ASTContext.h revision eec51cf1ba5f0e62c9cdb81b5c63babdd6e649ab
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/Support/Allocator.h"
31#include <vector>
32
33namespace llvm {
34  struct fltSemantics;
35}
36
37namespace clang {
38  class FileManager;
39  class ASTRecordLayout;
40  class BlockExpr;
41  class CharUnits;
42  class Expr;
43  class ExternalASTSource;
44  class IdentifierTable;
45  class SelectorTable;
46  class SourceManager;
47  class TargetInfo;
48  // Decls
49  class CXXMethodDecl;
50  class CXXRecordDecl;
51  class Decl;
52  class FieldDecl;
53  class ObjCIvarDecl;
54  class ObjCIvarRefExpr;
55  class ObjCPropertyDecl;
56  class RecordDecl;
57  class TagDecl;
58  class TemplateTypeParmDecl;
59  class TranslationUnitDecl;
60  class TypeDecl;
61  class TypedefDecl;
62  class UsingDecl;
63  class UsingShadowDecl;
64  class UnresolvedSetIterator;
65
66  namespace Builtin { class Context; }
67
68/// ASTContext - This class holds long-lived AST nodes (such as types and
69/// decls) that can be referred to throughout the semantic analysis of a file.
70class ASTContext {
71  std::vector<Type*> Types;
72  llvm::FoldingSet<ExtQuals> ExtQualNodes;
73  llvm::FoldingSet<ComplexType> ComplexTypes;
74  llvm::FoldingSet<PointerType> PointerTypes;
75  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
76  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
77  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
78  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
79  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
80  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
81  std::vector<VariableArrayType*> VariableArrayTypes;
82  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
83  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
84  llvm::FoldingSet<VectorType> VectorTypes;
85  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
86  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
87  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
88  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
89  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
90  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
91  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
92  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
93  llvm::FoldingSet<TypenameType> TypenameTypes;
94  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
95  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
96  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
97
98  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
99  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
100
101  /// \brief The set of nested name specifiers.
102  ///
103  /// This set is managed by the NestedNameSpecifier class.
104  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
105  NestedNameSpecifier *GlobalNestedNameSpecifier;
106  friend class NestedNameSpecifier;
107
108  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
109  ///  This is lazily created.  This is intentionally not serialized.
110  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
111  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
112
113  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
114  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
115
116  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
117  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
118
119  /// BuiltinVaListType - built-in va list type.
120  /// This is initially null and set by Sema::LazilyCreateBuiltin when
121  /// a builtin that takes a valist is encountered.
122  QualType BuiltinVaListType;
123
124  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
125  QualType ObjCIdTypedefType;
126
127  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
128  QualType ObjCSelTypedefType;
129
130  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
131  QualType ObjCProtoType;
132  const RecordType *ProtoStructType;
133
134  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
135  QualType ObjCClassTypedefType;
136
137  QualType ObjCConstantStringType;
138  RecordDecl *CFConstantStringTypeDecl;
139
140  RecordDecl *ObjCFastEnumerationStateTypeDecl;
141
142  /// \brief The type for the C FILE type.
143  TypeDecl *FILEDecl;
144
145  /// \brief The type for the C jmp_buf type.
146  TypeDecl *jmp_bufDecl;
147
148  /// \brief The type for the C sigjmp_buf type.
149  TypeDecl *sigjmp_bufDecl;
150
151  /// \brief Type for the Block descriptor for Blocks CodeGen.
152  RecordDecl *BlockDescriptorType;
153
154  /// \brief Type for the Block descriptor for Blocks CodeGen.
155  RecordDecl *BlockDescriptorExtendedType;
156
157  /// \brief Keeps track of all declaration attributes.
158  ///
159  /// Since so few decls have attrs, we keep them in a hash map instead of
160  /// wasting space in the Decl class.
161  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
162
163  /// \brief Keeps track of the static data member templates from which
164  /// static data members of class template specializations were instantiated.
165  ///
166  /// This data structure stores the mapping from instantiations of static
167  /// data members to the static data member representations within the
168  /// class template from which they were instantiated along with the kind
169  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
170  ///
171  /// Given the following example:
172  ///
173  /// \code
174  /// template<typename T>
175  /// struct X {
176  ///   static T value;
177  /// };
178  ///
179  /// template<typename T>
180  ///   T X<T>::value = T(17);
181  ///
182  /// int *x = &X<int>::value;
183  /// \endcode
184  ///
185  /// This mapping will contain an entry that maps from the VarDecl for
186  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
187  /// class template X) and will be marked TSK_ImplicitInstantiation.
188  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
189    InstantiatedFromStaticDataMember;
190
191  /// \brief Keeps track of the declaration from which a UsingDecl was
192  /// created during instantiation.  The source declaration is always
193  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
194  /// UnresolvedUsingTypenameDecl.
195  ///
196  /// For example:
197  /// \code
198  /// template<typename T>
199  /// struct A {
200  ///   void f();
201  /// };
202  ///
203  /// template<typename T>
204  /// struct B : A<T> {
205  ///   using A<T>::f;
206  /// };
207  ///
208  /// template struct B<int>;
209  /// \endcode
210  ///
211  /// This mapping will contain an entry that maps from the UsingDecl in
212  /// B<int> to the UnresolvedUsingDecl in B<T>.
