ASTContext.h revision f98aba35e6c3da5aae61843fc01334939e4e12ec
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/LangOptions.h"
19#include "clang/AST/Builtins.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/Type.h"
23#include "clang/Basic/SourceLocation.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/FoldingSet.h"
26#include "llvm/Bitcode/SerializationFwd.h"
27#include "llvm/Support/Allocator.h"
28#include <vector>
29
30namespace llvm {
31  struct fltSemantics;
32}
33
34namespace clang {
35  class ASTRecordLayout;
36  class Expr;
37  class IdentifierTable;
38  class SelectorTable;
39  class SourceManager;
40  class TargetInfo;
41  // Decls
42  class Decl;
43  class ObjCPropertyDecl;
44  class RecordDecl;
45  class TagDecl;
46  class TranslationUnitDecl;
47  class TypeDecl;
48  class TypedefDecl;
49  class TemplateTypeParmDecl;
50  class FieldDecl;
51  class ObjCIvarRefExpr;
52  class ObjCIvarDecl;
53
54/// ASTContext - This class holds long-lived AST nodes (such as types and
55/// decls) that can be referred to throughout the semantic analysis of a file.
56class ASTContext {
57  std::vector<Type*> Types;
58  llvm::FoldingSet<ASQualType> ASQualTypes;
59  llvm::FoldingSet<ComplexType> ComplexTypes;
60  llvm::FoldingSet<PointerType> PointerTypes;
61  llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
62  llvm::FoldingSet<ReferenceType> ReferenceTypes;
63  llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
64  llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
65  llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
66  std::vector<VariableArrayType*> VariableArrayTypes;
67  std::vector<DependentSizedArrayType*> DependentSizedArrayTypes;
68  llvm::FoldingSet<VectorType> VectorTypes;
69  llvm::FoldingSet<FunctionTypeNoProto> FunctionTypeNoProtos;
70  llvm::FoldingSet<FunctionTypeProto> FunctionTypeProtos;
71  llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
72  llvm::FoldingSet<ClassTemplateSpecializationType>
73    ClassTemplateSpecializationTypes;
74  llvm::FoldingSet<ObjCQualifiedInterfaceType> ObjCQualifiedInterfaceTypes;
75  llvm::FoldingSet<ObjCQualifiedIdType> ObjCQualifiedIdTypes;
76  /// ASTRecordLayouts - A cache mapping from RecordDecls to ASTRecordLayouts.
77  ///  This is lazily created.  This is intentionally not serialized.
78  llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*> ASTRecordLayouts;
79  llvm::DenseMap<const ObjCInterfaceDecl*,
80                 const ASTRecordLayout*> ASTObjCInterfaces;
81
82  llvm::DenseMap<unsigned, FixedWidthIntType*> SignedFixedWidthIntTypes;
83  llvm::DenseMap<unsigned, FixedWidthIntType*> UnsignedFixedWidthIntTypes;
84
85  // FIXME: Shouldn't ASTRecordForInterface/ASTFieldForIvarRef and
86  // addRecordToClass/getFieldDecl be part of the backend (i.e. CodeGenTypes and
87  // CodeGenFunction)?
88  llvm::DenseMap<const ObjCInterfaceDecl*,
89                 const RecordDecl*> ASTRecordForInterface;
90  llvm::DenseMap<const ObjCIvarRefExpr*, const FieldDecl*> ASTFieldForIvarRef;
91
92  /// BuiltinVaListType - built-in va list type.
93  /// This is initially null and set by Sema::LazilyCreateBuiltin when
94  /// a builtin that takes a valist is encountered.
95  QualType BuiltinVaListType;
96
97  /// ObjCIdType - a pseudo built-in typedef type (set by Sema).
98  QualType ObjCIdType;
99  const RecordType *IdStructType;
100
101  /// ObjCSelType - another pseudo built-in typedef type (set by Sema).
102  QualType ObjCSelType;
103  const RecordType *SelStructType;
104
105  /// ObjCProtoType - another pseudo built-in typedef type (set by Sema).
