ASTContext.h revision f4e689b8528770001f4792f1f4ebdfb09d859e3d
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/Basic/OperatorKinds.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/PrettyPrinter.h"
24#include "clang/AST/TemplateName.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/CanonicalType.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/FoldingSet.h"
29#include "llvm/ADT/OwningPtr.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/Support/Allocator.h"
32#include <vector>
33
34namespace llvm {
35  struct fltSemantics;
36}
37
38namespace clang {
39  class FileManager;
40  class ASTRecordLayout;
41  class BlockExpr;
42  class CharUnits;
43  class Diagnostic;
44  class Expr;
45  class ExternalASTSource;
46  class IdentifierTable;
47  class SelectorTable;
48  class SourceManager;
49  class TargetInfo;
50  // Decls
51  class DeclContext;
52  class CXXMethodDecl;
53  class CXXRecordDecl;
54  class Decl;
55  class FieldDecl;
56  class ObjCIvarDecl;
57  class ObjCIvarRefExpr;
58  class ObjCPropertyDecl;
59  class RecordDecl;
60  class TagDecl;
61  class TemplateTypeParmDecl;
62  class TranslationUnitDecl;
63  class TypeDecl;
64  class TypedefDecl;
65  class UsingDecl;
66  class UsingShadowDecl;
67  class UnresolvedSetIterator;
68
69  namespace Builtin { class Context; }
70
71/// \brief A vector of C++ member functions that is optimized for
72/// storing a single method.
73class CXXMethodVector {
74  /// \brief Storage for the vector.
75  ///
76  /// When the low bit is zero, this is a const CXXMethodDecl *. When the
77  /// low bit is one, this is a std::vector<const CXXMethodDecl *> *.
78  mutable uintptr_t Storage;
79
80  typedef std::vector<const CXXMethodDecl *> vector_type;
81
82public:
83  CXXMethodVector() : Storage(0) { }
84
85  typedef const CXXMethodDecl **iterator;
86  iterator begin() const;
87  iterator end() const;
88
89  void push_back(const CXXMethodDecl *Method);
90  void Destroy();
91};
92
93/// ASTContext - This class holds long-lived AST nodes (such as types and
94/// decls) that can be referred to throughout the semantic analysis of a file.
95class ASTContext {
96  std::vector<Type*> Types;
97  llvm::FoldingSet<ExtQuals> ExtQualNodes;
98  llvm::FoldingSet<ComplexType> ComplexTypes;
99  llvm::FoldingSet<PointerType> PointerTypes;
100  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
101  llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
102  llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
103  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
104  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
105  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
106  std::vector<VariableArrayType*> VariableArrayTypes;
107  llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
108  llvm::FoldingSet<DependentSizedExtVectorType> DependentSizedExtVectorTypes;
109  llvm::FoldingSet<VectorType> VectorTypes;
110  llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
111  llvm::FoldingSet<FunctionProtoType> FunctionProtoTypes;
112  llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
113  llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
114  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
115  llvm::FoldingSet<SubstTemplateTypeParmType> SubstTemplateTypeParmTypes;
116  llvm::FoldingSet<TemplateSpecializationType> TemplateSpecializationTypes;
117  llvm::FoldingSet<QualifiedNameType> QualifiedNameTypes;
118  llvm::FoldingSet<TypenameType> TypenameTypes;
119  llvm::FoldingSet<ObjCInterfaceType> ObjCInterfaceTypes;
120  llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
121  llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
122
123  llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
124  llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
125
126  /// \brief The set of nested name specifiers.
127  ///
128  /// This set is managed by the NestedNameSpecifier class.
129  llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
130  NestedNameSpecifier *GlobalNestedNameSpecifier;
131  friend class NestedNameSpecifier;
132
133  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
134  ///  This is lazily created.  This is intentionally not serialized.
135  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
136  llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*> ObjCLayouts;
137
138  /// KeyFunctions - A cache mapping from CXXRecordDecls to key functions.
139  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
140
141  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
142  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
143
144  /// BuiltinVaListType - built-in va list type.
145  /// This is initially null and set by Sema::LazilyCreateBuiltin when
146  /// a builtin that takes a valist is encountered.
147  QualType BuiltinVaListType;
148
149  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
150  QualType ObjCIdTypedefType;
151
152  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
153  QualType ObjCSelTypedefType;
154
155  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
156  QualType ObjCProtoType;
157  const RecordType *ProtoStructType;
158
159  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
160  QualType ObjCClassTypedefType;
161
162  QualType ObjCConstantStringType;
163  RecordDecl *CFConstantStringTypeDecl;
164
165  RecordDecl *ObjCFastEnumerationStateTypeDecl;
166
167  /// \brief The type for the C FILE type.
168  TypeDecl *FILEDecl;
169
170  /// \brief The type for the C jmp_buf type.
171  TypeDecl *jmp_bufDecl;
172
173  /// \brief The type for the C sigjmp_buf type.
174  TypeDecl *sigjmp_bufDecl;
175
176  /// \brief Type for the Block descriptor for Blocks CodeGen.
177  RecordDecl *BlockDescriptorType;
178
179  /// \brief Type for the Block descriptor for Blocks CodeGen.
180  RecordDecl *BlockDescriptorExtendedType;
181
182  /// \brief Keeps track of all declaration attributes.
183  ///
184  /// Since so few decls have attrs, we keep them in a hash map instead of
185  /// wasting space in the Decl class.
186  llvm::DenseMap<const Decl*, Attr*> DeclAttrs;
187
188  /// \brief Keeps track of the static data member templates from which
189  /// static data members of class template specializations were instantiated.
190  ///
191  /// This data structure stores the mapping from instantiations of static
192  /// data members to the static data member representations within the
193  /// class template from which they were instantiated along with the kind
194  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
195  ///
196  /// Given the following example:
197  ///
198  /// \code
199  /// template<typename T>
200  /// struct X {
201  ///   static T value;
202  /// };
203  ///
204  /// template<typename T>
205  ///   T X<T>::value = T(17);
206  ///
207  /// int *x = &X<int>::value;
208  /// \endcode
209  ///
210  /// This mapping will contain an entry that maps from the VarDecl for
211  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
212  /// class template X) and will be marked TSK_ImplicitInstantiation.
