check the safety of assignment from LHS to RHS
1282  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1283                               const ObjCObjectPointerType *RHSOPT);
1284  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1285                               const ObjCObjectType *RHS);
1286  bool canAssignObjCInterfacesInBlockPointer(
1287                                          const ObjCObjectPointerType *LHSOPT,
1288                                          const ObjCObjectPointerType *RHSOPT);
1289  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1290  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1291                                   const ObjCObjectPointerType *RHSOPT);
1292  bool canBindObjCObjectType(QualType To, QualType From);
1293
1294  // Functions for calculating composite types
1295  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1296                      bool Unqualified = false);
1297  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1298                              bool Unqualified = false);
1299  QualType mergeFunctionArgumentTypes(QualType, QualType,
1300                                      bool OfBlockPointer=false,
1301                                      bool Unqualified = false);
1302  QualType mergeTransparentUnionType(QualType, QualType,
1303                                     bool OfBlockPointer=false,
1304                                     bool Unqualified = false);
1305
1306  QualType mergeObjCGCQualifiers(QualType, QualType);
1307
1308  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1309    ObjCLayouts[CD] = 0;
1310  }
1311
1312  //===--------------------------------------------------------------------===//
1313  //                    Integer Predicates
1314  //===--------------------------------------------------------------------===//
1315
1316  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1317  // of bits in an integer type excluding any padding bits.
1318  unsigned getIntWidth(QualType T);
1319
1320  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1321  // unsigned integer type.  This method takes a signed type, and returns the
1322  // corresponding unsigned integer type.
1323  QualType getCorrespondingUnsignedType(QualType T);
1324
1325  //===--------------------------------------------------------------------===//
1326  //                    Type Iterators.
1327  //===--------------------------------------------------------------------===//
1328
1329  typedef std::vector<Type*>::iterator       type_iterator;
1330  typedef std::vector<Type*>::const_iterator const_type_iterator;
1331
1332  type_iterator types_begin() { return Types.begin(); }
1333  type_iterator types_end() { return Types.end(); }
1334  const_type_iterator types_begin() const { return Types.begin(); }
1335  const_type_iterator types_end() const { return Types.end(); }
1336
1337  //===--------------------------------------------------------------------===//
1338  //                    Integer Values
1339  //===--------------------------------------------------------------------===//
1340
1341  /// MakeIntValue - Make an APSInt of the appropriate width and
1342  /// signedness for the given \arg Value and integer \arg Type.
1343  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1344    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1345    Res = Value;
1346    return Res;
1347  }
1348
1349  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1350  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1351  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1352  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1353
1354  /// \brief Set the implementation of ObjCInterfaceDecl.
1355  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1356                             ObjCImplementationDecl *ImplD);
1357  /// \brief Set the implementation of ObjCCategoryDecl.
1358  void setObjCImplementation(ObjCCategoryDecl *CatD,
1359                             ObjCCategoryImplDecl *ImplD);
1360
1361  /// \brief Set the copy inialization expression of a block var decl.
1362  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
1363  /// \brief Get the copy initialization expression of VarDecl,or NULL if
1364  /// none exists.
1365  Expr *getBlockVarCopyInits(const VarDecl*VD);
1366
1367  /// \brief Allocate an uninitialized TypeSourceInfo.
1368  ///
1369  /// The caller should initialize the memory held by TypeSourceInfo using
1370  /// the TypeLoc wrappers.
1371  ///
1372  /// \param T the type that will be the basis for type source info. This type
1373  /// should refer to how the declarator was written in source code, not to
1374  /// what type semantic analysis resolved the declarator to.
1375  ///
1376  /// \param Size the size of the type info to create, or 0 if the size
1377  /// should be calculated based on the type.
1378  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1379
1380  /// \brief Allocate a TypeSourceInfo where all locations have been
1381  /// initialized to a given location, which defaults to the empty
1382  /// location.
1383  TypeSourceInfo *
1384  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1385
1386  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
1387
1388  /// \brief Add a deallocation callback that will be invoked when the
1389  /// ASTContext is destroyed.
1390  ///
1391  /// \brief Callback A callback function that will be invoked on destruction.
1392  ///
1393  /// \brief Data Pointer data that will be provided to the callback function
1394  /// when it is called.
1395  void AddDeallocation(void (*Callback)(void*), void *Data);
1396
1397  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
1398  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
1399
1400  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
1401  /// lazily, only when used; this is only relevant for function or file scoped
1402  /// var definitions.
1403  ///
1404  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
1405  /// it is not used.
1406  bool DeclMustBeEmitted(const Decl *D);
1407
1408  //===--------------------------------------------------------------------===//
1409  //                    Statistics
1410  //===--------------------------------------------------------------------===//
1411
1412  /// \brief The number of implicitly-declared default constructors.
1413  static unsigned NumImplicitDefaultConstructors;
1414
1415  /// \brief The number of implicitly-declared default constructors for
1416  /// which declarations were built.
1417  static unsigned NumImplicitDefaultConstructorsDeclared;
1418
1419  /// \brief The number of implicitly-declared copy constructors.
1420  static unsigned NumImplicitCopyConstructors;
1421
1422  /// \brief The number of implicitly-declared copy constructors for
1423  /// which declarations were built.
