ASTContext.h revision ff9a01000ff74a994aa3da26ea2ec732c97291b7
1//===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the clang::ASTContext interface.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
16#define LLVM_CLANG_AST_ASTCONTEXT_H
17
18#include "clang/AST/ASTTypeTraits.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/LambdaMangleContext.h"
23#include "clang/AST/NestedNameSpecifier.h"
24#include "clang/AST/PrettyPrinter.h"
25#include "clang/AST/RawCommentList.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TemplateName.h"
28#include "clang/AST/Type.h"
29#include "clang/Basic/AddressSpaces.h"
30#include "clang/Basic/IdentifierTable.h"
31#include "clang/Basic/LangOptions.h"
32#include "clang/Basic/OperatorKinds.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/VersionTuple.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/IntrusiveRefCntPtr.h"
38#include "llvm/ADT/OwningPtr.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/Support/Allocator.h"
42#include <vector>
43
44namespace llvm {
45  struct fltSemantics;
46}
47
48namespace clang {
49  class FileManager;
50  class ASTRecordLayout;
51  class BlockExpr;
52  class CharUnits;
53  class DiagnosticsEngine;
54  class Expr;
55  class ExternalASTSource;
56  class ASTMutationListener;
57  class IdentifierTable;
58  class SelectorTable;
59  class TargetInfo;
60  class CXXABI;
61  // Decls
62  class MangleContext;
63  class ObjCIvarDecl;
64  class ObjCPropertyDecl;
65  class UnresolvedSetIterator;
66  class UsingDecl;
67  class UsingShadowDecl;
68
69  namespace Builtin { class Context; }
70
71  namespace comments {
72    class FullComment;
73  }
74
75/// \brief Holds long-lived AST nodes (such as types and decls) that can be
76/// referred to throughout the semantic analysis of a file.
77class ASTContext : public RefCountedBase<ASTContext> {
78  ASTContext &this_() { return *this; }
79
80  mutable SmallVector<Type *, 0> Types;
81  mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
82  mutable llvm::FoldingSet<ComplexType> ComplexTypes;
83  mutable llvm::FoldingSet<PointerType> PointerTypes;
84  mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
85  mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
86  mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
87  mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
88  mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
89  mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
90  mutable std::vector<VariableArrayType*> VariableArrayTypes;
91  mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
92  mutable llvm::FoldingSet<DependentSizedExtVectorType>
93    DependentSizedExtVectorTypes;
94  mutable llvm::FoldingSet<VectorType> VectorTypes;
95  mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
96  mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
97    FunctionProtoTypes;
98  mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
99  mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
100  mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
101  mutable llvm::FoldingSet<SubstTemplateTypeParmType>
102    SubstTemplateTypeParmTypes;
103  mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
104    SubstTemplateTypeParmPackTypes;
105  mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
106    TemplateSpecializationTypes;
107  mutable llvm::FoldingSet<ParenType> ParenTypes;
108  mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
109  mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
110  mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
111                                     ASTContext&>
112    DependentTemplateSpecializationTypes;
113  llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
114  mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
115  mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
116  mutable llvm::FoldingSet<AutoType> AutoTypes;
117  mutable llvm::FoldingSet<AtomicType> AtomicTypes;
118  llvm::FoldingSet<AttributedType> AttributedTypes;
119
120  mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
121  mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
122  mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
123    SubstTemplateTemplateParms;
124  mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
125                                     ASTContext&>
126    SubstTemplateTemplateParmPacks;
127
128  /// \brief The set of nested name specifiers.
129  ///
130  /// This set is managed by the NestedNameSpecifier class.
131  mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
132  mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
133  friend class NestedNameSpecifier;
134
135  /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
136  ///
137  /// This is lazily created.  This is intentionally not serialized.
138  mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
139    ASTRecordLayouts;
140  mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
141    ObjCLayouts;
142
143  /// \brief A cache from types to size and alignment information.
144  typedef llvm::DenseMap<const Type*,
145                         std::pair<uint64_t, unsigned> > TypeInfoMap;
146  mutable TypeInfoMap MemoizedTypeInfo;
147
148  /// \brief A cache mapping from CXXRecordDecls to key functions.
149  llvm::DenseMap<const CXXRecordDecl*, const CXXMethodDecl*> KeyFunctions;
150
151  /// \brief Mapping from ObjCContainers to their ObjCImplementations.
152  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
153
154  /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
155  /// interface.
156  llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
157
158  /// \brief Mapping from __block VarDecls to their copy initialization expr.
159  llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
160
161  /// \brief Mapping from class scope functions specialization to their
162  /// template patterns.
163  llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
164    ClassScopeSpecializationPattern;
165
166  /// \brief Representation of a "canonical" template template parameter that
167  /// is used in canonical template names.
168  class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
169    TemplateTemplateParmDecl *Parm;
170
171  public:
172    CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
173      : Parm(Parm) { }
174
175    TemplateTemplateParmDecl *getParam() const { return Parm; }
176
177    void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
178
179    static void Profile(llvm::FoldingSetNodeID &ID,
180                        TemplateTemplateParmDecl *Parm);
181  };
182  mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
183    CanonTemplateTemplateParms;
184
185  TemplateTemplateParmDecl *
186    getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
187
188  /// \brief The typedef for the __int128_t type.
189  mutable TypedefDecl *Int128Decl;
190
191  /// \brief The typedef for the __uint128_t type.
192  mutable TypedefDecl *UInt128Decl;
193
194  /// \brief The typedef for the target specific predefined
195  /// __builtin_va_list type.
196  mutable TypedefDecl *BuiltinVaListDecl;
197
198  /// \brief The typedef for the predefined \c id type.
199  mutable TypedefDecl *ObjCIdDecl;
200
201  /// \brief The typedef for the predefined \c SEL type.
202  mutable TypedefDecl *ObjCSelDecl;
203
204  /// \brief The typedef for the predefined \c Class type.
205  mutable TypedefDecl *ObjCClassDecl;
206
207  /// \brief The typedef for the predefined \c Protocol class in Objective-C.
208  mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
209
210  /// \brief The typedef for the predefined 'BOOL' type.
211  mutable TypedefDecl *BOOLDecl;
212
213  // Typedefs which may be provided defining the structure of Objective-C
214  // pseudo-builtins
215  QualType ObjCIdRedefinitionType;
216  QualType ObjCClassRedefinitionType;
217  QualType ObjCSelRedefinitionType;
218
219  QualType ObjCConstantStringType;
220  mutable RecordDecl *CFConstantStringTypeDecl;
221
222  mutable QualType ObjCSuperType;
223
224  QualType ObjCNSStringType;
225
226  /// \brief The typedef declaration for the Objective-C "instancetype" type.