106  QualType ObjCProtoType;
107  const RecordType *ProtoStructType;
108
109  /// ObjCClassType - another pseudo built-in typedef type (set by Sema).
110  QualType ObjCClassType;
111  const RecordType *ClassStructType;
112
113  QualType ObjCConstantStringType;
114  RecordDecl *CFConstantStringTypeDecl;
115
116  RecordDecl *ObjCFastEnumerationStateTypeDecl;
117
118  TranslationUnitDecl *TUDecl;
119
120  /// SourceMgr - The associated SourceManager object.
121  SourceManager &SourceMgr;
122
123  /// LangOpts - The language options used to create the AST associated with
124  ///  this ASTContext object.
125  LangOptions LangOpts;
126
127  /// MallocAlloc/BumpAlloc - The allocator objects used to create AST objects.
128  bool FreeMemory;
129  llvm::MallocAllocator MallocAlloc;
130  llvm::BumpPtrAllocator BumpAlloc;
131public:
132  TargetInfo &Target;
133  IdentifierTable &Idents;
134  SelectorTable &Selectors;
135  DeclarationNameTable DeclarationNames;
136
137  SourceManager& getSourceManager() { return SourceMgr; }
138  void *Allocate(unsigned Size, unsigned Align = 8) {
139    return FreeMemory ? MallocAlloc.Allocate(Size, Align) :
140                        BumpAlloc.Allocate(Size, Align);
141  }
142  void Deallocate(void *Ptr) {
143    if (FreeMemory)
144      MallocAlloc.Deallocate(Ptr);
145  }
146  const LangOptions& getLangOptions() const { return LangOpts; }
147
148  FullSourceLoc getFullLoc(SourceLocation Loc) const {
149    return FullSourceLoc(Loc,SourceMgr);
150  }
151
152  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
153
154  /// This is intentionally not serialized.  It is populated by the
155  /// ASTContext ctor, and there are no external pointers/references to
156  /// internal variables of BuiltinInfo.
157  Builtin::Context BuiltinInfo;
158
159  // Builtin Types.
160  QualType VoidTy;
161  QualType BoolTy;
162  QualType CharTy;
163  QualType WCharTy; // [C++ 3.9.1p5]
164  QualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy;
165  QualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
166  QualType UnsignedLongLongTy;
167  QualType FloatTy, DoubleTy, LongDoubleTy;
168  QualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
169  QualType VoidPtrTy;
170  QualType OverloadTy;
171  QualType DependentTy;
172
173  ASTContext(const LangOptions& LOpts, SourceManager &SM, TargetInfo &t,
174             IdentifierTable &idents, SelectorTable &sels,
175             bool FreeMemory = true, unsigned size_reserve=0);
176
177  ~ASTContext();
178
179  void PrintStats() const;
180  const std::vector<Type*>& getTypes() const { return Types; }
181
182  //===--------------------------------------------------------------------===//
183  //                           Type Constructors
184  //===--------------------------------------------------------------------===//
185
186  /// getASQualType - Return the uniqued reference to the type for an address
187  /// space qualified type with the specified type and address space.  The
188  /// resulting type has a union of the qualifiers from T and the address space.
189  // If T already has an address space specifier, it is silently replaced.
190  QualType getASQualType(QualType T, unsigned AddressSpace);
191
192  /// getComplexType - Return the uniqued reference to the type for a complex
193  /// number with the specified element type.
194  QualType getComplexType(QualType T);
195
196  /// getPointerType - Return the uniqued reference to the type for a pointer to
197  /// the specified type.
198  QualType getPointerType(QualType T);
199
200  /// getBlockPointerType - Return the uniqued reference to the type for a block
201  /// of the specified type.
202  QualType getBlockPointerType(QualType T);
203
204  /// getReferenceType - Return the uniqued reference to the type for a
205  /// reference to the specified type.
206  QualType getReferenceType(QualType T);
207
208  /// getMemberPointerType - Return the uniqued reference to the type for a
209  /// member pointer to the specified type in the specified class. The class
210  /// is a Type because it could be a dependent name.
