ASTContext.h revision f1690858344968358131f8d5690d9ee458883000
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/AST/Type.h"
24#include "clang/Basic/SourceLocation.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/FoldingSet.h"
27#include "llvm/Bitcode/SerializationFwd.h"
28#include "llvm/Support/Allocator.h"
29#include <vector>
30
31namespace llvm {
32  struct fltSemantics;
33}
34
35namespace clang {
36  class FileManager;
37  class ASTRecordLayout;
38  class Expr;
39  class IdentifierTable;
40  class SelectorTable;
41  class SourceManager;
42  class TargetInfo;
43  // Decls
44  class Decl;
45  class ObjCPropertyDecl;
46  class RecordDecl;
47  class TagDecl;
48  class TranslationUnitDecl;
49  class TypeDecl;
50  class TypedefDecl;
51  class TemplateTypeParmDecl;
52  class FieldDecl;
53  class ObjCIvarRefExpr;
54  class ObjCIvarDecl;
55
56/// ASTContext - This class holds long-lived AST nodes (such as types and
57/// decls) that can be referred to throughout the semantic analysis of a file.
58class ASTContext {
59  std::vector<Type*> Types;
60  llvm::FoldingSet<ExtQualType> ExtQualTypes;
61  llvm::FoldingSet<ComplexType> ComplexTypes;
62  llvm::FoldingSet<PointerType> PointerTypes;
63  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
64  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
65  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
66  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
67  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
68  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
69  std::vector<VariableArrayType*> VariableArrayTypes;
70  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
71  llvm::FoldingSet<VectorType> VectorTypes;
72  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
73  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
74  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
75  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
76  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
77  llvm::FoldingSet<TypenameType> TypenameTypes;
78  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
79  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
80
81  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
82  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
83
84  /// \brief The set of nested name specifiers.
85  ///
86  /// This set is managed by the NestedNameSpecifier class.
87  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
88  NestedNameSpecifier *GlobalNestedNameSpecifier;
89  friend class NestedNameSpecifier;
90
91  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
92  ///  This is lazily created.  This is intentionally not serialized.
93  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
94  llvm::DenseMap<const ObjCInterfaceDecl*,
95                 const ASTRecordLayout*> ASTObjCInterfaces;
96
97  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
98  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
99
100  // FIXME: Shouldn't ASTRecordForInterface/ASTFieldForIvarRef and
101  // addRecordToClass/getFieldDecl be part of the backend (i.e. CodeGenTypes and
102  // CodeGenFunction)?
103  llvm::DenseMap<const ObjCInterfaceDecl*,
104                 const RecordDecl*> ASTRecordForInterface;
105  llvm::DenseMap<const ObjCIvarRefExpr*, const FieldDecl*> ASTFieldForIvarRef;
106
107  /// BuiltinVaListType - built-in va list type.
108  /// This is initially null and set by Sema::LazilyCreateBuiltin when
109  /// a builtin that takes a valist is encountered.
110  QualType BuiltinVaListType;
111
112  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
113  QualType ObjCIdType;
114  const RecordType *IdStructType;
115
116  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
117  QualType ObjCSelType;
118  const RecordType *SelStructType;
119
120  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
121  QualType ObjCProtoType;
122  const RecordType *ProtoStructType;
123
124  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
125  QualType ObjCClassType;
126  const RecordType *ClassStructType;
127
128  QualType ObjCConstantStringType;
129  RecordDecl *CFConstantStringTypeDecl;
130
131  RecordDecl *ObjCFastEnumerationStateTypeDecl;
132
133  TranslationUnitDecl *TUDecl;
134
135  /// SourceMgr - The associated SourceManager object.
136  SourceManager &SourceMgr;
137
138  /// LangOpts - The language options used to create the AST associated with
139  ///  this ASTContext object.