227  TypedefDecl *ObjCInstanceTypeDecl;
228
229  /// \brief The type for the C FILE type.
230  TypeDecl *FILEDecl;
231
232  /// \brief The type for the C jmp_buf type.
233  TypeDecl *jmp_bufDecl;
234
235  /// \brief The type for the C sigjmp_buf type.
236  TypeDecl *sigjmp_bufDecl;
237
238  /// \brief The type for the C ucontext_t type.
239  TypeDecl *ucontext_tDecl;
240
241  /// \brief Type for the Block descriptor for Blocks CodeGen.
242  ///
243  /// Since this is only used for generation of debug info, it is not
244  /// serialized.
245  mutable RecordDecl *BlockDescriptorType;
246
247  /// \brief Type for the Block descriptor for Blocks CodeGen.
248  ///
249  /// Since this is only used for generation of debug info, it is not
250  /// serialized.
251  mutable RecordDecl *BlockDescriptorExtendedType;
252
253  /// \brief Declaration for the CUDA cudaConfigureCall function.
254  FunctionDecl *cudaConfigureCallDecl;
255
256  TypeSourceInfo NullTypeSourceInfo;
257
258  /// \brief Keeps track of all declaration attributes.
259  ///
260  /// Since so few decls have attrs, we keep them in a hash map instead of
261  /// wasting space in the Decl class.
262  llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
263
264  /// \brief Keeps track of the static data member templates from which
265  /// static data members of class template specializations were instantiated.
266  ///
267  /// This data structure stores the mapping from instantiations of static
268  /// data members to the static data member representations within the
269  /// class template from which they were instantiated along with the kind
270  /// of instantiation or specialization (a TemplateSpecializationKind - 1).
271  ///
272  /// Given the following example:
273  ///
274  /// \code
275  /// template<typename T>
276  /// struct X {
277  ///   static T value;
278  /// };
279  ///
280  /// template<typename T>
281  ///   T X<T>::value = T(17);
282  ///
283  /// int *x = &X<int>::value;
284  /// \endcode
285  ///
286  /// This mapping will contain an entry that maps from the VarDecl for
287  /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
288  /// class template X) and will be marked TSK_ImplicitInstantiation.
289  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>
290    InstantiatedFromStaticDataMember;
291
292  /// \brief Keeps track of the declaration from which a UsingDecl was
293  /// created during instantiation.
294  ///
295  /// The source declaration is always a UsingDecl, an UnresolvedUsingValueDecl,
296  /// or an UnresolvedUsingTypenameDecl.
297  ///
298  /// For example:
299  /// \code
300  /// template<typename T>
301  /// struct A {
302  ///   void f();
303  /// };
304  ///
305  /// template<typename T>
306  /// struct B : A<T> {
307  ///   using A<T>::f;
308  /// };
309  ///
310  /// template struct B<int>;
311  /// \endcode
312  ///
313  /// This mapping will contain an entry that maps from the UsingDecl in
314  /// B<int> to the UnresolvedUsingDecl in B<T>.
315  llvm::DenseMap<UsingDecl *, NamedDecl *> InstantiatedFromUsingDecl;
316
317  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
318    InstantiatedFromUsingShadowDecl;
319
320  llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
321
322  /// \brief Mapping that stores the methods overridden by a given C++
323  /// member function.
324  ///
325  /// Since most C++ member functions aren't virtual and therefore
326  /// don't override anything, we store the overridden functions in
327  /// this map on the side rather than within the CXXMethodDecl structure.
328  typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
329  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
330
331  /// \brief Mapping from each declaration context to its corresponding lambda
332  /// mangling context.
333  llvm::DenseMap<const DeclContext *, LambdaMangleContext> LambdaMangleContexts;
334
335  llvm::DenseMap<const DeclContext *, unsigned> UnnamedMangleContexts;
336  llvm::DenseMap<const TagDecl *, unsigned> UnnamedMangleNumbers;
337
338  /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
339  /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
340  typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
341  ParameterIndexTable ParamIndices;
342
343  ImportDecl *FirstLocalImport;
344  ImportDecl *LastLocalImport;
345
346  TranslationUnitDecl *TUDecl;
347
348  /// \brief The associated SourceManager object.a
349  SourceManager &SourceMgr;
350
351  /// \brief The language options used to create the AST associated with
352  ///  this ASTContext object.
353  LangOptions &LangOpts;
354
355  /// \brief The allocator used to create AST objects.
356  ///
357  /// AST objects are never destructed; rather, all memory associated with the
358  /// AST objects will be released when the ASTContext itself is destroyed.
359  mutable llvm::BumpPtrAllocator BumpAlloc;
360
361  /// \brief Allocator for partial diagnostics.
362  PartialDiagnostic::StorageAllocator DiagAllocator;
363
364  /// \brief The current C++ ABI.
365  OwningPtr<CXXABI> ABI;
366  CXXABI *createCXXABI(const TargetInfo &T);
367
368  /// \brief The logical -> physical address space map.
369  const LangAS::Map *AddrSpaceMap;
370
371  friend class ASTDeclReader;
372  friend class ASTReader;
373  friend class ASTWriter;
374  friend class CXXRecordDecl;
375
376  const TargetInfo *Target;
377  clang::PrintingPolicy PrintingPolicy;
378
379public:
380  IdentifierTable &Idents;
381  SelectorTable &Selectors;
382  Builtin::Context &BuiltinInfo;
383  mutable DeclarationNameTable DeclarationNames;
384  OwningPtr<ExternalASTSource> ExternalSource;
385  ASTMutationListener *Listener;
386
387  /// \brief Contains parents of a node.
388  typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 1> ParentVector;
389
390  /// \brief Maps from a node to its parents.
391  typedef llvm::DenseMap<const void *, ParentVector> ParentMap;
392
393  /// \brief Returns the parents of the given node.
394  ///
395  /// Note that this will lazily compute the parents of all nodes
396  /// and store them for later retrieval. Thus, the first call is O(n)
397  /// in the number of AST nodes.
398  ///
399  /// Caveats and FIXMEs:
400  /// Calculating the parent map over all AST nodes will need to load the
401  /// full AST. This can be undesirable in the case where the full AST is
402  /// expensive to create (for example, when using precompiled header
403  /// preambles). Thus, there are good opportunities for optimization here.