213  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
214
215  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
216    InstantiatedFromUsingShadowDecl;
217
218  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
219
220  TranslationUnitDecl *TUDecl;
221
222  /// SourceMgr - The associated SourceManager object.
223  SourceManager &SourceMgr;
224
225  /// LangOpts - The language options used to create the AST associated with
226  ///  this ASTContext object.
227  LangOptions LangOpts;
228
229  /// \brief Whether we have already loaded comment source ranges from an
230  /// external source.
231  bool LoadedExternalComments;
232
233  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
234  bool FreeMemory;
235  llvm::MallocAllocator MallocAlloc;
236  llvm::BumpPtrAllocator BumpAlloc;
237
238  /// \brief Mapping from declarations to their comments, once we have
239  /// already looked up the comment associated with a given declaration.
240  llvm::DenseMap<const Decl *, std::string> DeclComments;
241
242public:
243  const TargetInfo &Target;
244  IdentifierTable &Idents;
245  SelectorTable &Selectors;
246  Builtin::Context &BuiltinInfo;
247  DeclarationNameTable DeclarationNames;
248  llvm::OwningPtr<ExternalASTSource> ExternalSource;
249  clang::PrintingPolicy PrintingPolicy;
250
251  // Typedefs which may be provided defining the structure of Objective-C
252  // pseudo-builtins
253  QualType ObjCIdRedefinitionType;
254  QualType ObjCClassRedefinitionType;
255  QualType ObjCSelRedefinitionType;
256
257  /// \brief Source ranges for all of the comments in the source file,
258  /// sorted in order of appearance in the translation unit.
259  std::vector<SourceRange> Comments;
260
261  SourceManager& getSourceManager() { return SourceMgr; }
262  const SourceManager& getSourceManager() const { return SourceMgr; }
263  void *Allocate(unsigned Size, unsigned Align = 8) {
264    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
265                        BumpAlloc.Allocate(Size, Align);
266  }
267  void Deallocate(void *Ptr) {
268    if (FreeMemory)
269      MallocAlloc.Deallocate(Ptr);
270  }
271  const LangOptions& getLangOptions() const { return LangOpts; }
272
273  FullSourceLoc getFullLoc(SourceLocation Loc) const {
274    return FullSourceLoc(Loc,SourceMgr);
275  }
276
277  /// \brief Retrieve the attributes for the given declaration.
278  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
279
280  /// \brief Erase the attributes corresponding to the given declaration.
281  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
282
283  /// \brief If this variable is an instantiated static data member of a
284  /// class template specialization, returns the templated static data member
285  /// from which it was instantiated.
286  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
287                                                           const VarDecl *Var);
288
289  /// \brief Note that the static data member \p Inst is an instantiation of
290  /// the static data member template \p Tmpl of a class template.
291  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
292                                           TemplateSpecializationKind TSK);
293
294  /// \brief If the given using decl is an instantiation of a
295  /// (possibly unresolved) using decl from a template instantiation,
296  /// return it.
297  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
298
299  /// \brief Remember that the using decl \p Inst is an instantiation
300  /// of the using decl \p Pattern of a class template.
301  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
302
303  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
304                                          UsingShadowDecl *Pattern);
305  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
306
307  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
308
309  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
310
311  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
312
313
314  const char *getCommentForDecl(const Decl *D);
315
316  // Builtin Types.
317  CanQualType VoidTy;
318  CanQualType BoolTy;
319  CanQualType CharTy;
320  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
321  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
322  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
323  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
324  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
325  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
326  CanQualType FloatTy, DoubleTy, LongDoubleTy;
327  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
328  CanQualType VoidPtrTy, NullPtrTy;
329  CanQualType OverloadTy;
330  CanQualType DependentTy;
331  CanQualType UndeducedAutoTy;
332  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
333
334  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
335             IdentifierTable &idents, SelectorTable &sels,
336             Builtin::Context &builtins,
337             bool FreeMemory = true, unsigned size_reserve=0);
338
339  ~ASTContext();
340
341  /// \brief Attach an external AST source to the AST context.
342  ///
343  /// The external AST source provides the ability to load parts of
344  /// the abstract syntax tree as needed from some external storage,
345  /// e.g., a precompiled header.
346  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
347
348  /// \brief Retrieve a pointer to the external AST source associated
349  /// with this AST context, if any.
350  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
351
352  void PrintStats() const;
353  const std::vector<Type*>& getTypes() const { return Types; }
354
355  //===--------------------------------------------------------------------===//
356  //                           Type Constructors
357  //===--------------------------------------------------------------------===//
358
359private:
360  /// getExtQualType - Return a type with extended qualifiers.
361  QualType getExtQualType(const Type *Base, Qualifiers Quals);
362
363public:
364  /// getAddSpaceQualType - Return the uniqued reference to the type for an
365  /// address space qualified type with the specified type and address space.
366  /// The resulting type has a union of the qualifiers from T and the address
367  /// space. If T already has an address space specifier, it is silently
368  /// replaced.
369  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
370
371  /// getObjCGCQualType - Returns the uniqued reference to the type for an
372  /// objc gc qualified type. The retulting type has a union of the qualifiers
373  /// from T and the gc attribute.