140  LangOptions LangOpts;
141
142  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
143  bool FreeMemory;
144  llvm::MallocAllocator MallocAlloc;
145  llvm::BumpPtrAllocator BumpAlloc;
146public:
147  TargetInfo &Target;
148  IdentifierTable &Idents;
149  SelectorTable &Selectors;
150  DeclarationNameTable DeclarationNames;
151
152  SourceManager& getSourceManager() { return SourceMgr; }
153  const SourceManager& getSourceManager() const { return SourceMgr; }
154  void *Allocate(unsigned Size, unsigned Align = 8) {
155    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
156                        BumpAlloc.Allocate(Size, Align);
157  }
158  void Deallocate(void *Ptr) {
159    if (FreeMemory)
160      MallocAlloc.Deallocate(Ptr);
161  }
162  const LangOptions& getLangOptions() const { return LangOpts; }
163
164  FullSourceLoc getFullLoc(SourceLocation Loc) const {
165    return FullSourceLoc(Loc,SourceMgr);
166  }
167
168  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
169
170  /// This is intentionally not serialized.  It is populated by the
171  /// ASTContext ctor, and there are no external pointers/references to
172  /// internal variables of BuiltinInfo.
173  Builtin::Context BuiltinInfo;
174
175  // Builtin Types.
176  QualType VoidTy;
177  QualType BoolTy;
178  QualType CharTy;
179  QualType WCharTy; // [C++ 3.9.1p5], integer type in C99.
180  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy;
181  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
182  QualType UnsignedLongLongTy;
183  QualType FloatTy, DoubleTy, LongDoubleTy;
184  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
185  QualType VoidPtrTy;
186  QualType OverloadTy;
187  QualType DependentTy;
188
189  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
190             IdentifierTable &idents, SelectorTable &sels,
191             bool FreeMemory = true, unsigned size_reserve=0);
192
193  ~ASTContext();
194
195  void PrintStats() const;
196  const std::vector<Type*>& getTypes() const { return Types; }
197
198  //===--------------------------------------------------------------------===//
199  //                           Type Constructors
200  //===--------------------------------------------------------------------===//
201
202  /// getAddSpaceQualType - Return the uniqued reference to the type for an
203  /// address space qualified type with the specified type and address space.
204  /// The resulting type has a union of the qualifiers from T and the address
205  /// space. If T already has an address space specifier, it is silently
206  /// replaced.
207  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
208
209  /// getObjCGCQualType - Returns the uniqued reference to the type for an
210  /// objc gc qualified type. The retulting type has a union of the qualifiers
211  /// from T and the gc attribute.
212  QualType getObjCGCQualType(QualType T, QualType::GCAttrTypes gcAttr);
213
214  /// getComplexType - Return the uniqued reference to the type for a complex
215  /// number with the specified element type.
216  QualType getComplexType(QualType T);
217
218  /// getPointerType - Return the uniqued reference to the type for a pointer to
219  /// the specified type.
220  QualType getPointerType(QualType T);
221
222  /// getBlockPointerType - Return the uniqued reference to the type for a block
223  /// of the specified type.
224  QualType getBlockPointerType(QualType T);
225
226  /// getLValueReferenceType - Return the uniqued reference to the type for an
227  /// lvalue reference to the specified type.
228  QualType getLValueReferenceType(QualType T);
229
230  /// getRValueReferenceType - Return the uniqued reference to the type for an
231  /// rvalue reference to the specified type.
232  QualType getRValueReferenceType(QualType T);
233
234  /// getMemberPointerType - Return the uniqued reference to the type for a
235  /// member pointer to the specified type in the specified class. The class
236  /// is a Type because it could be a dependent name.
237  QualType getMemberPointerType(QualType T, const Type *Cls);
238
239  /// getVariableArrayType - Returns a non-unique reference to the type for a
240  /// variable array of the specified element type.
241  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
242                                ArrayType::ArraySizeModifier ASM,
243                                unsigned EltTypeQuals);
244
245  /// getDependentSizedArrayType - Returns a non-unique reference to
246  /// the type for a dependently-sized array of the specified element
247  /// type. FIXME: We will need these to be uniqued, or at least
248  /// comparable, at some point.