404  /// One idea is to walk the given node downwards, looking for references
405  /// to declaration contexts - once a declaration context is found, compute
406  /// the parent map for the declaration context; if that can satisfy the
407  /// request, loading the whole AST can be avoided. Note that this is made
408  /// more complex by statements in templates having multiple parents - those
409  /// problems can be solved by building closure over the templated parts of
410  /// the AST, which also avoids touching large parts of the AST.
411  /// Additionally, we will want to add an interface to already give a hint
412  /// where to search for the parents, for example when looking at a statement
413  /// inside a certain function.
414  ///
415  /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
416  /// NestedNameSpecifier or NestedNameSpecifierLoc.
417  template <typename NodeT>
418  ParentVector getParents(const NodeT &Node) {
419    return getParents(ast_type_traits::DynTypedNode::create(Node));
420  }
421
422  ParentVector getParents(const ast_type_traits::DynTypedNode &Node) {
423    assert(Node.getMemoizationData() &&
424           "Invariant broken: only nodes that support memoization may be "
425           "used in the parent map.");
426    if (!AllParents) {
427      // We always need to run over the whole translation unit, as
428      // hasAncestor can escape any subtree.
429      AllParents.reset(
430          ParentMapASTVisitor::buildMap(*getTranslationUnitDecl()));
431    }
432    ParentMap::const_iterator I = AllParents->find(Node.getMemoizationData());
433    if (I == AllParents->end()) {
434      return ParentVector();
435    }
436    return I->second;
437  }
438
439  const clang::PrintingPolicy &getPrintingPolicy() const {
440    return PrintingPolicy;
441  }
442
443  void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
444    PrintingPolicy = Policy;
445  }
446
447  SourceManager& getSourceManager() { return SourceMgr; }
448  const SourceManager& getSourceManager() const { return SourceMgr; }
449
450  llvm::BumpPtrAllocator &getAllocator() const {
451    return BumpAlloc;
452  }
453
454  void *Allocate(unsigned Size, unsigned Align = 8) const {
455    return BumpAlloc.Allocate(Size, Align);
456  }
457  void Deallocate(void *Ptr) const { }
458
459  /// Return the total amount of physical memory allocated for representing
460  /// AST nodes and type information.
461  size_t getASTAllocatedMemory() const {
462    return BumpAlloc.getTotalMemory();
463  }
464  /// Return the total memory used for various side tables.
465  size_t getSideTableAllocatedMemory() const;
466
467  PartialDiagnostic::StorageAllocator &getDiagAllocator() {
468    return DiagAllocator;
469  }
470
471  const TargetInfo &getTargetInfo() const { return *Target; }
472
473  const LangOptions& getLangOpts() const { return LangOpts; }
474
475  DiagnosticsEngine &getDiagnostics() const;
476
477  FullSourceLoc getFullLoc(SourceLocation Loc) const {
478    return FullSourceLoc(Loc,SourceMgr);
479  }
480
481  /// \brief All comments in this translation unit.
482  RawCommentList Comments;
483
484  /// \brief True if comments are already loaded from ExternalASTSource.
485  mutable bool CommentsLoaded;
486
487  class RawCommentAndCacheFlags {
488  public:
489    enum Kind {
490      /// We searched for a comment attached to the particular declaration, but
491      /// didn't find any.
492      ///
493      /// getRaw() == 0.
494      NoCommentInDecl = 0,
495
496      /// We have found a comment attached to this particular declaration.
497      ///
498      /// getRaw() != 0.
499      FromDecl,
500
501      /// This declaration does not have an attached comment, and we have
502      /// searched the redeclaration chain.
503      ///
504      /// If getRaw() == 0, the whole redeclaration chain does not have any
505      /// comments.
506      ///
507      /// If getRaw() != 0, it is a comment propagated from other
508      /// redeclaration.
509      FromRedecl
510    };
511
512    Kind getKind() const LLVM_READONLY {
513      return Data.getInt();
514    }
515
516    void setKind(Kind K) {
517      Data.setInt(K);
518    }
519
520    const RawComment *getRaw() const LLVM_READONLY {
521      return Data.getPointer();
522    }
523
524    void setRaw(const RawComment *RC) {
525      Data.setPointer(RC);
526    }
527
528    const Decl *getOriginalDecl() const LLVM_READONLY {
529      return OriginalDecl;
530    }
531
532    void setOriginalDecl(const Decl *Orig) {
533      OriginalDecl = Orig;
534    }
535
536  private:
537    llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
538    const Decl *OriginalDecl;
539  };
540
541  /// \brief Mapping from declarations to comments attached to any
542  /// redeclaration.
543  ///
544  /// Raw comments are owned by Comments list.  This mapping is populated
545  /// lazily.
546  mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
547
548  /// \brief Mapping from declarations to parsed comments attached to any
549  /// redeclaration.
550  mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
551
552  /// \brief Return the documentation comment attached to a given declaration,
553  /// without looking into cache.
554  RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
555
556public:
557  RawCommentList &getRawCommentList() {
558    return Comments;
559  }
560
561  void addComment(const RawComment &RC) {
562    assert(LangOpts.RetainCommentsFromSystemHeaders ||
563           !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
564    Comments.addComment(RC, BumpAlloc);
565  }
566
567  /// \brief Return the documentation comment attached to a given declaration.
568  /// Returns NULL if no comment is attached.
569  ///
570  /// \param OriginalDecl if not NULL, is set to declaration AST node that had
571  /// the comment, if the comment we found comes from a redeclaration.
572  const RawComment *getRawCommentForAnyRedecl(
573                                      const Decl *D,
574                                      const Decl **OriginalDecl = NULL) const;
575
576  /// Return parsed documentation comment attached to a given declaration.
577  /// Returns NULL if no comment is attached.
578  ///
579  /// \param PP the Preprocessor used with this TU.  Could be NULL if
580  /// preprocessor is not available.
581  comments::FullComment *getCommentForDecl(const Decl *D,
582                                           const Preprocessor *PP) const;
583
584  comments::FullComment *cloneFullComment(comments::FullComment *FC,
585                                         const Decl *D) const;
586
587private:
588  mutable comments::CommandTraits CommentCommandTraits;
589
590public:
591  comments::CommandTraits &getCommentCommandTraits() const {
592    return CommentCommandTraits;
593  }
594
595  /// \brief Retrieve the attributes for the given declaration.
596  AttrVec& getDeclAttrs(const Decl *D);
597
598  /// \brief Erase the attributes corresponding to the given declaration.