374  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
375
376  /// getRestrictType - Returns the uniqued reference to the type for a
377  /// 'restrict' qualified type.  The resulting type has a union of the
378  /// qualifiers from T and 'restrict'.
379  QualType getRestrictType(QualType T) {
380    return T.withFastQualifiers(Qualifiers::Restrict);
381  }
382
383  /// getVolatileType - Returns the uniqued reference to the type for a
384  /// 'volatile' qualified type.  The resulting type has a union of the
385  /// qualifiers from T and 'volatile'.
386  QualType getVolatileType(QualType T);
387
388  /// getConstType - Returns the uniqued reference to the type for a
389  /// 'const' qualified type.  The resulting type has a union of the
390  /// qualifiers from T and 'const'.
391  ///
392  /// It can be reasonably expected that this will always be
393  /// equivalent to calling T.withConst().
394  QualType getConstType(QualType T) { return T.withConst(); }
395
396  /// getNoReturnType - Add or remove the noreturn attribute to the given type
397  /// which must be a FunctionType or a pointer to an allowable type or a
398  /// BlockPointer.
399  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
400
401  /// getCallConvType - Adds the specified calling convention attribute to
402  /// the given type, which must be a FunctionType or a pointer to an
403  /// allowable type.
404  QualType getCallConvType(QualType T, CallingConv CallConv);
405
406  /// getComplexType - Return the uniqued reference to the type for a complex
407  /// number with the specified element type.
408  QualType getComplexType(QualType T);
409  CanQualType getComplexType(CanQualType T) {
410    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
411  }
412
413  /// getPointerType - Return the uniqued reference to the type for a pointer to
414  /// the specified type.
415  QualType getPointerType(QualType T);
416  CanQualType getPointerType(CanQualType T) {
417    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
418  }
419
420  /// getBlockPointerType - Return the uniqued reference to the type for a block
421  /// of the specified type.
422  QualType getBlockPointerType(QualType T);
423
424  /// This gets the struct used to keep track of the descriptor for pointer to
425  /// blocks.
426  QualType getBlockDescriptorType();
427
428  // Set the type for a Block descriptor type.
429  void setBlockDescriptorType(QualType T);
430  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
431  QualType getRawBlockdescriptorType() {
432    if (BlockDescriptorType)
433      return getTagDeclType(BlockDescriptorType);
434    return QualType();
435  }
436
437  /// This gets the struct used to keep track of the extended descriptor for
438  /// pointer to blocks.
439  QualType getBlockDescriptorExtendedType();
440
441  // Set the type for a Block descriptor extended type.
442  void setBlockDescriptorExtendedType(QualType T);
443  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
444  /// built.
445  QualType getRawBlockdescriptorExtendedType() {
446    if (BlockDescriptorExtendedType)
447      return getTagDeclType(BlockDescriptorExtendedType);
448    return QualType();
449  }
450
451  /// This gets the struct used to keep track of pointer to blocks, complete
452  /// with captured variables.
453  QualType getBlockParmType(bool BlockHasCopyDispose,
454                            llvm::SmallVector<const Expr *, 8> &BDRDs);
455
456  /// This builds the struct used for __block variables.
457  QualType BuildByRefType(const char *DeclName, QualType Ty);
458
459  /// Returns true iff we need copy/dispose helpers for the given type.
460  bool BlockRequiresCopying(QualType Ty);
461
462  /// getLValueReferenceType - Return the uniqued reference to the type for an
463  /// lvalue reference to the specified type.
464  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
465
466  /// getRValueReferenceType - Return the uniqued reference to the type for an
467  /// rvalue reference to the specified type.
468  QualType getRValueReferenceType(QualType T);
469
470  /// getMemberPointerType - Return the uniqued reference to the type for a
471  /// member pointer to the specified type in the specified class. The class
472  /// is a Type because it could be a dependent name.
473  QualType getMemberPointerType(QualType T, const Type *Cls);
474
475  /// getVariableArrayType - Returns a non-unique reference to the type for a
476  /// variable array of the specified element type.
477  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
478                                ArrayType::ArraySizeModifier ASM,
479                                unsigned EltTypeQuals,
480                                SourceRange Brackets);
481
482  /// getDependentSizedArrayType - Returns a non-unique reference to
483  /// the type for a dependently-sized array of the specified element
484  /// type. FIXME: We will need these to be uniqued, or at least
485  /// comparable, at some point.
486  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
487                                      ArrayType::ArraySizeModifier ASM,
488                                      unsigned EltTypeQuals,
489                                      SourceRange Brackets);
490
491  /// getIncompleteArrayType - Returns a unique reference to the type for a
492  /// incomplete array of the specified element type.
493  QualType getIncompleteArrayType(QualType EltTy,
494                                  ArrayType::ArraySizeModifier ASM,
495                                  unsigned EltTypeQuals);
496
497  /// getConstantArrayType - Return the unique reference to the type for a
498  /// constant array of the specified element type.
499  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
500                                ArrayType::ArraySizeModifier ASM,
501                                unsigned EltTypeQuals);
502
503  /// getVectorType - Return the unique reference to a vector type of
504  /// the specified element type and size. VectorType must be a built-in type.