249  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
250                                      ArrayType::ArraySizeModifier ASM,
251                                      unsigned EltTypeQuals);
252
253  /// getIncompleteArrayType - Returns a unique reference to the type for a
254  /// incomplete array of the specified element type.
255  QualType getIncompleteArrayType(QualType EltTy,
256                                  ArrayType::ArraySizeModifier ASM,
257                                  unsigned EltTypeQuals);
258
259  /// getConstantArrayType - Return the unique reference to the type for a
260  /// constant array of the specified element type.
261  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
262                                ArrayType::ArraySizeModifier ASM,
263                                unsigned EltTypeQuals);
264
265  /// getVectorType - Return the unique reference to a vector type of
266  /// the specified element type and size. VectorType must be a built-in type.
267  QualType getVectorType(QualType VectorType, unsigned NumElts);
268
269  /// getExtVectorType - Return the unique reference to an extended vector type
270  /// of the specified element type and size.  VectorType must be a built-in
271  /// type.
272  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
273
274  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
275  ///
276  QualType getFunctionNoProtoType(QualType ResultTy);
277
278  /// getFunctionType - Return a normal function type with a typed argument
279  /// list.  isVariadic indicates whether the argument list includes '...'.
280  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
281                           unsigned NumArgs, bool isVariadic,
282                           unsigned TypeQuals);
283
284  /// getTypeDeclType - Return the unique reference to the type for
285  /// the specified type declaration.
286  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
287
288  /// getTypedefType - Return the unique reference to the type for the
289  /// specified typename decl.
290  QualType getTypedefType(TypedefDecl *Decl);
291  QualType getObjCInterfaceType(ObjCInterfaceDecl *Decl);
292  QualType buildObjCInterfaceType(ObjCInterfaceDecl *Decl);
293
294  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
295                                   IdentifierInfo *Name = 0);
296
297  QualType getTemplateSpecializationType(TemplateName T,
298                                         const TemplateArgument *Args,
299                                         unsigned NumArgs,
300                                         QualType Canon = QualType());
301
302  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
303                                QualType NamedType);
304  QualType getTypenameType(NestedNameSpecifier *NNS,
305                           const IdentifierInfo *Name,
306                           QualType Canon = QualType());
307
308  /// getObjCQualifiedInterfaceType - Return a
309  /// ObjCQualifiedInterfaceType type for the given interface decl and
310  /// the conforming protocol list.
311  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
312                                         ObjCProtocolDecl **ProtocolList,
313                                         unsigned NumProtocols);
314
315  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
316  /// given 'id' and conforming protocol list.
317  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
318                                  unsigned NumProtocols);
319
320
321  /// getTypeOfType - GCC extension.
322  QualType getTypeOfExprType(Expr *e);
323  QualType getTypeOfType(QualType t);
324
325  /// getTagDeclType - Return the unique reference to the type for the
326  /// specified TagDecl (struct/union/class/enum) decl.
327  QualType getTagDeclType(TagDecl *Decl);
328
329  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
330  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
331  QualType getSizeType() const;
332
333  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
334  /// returns a type compatible with the type defined in <stddef.h> as defined
335  /// by the target.
336  QualType getWCharType() const { return WCharTy; }
337
338  /// getSignedWCharType - Return the type of "signed wchar_t".
339  /// Used when in C++, as a GCC extension.
340  QualType getSignedWCharType() const;
341
342  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
343  /// Used when in C++, as a GCC extension.
344  QualType getUnsignedWCharType() const;
345
346  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
347  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
348  QualType getPointerDiffType() const;
349
350  // getCFConstantStringType - Return the C structure type used to represent
351  // constant CFStrings.
352  QualType getCFConstantStringType();
353
354  // This setter/getter represents the ObjC type for an NSConstantString.
355  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
356  QualType getObjCConstantStringInterface() const {
357    return ObjCConstantStringType;
358  }
359
360  //// This gets the struct used to keep track of fast enumerations.