599  void eraseDeclAttrs(const Decl *D);
600
601  /// \brief If this variable is an instantiated static data member of a
602  /// class template specialization, returns the templated static data member
603  /// from which it was instantiated.
604  MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
605                                                           const VarDecl *Var);
606
607  FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
608
609  void setClassScopeSpecializationPattern(FunctionDecl *FD,
610                                          FunctionDecl *Pattern);
611
612  /// \brief Note that the static data member \p Inst is an instantiation of
613  /// the static data member template \p Tmpl of a class template.
614  void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
615                                           TemplateSpecializationKind TSK,
616                        SourceLocation PointOfInstantiation = SourceLocation());
617
618  /// \brief If the given using decl \p Inst is an instantiation of a
619  /// (possibly unresolved) using decl from a template instantiation,
620  /// return it.
621  NamedDecl *getInstantiatedFromUsingDecl(UsingDecl *Inst);
622
623  /// \brief Remember that the using decl \p Inst is an instantiation
624  /// of the using decl \p Pattern of a class template.
625  void setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern);
626
627  void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
628                                          UsingShadowDecl *Pattern);
629  UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
630
631  FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
632
633  void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
634
635  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
636  /// the non-bitfield \p LastFD.
637  bool ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD,
638                                      const FieldDecl *LastFD) const;
639
640  /// \brief Return \c true if \p FD is a zero-length bitfield which follows
641  /// the bitfield \p LastFD.
642  bool ZeroBitfieldFollowsBitfield(const FieldDecl *FD,
643                                   const FieldDecl *LastFD) const;
644
645  /// \brief Return \c true if \p FD is a bitfield which follows the bitfield
646  /// \p LastFD.
647  bool BitfieldFollowsBitfield(const FieldDecl *FD,
648                               const FieldDecl *LastFD) const;
649
650  /// \brief Return \c true if \p FD is not a bitfield which follows the
651  /// bitfield \p LastFD.
652  bool NonBitfieldFollowsBitfield(const FieldDecl *FD,
653                                  const FieldDecl *LastFD) const;
654
655  /// \brief Return \c true if \p FD is a bitfield which follows the
656  /// non-bitfield \p LastFD.
657  bool BitfieldFollowsNonBitfield(const FieldDecl *FD,
658                                  const FieldDecl *LastFD) const;
659
660  // Access to the set of methods overridden by the given C++ method.
661  typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
662  overridden_cxx_method_iterator
663  overridden_methods_begin(const CXXMethodDecl *Method) const;
664
665  overridden_cxx_method_iterator
666  overridden_methods_end(const CXXMethodDecl *Method) const;
667
668  unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
669
670  /// \brief Note that the given C++ \p Method overrides the given \p
671  /// Overridden method.
672  void addOverriddenMethod(const CXXMethodDecl *Method,
673                           const CXXMethodDecl *Overridden);
674
675  /// \brief Return C++ or ObjC overridden methods for the given \p Method.
676  ///
677  /// An ObjC method is considered to override any method in the class's
678  /// base classes, its protocols, or its categories' protocols, that has
679  /// the same selector and is of the same kind (class or instance).
680  /// A method in an implementation is not considered as overriding the same
681  /// method in the interface or its categories.
682  void getOverriddenMethods(
683                        const NamedDecl *Method,
684                        SmallVectorImpl<const NamedDecl *> &Overridden) const;
685
686  /// \brief Notify the AST context that a new import declaration has been
687  /// parsed or implicitly created within this translation unit.
688  void addedLocalImportDecl(ImportDecl *Import);
689
690  static ImportDecl *getNextLocalImport(ImportDecl *Import) {
691    return Import->NextLocalImport;
692  }
693
694  /// \brief Iterator that visits import declarations.
695  class import_iterator {
696    ImportDecl *Import;
697
698  public:
699    typedef ImportDecl               *value_type;
700    typedef ImportDecl               *reference;
701    typedef ImportDecl               *pointer;
702    typedef int                       difference_type;
703    typedef std::forward_iterator_tag iterator_category;
704
705    import_iterator() : Import() { }
706    explicit import_iterator(ImportDecl *Import) : Import(Import) { }
707
708    reference operator*() const { return Import; }
709    pointer operator->() const { return Import; }
710
711    import_iterator &operator++() {
712      Import = ASTContext::getNextLocalImport(Import);
713      return *this;
714    }
715
716    import_iterator operator++(int) {
717      import_iterator Other(*this);
718      ++(*this);
719      return Other;
720    }
721
722    friend bool operator==(import_iterator X, import_iterator Y) {
723      return X.Import == Y.Import;
724    }
725
726    friend bool operator!=(import_iterator X, import_iterator Y) {
727      return X.Import != Y.Import;
728    }
729  };
730
731  import_iterator local_import_begin() const {
732    return import_iterator(FirstLocalImport);
733  }
734  import_iterator local_import_end() const { return import_iterator(); }
735
736  TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
737
738
739  // Builtin Types.
740  CanQualType VoidTy;
741  CanQualType BoolTy;
742  CanQualType CharTy;
743  CanQualType WCharTy;  // [C++ 3.9.1p5], integer type in C99.
744  CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
745  CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
746  CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
747  CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
748  CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
749  CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
750  CanQualType FloatTy, DoubleTy, LongDoubleTy;
751  CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
752  CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
753  CanQualType VoidPtrTy, NullPtrTy;
754  CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
755  CanQualType BuiltinFnTy;
756  CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
757  CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
758  CanQualType ObjCBuiltinBoolTy;
759  CanQualType OCLImage1dTy, OCLImage1dArrayTy, OCLImage1dBufferTy;
760  CanQualType OCLImage2dTy, OCLImage2dArrayTy;
761  CanQualType OCLImage3dTy;
762  CanQualType OCLSamplerTy, OCLEventTy;
763
764  // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
765  mutable QualType AutoDeductTy;     // Deduction against 'auto'.
766  mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
767
768  // Type used to help define __builtin_va_list for some targets.
769  // The type is built when constructing 'BuiltinVaListDecl'.
770  mutable QualType VaListTagTy;
771
772  ASTContext(LangOptions& LOpts, SourceManager &SM, const TargetInfo *t,
773             IdentifierTable &idents, SelectorTable &sels,
774             Builtin::Context &builtins,
775             unsigned size_reserve,
776             bool DelayInitialization = false);
777
778  ~ASTContext();
779
780  /// \brief Attach an external AST source to the AST context.