505  QualType getVectorType(QualType VectorType, unsigned NumElts);
506
507  /// getExtVectorType - Return the unique reference to an extended vector type
508  /// of the specified element type and size.  VectorType must be a built-in
509  /// type.
510  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
511
512  /// getDependentSizedExtVectorType - Returns a non-unique reference to
513  /// the type for a dependently-sized vector of the specified element
514  /// type. FIXME: We will need these to be uniqued, or at least
515  /// comparable, at some point.
516  QualType getDependentSizedExtVectorType(QualType VectorType,
517                                          Expr *SizeExpr,
518                                          SourceLocation AttrLoc);
519
520  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
521  ///
522  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false,
523                                  CallingConv CallConv = CC_Default);
524
525  /// getFunctionType - Return a normal function type with a typed argument
526  /// list.  isVariadic indicates whether the argument list includes '...'.
527  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
528                           unsigned NumArgs, bool isVariadic,
529                           unsigned TypeQuals, bool hasExceptionSpec = false,
530                           bool hasAnyExceptionSpec = false,
531                           unsigned NumExs = 0, const QualType *ExArray = 0,
532                           bool NoReturn = false,
533                           CallingConv CallConv = CC_Default);
534
535  /// getTypeDeclType - Return the unique reference to the type for
536  /// the specified type declaration.
537  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
538
539  /// getTypedefType - Return the unique reference to the type for the
540  /// specified typename decl.
541  QualType getTypedefType(TypedefDecl *Decl);
542
543  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
544                                        QualType Replacement);
545
546  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
547                                   bool ParameterPack,
548                                   IdentifierInfo *Name = 0);
549
550  QualType getTemplateSpecializationType(TemplateName T,
551                                         const TemplateArgument *Args,
552                                         unsigned NumArgs,
553                                         QualType Canon = QualType());
554
555  QualType getTemplateSpecializationType(TemplateName T,
556                                         const TemplateArgumentListInfo &Args,
557                                         QualType Canon = QualType());
558
559  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
560                                QualType NamedType);
561  QualType getTypenameType(NestedNameSpecifier *NNS,
562                           const IdentifierInfo *Name,
563                           QualType Canon = QualType());
564  QualType getTypenameType(NestedNameSpecifier *NNS,
565                           const TemplateSpecializationType *TemplateId,
566                           QualType Canon = QualType());
567  QualType getElaboratedType(QualType UnderlyingType,
568                             ElaboratedType::TagKind Tag);
569
570  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
571                                ObjCProtocolDecl **Protocols = 0,
572                                unsigned NumProtocols = 0);
573
574  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
575  /// given interface decl and the conforming protocol list.
576  QualType getObjCObjectPointerType(QualType OIT,
577                                    ObjCProtocolDecl **ProtocolList = 0,
578                                    unsigned NumProtocols = 0);
579
580  /// getTypeOfType - GCC extension.
581  QualType getTypeOfExprType(Expr *e);
582  QualType getTypeOfType(QualType t);
583
584  /// getDecltypeType - C++0x decltype.
585  QualType getDecltypeType(Expr *e);
586
587  /// getTagDeclType - Return the unique reference to the type for the
588  /// specified TagDecl (struct/union/class/enum) decl.
589  QualType getTagDeclType(const TagDecl *Decl);
590
591  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
592  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
593  CanQualType getSizeType() const;
594
595  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
596  /// returns a type compatible with the type defined in <stddef.h> as defined
597  /// by the target.
598  QualType getWCharType() const { return WCharTy; }
599
600  /// getSignedWCharType - Return the type of "signed wchar_t".
601  /// Used when in C++, as a GCC extension.
602  QualType getSignedWCharType() const;
603
604  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
605  /// Used when in C++, as a GCC extension.
606  QualType getUnsignedWCharType() const;
607
608  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
609  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
610  QualType getPointerDiffType() const;
611
612  // getCFConstantStringType - Return the C structure type used to represent
613  // constant CFStrings.
614  QualType getCFConstantStringType();
615
616  /// Get the structure type used to representation CFStrings, or NULL
617  /// if it hasn't yet been built.
618  QualType getRawCFConstantStringType() {
619    if (CFConstantStringTypeDecl)
620      return getTagDeclType(CFConstantStringTypeDecl);
621    return QualType();
622  }
623  void setCFConstantStringType(QualType T);
624
625  // This setter/getter represents the ObjC type for an NSConstantString.
626  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
627  QualType getObjCConstantStringInterface() const {
628    return ObjCConstantStringType;
629  }
630
631  //// This gets the struct used to keep track of fast enumerations.
632  QualType getObjCFastEnumerationStateType();
633
634  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
635  /// been built.
636  QualType getRawObjCFastEnumerationStateType() {
637    if (ObjCFastEnumerationStateTypeDecl)
638      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
639    return QualType();
640  }
641
642  void setObjCFastEnumerationStateType(QualType T);
643
644  /// \brief Set the type for the C FILE type.
645  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
646
647  /// \brief Retrieve the C FILE type.
648  QualType getFILEType() {
649    if (FILEDecl)
650      return getTypeDeclType(FILEDecl);
651    return QualType();
652  }
653
654  /// \brief Set the type for the C jmp_buf type.