361  QualType getObjCFastEnumerationStateType();
362
363  /// getObjCEncodingForType - Emit the ObjC type encoding for the
364  /// given type into \arg S. If \arg NameFields is specified then
365  /// record field names are also encoded.
366  void getObjCEncodingForType(QualType t, std::string &S,
367                              FieldDecl *Field=NULL) const;
368
369  void getLegacyIntegralTypeEncoding(QualType &t) const;
370
371  // Put the string version of type qualifiers into S.
372  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
373                                       std::string &S) const;
374
375  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
376  /// declaration.
377  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
378
379  /// getObjCEncodingForPropertyDecl - Return the encoded type for
380  /// this method declaration. If non-NULL, Container must be either
381  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
382  /// only be NULL when getting encodings for protocol properties.
383  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
384                                      const Decl *Container,
385                                      std::string &S);
386
387  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
388  /// purpose.
389  int getObjCEncodingTypeSize(QualType t);
390
391  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
392  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
393  QualType getObjCIdType() const { return ObjCIdType; }
394  void setObjCIdType(TypedefDecl *Decl);
395
396  void setObjCSelType(TypedefDecl *Decl);
397  QualType getObjCSelType() const { return ObjCSelType; }
398
399  void setObjCProtoType(QualType QT);
400  QualType getObjCProtoType() const { return ObjCProtoType; }
401
402  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
403  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
404  /// struct.
405  QualType getObjCClassType() const { return ObjCClassType; }
406  void setObjCClassType(TypedefDecl *Decl);
407
408  void setBuiltinVaListType(QualType T);
409  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
410
411  QualType getFixedWidthIntType(unsigned Width, bool Signed);
412
413  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
414                                        bool TemplateKeyword,
415                                        TemplateDecl *Template);
416
417  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
418                                        const IdentifierInfo *Name);
419
420private:
421  QualType getFromTargetType(unsigned Type) const;
422
423  //===--------------------------------------------------------------------===//
424  //                         Type Predicates.
425  //===--------------------------------------------------------------------===//
426
427public:
428  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
429  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
430  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
431  /// ID type).
432  bool isObjCObjectPointerType(QualType Ty) const;
433
434  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
435  /// garbage collection attribute.
436  ///
437  QualType::GCAttrTypes getObjCGCAttrKind(const QualType &Ty) const;
438
439  /// isObjCNSObjectType - Return true if this is an NSObject object with
440  /// its NSObject attribute set.
441  bool isObjCNSObjectType(QualType Ty) const;
442
443  //===--------------------------------------------------------------------===//
444  //                         Type Sizing and Analysis
445  //===--------------------------------------------------------------------===//
446
447  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
448  /// scalar floating point type.
449  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
450
451  /// getTypeInfo - Get the size and alignment of the specified complete type in
452  /// bits.
453  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
454  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
455    return getTypeInfo(T.getTypePtr());
456  }
457
458  /// getTypeSize - Return the size of the specified type, in bits.  This method
459  /// does not work on incomplete types.
460  uint64_t getTypeSize(QualType T) {
461    return getTypeInfo(T).first;
462  }
463  uint64_t getTypeSize(const Type *T) {
464    return getTypeInfo(T).first;
465  }
466
467  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
468  /// This method does not work on incomplete types.
469  unsigned getTypeAlign(QualType T) {
470    return getTypeInfo(T).second;
471  }
472  unsigned getTypeAlign(const Type *T) {
473    return getTypeInfo(T).second;
474  }
475
476  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
477  /// type for the current target in bits.  This can be different than the ABI
478  /// alignment in cases where it is beneficial for performance to overalign
479  /// a data type.
480  unsigned getPreferredTypeAlign(const Type *T);
481
482  /// getDeclAlignInBytes - Return the alignment of the specified decl
483  /// that should be returned by __alignof().  Note that bitfields do
484  /// not have a valid alignment, so this method will assert on them.