781  ///
782  /// The external AST source provides the ability to load parts of
783  /// the abstract syntax tree as needed from some external storage,
784  /// e.g., a precompiled header.
785  void setExternalSource(OwningPtr<ExternalASTSource> &Source);
786
787  /// \brief Retrieve a pointer to the external AST source associated
788  /// with this AST context, if any.
789  ExternalASTSource *getExternalSource() const { return ExternalSource.get(); }
790
791  /// \brief Attach an AST mutation listener to the AST context.
792  ///
793  /// The AST mutation listener provides the ability to track modifications to
794  /// the abstract syntax tree entities committed after they were initially
795  /// created.
796  void setASTMutationListener(ASTMutationListener *Listener) {
797    this->Listener = Listener;
798  }
799
800  /// \brief Retrieve a pointer to the AST mutation listener associated
801  /// with this AST context, if any.
802  ASTMutationListener *getASTMutationListener() const { return Listener; }
803
804  void PrintStats() const;
805  const SmallVectorImpl<Type *>& getTypes() const { return Types; }
806
807  /// \brief Retrieve the declaration for the 128-bit signed integer type.
808  TypedefDecl *getInt128Decl() const;
809
810  /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
811  TypedefDecl *getUInt128Decl() const;
812
813  //===--------------------------------------------------------------------===//
814  //                           Type Constructors
815  //===--------------------------------------------------------------------===//
816
817private:
818  /// \brief Return a type with extended qualifiers.
819  QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
820
821  QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
822
823public:
824  /// \brief Return the uniqued reference to the type for an address space
825  /// qualified type with the specified type and address space.
826  ///
827  /// The resulting type has a union of the qualifiers from T and the address
828  /// space. If T already has an address space specifier, it is silently
829  /// replaced.
830  QualType getAddrSpaceQualType(QualType T, unsigned AddressSpace) const;
831
832  /// \brief Return the uniqued reference to the type for an Objective-C
833  /// gc-qualified type.
834  ///
835  /// The retulting type has a union of the qualifiers from T and the gc
836  /// attribute.
837  QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
838
839  /// \brief Return the uniqued reference to the type for a \c restrict
840  /// qualified type.
841  ///
842  /// The resulting type has a union of the qualifiers from \p T and
843  /// \c restrict.
844  QualType getRestrictType(QualType T) const {
845    return T.withFastQualifiers(Qualifiers::Restrict);
846  }
847
848  /// \brief Return the uniqued reference to the type for a \c volatile
849  /// qualified type.
850  ///
851  /// The resulting type has a union of the qualifiers from \p T and
852  /// \c volatile.
853  QualType getVolatileType(QualType T) const {
854    return T.withFastQualifiers(Qualifiers::Volatile);
855  }
856
857  /// \brief Return the uniqued reference to the type for a \c const
858  /// qualified type.
859  ///
860  /// The resulting type has a union of the qualifiers from \p T and \c const.
861  ///
862  /// It can be reasonably expected that this will always be equivalent to
863  /// calling T.withConst().
864  QualType getConstType(QualType T) const { return T.withConst(); }
865
866  /// \brief Change the ExtInfo on a function type.
867  const FunctionType *adjustFunctionType(const FunctionType *Fn,
868                                         FunctionType::ExtInfo EInfo);
869
870  /// \brief Return the uniqued reference to the type for a complex
871  /// number with the specified element type.
872  QualType getComplexType(QualType T) const;
873  CanQualType getComplexType(CanQualType T) const {
874    return CanQualType::CreateUnsafe(getComplexType((QualType) T));
875  }
876
877  /// \brief Return the uniqued reference to the type for a pointer to
878  /// the specified type.
879  QualType getPointerType(QualType T) const;
880  CanQualType getPointerType(CanQualType T) const {
881    return CanQualType::CreateUnsafe(getPointerType((QualType) T));
882  }
883
884  /// \brief Return the uniqued reference to the atomic type for the specified
885  /// type.
886  QualType getAtomicType(QualType T) const;
887
888  /// \brief Return the uniqued reference to the type for a block of the
889  /// specified type.
890  QualType getBlockPointerType(QualType T) const;
891
892  /// Gets the struct used to keep track of the descriptor for pointer to
893  /// blocks.
894  QualType getBlockDescriptorType() const;
895
896  /// Gets the struct used to keep track of the extended descriptor for
897  /// pointer to blocks.
898  QualType getBlockDescriptorExtendedType() const;
899
900  void setcudaConfigureCallDecl(FunctionDecl *FD) {
901    cudaConfigureCallDecl = FD;
902  }
903  FunctionDecl *getcudaConfigureCallDecl() {
904    return cudaConfigureCallDecl;
905  }
906
907  /// Returns true iff we need copy/dispose helpers for the given type.
908  bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
909
910
911  /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
912  /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
913  /// has extended lifetime.
914  bool getByrefLifetime(QualType Ty,
915                        Qualifiers::ObjCLifetime &Lifetime,
916                        bool &HasByrefExtendedLayout) const;
917
918  /// \brief Return the uniqued reference to the type for an lvalue reference
919  /// to the specified type.
920  QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
921    const;
922
923  /// \brief Return the uniqued reference to the type for an rvalue reference
924  /// to the specified type.
925  QualType getRValueReferenceType(QualType T) const;
926
927  /// \brief Return the uniqued reference to the type for a member pointer to
928  /// the specified type in the specified class.
929  ///
930  /// The class \p Cls is a \c Type because it could be a dependent name.
931  QualType getMemberPointerType(QualType T, const Type *Cls) const;
932
933  /// \brief Return a non-unique reference to the type for a variable array of
934  /// the specified element type.
935  QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
936                                ArrayType::ArraySizeModifier ASM,
937                                unsigned IndexTypeQuals,
938                                SourceRange Brackets) const;
939
940  /// \brief Return a non-unique reference to the type for a dependently-sized
941  /// array of the specified element type.
942  ///
943  /// FIXME: We will need these to be uniqued, or at least comparable, at some
944  /// point.
945  QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
946                                      ArrayType::ArraySizeModifier ASM,
947                                      unsigned IndexTypeQuals,
948                                      SourceRange Brackets) const;
949
950  /// \brief Return a unique reference to the type for an incomplete array of
951  /// the specified element type.
952  QualType getIncompleteArrayType(QualType EltTy,
953                                  ArrayType::ArraySizeModifier ASM,
954                                  unsigned IndexTypeQuals) const;
955
956  /// \brief Return the unique reference to the type for a constant array of
957  /// the specified element type.