213  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
214    InstantiatedFromStaticDataMember;
215
216  /// \brief Keeps track of the declaration from which a UsingDecl was
217  /// created during instantiation.  The source declaration is always
218  /// a UsingDecl, an UnresolvedUsingValueDecl, or an
219  /// UnresolvedUsingTypenameDecl.
220  ///
221  /// For example:
222  /// \code
223  /// template<typename T>
224  /// struct A {
225  ///   void f();
226  /// };
227  ///
228  /// template<typename T>
229  /// struct B : A<T> {
230  ///   using A<T>::f;
231  /// };
232  ///
233  /// template struct B<int>;
234  /// \endcode
235  ///
236  /// This mapping will contain an entry that maps from the UsingDecl in
237  /// B<int> to the UnresolvedUsingDecl in B<T>.
238  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
239
240  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
241    InstantiatedFromUsingShadowDecl;
242
243  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
244
245  /// \brief Mapping that stores the methods overridden by a given C++
246  /// member function.
247  ///
248  /// Since most C++ member functions aren't virtual and therefore
249  /// don't override anything, we store the overridden functions in
250  /// this map on the side rather than within the CXXMethodDecl structure.
251  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
252
253  TranslationUnitDecl *TUDecl;
254
255  /// SourceMgr - The associated SourceManager object.
256  SourceManager &SourceMgr;
257
258  /// LangOpts - The language options used to create the AST associated with
259  ///  this ASTContext object.
260  LangOptions LangOpts;
261
262  /// \brief Whether we have already loaded comment source ranges from an
263  /// external source.
264  bool LoadedExternalComments;
265
266  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
267  bool FreeMemory;
268  llvm::MallocAllocator MallocAlloc;
269  llvm::BumpPtrAllocator BumpAlloc;
270
271  /// \brief Mapping from declarations to their comments, once we have
272  /// already looked up the comment associated with a given declaration.
273  llvm::DenseMap<const Decl *, std::string> DeclComments;
274
275public:
276  const TargetInfo &Target;
277  IdentifierTable &Idents;
278  SelectorTable &Selectors;
279  Builtin::Context &BuiltinInfo;
280  DeclarationNameTable DeclarationNames;
281  llvm::OwningPtr<ExternalASTSource> ExternalSource;
282  clang::PrintingPolicy PrintingPolicy;
283
284  // Typedefs which may be provided defining the structure of Objective-C
285  // pseudo-builtins
286  QualType ObjCIdRedefinitionType;
287  QualType ObjCClassRedefinitionType;
288  QualType ObjCSelRedefinitionType;
289
290  /// \brief Source ranges for all of the comments in the source file,
291  /// sorted in order of appearance in the translation unit.
292  std::vector<SourceRange> Comments;
293
294  SourceManager& getSourceManager() { return SourceMgr; }
295  const SourceManager& getSourceManager() const { return SourceMgr; }
296  void *Allocate(unsigned Size, unsigned Align = 8) {
297    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
298                        BumpAlloc.Allocate(Size, Align);
299  }
300  void Deallocate(void *Ptr) {
301    if (FreeMemory)
302      MallocAlloc.Deallocate(Ptr);
303  }
304  const LangOptions& getLangOptions() const { return LangOpts; }
305
306  FullSourceLoc getFullLoc(SourceLocation Loc) const {
307    return FullSourceLoc(Loc,SourceMgr);
308  }
309
310  /// \brief Retrieve the attributes for the given declaration.
311  Attr*& getDeclAttrs(const Decl *D) { return DeclAttrs[D]; }
312
313  /// \brief Erase the attributes corresponding to the given declaration.
314  void eraseDeclAttrs(const Decl *D) { DeclAttrs.erase(D); }
315
316  /// \brief If this variable is an instantiated static data member of a
317  /// class template specialization, returns the templated static data member
318  /// from which it was instantiated.
319  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
320                                                           const VarDecl *Var);
321
322  /// \brief Note that the static data member \p Inst is an instantiation of
323  /// the static data member template \p Tmpl of a class template.
324  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
325                                           TemplateSpecializationKind TSK);
326
327  /// \brief If the given using decl is an instantiation of a
328  /// (possibly unresolved) using decl from a template instantiation,
329  /// return it.
330  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
331
332  /// \brief Remember that the using decl \p Inst is an instantiation
333  /// of the using decl \p Pattern of a class template.
334  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
335
336  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
337                                          UsingShadowDecl *Pattern);
338  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
339
340  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
341
342  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
343
344  // Access to the set of methods overridden by the given C++ method.
345  typedef CXXMethodVector::iterator overridden_cxx_method_iterator;
346  overridden_cxx_method_iterator
347  overridden_methods_begin(const CXXMethodDecl *Method) const;
348
349  overridden_cxx_method_iterator
350  overridden_methods_end(const CXXMethodDecl *Method) const;
351
352  /// \brief Note that the given C++ \p Method overrides the given \p
353  /// Overridden method.
354  void addOverriddenMethod(const CXXMethodDecl *Method,
355                           const CXXMethodDecl *Overridden);
356
357  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
358
359
360  const char *getCommentForDecl(const Decl *D);
361
362  // Builtin Types.
363  CanQualType VoidTy;
364  CanQualType BoolTy;
365  CanQualType CharTy;
366  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
367  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
368  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
369  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
370  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
371  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
372  CanQualType FloatTy, DoubleTy, LongDoubleTy;
373  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
374  CanQualType VoidPtrTy, NullPtrTy;
375  CanQualType OverloadTy;
376  CanQualType DependentTy;
377  CanQualType UndeducedAutoTy;
378  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
379
380  ASTContext(const LangOptions& LOpts, SourceManager &SM, const TargetInfo &t,
381             IdentifierTable &idents, SelectorTable &sels,
382             Builtin::Context &builtins,
383             bool FreeMemory = true, unsigned size_reserve=0);
384
385  ~ASTContext();
386
387  /// \brief Attach an external AST source to the AST context.
388  ///
389  /// The external AST source provides the ability to load parts of
390  /// the abstract syntax tree as needed from some external storage,
391  /// e.g., a precompiled header.