485  unsigned getDeclAlignInBytes(const Decl *D);
486
487  /// getASTRecordLayout - Get or compute information about the layout of the
488  /// specified record (struct/union/class), which indicates its size and field
489  /// position information.
490  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
491
492  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
493  const RecordDecl *addRecordToClass(const ObjCInterfaceDecl *D);
494  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
495                        llvm::SmallVectorImpl<FieldDecl*> &Fields) const;
496  const FieldDecl *getFieldDecl(const ObjCIvarRefExpr *MRef) {
497    llvm::DenseMap<const ObjCIvarRefExpr *, const FieldDecl*>::iterator I
498      = ASTFieldForIvarRef.find(MRef);
499    assert (I != ASTFieldForIvarRef.end()  && "Unable to find field_decl");
500    return I->second;
501  }
502  void setFieldDecl(const ObjCInterfaceDecl *OI,
503                    const ObjCIvarDecl *Ivar,
504                    const ObjCIvarRefExpr *MRef);
505  //===--------------------------------------------------------------------===//
506  //                            Type Operators
507  //===--------------------------------------------------------------------===//
508
509  /// getCanonicalType - Return the canonical (structural) type corresponding to
510  /// the specified potentially non-canonical type.  The non-canonical version
511  /// of a type may have many "decorated" versions of types.  Decorators can
512  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
513  /// to be free of any of these, allowing two canonical types to be compared
514  /// for exact equality with a simple pointer comparison.
515  QualType getCanonicalType(QualType T);
516  const Type *getCanonicalType(const Type *T) {
517    return T->getCanonicalTypeInternal().getTypePtr();
518  }
519
520  /// \brief Determine whether the given types are equivalent.
521  bool hasSameType(QualType T1, QualType T2) {
522    return getCanonicalType(T1) == getCanonicalType(T2);
523  }
524
525  /// \brief Determine whether the given types are equivalent after
526  /// cvr-qualifiers have been removed.
527  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
528    T1 = getCanonicalType(T1);
529    T2 = getCanonicalType(T2);
530    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
531  }
532
533  /// \brief Retrieves the "canonical" declaration of the given tag
534  /// declaration.
535  ///
536  /// The canonical declaration for the given tag declaration is
537  /// either the definition of the tag (if it is a complete type) or
538  /// the first declaration of that tag.
539  TagDecl *getCanonicalDecl(TagDecl *Tag) {
540    QualType T = getTagDeclType(Tag);
541    return cast<TagDecl>(cast<TagType>(T.getTypePtr()->CanonicalType)
542                           ->getDecl());
543  }
544
545  /// \brief Retrieves the "canonical" nested name specifier for a
546  /// given nested name specifier.
547  ///
548  /// The canonical nested name specifier is a nested name specifier
549  /// that uniquely identifies a type or namespace within the type
550  /// system. For example, given:
551  ///
552  /// \code
553  /// namespace N {
554  ///   struct S {
555  ///     template<typename T> struct X { typename T* type; };
556  ///   };
557  /// }
558  ///
559  /// template<typename T> struct Y {
560  ///   typename N::S::X<T>::type member;
561  /// };
562  /// \endcode
563  ///
564  /// Here, the nested-name-specifier for N::S::X<T>:: will be
565  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
566  /// by declarations in the type system and the canonical type for
567  /// the template type parameter 'T' is template-param-0-0.
568  NestedNameSpecifier *
569  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
570
571  /// Type Query functions.  If the type is an instance of the specified class,
572  /// return the Type pointer for the underlying maximally pretty type.  This
573  /// is a member of ASTContext because this may need to do some amount of
574  /// canonicalization, e.g. to move type qualifiers into the element type.