211  QualType getMemberPointerType(QualType T, const Type *Cls);
212
213  /// getVariableArrayType - Returns a non-unique reference to the type for a
214  /// variable array of the specified element type.
215  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
216                                ArrayType::ArraySizeModifier ASM,
217                                unsigned EltTypeQuals);
218
219  /// getDependentSizedArrayType - Returns a non-unique reference to
220  /// the type for a dependently-sized array of the specified element
221  /// type. FIXME: We will need these to be uniqued, or at least
222  /// comparable, at some point.
223  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
224                                      ArrayType::ArraySizeModifier ASM,
225                                      unsigned EltTypeQuals);
226
227  /// getIncompleteArrayType - Returns a unique reference to the type for a
228  /// incomplete array of the specified element type.
229  QualType getIncompleteArrayType(QualType EltTy,
230                                  ArrayType::ArraySizeModifier ASM,
231                                  unsigned EltTypeQuals);
232
233  /// getConstantArrayType - Return the unique reference to the type for a
234  /// constant array of the specified element type.
235  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
236                                ArrayType::ArraySizeModifier ASM,
237                                unsigned EltTypeQuals);
238
239  /// getVectorType - Return the unique reference to a vector type of
240  /// the specified element type and size. VectorType must be a built-in type.
241  QualType getVectorType(QualType VectorType, unsigned NumElts);
242
243  /// getExtVectorType - Return the unique reference to an extended vector type
244  /// of the specified element type and size.  VectorType must be a built-in
245  /// type.
246  QualType getExtVectorType(QualType VectorType, unsigned NumElts);
247
248  /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'.
249  ///
250  QualType getFunctionTypeNoProto(QualType ResultTy);
251
252  /// getFunctionType - Return a normal function type with a typed argument
253  /// list.  isVariadic indicates whether the argument list includes '...'.
254  QualType getFunctionType(QualType ResultTy, const QualType *ArgArray,
255                           unsigned NumArgs, bool isVariadic,
256                           unsigned TypeQuals);
257
258  /// getTypeDeclType - Return the unique reference to the type for
259  /// the specified type declaration.
260  QualType getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl=0);
261
262  /// getTypedefType - Return the unique reference to the type for the
263  /// specified typename decl.
264  QualType getTypedefType(TypedefDecl *Decl);
265  QualType getObjCInterfaceType(ObjCInterfaceDecl *Decl);
266
267  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
268                                   IdentifierInfo *Name = 0);
269
270  QualType getClassTemplateSpecializationType(TemplateDecl *Template,
271                                              unsigned NumArgs,
272                                              uintptr_t *Args, bool *ArgIsType,
273                                              QualType Canon);
274
275  /// getObjCQualifiedInterfaceType - Return a
276  /// ObjCQualifiedInterfaceType type for the given interface decl and
277  /// the conforming protocol list.
278  QualType getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl,
279             ObjCProtocolDecl **ProtocolList, unsigned NumProtocols);
280
281  /// getObjCQualifiedIdType - Return an ObjCQualifiedIdType for a
282  /// given 'id' and conforming protocol list.
283  QualType getObjCQualifiedIdType(ObjCProtocolDecl **ProtocolList,
284                                  unsigned NumProtocols);
285
286
287  /// getTypeOfType - GCC extension.
288  QualType getTypeOfExpr(Expr *e);
289  QualType getTypeOfType(QualType t);
290
291  /// getTagDeclType - Return the unique reference to the type for the
292  /// specified TagDecl (struct/union/class/enum) decl.
293  QualType getTagDeclType(TagDecl *Decl);
294
295  /// getSizeType - Return the unique type for "size_t" (C99 7.17), defined
296  /// in <stddef.h>. The sizeof operator requires this (C99 6.5.3.4p4).
297  QualType getSizeType() const;
298
299  /// getWCharType - Return the unique type for "wchar_t" (C99 7.17), defined
300  /// in <stddef.h>. Wide strings require this (C99 6.4.5p5).