392  void setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source);
393
394  /// \brief Retrieve a pointer to the external AST source associated
395  /// with this AST context, if any.
396  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
397
398  void PrintStats() const;
399  const std::vector<Type*>& getTypes() const { return Types; }
400
401  //===--------------------------------------------------------------------===//
402  //                           Type Constructors
403  //===--------------------------------------------------------------------===//
404
405private:
406  /// getExtQualType - Return a type with extended qualifiers.
407  QualType getExtQualType(const Type *Base, Qualifiers Quals);
408
409  QualType getTypeDeclTypeSlow(const TypeDecl *Decl);
410
411public:
412  /// getAddSpaceQualType - Return the uniqued reference to the type for an
413  /// address space qualified type with the specified type and address space.
414  /// The resulting type has a union of the qualifiers from T and the address
415  /// space. If T already has an address space specifier, it is silently
416  /// replaced.
417  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace);
418
419  /// getObjCGCQualType - Returns the uniqued reference to the type for an
420  /// objc gc qualified type. The retulting type has a union of the qualifiers
421  /// from T and the gc attribute.
422  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr);
423
424  /// getRestrictType - Returns the uniqued reference to the type for a
425  /// 'restrict' qualified type.  The resulting type has a union of the
426  /// qualifiers from T and 'restrict'.
427  QualType getRestrictType(QualType T) {
428    return T.withFastQualifiers(Qualifiers::Restrict);
429  }
430
431  /// getVolatileType - Returns the uniqued reference to the type for a
432  /// 'volatile' qualified type.  The resulting type has a union of the
433  /// qualifiers from T and 'volatile'.
434  QualType getVolatileType(QualType T);
435
436  /// getConstType - Returns the uniqued reference to the type for a
437  /// 'const' qualified type.  The resulting type has a union of the
438  /// qualifiers from T and 'const'.
439  ///
440  /// It can be reasonably expected that this will always be
441  /// equivalent to calling T.withConst().
442  QualType getConstType(QualType T) { return T.withConst(); }
443
444  /// getNoReturnType - Add or remove the noreturn attribute to the given type
445  /// which must be a FunctionType or a pointer to an allowable type or a
446  /// BlockPointer.
447  QualType getNoReturnType(QualType T, bool AddNoReturn = true);
448
449  /// getCallConvType - Adds the specified calling convention attribute to
450  /// the given type, which must be a FunctionType or a pointer to an
451  /// allowable type.
452  QualType getCallConvType(QualType T, CallingConv CallConv);
453
454  /// getComplexType - Return the uniqued reference to the type for a complex
455  /// number with the specified element type.
456  QualType getComplexType(QualType T);
457  CanQualType getComplexType(CanQualType T) {
458    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
459  }
460
461  /// getPointerType - Return the uniqued reference to the type for a pointer to
462  /// the specified type.
463  QualType getPointerType(QualType T);
464  CanQualType getPointerType(CanQualType T) {
465    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
466  }
467
468  /// getBlockPointerType - Return the uniqued reference to the type for a block
469  /// of the specified type.
470  QualType getBlockPointerType(QualType T);
471
472  /// This gets the struct used to keep track of the descriptor for pointer to
473  /// blocks.
474  QualType getBlockDescriptorType();
475
476  // Set the type for a Block descriptor type.
477  void setBlockDescriptorType(QualType T);
478  /// Get the BlockDescriptorType type, or NULL if it hasn't yet been built.
479  QualType getRawBlockdescriptorType() {
480    if (BlockDescriptorType)
481      return getTagDeclType(BlockDescriptorType);
482    return QualType();
483  }
484
485  /// This gets the struct used to keep track of the extended descriptor for
486  /// pointer to blocks.
487  QualType getBlockDescriptorExtendedType();
488
489  // Set the type for a Block descriptor extended type.
490  void setBlockDescriptorExtendedType(QualType T);
491  /// Get the BlockDescriptorExtendedType type, or NULL if it hasn't yet been
492  /// built.
493  QualType getRawBlockdescriptorExtendedType() {
494    if (BlockDescriptorExtendedType)
495      return getTagDeclType(BlockDescriptorExtendedType);
496    return QualType();
497  }
498
499  /// This gets the struct used to keep track of pointer to blocks, complete
500  /// with captured variables.
501  QualType getBlockParmType(bool BlockHasCopyDispose,
502                            llvm::SmallVector<const Expr *, 8> &BDRDs);
503
504  /// This builds the struct used for __block variables.
505  QualType BuildByRefType(const char *DeclName, QualType Ty);
506
507  /// Returns true iff we need copy/dispose helpers for the given type.
508  bool BlockRequiresCopying(QualType Ty);
509
510  /// getLValueReferenceType - Return the uniqued reference to the type for an
511  /// lvalue reference to the specified type.
512  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true);
513
514  /// getRValueReferenceType - Return the uniqued reference to the type for an
515  /// rvalue reference to the specified type.
516  QualType getRValueReferenceType(QualType T);
517
518  /// getMemberPointerType - Return the uniqued reference to the type for a
519  /// member pointer to the specified type in the specified class. The class
520  /// is a Type because it could be a dependent name.
521  QualType getMemberPointerType(QualType T, const Type *Cls);
522
523  /// getVariableArrayType - Returns a non-unique reference to the type for a
524  /// variable array of the specified element type.
525  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
526                                ArrayType::ArraySizeModifier ASM,
527                                unsigned EltTypeQuals,
528                                SourceRange Brackets);
529
530  /// getDependentSizedArrayType - Returns a non-unique reference to
531  /// the type for a dependently-sized array of the specified element
532  /// type. FIXME: We will need these to be uniqued, or at least
533  /// comparable, at some point.
534  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
535                                      ArrayType::ArraySizeModifier ASM,
536                                      unsigned EltTypeQuals,
537                                      SourceRange Brackets);
538
539  /// getIncompleteArrayType - Returns a unique reference to the type for a
540  /// incomplete array of the specified element type.
541  QualType getIncompleteArrayType(QualType EltTy,
542                                  ArrayType::ArraySizeModifier ASM,
543                                  unsigned EltTypeQuals);
544
545  /// getConstantArrayType - Return the unique reference to the type for a
546  /// constant array of the specified element type.