575  const ArrayType *getAsArrayType(QualType T);
576  const ConstantArrayType *getAsConstantArrayType(QualType T) {
577    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
578  }
579  const VariableArrayType *getAsVariableArrayType(QualType T) {
580    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
581  }
582  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
583    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
584  }
585
586  /// getBaseElementType - Returns the innermost element type of a variable
587  /// length array type. For example, will return "int" for int[m][n]
588  QualType getBaseElementType(const VariableArrayType *VAT);
589
590  /// getArrayDecayedType - Return the properly qualified result of decaying the
591  /// specified array type to a pointer.  This operation is non-trivial when
592  /// handling typedefs etc.  The canonical type of "T" must be an array type,
593  /// this returns a pointer to a properly qualified element of the array.
594  ///
595  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
596  QualType getArrayDecayedType(QualType T);
597
598  /// getIntegerTypeOrder - Returns the highest ranked integer type:
599  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
600  /// LHS < RHS, return -1.
601  int getIntegerTypeOrder(QualType LHS, QualType RHS);
602
603  /// getFloatingTypeOrder - Compare the rank of the two specified floating
604  /// point types, ignoring the domain of the type (i.e. 'double' ==
605  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
606  /// LHS < RHS, return -1.
607  int getFloatingTypeOrder(QualType LHS, QualType RHS);
608
609  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
610  /// point or a complex type (based on typeDomain/typeSize).
611  /// 'typeDomain' is a real floating point or complex type.
612  /// 'typeSize' is a real floating point or complex type.
613  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
614                                             QualType typeDomain) const;
615
616private:
617  // Helper for integer ordering
618  unsigned getIntegerRank(Type* T);
619
620public:
621
622  //===--------------------------------------------------------------------===//
623  //                    Type Compatibility Predicates
624  //===--------------------------------------------------------------------===//
625
626  /// Compatibility predicates used to check assignment expressions.
627  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
628  bool typesAreBlockCompatible(QualType lhs, QualType rhs);
629
630  bool isObjCIdType(QualType T) const {
631    return T == ObjCIdType;
632  }
633  bool isObjCIdStructType(QualType T) const {
634    if (!IdStructType) // ObjC isn't enabled
635      return false;
636    return T->getAsStructureType() == IdStructType;
637  }
638  bool isObjCClassType(QualType T) const {
639    return T == ObjCClassType;
640  }
641  bool isObjCClassStructType(QualType T) const {
642    if (!ClassStructType) // ObjC isn't enabled
643      return false;
644    return T->getAsStructureType() == ClassStructType;
645  }
646  bool isObjCSelType(QualType T) const {
647    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
648    return T->getAsStructureType() == SelStructType;
649  }
650
651  // Check the safety of assignment from LHS to RHS
652  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
653                               const ObjCInterfaceType *RHS);
654  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
655
656  // Functions for calculating composite types
657  QualType mergeTypes(QualType, QualType);
658  QualType mergeFunctionTypes(QualType, QualType);
659
660  //===--------------------------------------------------------------------===//
661  //                    Integer Predicates
662  //===--------------------------------------------------------------------===//
663
664  // The width of an integer, as defined in C99 6.2.6.2. This is the number
665  // of bits in an integer type excluding any padding bits.
666  unsigned getIntWidth(QualType T);
667
668  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
669  // unsigned integer type.  This method takes a signed type, and returns the
670  // corresponding unsigned integer type.
671  QualType getCorrespondingUnsignedType(QualType T);
672
673  //===--------------------------------------------------------------------===//
674  //                    Type Iterators.
675  //===--------------------------------------------------------------------===//
676
677  typedef std::vector<Type*>::iterator       type_iterator;
678  typedef std::vector<Type*>::const_iterator const_type_iterator;
679
680  type_iterator types_begin() { return Types.begin(); }
681  type_iterator types_end() { return Types.end(); }
682  const_type_iterator types_begin() const { return Types.begin(); }
683  const_type_iterator types_end() const { return Types.end(); }
684
685  //===--------------------------------------------------------------------===//
686  //                    Serialization
687  //===--------------------------------------------------------------------===//
688
689  void EmitASTBitcodeBuffer(std::vector<unsigned char> &Buffer) const;
690  static ASTContext *ReadASTBitcodeBuffer(llvm::MemoryBuffer &MBuffer,
691                                          FileManager &FMgr);
692
693  void Emit(llvm::Serializer& S) const;
694  static ASTContext *Create(llvm::Deserializer& D);
695
696  //===--------------------------------------------------------------------===//
697  //                    Integer Values
698  //===--------------------------------------------------------------------===//
699
700  /// MakeIntValue - Make an APSInt of the appropriate width and
701  /// signedness for the given \arg Value and integer \arg Type.