655  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
656    this->jmp_bufDecl = jmp_bufDecl;
657  }
658
659  /// \brief Retrieve the C jmp_buf type.
660  QualType getjmp_bufType() {
661    if (jmp_bufDecl)
662      return getTypeDeclType(jmp_bufDecl);
663    return QualType();
664  }
665
666  /// \brief Set the type for the C sigjmp_buf type.
667  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
668    this->sigjmp_bufDecl = sigjmp_bufDecl;
669  }
670
671  /// \brief Retrieve the C sigjmp_buf type.
672  QualType getsigjmp_bufType() {
673    if (sigjmp_bufDecl)
674      return getTypeDeclType(sigjmp_bufDecl);
675    return QualType();
676  }
677
678  /// getObjCEncodingForType - Emit the ObjC type encoding for the
679  /// given type into \arg S. If \arg NameFields is specified then
680  /// record field names are also encoded.
681  void getObjCEncodingForType(QualType t, std::string &S,
682                              const FieldDecl *Field=0);
683
684  void getLegacyIntegralTypeEncoding(QualType &t) const;
685
686  // Put the string version of type qualifiers into S.
687  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
688                                       std::string &S) const;
689
690  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
691  /// declaration.
692  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
693
694  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
695  /// declaration.
696  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
697
698  /// getObjCEncodingForPropertyDecl - Return the encoded type for
699  /// this method declaration. If non-NULL, Container must be either
700  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
701  /// only be NULL when getting encodings for protocol properties.
702  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
703                                      const Decl *Container,
704                                      std::string &S);
705
706  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
707                                      ObjCProtocolDecl *rProto);
708
709  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
710  /// purpose in characters.
711  CharUnits getObjCEncodingTypeSize(QualType t);
712
713  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
714  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
715  QualType getObjCIdType() const { return ObjCIdTypedefType; }
716  void setObjCIdType(QualType T);
717
718  void setObjCSelType(QualType T);
719  QualType getObjCSelType() const { return ObjCSelTypedefType; }
720
721  void setObjCProtoType(QualType QT);
722  QualType getObjCProtoType() const { return ObjCProtoType; }
723
724  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
725  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
726  /// struct.
727  QualType getObjCClassType() const { return ObjCClassTypedefType; }
728  void setObjCClassType(QualType T);
729
730  void setBuiltinVaListType(QualType T);
731  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
732
733  /// getCVRQualifiedType - Returns a type with additional const,
734  /// volatile, or restrict qualifiers.
735  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
736    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
737  }
738
739  /// getQualifiedType - Returns a type with additional qualifiers.
740  QualType getQualifiedType(QualType T, Qualifiers Qs) {
741    if (!Qs.hasNonFastQualifiers())
742      return T.withFastQualifiers(Qs.getFastQualifiers());
743    QualifierCollector Qc(Qs);
744    const Type *Ptr = Qc.strip(T);
745    return getExtQualType(Ptr, Qc);
746  }
747
748  /// getQualifiedType - Returns a type with additional qualifiers.
749  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
750    if (!Qs.hasNonFastQualifiers())
751      return QualType(T, Qs.getFastQualifiers());
752    return getExtQualType(T, Qs);
753  }
754
755  DeclarationName getNameForTemplate(TemplateName Name);
756
757  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
758                                         UnresolvedSetIterator End);
759
760  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
761                                        bool TemplateKeyword,
762                                        TemplateDecl *Template);
763
764  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
765                                        const IdentifierInfo *Name);
766  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
767                                        OverloadedOperatorKind Operator);
768
769  enum GetBuiltinTypeError {
770    GE_None,              //< No error
771    GE_Missing_stdio,     //< Missing a type from <stdio.h>
772    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
773  };
774
775  /// GetBuiltinType - Return the type for the specified builtin.
776  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
777
778private:
779  CanQualType getFromTargetType(unsigned Type) const;
780
781  //===--------------------------------------------------------------------===//
782  //                         Type Predicates.
783  //===--------------------------------------------------------------------===//
784
785public:
786  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
787  /// garbage collection attribute.
788  ///
789  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
790
791  /// isObjCNSObjectType - Return true if this is an NSObject object with
792  /// its NSObject attribute set.
793  bool isObjCNSObjectType(QualType Ty) const;
794
795  //===--------------------------------------------------------------------===//
796  //                         Type Sizing and Analysis
797  //===--------------------------------------------------------------------===//
798
799  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
800  /// scalar floating point type.
801  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
802
803  /// getTypeInfo - Get the size and alignment of the specified complete type in
804  /// bits.
805  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
806  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
807    return getTypeInfo(T.getTypePtr());
808  }
809
810  /// getTypeSize - Return the size of the specified type, in bits.  This method
811  /// does not work on incomplete types.
812  uint64_t getTypeSize(QualType T) {
813    return getTypeInfo(T).first;
814  }
815  uint64_t getTypeSize(const Type *T) {
816    return getTypeInfo(T).first;
817  }
818
819  /// getCharWidth - Return the size of the character type, in bits
820  uint64_t getCharWidth() {
821    return getTypeSize(CharTy);
822  }
823
824  /// getTypeSizeInChars - Return the size of the specified type, in characters.
825  /// This method does not work on incomplete types.