958  QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
959                                ArrayType::ArraySizeModifier ASM,
960                                unsigned IndexTypeQuals) const;
961
962  /// \brief Returns a vla type where known sizes are replaced with [*].
963  QualType getVariableArrayDecayedType(QualType Ty) const;
964
965  /// \brief Return the unique reference to a vector type of the specified
966  /// element type and size.
967  ///
968  /// \pre \p VectorType must be a built-in type.
969  QualType getVectorType(QualType VectorType, unsigned NumElts,
970                         VectorType::VectorKind VecKind) const;
971
972  /// \brief Return the unique reference to an extended vector type
973  /// of the specified element type and size.
974  ///
975  /// \pre \p VectorType must be a built-in type.
976  QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
977
978  /// \pre Return a non-unique reference to the type for a dependently-sized
979  /// vector of the specified element type.
980  ///
981  /// FIXME: We will need these to be uniqued, or at least comparable, at some
982  /// point.
983  QualType getDependentSizedExtVectorType(QualType VectorType,
984                                          Expr *SizeExpr,
985                                          SourceLocation AttrLoc) const;
986
987  /// \brief Return a K&R style C function type like 'int()'.
988  QualType getFunctionNoProtoType(QualType ResultTy,
989                                  const FunctionType::ExtInfo &Info) const;
990
991  QualType getFunctionNoProtoType(QualType ResultTy) const {
992    return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
993  }
994
995  /// \brief Return a normal function type with a typed argument list.
996  QualType getFunctionType(QualType ResultTy,
997                           const QualType *Args, unsigned NumArgs,
998                           const FunctionProtoType::ExtProtoInfo &EPI) const;
999
1000  /// \brief Return the unique reference to the type for the specified type
1001  /// declaration.
1002  QualType getTypeDeclType(const TypeDecl *Decl,
1003                           const TypeDecl *PrevDecl = 0) const {
1004    assert(Decl && "Passed null for Decl param");
1005    if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1006
1007    if (PrevDecl) {
1008      assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1009      Decl->TypeForDecl = PrevDecl->TypeForDecl;
1010      return QualType(PrevDecl->TypeForDecl, 0);
1011    }
1012
1013    return getTypeDeclTypeSlow(Decl);
1014  }
1015
1016  /// \brief Return the unique reference to the type for the specified
1017  /// typedef-name decl.
1018  QualType getTypedefType(const TypedefNameDecl *Decl,
1019                          QualType Canon = QualType()) const;
1020
1021  QualType getRecordType(const RecordDecl *Decl) const;
1022
1023  QualType getEnumType(const EnumDecl *Decl) const;
1024
1025  QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1026
1027  QualType getAttributedType(AttributedType::Kind attrKind,
1028                             QualType modifiedType,
1029                             QualType equivalentType);
1030
1031  QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1032                                        QualType Replacement) const;
1033  QualType getSubstTemplateTypeParmPackType(
1034                                          const TemplateTypeParmType *Replaced,
1035                                            const TemplateArgument &ArgPack);
1036
1037  QualType getTemplateTypeParmType(unsigned Depth, unsigned Index,
1038                                   bool ParameterPack,
1039                                   TemplateTypeParmDecl *ParmDecl = 0) const;
1040
1041  QualType getTemplateSpecializationType(TemplateName T,
1042                                         const TemplateArgument *Args,
1043                                         unsigned NumArgs,
1044                                         QualType Canon = QualType()) const;
1045
1046  QualType getCanonicalTemplateSpecializationType(TemplateName T,
1047                                                  const TemplateArgument *Args,
1048                                                  unsigned NumArgs) const;
1049
1050  QualType getTemplateSpecializationType(TemplateName T,
1051                                         const TemplateArgumentListInfo &Args,
1052                                         QualType Canon = QualType()) const;
1053
1054  TypeSourceInfo *
1055  getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1056                                    const TemplateArgumentListInfo &Args,
1057                                    QualType Canon = QualType()) const;
1058
1059  QualType getParenType(QualType NamedType) const;
1060
1061  QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1062                             NestedNameSpecifier *NNS,
1063                             QualType NamedType) const;
1064  QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1065                                NestedNameSpecifier *NNS,
1066                                const IdentifierInfo *Name,
1067                                QualType Canon = QualType()) const;
1068
1069  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1070                                                  NestedNameSpecifier *NNS,
1071                                                  const IdentifierInfo *Name,
1072                                    const TemplateArgumentListInfo &Args) const;
1073  QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1074                                                  NestedNameSpecifier *NNS,
1075                                                  const IdentifierInfo *Name,
1076                                                  unsigned NumArgs,
1077                                            const TemplateArgument *Args) const;
1078
1079  QualType getPackExpansionType(QualType Pattern,
1080                                Optional<unsigned> NumExpansions);
1081
1082  QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1083                                ObjCInterfaceDecl *PrevDecl = 0) const;
1084
1085  QualType getObjCObjectType(QualType Base,
1086                             ObjCProtocolDecl * const *Protocols,
1087                             unsigned NumProtocols) const;
1088
1089  /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
1090  QualType getObjCObjectPointerType(QualType OIT) const;
1091
1092  /// \brief GCC extension.
1093  QualType getTypeOfExprType(Expr *e) const;
1094  QualType getTypeOfType(QualType t) const;
1095
1096  /// \brief C++11 decltype.
1097  QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1098
1099  /// \brief Unary type transforms
1100  QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1101                                 UnaryTransformType::UTTKind UKind) const;
1102
1103  /// \brief C++11 deduced auto type.
1104  QualType getAutoType(QualType DeducedType) const;
1105
1106  /// \brief C++11 deduction pattern for 'auto' type.
1107  QualType getAutoDeductType() const;
1108
1109  /// \brief C++11 deduction pattern for 'auto &&' type.
1110  QualType getAutoRRefDeductType() const;
1111
1112  /// \brief Return the unique reference to the type for the specified TagDecl
1113  /// (struct/union/class/enum) decl.
1114  QualType getTagDeclType(const TagDecl *Decl) const;
1115
1116  /// \brief Return the unique type for "size_t" (C99 7.17), defined in
1117  /// <stddef.h>.
1118  ///
1119  /// The sizeof operator requires this (C99 6.5.3.4p4).
1120  CanQualType getSizeType() const;
1121
1122  /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1123  /// <stdint.h>.
1124  CanQualType getIntMaxType() const;
1125
1126  /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1127  /// <stdint.h>.