301  QualType getWCharType() const;
302
303  /// getSignedWCharType - Return the type of "signed wchar_t".
304  /// Used when in C++, as a GCC extension.
305  QualType getSignedWCharType() const;
306
307  /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
308  /// Used when in C++, as a GCC extension.
309  QualType getUnsignedWCharType() const;
310
311  /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
312  /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
313  QualType getPointerDiffType() const;
314
315  // getCFConstantStringType - Return the C structure type used to represent
316  // constant CFStrings.
317  QualType getCFConstantStringType();
318
319  // This setter/getter represents the ObjC type for an NSConstantString.
320  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
321  QualType getObjCConstantStringInterface() const {
322    return ObjCConstantStringType;
323  }
324
325  //// This gets the struct used to keep track of fast enumerations.
326  QualType getObjCFastEnumerationStateType();
327
328  /// getObjCEncodingForType - Emit the ObjC type encoding for the
329  /// given type into \arg S. If \arg NameFields is specified then
330  /// record field names are also encoded.
331  void getObjCEncodingForType(QualType t, std::string &S,
332                              FieldDecl *Field=NULL) const;
333
334  void getLegacyIntegralTypeEncoding(QualType &t) const;
335
336  // Put the string version of type qualifiers into S.
337  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
338                                       std::string &S) const;
339
340  /// getObjCEncodingForMethodDecl - Return the encoded type for this method
341  /// declaration.
342  void getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S);
343
344  /// getObjCEncodingForPropertyDecl - Return the encoded type for
345  /// this method declaration. If non-NULL, Container must be either
346  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
347  /// only be NULL when getting encodings for protocol properties.
348  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
349                                      const Decl *Container,
350                                      std::string &S);
351
352  /// getObjCEncodingTypeSize returns size of type for objective-c encoding
353  /// purpose.
354  int getObjCEncodingTypeSize(QualType t);
355
356  /// This setter/getter represents the ObjC 'id' type. It is setup lazily, by
357  /// Sema.  id is always a (typedef for a) pointer type, a pointer to a struct.
358  QualType getObjCIdType() const { return ObjCIdType; }
359  void setObjCIdType(TypedefDecl *Decl);
360
361  void setObjCSelType(TypedefDecl *Decl);
362  QualType getObjCSelType() const { return ObjCSelType; }
363
364  void setObjCProtoType(QualType QT);
365  QualType getObjCProtoType() const { return ObjCProtoType; }
366
367  /// This setter/getter repreents the ObjC 'Class' type. It is setup lazily, by
368  /// Sema.  'Class' is always a (typedef for a) pointer type, a pointer to a
369  /// struct.
370  QualType getObjCClassType() const { return ObjCClassType; }
371  void setObjCClassType(TypedefDecl *Decl);
372
373  void setBuiltinVaListType(QualType T);
374  QualType getBuiltinVaListType() const { return BuiltinVaListType; }
375
376  QualType getFixedWidthIntType(unsigned Width, bool Signed);
377
378private:
379  QualType getFromTargetType(unsigned Type) const;
380
381  //===--------------------------------------------------------------------===//
382  //                         Type Predicates.
383  //===--------------------------------------------------------------------===//
384
385public:
386  /// isObjCObjectPointerType - Returns true if type is an Objective-C pointer
387  /// to an object type.  This includes "id" and "Class" (two 'special' pointers
388  /// to struct), Interface* (pointer to ObjCInterfaceType) and id<P> (qualified
389  /// ID type).
390  bool isObjCObjectPointerType(QualType Ty) const;
391
392  /// isObjCNSObjectType - Return true if this is an NSObject object with
393  /// its NSObject attribute set.
394  bool isObjCNSObjectType(QualType Ty) const;
395
396  //===--------------------------------------------------------------------===//
397  //                         Type Sizing and Analysis
398  //===--------------------------------------------------------------------===//
399
400  /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
401  /// scalar floating point type.
402  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
403
404  /// getTypeInfo - Get the size and alignment of the specified complete type in
405  /// bits.