547  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
548                                ArrayType::ArraySizeModifier ASM,
549                                unsigned EltTypeQuals);
550
551  /// getVectorType - Return the unique reference to a vector type of
552  /// the specified element type and size. VectorType must be a built-in type.
553  QualType getVectorType(QualType VectorType, unsigned NumElts,
554                         bool AltiVec, bool IsPixel);
555
556  /// getExtVectorType - Return the unique reference to an extended vector type
557  /// of the specified element type and size.  VectorType must be a built-in
558  /// type.
559  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
560
561  /// getDependentSizedExtVectorType - Returns a non-unique reference to
562  /// the type for a dependently-sized vector of the specified element
563  /// type. FIXME: We will need these to be uniqued, or at least
564  /// comparable, at some point.
565  QualType getDependentSizedExtVectorType(QualType VectorType,
566                                          Expr *SizeExpr,
567                                          SourceLocation AttrLoc);
568
569  /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
570  ///
571  QualType getFunctionNoProtoType(QualType ResultTy, bool NoReturn = false,
572                                  CallingConv CallConv = CC_Default);
573
574  /// getFunctionType - Return a normal function type with a typed argument
575  /// list.  isVariadic indicates whether the argument list includes '...'.
576  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
577                           unsigned NumArgs, bool isVariadic,
578                           unsigned TypeQuals, bool hasExceptionSpec,
579                           bool hasAnyExceptionSpec,
580                           unsigned NumExs, const QualType *ExArray,
581                           bool NoReturn,
582                           CallingConv CallConv);
583
584  /// getTypeDeclType - Return the unique reference to the type for
585  /// the specified type declaration.
586  QualType getTypeDeclType(const TypeDecl *Decl,
587                           const TypeDecl *PrevDecl = 0) {
588    assert(Decl && "Passed null for Decl param");
589    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
590
591    if (PrevDecl) {
592      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
593      Decl->TypeForDecl = PrevDecl->TypeForDecl;
594      return QualType(PrevDecl->TypeForDecl, 0);
595    }
596
597    return getTypeDeclTypeSlow(Decl);
598  }
599
600  /// getTypedefType - Return the unique reference to the type for the
601  /// specified typename decl.
602  QualType getTypedefType(const TypedefDecl *Decl);
603
604  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST);
605
606  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
607                                        QualType Replacement);
608
609  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
610                                   bool ParameterPack,
611                                   IdentifierInfo *Name = 0);
612
613  QualType getTemplateSpecializationType(TemplateName T,
614                                         const TemplateArgument *Args,
615                                         unsigned NumArgs,
616                                         QualType Canon = QualType());
617
618  QualType getTemplateSpecializationType(TemplateName T,
619                                         const TemplateArgumentListInfo &Args,
620                                         QualType Canon = QualType());
621
622  TypeSourceInfo *
623  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
624                                    const TemplateArgumentListInfo &Args,
625                                    QualType Canon = QualType());
626
627  QualType getQualifiedNameType(NestedNameSpecifier *NNS,
628                                QualType NamedType);
629  QualType getTypenameType(NestedNameSpecifier *NNS,
630                           const IdentifierInfo *Name,
631                           QualType Canon = QualType());
632  QualType getTypenameType(NestedNameSpecifier *NNS,
633                           const TemplateSpecializationType *TemplateId,
634                           QualType Canon = QualType());
635  QualType getElaboratedType(QualType UnderlyingType,
636                             ElaboratedType::TagKind Tag);
637
638  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
639                                ObjCProtocolDecl **Protocols = 0,
640                                unsigned NumProtocols = 0);
641
642  /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for the
643  /// given interface decl and the conforming protocol list.
644  QualType getObjCObjectPointerType(QualType OIT,
645                                    ObjCProtocolDecl **ProtocolList = 0,
646                                    unsigned NumProtocols = 0,
647                                    unsigned Quals = 0);
648
649  /// getTypeOfType - GCC extension.
650  QualType getTypeOfExprType(Expr *e);
651  QualType getTypeOfType(QualType t);
652
653  /// getDecltypeType - C++0x decltype.
654  QualType getDecltypeType(Expr *e);
655
656  /// getTagDeclType - Return the unique reference to the type for the
657  /// specified TagDecl (struct/union/class/enum) decl.
658  QualType getTagDeclType(const TagDecl *Decl);
659
660  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
661  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
662  CanQualType getSizeType() const;
663
664  /// getWCharType - In C++, this returns the unique wchar_t type.  In C99, this
665  /// returns a type compatible with the type defined in <stddef.h> as defined
666  /// by the target.
667  QualType getWCharType() const { return WCharTy; }
668
669  /// getSignedWCharType - Return the type of "signed wchar_t".
670  /// Used when in C++, as a GCC extension.
671  QualType getSignedWCharType() const;
672
673  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
674  /// Used when in C++, as a GCC extension.
675  QualType getUnsignedWCharType() const;
676
677  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
678  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
679  QualType getPointerDiffType() const;
680
681  // getCFConstantStringType - Return the C structure type used to represent
682  // constant CFStrings.
683  QualType getCFConstantStringType();
684
685  /// Get the structure type used to representation CFStrings, or NULL
686  /// if it hasn't yet been built.
687  QualType getRawCFConstantStringType() {
688    if (CFConstantStringTypeDecl)
689      return getTagDeclType(CFConstantStringTypeDecl);
690    return QualType();
691  }
692  void setCFConstantStringType(QualType T);
693
694  // This setter/getter represents the ObjC type for an NSConstantString.
695  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
696  QualType getObjCConstantStringInterface() const {
697    return ObjCConstantStringType;
698  }
699
700  //// This gets the struct used to keep track of fast enumerations.
701  QualType getObjCFastEnumerationStateType();
702
703  /// Get the ObjCFastEnumerationState type, or NULL if it hasn't yet
704  /// been built.
705  QualType getRawObjCFastEnumerationStateType() {
706    if (ObjCFastEnumerationStateTypeDecl)
707      return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
708    return QualType();
709  }
710
711  void setObjCFastEnumerationStateType(QualType T);
712
713  /// \brief Set the type for the C FILE type.
714  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
715
716  /// \brief Retrieve the C FILE type.