1128  CanQualType getUIntMaxType() const;
1129
1130  /// \brief In C++, this returns the unique wchar_t type.  In C99, this
1131  /// returns a type compatible with the type defined in <stddef.h> as defined
1132  /// by the target.
1133  QualType getWCharType() const { return WCharTy; }
1134
1135  /// \brief Return the type of "signed wchar_t".
1136  ///
1137  /// Used when in C++, as a GCC extension.
1138  QualType getSignedWCharType() const;
1139
1140  /// \brief Return the type of "unsigned wchar_t".
1141  ///
1142  /// Used when in C++, as a GCC extension.
1143  QualType getUnsignedWCharType() const;
1144
1145  /// \brief In C99, this returns a type compatible with the type
1146  /// defined in <stddef.h> as defined by the target.
1147  QualType getWIntType() const { return WIntTy; }
1148
1149  /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
1150  /// as defined by the target.
1151  QualType getIntPtrType() const;
1152
1153  /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1154  /// as defined by the target.
1155  QualType getUIntPtrType() const;
1156
1157  /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1158  /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1159  QualType getPointerDiffType() const;
1160
1161  /// \brief Return the unique type for "pid_t" defined in
1162  /// <sys/types.h>. We need this to compute the correct type for vfork().
1163  QualType getProcessIDType() const;
1164
1165  /// \brief Return the C structure type used to represent constant CFStrings.
1166  QualType getCFConstantStringType() const;
1167
1168  /// \brief Returns the C struct type for objc_super
1169  QualType getObjCSuperType() const;
1170  void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1171
1172  /// Get the structure type used to representation CFStrings, or NULL
1173  /// if it hasn't yet been built.
1174  QualType getRawCFConstantStringType() const {
1175    if (CFConstantStringTypeDecl)
1176      return getTagDeclType(CFConstantStringTypeDecl);
1177    return QualType();
1178  }
1179  void setCFConstantStringType(QualType T);
1180
1181  // This setter/getter represents the ObjC type for an NSConstantString.
1182  void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1183  QualType getObjCConstantStringInterface() const {
1184    return ObjCConstantStringType;
1185  }
1186
1187  QualType getObjCNSStringType() const {
1188    return ObjCNSStringType;
1189  }
1190
1191  void setObjCNSStringType(QualType T) {
1192    ObjCNSStringType = T;
1193  }
1194
1195  /// \brief Retrieve the type that \c id has been defined to, which may be
1196  /// different from the built-in \c id if \c id has been typedef'd.
1197  QualType getObjCIdRedefinitionType() const {
1198    if (ObjCIdRedefinitionType.isNull())
1199      return getObjCIdType();
1200    return ObjCIdRedefinitionType;
1201  }
1202
1203  /// \brief Set the user-written type that redefines \c id.
1204  void setObjCIdRedefinitionType(QualType RedefType) {
1205    ObjCIdRedefinitionType = RedefType;
1206  }
1207
1208  /// \brief Retrieve the type that \c Class has been defined to, which may be
1209  /// different from the built-in \c Class if \c Class has been typedef'd.
1210  QualType getObjCClassRedefinitionType() const {
1211    if (ObjCClassRedefinitionType.isNull())
1212      return getObjCClassType();
1213    return ObjCClassRedefinitionType;
1214  }
1215
1216  /// \brief Set the user-written type that redefines 'SEL'.
1217  void setObjCClassRedefinitionType(QualType RedefType) {
1218    ObjCClassRedefinitionType = RedefType;
1219  }
1220
1221  /// \brief Retrieve the type that 'SEL' has been defined to, which may be
1222  /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1223  QualType getObjCSelRedefinitionType() const {
1224    if (ObjCSelRedefinitionType.isNull())
1225      return getObjCSelType();
1226    return ObjCSelRedefinitionType;
1227  }
1228
1229
1230  /// \brief Set the user-written type that redefines 'SEL'.
1231  void setObjCSelRedefinitionType(QualType RedefType) {
1232    ObjCSelRedefinitionType = RedefType;
1233  }
1234
1235  /// \brief Retrieve the Objective-C "instancetype" type, if already known;
1236  /// otherwise, returns a NULL type;
1237  QualType getObjCInstanceType() {
1238    return getTypeDeclType(getObjCInstanceTypeDecl());
1239  }
1240
1241  /// \brief Retrieve the typedef declaration corresponding to the Objective-C
1242  /// "instancetype" type.
1243  TypedefDecl *getObjCInstanceTypeDecl();
1244
1245  /// \brief Set the type for the C FILE type.
1246  void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1247
1248  /// \brief Retrieve the C FILE type.
1249  QualType getFILEType() const {
1250    if (FILEDecl)
1251      return getTypeDeclType(FILEDecl);
1252    return QualType();
1253  }
1254
1255  /// \brief Set the type for the C jmp_buf type.
1256  void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1257    this->jmp_bufDecl = jmp_bufDecl;
1258  }
1259
1260  /// \brief Retrieve the C jmp_buf type.
1261  QualType getjmp_bufType() const {
1262    if (jmp_bufDecl)
1263      return getTypeDeclType(jmp_bufDecl);
1264    return QualType();
1265  }
1266
1267  /// \brief Set the type for the C sigjmp_buf type.
1268  void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1269    this->sigjmp_bufDecl = sigjmp_bufDecl;
1270  }
1271
1272  /// \brief Retrieve the C sigjmp_buf type.
1273  QualType getsigjmp_bufType() const {
1274    if (sigjmp_bufDecl)
1275      return getTypeDeclType(sigjmp_bufDecl);
1276    return QualType();
1277  }
1278
1279  /// \brief Set the type for the C ucontext_t type.
1280  void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1281    this->ucontext_tDecl = ucontext_tDecl;
1282  }
1283
1284  /// \brief Retrieve the C ucontext_t type.
1285  QualType getucontext_tType() const {
1286    if (ucontext_tDecl)
1287      return getTypeDeclType(ucontext_tDecl);
1288    return QualType();
1289  }
1290
1291  /// \brief The result type of logical operations, '<', '>', '!=', etc.
1292  QualType getLogicalOperationType() const {
1293    return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1294  }
1295
1296  /// \brief Emit the Objective-CC type encoding for the given type \p T into
1297  /// \p S.
1298  ///
1299  /// If \p Field is specified then record field names are also encoded.