406  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T);
407  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) {
408    return getTypeInfo(T.getTypePtr());
409  }
410
411  /// getTypeSize - Return the size of the specified type, in bits.  This method
412  /// does not work on incomplete types.
413  uint64_t getTypeSize(QualType T) {
414    return getTypeInfo(T).first;
415  }
416  uint64_t getTypeSize(const Type *T) {
417    return getTypeInfo(T).first;
418  }
419
420  /// getTypeAlign - Return the ABI-specified alignment of a type, in bits.
421  /// This method does not work on incomplete types.
422  unsigned getTypeAlign(QualType T) {
423    return getTypeInfo(T).second;
424  }
425  unsigned getTypeAlign(const Type *T) {
426    return getTypeInfo(T).second;
427  }
428
429  /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
430  /// type for the current target in bits.  This can be different than the ABI
431  /// alignment in cases where it is beneficial for performance to overalign
432  /// a data type.
433  unsigned getPreferredTypeAlign(const Type *T);
434
435  /// getDeclAlign - Return the alignment of the specified decl that should be
436  /// returned by __alignof().  Note that bitfields do not have a valid
437  /// alignment, so this method will assert on them.
438  unsigned getDeclAlign(const Decl *D);
439
440  /// getASTRecordLayout - Get or compute information about the layout of the
441  /// specified record (struct/union/class), which indicates its size and field
442  /// position information.
443  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D);
444
445  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D);
446  const RecordDecl *addRecordToClass(const ObjCInterfaceDecl *D);
447  const FieldDecl *getFieldDecl(const ObjCIvarRefExpr *MRef) {
448    llvm::DenseMap<const ObjCIvarRefExpr *, const FieldDecl*>::iterator I
449      = ASTFieldForIvarRef.find(MRef);
450    assert (I != ASTFieldForIvarRef.end()  && "Unable to find field_decl");
451    return I->second;
452  }
453  void setFieldDecl(const ObjCInterfaceDecl *OI,
454                    const ObjCIvarDecl *Ivar,
455                    const ObjCIvarRefExpr *MRef);
456  //===--------------------------------------------------------------------===//
457  //                            Type Operators
458  //===--------------------------------------------------------------------===//
459
460  /// getCanonicalType - Return the canonical (structural) type corresponding to
461  /// the specified potentially non-canonical type.  The non-canonical version
462  /// of a type may have many "decorated" versions of types.  Decorators can
463  /// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
464  /// to be free of any of these, allowing two canonical types to be compared
465  /// for exact equality with a simple pointer comparison.
466  QualType getCanonicalType(QualType T);
467  const Type *getCanonicalType(const Type *T) {
468    return T->getCanonicalTypeInternal().getTypePtr();
469  }
470
471  /// \brief Determine whether the given types are equivalent.
472  bool hasSameType(QualType T1, QualType T2) {
473    return getCanonicalType(T1) == getCanonicalType(T2);
474  }
475
476  /// \brief Determine whether the given types are equivalent after
477  /// cvr-qualifiers have been removed.
478  bool hasSameUnqualifiedType(QualType T1, QualType T2) {
479    T1 = getCanonicalType(T1);
480    T2 = getCanonicalType(T2);
481    return T1.getUnqualifiedType() == T2.getUnqualifiedType();
482  }
483
484  /// \brief Retrieves the "canonical" declaration of the given tag
485  /// declaration.
486  ///
487  /// The canonical declaration for the given tag declaration is
488  /// either the definition of the tag (if it is a complete type) or
489  /// the first declaration of that tag.
490  TagDecl *getCanonicalDecl(TagDecl *Tag) {
491    QualType T = getTagDeclType(Tag);
492    return cast<TagDecl>(cast<TagType>(T)->getDecl());
493  }
494
495  /// Type Query functions.  If the type is an instance of the specified class,
496  /// return the Type pointer for the underlying maximally pretty type.  This
497  /// is a member of ASTContext because this may need to do some amount of
498  /// canonicalization, e.g. to move type qualifiers into the element type.