717  QualType getFILEType() {
718    if (FILEDecl)
719      return getTypeDeclType(FILEDecl);
720    return QualType();
721  }
722
723  /// \brief Set the type for the C jmp_buf type.
724  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
725    this->jmp_bufDecl = jmp_bufDecl;
726  }
727
728  /// \brief Retrieve the C jmp_buf type.
729  QualType getjmp_bufType() {
730    if (jmp_bufDecl)
731      return getTypeDeclType(jmp_bufDecl);
732    return QualType();
733  }
734
735  /// \brief Set the type for the C sigjmp_buf type.
736  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
737    this->sigjmp_bufDecl = sigjmp_bufDecl;
738  }
739
740  /// \brief Retrieve the C sigjmp_buf type.
741  QualType getsigjmp_bufType() {
742    if (sigjmp_bufDecl)
743      return getTypeDeclType(sigjmp_bufDecl);
744    return QualType();
745  }
746
747  /// getObjCEncodingForType - Emit the ObjC type encoding for the
748  /// given type into \arg S. If \arg NameFields is specified then
749  /// record field names are also encoded.
750  void getObjCEncodingForType(QualType t, std::string &S,
751                              const FieldDecl *Field=0);
752
753  void getLegacyIntegralTypeEncoding(QualType &t) const;
754
755  // Put the string version of type qualifiers into S.
756  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
757                                       std::string &S) const;
758
759  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
760  /// declaration.
761  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
762
763  /// getObjCEncodingForBlockDecl - Return the encoded type for this block
764  /// declaration.
765  void getObjCEncodingForBlock(const BlockExpr *Expr, std::string& S);
766
767  /// getObjCEncodingForPropertyDecl - Return the encoded type for
768  /// this method declaration. If non-NULL, Container must be either
769  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
770  /// only be NULL when getting encodings for protocol properties.
771  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
772                                      const Decl *Container,
773                                      std::string &S);
774
775  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
776                                      ObjCProtocolDecl *rProto);
777
778  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
779  /// purpose in characters.
780  CharUnits getObjCEncodingTypeSize(QualType t);
781
782  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
783  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
784  QualType getObjCIdType() const { return ObjCIdTypedefType; }
785  void setObjCIdType(QualType T);
786
787  void setObjCSelType(QualType T);
788  QualType getObjCSelType() const { return ObjCSelTypedefType; }
789
790  void setObjCProtoType(QualType QT);
791  QualType getObjCProtoType() const { return ObjCProtoType; }
792
793  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
794  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
795  /// struct.
796  QualType getObjCClassType() const { return ObjCClassTypedefType; }
797  void setObjCClassType(QualType T);
798
799  void setBuiltinVaListType(QualType T);
800  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
801
802  /// getCVRQualifiedType - Returns a type with additional const,
803  /// volatile, or restrict qualifiers.
804  QualType getCVRQualifiedType(QualType T, unsigned CVR) {
805    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
806  }
807
808  /// getQualifiedType - Returns a type with additional qualifiers.
809  QualType getQualifiedType(QualType T, Qualifiers Qs) {
810    if (!Qs.hasNonFastQualifiers())
811      return T.withFastQualifiers(Qs.getFastQualifiers());
812    QualifierCollector Qc(Qs);
813    const Type *Ptr = Qc.strip(T);
814    return getExtQualType(Ptr, Qc);
815  }
816
817  /// getQualifiedType - Returns a type with additional qualifiers.
818  QualType getQualifiedType(const Type *T, Qualifiers Qs) {
819    if (!Qs.hasNonFastQualifiers())
820      return QualType(T, Qs.getFastQualifiers());
821    return getExtQualType(T, Qs);
822  }
823
824  DeclarationName getNameForTemplate(TemplateName Name);
825
826  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
827                                         UnresolvedSetIterator End);
828
829  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
830                                        bool TemplateKeyword,
831                                        TemplateDecl *Template);
832
833  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
834                                        const IdentifierInfo *Name);
835  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
836                                        OverloadedOperatorKind Operator);
837
838  enum GetBuiltinTypeError {
839    GE_None,              //< No error
840    GE_Missing_stdio,     //< Missing a type from <stdio.h>
841    GE_Missing_setjmp     //< Missing a type from <setjmp.h>
842  };
843
844  /// GetBuiltinType - Return the type for the specified builtin.
845  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error);
846
847private:
848  CanQualType getFromTargetType(unsigned Type) const;
849
850  //===--------------------------------------------------------------------===//
851  //                         Type Predicates.
852  //===--------------------------------------------------------------------===//
853
854public:
855  /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
856  /// garbage collection attribute.
857  ///
858  Qualifiers::GC getObjCGCAttrKind(const QualType &Ty) const;
859
860  /// isObjCNSObjectType - Return true if this is an NSObject object with
861  /// its NSObject attribute set.
862  bool isObjCNSObjectType(QualType Ty) const;
863
864  //===--------------------------------------------------------------------===//
865  //                         Type Sizing and Analysis
866  //===--------------------------------------------------------------------===//
867
868  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
869  /// scalar floating point type.
870  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
871
872  /// getTypeInfo - Get the size and alignment of the specified complete type in
873  /// bits.
874  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
875  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
876    return getTypeInfo(T.getTypePtr());
877  }
878
879  /// getTypeSize - Return the size of the specified type, in bits.  This method
880  /// does not work on incomplete types.
881  uint64_t getTypeSize(QualType T) {
882    return getTypeInfo(T).first;
883  }
884  uint64_t getTypeSize(const Type *T) {
885    return getTypeInfo(T).first;
886  }
887
888  /// getCharWidth - Return the size of the character type, in bits
889  uint64_t getCharWidth() {
890    return getTypeSize(CharTy);
891  }
892
893  /// getTypeSizeInChars - Return the size of the specified type, in characters.
894  /// This method does not work on incomplete types.
895  CharUnits getTypeSizeInChars(QualType T);
896  CharUnits getTypeSizeInChars(const Type *T);
897
898  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
899  /// This method does not work on incomplete types.
900  unsigned getTypeAlign(QualType T) {
901    return getTypeInfo(T).second;
902  }
903  unsigned getTypeAlign(const Type *T) {
904    return getTypeInfo(T).second;
905  }
906
907  /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
908  /// characters. This method does not work on incomplete types.