702  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
703    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
704    Res = Value;
705    return Res;
706  }
707
708private:
709  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
710  void operator=(const ASTContext&); // DO NOT IMPLEMENT
711
712  void InitBuiltinTypes();
713  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
714
715  // Return the ObjC type encoding for a given type.
716  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
717                                  bool ExpandPointedToStructures,
718                                  bool ExpandStructures,
719                                  FieldDecl *Field,
720                                  bool OutermostType = false,
721                                  bool EncodingProperty = false) const;
722
723};
724
725}  // end namespace clang
726
727// operator new and delete aren't allowed inside namespaces.
728// The throw specifications are mandated by the standard.
729/// @brief Placement new for using the ASTContext's allocator.
730///
731/// This placement form of operator new uses the ASTContext's allocator for
732/// obtaining memory. It is a non-throwing new, which means that it returns
733/// null on error. (If that is what the allocator does. The current does, so if
734/// this ever changes, this operator will have to be changed, too.)
735/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
736/// @code
737/// // Default alignment (16)
738/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
739/// // Specific alignment
740/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
741/// @endcode
742/// Please note that you cannot use delete on the pointer; it must be
743/// deallocated using an explicit destructor call followed by
744/// @c Context.Deallocate(Ptr).
745///
746/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
747/// @param C The ASTContext that provides the allocator.
748/// @param Alignment The alignment of the allocated memory (if the underlying
749///                  allocator supports it).
750/// @return The allocated memory. Could be NULL.
751inline void *operator new(size_t Bytes, clang::ASTContext &C,
752                          size_t Alignment = 16) throw () {
753  return C.Allocate(Bytes, Alignment);
754}
755/// @brief Placement delete companion to the new above.
756///
757/// This operator is just a companion to the new above. There is no way of
758/// invoking it directly; see the new operator for more details. This operator
759/// is called implicitly by the compiler if a placement new expression using
760/// the ASTContext throws in the object constructor.
761inline void operator delete(void *Ptr, clang::ASTContext &C)
762              throw () {
763  C.Deallocate(Ptr);
764}
765
766/// This placement form of operator new[] uses the ASTContext's allocator for
767/// obtaining memory. It is a non-throwing new[], which means that it returns
768/// null on error.
769/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
770/// @code
771/// // Default alignment (16)
772/// char *data = new (Context) char[10];
773/// // Specific alignment
774/// char *data = new (Context, 8) char[10];
775/// @endcode
776/// Please note that you cannot use delete on the pointer; it must be
777/// deallocated using an explicit destructor call followed by
778/// @c Context.Deallocate(Ptr).
779///
780/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
781/// @param C The ASTContext that provides the allocator.
782/// @param Alignment The alignment of the allocated memory (if the underlying
783///                  allocator supports it).
784/// @return The allocated memory. Could be NULL.
785inline void *operator new[](size_t Bytes, clang::ASTContext& C,
786                            size_t Alignment = 16) throw () {
787  return C.Allocate(Bytes, Alignment);
788}
789
790/// @brief Placement delete[] companion to the new[] above.
791///
792/// This operator is just a companion to the new[] above. There is no way of
793/// invoking it directly; see the new[] operator for more details. This operator
794/// is called implicitly by the compiler if a placement new[] expression using
795/// the ASTContext throws in the object constructor.
796inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
797  C.Deallocate(Ptr);
798}
799
800#endif
801