499  const ArrayType *getAsArrayType(QualType T);
500  const ConstantArrayType *getAsConstantArrayType(QualType T) {
501    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
502  }
503  const VariableArrayType *getAsVariableArrayType(QualType T) {
504    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
505  }
506  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) {
507    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
508  }
509
510  /// getBaseElementType - Returns the innermost element type of a variable
511  /// length array type. For example, will return "int" for int[m][n]
512  QualType getBaseElementType(const VariableArrayType *VAT);
513
514  /// getArrayDecayedType - Return the properly qualified result of decaying the
515  /// specified array type to a pointer.  This operation is non-trivial when
516  /// handling typedefs etc.  The canonical type of "T" must be an array type,
517  /// this returns a pointer to a properly qualified element of the array.
518  ///
519  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
520  QualType getArrayDecayedType(QualType T);
521
522  /// getIntegerTypeOrder - Returns the highest ranked integer type:
523  /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
524  /// LHS < RHS, return -1.
525  int getIntegerTypeOrder(QualType LHS, QualType RHS);
526
527  /// getFloatingTypeOrder - Compare the rank of the two specified floating
528  /// point types, ignoring the domain of the type (i.e. 'double' ==
529  /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
530  /// LHS < RHS, return -1.
531  int getFloatingTypeOrder(QualType LHS, QualType RHS);
532
533  /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
534  /// point or a complex type (based on typeDomain/typeSize).
535  /// 'typeDomain' is a real floating point or complex type.
536  /// 'typeSize' is a real floating point or complex type.
537  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
538                                             QualType typeDomain) const;
539
540private:
541  // Helper for integer ordering
542  unsigned getIntegerRank(Type* T);
543
544public:
545
546  //===--------------------------------------------------------------------===//
547  //                    Type Compatibility Predicates
548  //===--------------------------------------------------------------------===//
549
550  /// Compatibility predicates used to check assignment expressions.
551  bool typesAreCompatible(QualType, QualType); // C99 6.2.7p1
552  bool typesAreBlockCompatible(QualType lhs, QualType rhs);
553
554  bool isObjCIdType(QualType T) const {
555    return T == ObjCIdType;
556  }
557  bool isObjCIdStructType(QualType T) const {
558    if (!IdStructType) // ObjC isn't enabled
559      return false;
560    return T->getAsStructureType() == IdStructType;
561  }
562  bool isObjCClassType(QualType T) const {
563    return T == ObjCClassType;
564  }
565  bool isObjCClassStructType(QualType T) const {
566    if (!ClassStructType) // ObjC isn't enabled
567      return false;
568    return T->getAsStructureType() == ClassStructType;
569  }
570  bool isObjCSelType(QualType T) const {
571    assert(SelStructType && "isObjCSelType used before 'SEL' type is built");
572    return T->getAsStructureType() == SelStructType;
573  }
574
575  // Check the safety of assignment from LHS to RHS
576  bool canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
577                               const ObjCInterfaceType *RHS);
578  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
579
580  // Functions for calculating composite types
581  QualType mergeTypes(QualType, QualType);
582  QualType mergeFunctionTypes(QualType, QualType);
583
584  //===--------------------------------------------------------------------===//
585  //                    Integer Predicates
586  //===--------------------------------------------------------------------===//
587
588  // The width of an integer, as defined in C99 6.2.6.2. This is the number
589  // of bits in an integer type excluding any padding bits.
590  unsigned getIntWidth(QualType T);
591
592  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
593  // unsigned integer type.  This method takes a signed type, and returns the
594  // corresponding unsigned integer type.
595  QualType getCorrespondingUnsignedType(QualType T);
596
597  //===--------------------------------------------------------------------===//
598  //                    Type Iterators.