909  CharUnits getTypeAlignInChars(QualType T);
910  CharUnits getTypeAlignInChars(const Type *T);
911
912  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
913  /// type for the current target in bits.  This can be different than the ABI
914  /// alignment in cases where it is beneficial for performance to overalign
915  /// a data type.
916  unsigned getPreferredTypeAlign(const Type *T);
917
918  /// getDeclAlign - Return a conservative estimate of the alignment of
919  /// the specified decl.  Note that bitfields do not have a valid alignment, so
920  /// this method will assert on them.
921  /// If @p RefAsPointee, references are treated like their underlying type
922  /// (for alignof), else they're treated like pointers (for CodeGen).
923  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false);
924
925  /// getASTRecordLayout - Get or compute information about the layout of the
926  /// specified record (struct/union/class), which indicates its size and field
927  /// position information.
928  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
929
930  /// getASTObjCInterfaceLayout - Get or compute information about the
931  /// layout of the specified Objective-C interface.
932  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
933
934  /// getASTObjCImplementationLayout - Get or compute information about
935  /// the layout of the specified Objective-C implementation. This may
936  /// differ from the interface if synthesized ivars are present.
937  const ASTRecordLayout &
938  getASTObjCImplementationLayout(const ObjCImplementationDecl *D);
939
940  /// getKeyFunction - Get the key function for the given record decl.
941  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
942  ///
943  /// ...the first non-pure virtual function that is not inline at the point
944  /// of class definition.
945  const CXXMethodDecl *getKeyFunction(const CXXRecordDecl *RD);
946
947  void CollectObjCIvars(const ObjCInterfaceDecl *OI,
948                        llvm::SmallVectorImpl<FieldDecl*> &Fields);
949
950  void ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
951                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
952  void CollectNonClassIvars(const ObjCInterfaceDecl *OI,
953                               llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars);
954  unsigned CountSynthesizedIvars(const ObjCInterfaceDecl *OI);
955  unsigned CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD);
956  void CollectInheritedProtocols(const Decl *CDecl,
957                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
958
959  //===--------------------------------------------------------------------===//
960  //                            Type Operators
961  //===--------------------------------------------------------------------===//
962
963  /// getCanonicalType - Return the canonical (structural) type corresponding to
964  /// the specified potentially non-canonical type.  The non-canonical version
965  /// of a type may have many "decorated" versions of types.  Decorators can
966  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
967  /// to be free of any of these, allowing two canonical types to be compared
968  /// for exact equality with a simple pointer comparison.
969  CanQualType getCanonicalType(QualType T);
970  const Type *getCanonicalType(const Type *T) {
971    return T->getCanonicalTypeInternal().getTypePtr();
972  }
973
974  /// getCanonicalParamType - Return the canonical parameter type
975  /// corresponding to the specific potentially non-canonical one.
976  /// Qualifiers are stripped off, functions are turned into function
977  /// pointers, and arrays decay one level into pointers.
978  CanQualType getCanonicalParamType(QualType T);
979
980  /// \brief Determine whether the given types are equivalent.
981  bool hasSameType(QualType T1, QualType T2) {
982    return getCanonicalType(T1) == getCanonicalType(T2);
983  }
984
985  /// \brief Returns this type as a completely-unqualified array type,
986  /// capturing the qualifiers in Quals. This will remove the minimal amount of
987  /// sugaring from the types, similar to the behavior of
988  /// QualType::getUnqualifiedType().
989  ///
990  /// \param T is the qualified type, which may be an ArrayType
991  ///
992  /// \param Quals will receive the full set of qualifiers that were
993  /// applied to the array.
994  ///
995  /// \returns if this is an array type, the completely unqualified array type
996  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
997  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
998
999  /// \brief Determine whether the given types are equivalent after
1000  /// cvr-qualifiers have been removed.
1001  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
1002    CanQualType CT1 = getCanonicalType(T1);
1003    CanQualType CT2 = getCanonicalType(T2);
1004
1005    Qualifiers Quals;
1006    QualType UnqualT1 = getUnqualifiedArrayType(CT1, Quals);
1007    QualType UnqualT2 = getUnqualifiedArrayType(CT2, Quals);
1008    return UnqualT1 == UnqualT2;
1009  }
1010
1011  /// \brief Retrieves the "canonical" declaration of
1012
1013  /// \brief Retrieves the "canonical" nested name specifier for a
1014  /// given nested name specifier.
1015  ///
1016  /// The canonical nested name specifier is a nested name specifier
1017  /// that uniquely identifies a type or namespace within the type
1018  /// system. For example, given:
1019  ///
1020  /// \code
1021  /// namespace N {
1022  ///   struct S {
1023  ///     template<typename T> struct X { typename T* type; };
1024  ///   };
1025  /// }
1026  ///
1027  /// template<typename T> struct Y {
1028  ///   typename N::S::X<T>::type member;
1029  /// };
1030  /// \endcode
1031  ///
1032  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1033  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1034  /// by declarations in the type system and the canonical type for
1035  /// the template type parameter 'T' is template-param-0-0.
1036  NestedNameSpecifier *
1037  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS);
1038
1039  /// \brief Retrieves the canonical representation of the given
1040  /// calling convention.
1041  CallingConv getCanonicalCallConv(CallingConv CC) {
1042    if (CC == CC_C)
1043      return CC_Default;
1044    return CC;
1045  }
1046
1047  /// \brief Determines whether two calling conventions name the same
1048  /// calling convention.
1049  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1050    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1051  }
1052
1053  /// \brief Retrieves the "canonical" template name that refers to a
1054  /// given template.
1055  ///
1056  /// The canonical template name is the simplest expression that can
1057  /// be used to refer to a given template. For most templates, this
1058  /// expression is just the template declaration itself. For example,
1059  /// the template std::vector can be referred to via a variety of
1060  /// names---std::vector, ::std::vector, vector (if vector is in
1061  /// scope), etc.---but all of these names map down to the same
1062  /// TemplateDecl, which is used to form the canonical template name.