826  CharUnits getTypeSizeInChars(QualType T);
827  CharUnits getTypeSizeInChars(const Type *T);
828
829  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
830  /// This method does not work on incomplete types.
831  unsigned getTypeAlign(QualType T) {
832    return getTypeInfo(T).second;
833  }
834  unsigned getTypeAlign(const Type *T) {
835    return getTypeInfo(T).second;
836  }
837
838  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
839  /// type for the current target in bits.  This can be different than the ABI
840  /// alignment in cases where it is beneficial for performance to overalign
841  /// a data type.
842  unsigned getPreferredTypeAlign(const Type *T);
843
844  unsigned getDeclAlignInBytes(const Decl *D, bool RefAsPointee = false);
845
846  /// getASTRecordLayout - Get or compute information about the layout of the
847  /// specified record (struct/union/class), which indicates its size and field
848  /// position information.
849  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
850
851  /// getASTObjCInterfaceLayout - Get or compute information about the
852  /// layout of the specified Objective-C interface.
853  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
854
855  /// getASTObjCImplementationLayout - Get or compute information about
856  /// the layout of the specified Objective-C implementation. This may
857  /// differ from the interface if synthesized ivars are present.
858  const ASTRecordLayout &
859  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
860
861  /// getKeyFunction - Get the key function for the given record decl.
862  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
863  ///
864  /// ...the first non-pure virtual function that is not inline at the point
865  /// of class definition.
866  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
867
868  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
869                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
870
871  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
872                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
873                               bool CollectSynthesized = true);
874  void CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
875                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
876  void CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
877                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
878  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
879  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
880  void CollectInheritedProtocols(const Decl *CDecl,
881                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols);
882
883  //===--------------------------------------------------------------------===//
884  //                            Type Operators
885  //===--------------------------------------------------------------------===//
886
887  /// getCanonicalType - Return the canonical (structural) type corresponding to
888  /// the specified potentially non-canonical type.  The non-canonical version
889  /// of a type may have many "decorated" versions of types.  Decorators can
890  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
891  /// to be free of any of these, allowing two canonical types to be compared
892  /// for exact equality with a simple pointer comparison.
893  CanQualType getCanonicalType(QualType T);
894  const Type *getCanonicalType(const Type *T) {
895    return T->getCanonicalTypeInternal().getTypePtr();
896  }
897
898  /// getCanonicalParamType - Return the canonical parameter type
899  /// corresponding to the specific potentially non-canonical one.
900  /// Qualifiers are stripped off, functions are turned into function
901  /// pointers, and arrays decay one level into pointers.
902  CanQualType getCanonicalParamType(QualType T);
903
904  /// \brief Determine whether the given types are equivalent.
905  bool hasSameType(QualType T1, QualType T2) {
906    return getCanonicalType(T1) == getCanonicalType(T2);
907  }
908
909  /// \brief Returns this type as a completely-unqualified array type,
910  /// capturing the qualifiers in Quals. This will remove the minimal amount of
911  /// sugaring from the types, similar to the behavior of
912  /// QualType::getUnqualifiedType().
913  ///
914  /// \param T is the qualified type, which may be an ArrayType
915  ///
916  /// \param Quals will receive the full set of qualifiers that were
917  /// applied to the array.
918  ///
919  /// \returns if this is an array type, the completely unqualified array type
920  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
921  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
922
923  /// \brief Determine whether the given types are equivalent after
924  /// cvr-qualifiers have been removed.
925  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
926    CanQualType CT1 = getCanonicalType(T1);
927    CanQualType CT2 = getCanonicalType(T2);
928
929    Qualifiers Quals;
930    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
931    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
932    return UnqualT1 == UnqualT2;
933  }
934
935  /// \brief Retrieves the "canonical" declaration of
936
937  /// \brief Retrieves the "canonical" nested name specifier for a
938  /// given nested name specifier.
939  ///
940  /// The canonical nested name specifier is a nested name specifier
941  /// that uniquely identifies a type or namespace within the type
942  /// system. For example, given:
943  ///
944  /// \code
945  /// namespace N {
946  ///   struct S {
947  ///     template<typename T> struct X { typename T* type; };
948  ///   };
949  /// }
950  ///
951  /// template<typename T> struct Y {
952  ///   typename N::S::X<T>::type member;
953  /// };
954  /// \endcode
955  ///
956  /// Here, the nested-name-specifier for N::S::X<T>:: will be
957  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
958  /// by declarations in the type system and the canonical type for
959  /// the template type parameter 'T' is template-param-0-0.
960  NestedNameSpecifier *
961  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
962
963  /// \brief Retrieves the "canonical" template name that refers to a
964  /// given template.
965  ///
966  /// The canonical template name is the simplest expression that can
967  /// be used to refer to a given template. For most templates, this
968  /// expression is just the template declaration itself. For example,
969  /// the template std::vector can be referred to via a variety of
970  /// names---std::vector, ::std::vector, vector (if vector is in
971  /// scope), etc.---but all of these names map down to the same
972  /// TemplateDecl, which is used to form the canonical template name.
973  ///
974  /// Dependent template names are more interesting. Here, the
975  /// template name could be something like T::template apply or
976  /// std::allocator<T>::template rebind, where the nested name
977  /// specifier itself is dependent. In this case, the canonical
978  /// template name uses the shortest form of the dependent
979  /// nested-name-specifier, which itself contains all canonical
980  /// types, values, and templates.