599  //===--------------------------------------------------------------------===//
600
601  typedef std::vector<Type*>::iterator       type_iterator;
602  typedef std::vector<Type*>::const_iterator const_type_iterator;
603
604  type_iterator types_begin() { return Types.begin(); }
605  type_iterator types_end() { return Types.end(); }
606  const_type_iterator types_begin() const { return Types.begin(); }
607  const_type_iterator types_end() const { return Types.end(); }
608
609  //===--------------------------------------------------------------------===//
610  //                    Serialization
611  //===--------------------------------------------------------------------===//
612
613  void Emit(llvm::Serializer& S) const;
614  static ASTContext* Create(llvm::Deserializer& D);
615
616private:
617  ASTContext(const ASTContext&); // DO NOT IMPLEMENT
618  void operator=(const ASTContext&); // DO NOT IMPLEMENT
619
620  void InitBuiltinTypes();
621  void InitBuiltinType(QualType &R, BuiltinType::Kind K);
622
623  // Return the ObjC type encoding for a given type.
624  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
625                                  bool ExpandPointedToStructures,
626                                  bool ExpandStructures,
627                                  FieldDecl *Field,
628                                  bool OutermostType = false,
629                                  bool EncodingProperty = false) const;
630
631};
632
633}  // end namespace clang
634
635// operator new and delete aren't allowed inside namespaces.
636// The throw specifications are mandated by the standard.
637/// @brief Placement new for using the ASTContext's allocator.
638///
639/// This placement form of operator new uses the ASTContext's allocator for
640/// obtaining memory. It is a non-throwing new, which means that it returns
641/// null on error. (If that is what the allocator does. The current does, so if
642/// this ever changes, this operator will have to be changed, too.)
643/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
644/// @code
645/// // Default alignment (16)
646/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
647/// // Specific alignment
648/// IntegerLiteral *Ex2 = new (Context, 8) IntegerLiteral(arguments);
649/// @endcode
650/// Please note that you cannot use delete on the pointer; it must be
651/// deallocated using an explicit destructor call followed by
652/// @c Context.Deallocate(Ptr).
653///
654/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
655/// @param C The ASTContext that provides the allocator.
656/// @param Alignment The alignment of the allocated memory (if the underlying
657///                  allocator supports it).
658/// @return The allocated memory. Could be NULL.
659inline void *operator new(size_t Bytes, clang::ASTContext &C,
660                          size_t Alignment = 16) throw () {
661  return C.Allocate(Bytes, Alignment);
662}
663/// @brief Placement delete companion to the new above.
664///
665/// This operator is just a companion to the new above. There is no way of
666/// invoking it directly; see the new operator for more details. This operator
667/// is called implicitly by the compiler if a placement new expression using
668/// the ASTContext throws in the object constructor.
669inline void operator delete(void *Ptr, clang::ASTContext &C)
670              throw () {
671  C.Deallocate(Ptr);
672}
673
674/// This placement form of operator new[] uses the ASTContext's allocator for
675/// obtaining memory. It is a non-throwing new[], which means that it returns
676/// null on error.
677/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
678/// @code
679/// // Default alignment (16)
680/// char *data = new (Context) char[10];
681/// // Specific alignment
682/// char *data = new (Context, 8) char[10];
683/// @endcode
684/// Please note that you cannot use delete on the pointer; it must be
685/// deallocated using an explicit destructor call followed by
686/// @c Context.Deallocate(Ptr).
687///
688/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
689/// @param C The ASTContext that provides the allocator.
690/// @param Alignment The alignment of the allocated memory (if the underlying
691///                  allocator supports it).
692/// @return The allocated memory. Could be NULL.
693inline void *operator new[](size_t Bytes, clang::ASTContext& C,
694                            size_t Alignment = 16) throw () {
695  return C.Allocate(Bytes, Alignment);
696}
697
698/// @brief Placement delete[] companion to the new[] above.
699///
700/// This operator is just a companion to the new[] above. There is no way of
701/// invoking it directly; see the new[] operator for more details. This operator
702/// is called implicitly by the compiler if a placement new[] expression using
703/// the ASTContext throws in the object constructor.
704inline void operator delete[](void *Ptr, clang::ASTContext &C) throw () {
705  C.Deallocate(Ptr);
706}
707
708#endif
709