1063  ///
1064  /// Dependent template names are more interesting. Here, the
1065  /// template name could be something like T::template apply or
1066  /// std::allocator<T>::template rebind, where the nested name
1067  /// specifier itself is dependent. In this case, the canonical
1068  /// template name uses the shortest form of the dependent
1069  /// nested-name-specifier, which itself contains all canonical
1070  /// types, values, and templates.
1071  TemplateName getCanonicalTemplateName(TemplateName Name);
1072
1073  /// \brief Determine whether the given template names refer to the same
1074  /// template.
1075  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1076
1077  /// \brief Retrieve the "canonical" template argument.
1078  ///
1079  /// The canonical template argument is the simplest template argument
1080  /// (which may be a type, value, expression, or declaration) that
1081  /// expresses the value of the argument.
1082  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg);
1083
1084  /// Type Query functions.  If the type is an instance of the specified class,
1085  /// return the Type pointer for the underlying maximally pretty type.  This
1086  /// is a member of ASTContext because this may need to do some amount of
1087  /// canonicalization, e.g. to move type qualifiers into the element type.
1088  const ArrayType *getAsArrayType(QualType T);
1089  const ConstantArrayType *getAsConstantArrayType(QualType T) {
1090    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1091  }
1092  const VariableArrayType *getAsVariableArrayType(QualType T) {
1093    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1094  }
1095  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
1096    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1097  }
1098  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T) {
1099    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1100  }
1101
1102  /// getBaseElementType - Returns the innermost element type of an array type.
1103  /// For example, will return "int" for int[m][n]
1104  QualType getBaseElementType(const ArrayType *VAT);
1105
1106  /// getBaseElementType - Returns the innermost element type of a type
1107  /// (which needn't actually be an array type).
1108  QualType getBaseElementType(QualType QT);
1109
1110  /// getConstantArrayElementCount - Returns number of constant array elements.
1111  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1112
1113  /// getArrayDecayedType - Return the properly qualified result of decaying the
1114  /// specified array type to a pointer.  This operation is non-trivial when
1115  /// handling typedefs etc.  The canonical type of "T" must be an array type,
1116  /// this returns a pointer to a properly qualified element of the array.
1117  ///
1118  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1119  QualType getArrayDecayedType(QualType T);
1120
1121  /// getPromotedIntegerType - Returns the type that Promotable will
1122  /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
1123  /// integer type.
1124  QualType getPromotedIntegerType(QualType PromotableType);
1125
1126  /// \brief Whether this is a promotable bitfield reference according
1127  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1128  ///
1129  /// \returns the type this bit-field will promote to, or NULL if no
1130  /// promotion occurs.
1131  QualType isPromotableBitField(Expr *E);
1132
1133  /// getIntegerTypeOrder - Returns the highest ranked integer type:
1134  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1135  /// LHS < RHS, return -1.
1136  int getIntegerTypeOrder(QualType LHS, QualType RHS);
1137
1138  /// getFloatingTypeOrder - Compare the rank of the two specified floating
1139  /// point types, ignoring the domain of the type (i.e. 'double' ==
1140  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
1141  /// LHS < RHS, return -1.
1142  int getFloatingTypeOrder(QualType LHS, QualType RHS);
1143
1144  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
1145  /// point or a complex type (based on typeDomain/typeSize).
1146  /// 'typeDomain' is a real floating point or complex type.
1147  /// 'typeSize' is a real floating point or complex type.
1148  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1149                                             QualType typeDomain) const;
1150
1151private:
1152  // Helper for integer ordering
1153  unsigned getIntegerRank(Type* T);
1154
1155public:
1156
1157  //===--------------------------------------------------------------------===//
1158  //                    Type Compatibility Predicates
1159  //===--------------------------------------------------------------------===//
1160
1161  /// Compatibility predicates used to check assignment expressions.
1162  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
1163
1164  bool typesAreBlockPointerCompatible(QualType, QualType);
1165
1166  bool isObjCIdType(QualType T) const {
1167    return T == ObjCIdTypedefType;
1168  }
1169  bool isObjCClassType(QualType T) const {
1170    return T == ObjCClassTypedefType;
1171  }
1172  bool isObjCSelType(QualType T) const {
1173    return T == ObjCSelTypedefType;
1174  }
1175  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1176  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1177                                         bool ForCompare);
1178
1179  // Check the safety of assignment from LHS to RHS
1180  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1181                               const ObjCObjectPointerType *RHSOPT);
1182  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
1183                               const ObjCInterfaceType *RHS);
1184  bool canAssignObjCInterfacesInBlockPointer(
1185                                          const ObjCObjectPointerType *LHSOPT,
1186                                          const ObjCObjectPointerType *RHSOPT);
1187  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1188  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1189                                   const ObjCObjectPointerType *RHSOPT);
1190
1191  // Functions for calculating composite types
1192  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false);
1193  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false);
1194
1195  /// UsualArithmeticConversionsType - handles the various conversions
1196  /// that are common to binary operators (C99 6.3.1.8, C++ [expr]p9)
1197  /// and returns the result type of that conversion.
1198  QualType UsualArithmeticConversionsType(QualType lhs, QualType rhs);
1199
1200  //===--------------------------------------------------------------------===//
1201  //                    Integer Predicates
1202  //===--------------------------------------------------------------------===//
1203
1204  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1205  // of bits in an integer type excluding any padding bits.
1206  unsigned getIntWidth(QualType T);
1207
1208  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1209  // unsigned integer type.  This method takes a signed type, and returns the
1210  // corresponding unsigned integer type.
1211  QualType getCorrespondingUnsignedType(QualType T);
1212
1213  //===--------------------------------------------------------------------===//
1214  //                    Type Iterators.
1215  //===--------------------------------------------------------------------===//
1216
1217  typedef std::vector<Type*>::iterator       type_iterator;
1218  typedef std::vector<Type*>::const_iterator const_type_iterator;
1219
1220  type_iterator types_begin() { return Types.begin(); }
1221  type_iterator types_end() { return Types.end(); }
1222  const_type_iterator types_begin() const { return Types.begin(); }
1223  const_type_iterator types_end() const { return Types.end(); }
1224
1225  //===--------------------------------------------------------------------===//
1226  //                    Integer Values
1227  //===--------------------------------------------------------------------===//
1228
1229  /// MakeIntValue - Make an APSInt of the appropriate width and
1230  /// signedness for the given \arg Value and integer \arg Type.