981  TemplateName getCanonicalTemplateName(TemplateName Name);
982
983  /// \brief Determine whether the given template names refer to the same
984  /// template.
985  bool hasSameTemplateName(TemplateName X, TemplateName Y);
986
987  /// \brief Retrieve the "canonical" template argument.
988  ///
989  /// The canonical template argument is the simplest template argument
990  /// (which may be a type, value, expression, or declaration) that
991  /// expresses the value of the argument.
992  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
993
994  /// Type Query functions.  If the type is an instance of the specified class,
995  /// return the Type pointer for the underlying maximally pretty type.  This
996  /// is a member of ASTContext because this may need to do some amount of
997  /// canonicalization, e.g. to move type qualifiers into the element type.
998  const ArrayType *getAsArrayType(QualType T);
999  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1000    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1001  }
1002  const VariableArrayType *getAsVariableArrayType(QualType T) {
1003    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1004  }
1005  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1006    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1007  }
1008  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1009    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1010  }
1011
1012  /// getBaseElementType - Returns the innermost element type of an array type.
1013  /// For example, will return "int" for int[m][n]
1014  QualType getBaseElementType(const ArrayType *VAT);
1015
1016  /// getBaseElementType - Returns the innermost element type of a type
1017  /// (which needn't actually be an array type).
1018  QualType getBaseElementType(QualType QT);
1019
1020  /// getConstantArrayElementCount - Returns number of constant array elements.
1021  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1022
1023  /// getArrayDecayedType - Return the properly qualified result of decaying the
1024  /// specified array type to a pointer.  This operation is non-trivial when
1025  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1026  /// this returns a pointer to a properly qualified element of the array.
1027  ///
1028  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1029  QualType getArrayDecayedType(QualType T);
1030
1031  /// getPromotedIntegerType - Returns the type that Promotable will
1032  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1033  /// integer type.
1034  QualType getPromotedIntegerType(QualType PromotableType);
1035
1036  /// \brief Whether this is a promotable bitfield reference according
1037  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1038  ///
1039  /// \returns the type this bit-field will promote to, or NULL if no
1040  /// promotion occurs.
1041  QualType isPromotableBitField(Expr *E);
1042
1043  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1044  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1045  /// LHS < RHS, return -1.
1046  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1047
1048  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1049  /// point types, ignoring the domain of the type (i.e. 'double' ==
1050  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1051  /// LHS < RHS, return -1.
1052  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1053
1054  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1055  /// point or a complex type (based on typeDomain/typeSize).
1056  /// 'typeDomain' is a real floating point or complex type.
1057  /// 'typeSize' is a real floating point or complex type.
1058  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1059                                             QualType typeDomain) const;
1060
1061private:
1062  // Helper for integer ordering
1063  unsigned getIntegerRank(Type* T);
1064
1065public:
1066
1067  //===--------------------------------------------------------------------===//
1068  //                    Type Compatibility Predicates
1069  //===--------------------------------------------------------------------===//
1070
1071  /// Compatibility predicates used to check assignment expressions.
1072  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1073
1074  bool isObjCIdType(QualType T) const {
1075    return T == ObjCIdTypedefType;
1076  }
1077  bool isObjCClassType(QualType T) const {
1078    return T == ObjCClassTypedefType;
1079  }
1080  bool isObjCSelType(QualType T) const {
1081    return T == ObjCSelTypedefType;
1082  }
1083  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1084  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1085                                         bool ForCompare);
1086
1087  // Check the safety of assignment from LHS to RHS
1088  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1089                               const ObjCObjectPointerType *RHSOPT);
1090  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1091                               const ObjCInterfaceType *RHS);
1092  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1093  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1094                                   const ObjCObjectPointerType *RHSOPT);
1095
1096  // Functions for calculating composite types
1097  QualType mergeTypes(QualType, QualType);
1098  QualType mergeFunctionTypes(QualType, QualType);
1099
1100  /// UsualArithmeticConversionsType - handles the various conversions
1101  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1102  /// and returns the result type of that conversion.
1103  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1104
1105  //===--------------------------------------------------------------------===//
1106  //                    Integer Predicates
1107  //===--------------------------------------------------------------------===//
1108
1109  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1110  // of bits in an integer type excluding any padding bits.
1111  unsigned getIntWidth(QualType T);
1112
1113  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1114  // unsigned integer type.  This method takes a signed type, and returns the
1115  // corresponding unsigned integer type.
1116  QualType getCorrespondingUnsignedType(QualType T);
1117
1118  //===--------------------------------------------------------------------===//
1119  //                    Type Iterators.
1120  //===--------------------------------------------------------------------===//
1121
1122  typedef std::vector<Type*>::iterator       type_iterator;
1123  typedef std::vector<Type*>::const_iterator const_type_iterator;
1124
1125  type_iterator types_begin() { return Types.begin(); }
1126  type_iterator types_end() { return Types.end(); }
1127  const_type_iterator types_begin() const { return Types.begin(); }
1128  const_type_iterator types_end() const { return Types.end(); }
1129
1130  //===--------------------------------------------------------------------===//
1131  //                    Integer Values
1132  //===--------------------------------------------------------------------===//
1133
1134  /// MakeIntValue - Make an APSInt of the appropriate width and
1135  /// signedness for the given \arg Value and integer \arg Type.