1424  static unsigned NumImplicitCopyConstructorsDeclared;
1425
1426  /// \brief The number of implicitly-declared copy assignment operators.
1427  static unsigned NumImplicitCopyAssignmentOperators;
1428
1429  /// \brief The number of implicitly-declared copy assignment operators for
1430  /// which declarations were built.
1431  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
1432
1433  /// \brief The number of implicitly-declared destructors.
1434  static unsigned NumImplicitDestructors;
1435
1436  /// \brief The number of implicitly-declared destructors for which
1437  /// declarations were built.
1438  static unsigned NumImplicitDestructorsDeclared;
1439
1440private:
1441  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1442  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1443
1444  void InitBuiltinTypes();
1445  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1446
1447  // Return the ObjC type encoding for a given type.
1448  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1449                                  bool ExpandPointedToStructures,
1450                                  bool ExpandStructures,
1451                                  const FieldDecl *Field,
1452                                  bool OutermostType = false,
1453                                  bool EncodingProperty = false);
1454
1455  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1456                                       const ObjCImplementationDecl *Impl);
1457
1458private:
1459  /// \brief A set of deallocations that should be performed when the
1460  /// ASTContext is destroyed.
1461  llvm::SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
1462
1463  // FIXME: This currently contains the set of StoredDeclMaps used
1464  // by DeclContext objects.  This probably should not be in ASTContext,
1465  // but we include it here so that ASTContext can quickly deallocate them.
1466  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
1467
1468  /// \brief A counter used to uniquely identify "blocks".
1469  unsigned int UniqueBlockByRefTypeID;
1470  unsigned int UniqueBlockParmTypeID;
1471
1472  friend class DeclContext;
1473  friend class DeclarationNameTable;
1474  void ReleaseDeclContextMaps();
1475};
1476
1477/// @brief Utility function for constructing a nullary selector.
1478static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1479  IdentifierInfo* II = &Ctx.Idents.get(name);
1480  return Ctx.Selectors.getSelector(0, &II);
1481}
1482
1483/// @brief Utility function for constructing an unary selector.
1484static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1485  IdentifierInfo* II = &Ctx.Idents.get(name);
1486  return Ctx.Selectors.getSelector(1, &II);
1487}
1488
1489}  // end namespace clang
1490
1491// operator new and delete aren't allowed inside namespaces.
1492// The throw specifications are mandated by the standard.
1493/// @brief Placement new for using the ASTContext's allocator.
1494///
1495/// This placement form of operator new uses the ASTContext's allocator for
1496/// obtaining memory. It is a non-throwing new, which means that it returns
1497/// null on error. (If that is what the allocator does. The current does, so if
1498/// this ever changes, this operator will have to be changed, too.)
1499/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1500/// @code
1501/// // Default alignment (8)
1502/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1503/// // Specific alignment
1504/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1505/// @endcode
1506/// Please note that you cannot use delete on the pointer; it must be
1507/// deallocated using an explicit destructor call followed by
1508/// @c Context.Deallocate(Ptr).
1509///
1510/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1511/// @param C The ASTContext that provides the allocator.
1512/// @param Alignment The alignment of the allocated memory (if the underlying
1513///                  allocator supports it).
1514/// @return The allocated memory. Could be NULL.
1515inline void *operator new(size_t Bytes, clang::ASTContext &C,
1516                          size_t Alignment) throw () {
1517  return C.Allocate(Bytes, Alignment);
1518}
1519/// @brief Placement delete companion to the new above.
1520///
1521/// This operator is just a companion to the new above. There is no way of
1522/// invoking it directly; see the new operator for more details. This operator
1523/// is called implicitly by the compiler if a placement new expression using
1524/// the ASTContext throws in the object constructor.
1525inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1526              throw () {
1527  C.Deallocate(Ptr);
1528}
1529
1530/// This placement form of operator new[] uses the ASTContext's allocator for
1531/// obtaining memory. It is a non-throwing new[], which means that it returns
1532/// null on error.
1533/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1534/// @code
1535/// // Default alignment (8)
1536/// char *data = new (Context) char[10];
1537/// // Specific alignment
1538/// char *data = new (Context, 4) char[10];
1539/// @endcode
1540/// Please note that you cannot use delete on the pointer; it must be
1541/// deallocated using an explicit destructor call followed by
1542/// @c Context.Deallocate(Ptr).
1543///
1544/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1545/// @param C The ASTContext that provides the allocator.
1546/// @param Alignment The alignment of the allocated memory (if the underlying
1547///                  allocator supports it).
1548/// @return The allocated memory. Could be NULL.
1549inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1550                            size_t Alignment = 8) throw () {
1551  return C.Allocate(Bytes, Alignment);
1552}
1553
1554/// @brief Placement delete[] companion to the new[] above.
1555///
1556/// This operator is just a companion to the new[] above. There is no way of
1557/// invoking it directly; see the new[] operator for more details. This operator
1558/// is called implicitly by the compiler if a placement new[] expression using
1559/// the ASTContext throws in the object constructor.
1560inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1561              throw () {
1562  C.Deallocate(Ptr);
1563}
1564
1565#endif
1566