1231  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) {
1232    llvm::APSInt Res(getIntWidth(Type), !Type->isSignedIntegerType());
1233    Res = Value;
1234    return Res;
1235  }
1236
1237  /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
1238  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1239  /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
1240  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1241
1242  /// \brief Set the implementation of ObjCInterfaceDecl.
1243  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
1244                             ObjCImplementationDecl *ImplD);
1245  /// \brief Set the implementation of ObjCCategoryDecl.
1246  void setObjCImplementation(ObjCCategoryDecl *CatD,
1247                             ObjCCategoryImplDecl *ImplD);
1248
1249  /// \brief Allocate an uninitialized TypeSourceInfo.
1250  ///
1251  /// The caller should initialize the memory held by TypeSourceInfo using
1252  /// the TypeLoc wrappers.
1253  ///
1254  /// \param T the type that will be the basis for type source info. This type
1255  /// should refer to how the declarator was written in source code, not to
1256  /// what type semantic analysis resolved the declarator to.
1257  ///
1258  /// \param Size the size of the type info to create, or 0 if the size
1259  /// should be calculated based on the type.
1260  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0);
1261
1262  /// \brief Allocate a TypeSourceInfo where all locations have been
1263  /// initialized to a given location, which defaults to the empty
1264  /// location.
1265  TypeSourceInfo *
1266  getTrivialTypeSourceInfo(QualType T, SourceLocation Loc = SourceLocation());
1267
1268private:
1269  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
1270  void operator=(const ASTContext&); // DO NOT IMPLEMENT
1271
1272  void InitBuiltinTypes();
1273  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
1274
1275  // Return the ObjC type encoding for a given type.
1276  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
1277                                  bool ExpandPointedToStructures,
1278                                  bool ExpandStructures,
1279                                  const FieldDecl *Field,
1280                                  bool OutermostType = false,
1281                                  bool EncodingProperty = false);
1282
1283  const ASTRecordLayout &getObjCLayout(const ObjCInterfaceDecl *D,
1284                                       const ObjCImplementationDecl *Impl);
1285
1286private:
1287  // FIXME: This currently contains the set of StoredDeclMaps used
1288  // by DeclContext objects.  This probably should not be in ASTContext,
1289  // but we include it here so that ASTContext can quickly deallocate them.
1290  std::vector<void*> SDMs;
1291  friend class DeclContext;
1292  void *CreateStoredDeclsMap();
1293  void ReleaseDeclContextMaps();
1294};
1295
1296/// @brief Utility function for constructing a nullary selector.
1297static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
1298  IdentifierInfo* II = &Ctx.Idents.get(name);
1299  return Ctx.Selectors.getSelector(0, &II);
1300}
1301
1302/// @brief Utility function for constructing an unary selector.
1303static inline Selector GetUnarySelector(const char* name, ASTContext& Ctx) {
1304  IdentifierInfo* II = &Ctx.Idents.get(name);
1305  return Ctx.Selectors.getSelector(1, &II);
1306}
1307
1308}  // end namespace clang
1309
1310// operator new and delete aren't allowed inside namespaces.
1311// The throw specifications are mandated by the standard.
1312/// @brief Placement new for using the ASTContext's allocator.
1313///
1314/// This placement form of operator new uses the ASTContext's allocator for
1315/// obtaining memory. It is a non-throwing new, which means that it returns
1316/// null on error. (If that is what the allocator does. The current does, so if
1317/// this ever changes, this operator will have to be changed, too.)
1318/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1319/// @code
1320/// // Default alignment (8)
1321/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
1322/// // Specific alignment
1323/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
1324/// @endcode
1325/// Please note that you cannot use delete on the pointer; it must be
1326/// deallocated using an explicit destructor call followed by
1327/// @c Context.Deallocate(Ptr).
1328///
1329/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1330/// @param C The ASTContext that provides the allocator.
1331/// @param Alignment The alignment of the allocated memory (if the underlying
1332///                  allocator supports it).
1333/// @return The allocated memory. Could be NULL.
1334inline void *operator new(size_t Bytes, clang::ASTContext &C,
1335                          size_t Alignment) throw () {
1336  return C.Allocate(Bytes, Alignment);
1337}
1338/// @brief Placement delete companion to the new above.
1339///
1340/// This operator is just a companion to the new above. There is no way of
1341/// invoking it directly; see the new operator for more details. This operator
1342/// is called implicitly by the compiler if a placement new expression using
1343/// the ASTContext throws in the object constructor.
1344inline void operator delete(void *Ptr, clang::ASTContext &C, size_t)
1345              throw () {
1346  C.Deallocate(Ptr);
1347}
1348
1349/// This placement form of operator new[] uses the ASTContext's allocator for
1350/// obtaining memory. It is a non-throwing new[], which means that it returns
1351/// null on error.
1352/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
1353/// @code
1354/// // Default alignment (8)
1355/// char *data = new (Context) char[10];
1356/// // Specific alignment
1357/// char *data = new (Context, 4) char[10];
1358/// @endcode
1359/// Please note that you cannot use delete on the pointer; it must be
1360/// deallocated using an explicit destructor call followed by
1361/// @c Context.Deallocate(Ptr).
1362///
1363/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
1364/// @param C The ASTContext that provides the allocator.
1365/// @param Alignment The alignment of the allocated memory (if the underlying
1366///                  allocator supports it).
1367/// @return The allocated memory. Could be NULL.
1368inline void *operator new[](size_t Bytes, clang::ASTContext& C,
1369                            size_t Alignment = 8) throw () {
1370  return C.Allocate(Bytes, Alignment);
1371}
1372
1373/// @brief Placement delete[] companion to the new[] above.
1374///
1375/// This operator is just a companion to the new[] above. There is no way of
1376/// invoking it directly; see the new[] operator for more details. This operator
1377/// is called implicitly by the compiler if a placement new[] expression using
1378/// the ASTContext throws in the object constructor.
1379inline void operator delete[](void *Ptr, clang::ASTContext &C, size_t)
1380              throw () {
1381  C.Deallocate(Ptr);
1382}
1383
1384#endif
1385