1136  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1137    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1138    Res = Value;
1139    return Res;
1140  }
1141
1142  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1143  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1144  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1145  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1146
1147  /// \brief Set the implementation of ObjCInterfaceDecl.
1148  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1149                             ObjCImplementationDecl *ImplD);
1150  /// \brief Set the implementation of ObjCCategoryDecl.
1151  void setObjCImplementation(ObjCCategoryDecl *CatD,
1152                             ObjCCategoryImplDecl *ImplD);
1153
1154  /// \brief Allocate an uninitialized TypeSourceInfo.
1155  ///
1156  /// The caller should initialize the memory held by TypeSourceInfo using
1157  /// the TypeLoc wrappers.
1158  ///
1159  /// \param T the type that will be the basis for type source info. This type
1160  /// should refer to how the declarator was written in source code, not to
1161  /// what type semantic analysis resolved the declarator to.
1162  ///
1163  /// \param Size the size of the type info to create, or 0 if the size
1164  /// should be calculated based on the type.
1165  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1166
1167  /// \brief Allocate a TypeSourceInfo where all locations have been
1168  /// initialized to a given location, which defaults to the empty
1169  /// location.
1170  TypeSourceInfo *
1171  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1172
1173private:
1174  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1175  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1176
1177  void InitBuiltinTypes();
1178  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1179
1180  // Return the ObjC type encoding for a given type.
1181  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1182                                  bool ExpandPointedToStructures,
1183                                  bool ExpandStructures,
1184                                  const FieldDecl *Field,
1185                                  bool OutermostType = false,
1186                                  bool EncodingProperty = false);
1187
1188  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1189                                       const ObjCImplementationDecl *Impl);
1190};
1191
1192/// @brief Utility function for constructing a nullary selector.
1193static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1194  IdentifierInfo* II = &Ctx.Idents.get(name);
1195  return Ctx.Selectors.getSelector(0, &II);
1196}
1197
1198/// @brief Utility function for constructing an unary selector.
1199static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1200  IdentifierInfo* II = &Ctx.Idents.get(name);
1201  return Ctx.Selectors.getSelector(1, &II);
1202}
1203
1204}  // end namespace clang
1205
1206// operator new and delete aren't allowed inside namespaces.
1207// The throw specifications are mandated by the standard.
1208/// @brief Placement new for using the ASTContext's allocator.
1209///
1210/// This placement form of operator new uses the ASTContext's allocator for
1211/// obtaining memory. It is a non-throwing new, which means that it returns
1212/// null on error. (If that is what the allocator does. The current does, so if
1213/// this ever changes, this operator will have to be changed, too.)
1214/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1215/// @code
1216/// // Default alignment (16)
1217/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1218/// // Specific alignment
1219/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
1220/// @endcode
1221/// Please note that you cannot use delete on the pointer; it must be
1222/// deallocated using an explicit destructor call followed by
1223/// @c Context.Deallocate(Ptr).
1224///
1225/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1226/// @param C The ASTContext that provides the allocator.
1227/// @param Alignment The alignment of the allocated memory (if the underlying
1228///                  allocator supports it).
1229/// @return The allocated memory. Could be NULL.
1230inline void *operator new(size_t Bytes, clang::ASTContext &C,
1231                          size_t Alignment) throw () {
1232  return C.Allocate(Bytes, Alignment);
1233}
1234/// @brief Placement delete companion to the new above.
1235///
1236/// This operator is just a companion to the new above. There is no way of
1237/// invoking it directly; see the new operator for more details. This operator
1238/// is called implicitly by the compiler if a placement new expression using
1239/// the ASTContext throws in the object constructor.
1240inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1241              throw () {
1242  C.Deallocate(Ptr);
1243}
1244
1245/// This placement form of operator new[] uses the ASTContext's allocator for
1246/// obtaining memory. It is a non-throwing new[], which means that it returns
1247/// null on error.
1248/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1249/// @code
1250/// // Default alignment (16)
1251/// char *data = new (Context) char[10];
1252/// // Specific alignment
1253/// char *data = new (Context, 8) char[10];
1254/// @endcode
1255/// Please note that you cannot use delete on the pointer; it must be
1256/// deallocated using an explicit destructor call followed by
1257/// @c Context.Deallocate(Ptr).
1258///
1259/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1260/// @param C The ASTContext that provides the allocator.
1261/// @param Alignment The alignment of the allocated memory (if the underlying
1262///                  allocator supports it).
1263/// @return The allocated memory. Could be NULL.
1264inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1265                            size_t Alignment = 16) throw () {
1266  return C.Allocate(Bytes, Alignment);
1267}
1268
1269/// @brief Placement delete[] companion to the new[] above.
1270///
1271/// This operator is just a companion to the new[] above. There is no way of
1272/// invoking it directly; see the new[] operator for more details. This operator
1273/// is called implicitly by the compiler if a placement new[] expression using
1274/// the ASTContext throws in the object constructor.
1275inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1276              throw () {
1277  C.Deallocate(Ptr);
1278}
1279
1280#endif
1281