1300  void getObjCEncodingForType(QualType T, std::string &S,
1301                              const FieldDecl *Field=0) const;
1302
1303  void getLegacyIntegralTypeEncoding(QualType &t) const;
1304
1305  /// \brief Put the string version of the type qualifiers \p QT into \p S.
1306  void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1307                                       std::string &S) const;
1308
1309  /// \brief Emit the encoded type for the function \p Decl into \p S.
1310  ///
1311  /// This is in the same format as Objective-C method encodings.
1312  ///
1313  /// \returns true if an error occurred (e.g., because one of the parameter
1314  /// types is incomplete), false otherwise.
1315  bool getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, std::string& S);
1316
1317  /// \brief Emit the encoded type for the method declaration \p Decl into
1318  /// \p S.
1319  ///
1320  /// \returns true if an error occurred (e.g., because one of the parameter
1321  /// types is incomplete), false otherwise.
1322  bool getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, std::string &S,
1323                                    bool Extended = false)
1324    const;
1325
1326  /// \brief Return the encoded type for this block declaration.
1327  std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1328
1329  /// getObjCEncodingForPropertyDecl - Return the encoded type for
1330  /// this method declaration. If non-NULL, Container must be either
1331  /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1332  /// only be NULL when getting encodings for protocol properties.
1333  void getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1334                                      const Decl *Container,
1335                                      std::string &S) const;
1336
1337  bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1338                                      ObjCProtocolDecl *rProto) const;
1339
1340  /// \brief Return the size of type \p T for Objective-C encoding purpose,
1341  /// in characters.
1342  CharUnits getObjCEncodingTypeSize(QualType T) const;
1343
1344  /// \brief Retrieve the typedef corresponding to the predefined \c id type
1345  /// in Objective-C.
1346  TypedefDecl *getObjCIdDecl() const;
1347
1348  /// \brief Represents the Objective-CC \c id type.
1349  ///
1350  /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1351  /// pointer type, a pointer to a struct.
1352  QualType getObjCIdType() const {
1353    return getTypeDeclType(getObjCIdDecl());
1354  }
1355
1356  /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
1357  /// in Objective-C.
1358  TypedefDecl *getObjCSelDecl() const;
1359
1360  /// \brief Retrieve the type that corresponds to the predefined Objective-C
1361  /// 'SEL' type.
1362  QualType getObjCSelType() const {
1363    return getTypeDeclType(getObjCSelDecl());
1364  }
1365
1366  /// \brief Retrieve the typedef declaration corresponding to the predefined
1367  /// Objective-C 'Class' type.
1368  TypedefDecl *getObjCClassDecl() const;
1369
1370  /// \brief Represents the Objective-C \c Class type.
1371  ///
1372  /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1373  /// pointer type, a pointer to a struct.
1374  QualType getObjCClassType() const {
1375    return getTypeDeclType(getObjCClassDecl());
1376  }
1377
1378  /// \brief Retrieve the Objective-C class declaration corresponding to
1379  /// the predefined \c Protocol class.
1380  ObjCInterfaceDecl *getObjCProtocolDecl() const;
1381
1382  /// \brief Retrieve declaration of 'BOOL' typedef
1383  TypedefDecl *getBOOLDecl() const {
1384    return BOOLDecl;
1385  }
1386
1387  /// \brief Save declaration of 'BOOL' typedef
1388  void setBOOLDecl(TypedefDecl *TD) {
1389    BOOLDecl = TD;
1390  }
1391
1392  /// \brief type of 'BOOL' type.
1393  QualType getBOOLType() const {
1394    return getTypeDeclType(getBOOLDecl());
1395  }
1396
1397  /// \brief Retrieve the type of the Objective-C \c Protocol class.
1398  QualType getObjCProtoType() const {
1399    return getObjCInterfaceType(getObjCProtocolDecl());
1400  }
1401
1402  /// \brief Retrieve the C type declaration corresponding to the predefined
1403  /// \c __builtin_va_list type.
1404  TypedefDecl *getBuiltinVaListDecl() const;
1405
1406  /// \brief Retrieve the type of the \c __builtin_va_list type.
1407  QualType getBuiltinVaListType() const {
1408    return getTypeDeclType(getBuiltinVaListDecl());
1409  }
1410
1411  /// \brief Retrieve the C type declaration corresponding to the predefined
1412  /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1413  /// for some targets.
1414  QualType getVaListTagType() const;
1415
1416  /// \brief Return a type with additional \c const, \c volatile, or
1417  /// \c restrict qualifiers.
1418  QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1419    return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1420  }
1421
1422  /// \brief Un-split a SplitQualType.
1423  QualType getQualifiedType(SplitQualType split) const {
1424    return getQualifiedType(split.Ty, split.Quals);
1425  }
1426
1427  /// \brief Return a type with additional qualifiers.
1428  QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1429    if (!Qs.hasNonFastQualifiers())
1430      return T.withFastQualifiers(Qs.getFastQualifiers());
1431    QualifierCollector Qc(Qs);
1432    const Type *Ptr = Qc.strip(T);
1433    return getExtQualType(Ptr, Qc);
1434  }
1435
1436  /// \brief Return a type with additional qualifiers.
1437  QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1438    if (!Qs.hasNonFastQualifiers())
1439      return QualType(T, Qs.getFastQualifiers());
1440    return getExtQualType(T, Qs);
1441  }
1442
1443  /// \brief Return a type with the given lifetime qualifier.
1444  ///
1445  /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1446  QualType getLifetimeQualifiedType(QualType type,
1447                                    Qualifiers::ObjCLifetime lifetime) {
1448    assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1449    assert(lifetime != Qualifiers::OCL_None);
1450
1451    Qualifiers qs;
1452    qs.addObjCLifetime(lifetime);
1453    return getQualifiedType(type, qs);
1454  }
1455
1456  DeclarationNameInfo getNameForTemplate(TemplateName Name,
1457                                         SourceLocation NameLoc) const;
1458
1459  TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
1460                                         UnresolvedSetIterator End) const;
1461
1462  TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
1463                                        bool TemplateKeyword,
1464                                        TemplateDecl *Template) const;
1465
1466  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1467                                        const IdentifierInfo *Name) const;
1468  TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
1469                                        OverloadedOperatorKind Operator) const;
1470  TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
1471                                            TemplateName replacement) const;
1472  TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
1473                                        const TemplateArgument &ArgPack) const;
1474
1475  enum GetBuiltinTypeError {
1476    GE_None,              ///< No error
1477    GE_Missing_stdio,     ///< Missing a type from <stdio.h>
1478    GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
1479    GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
1480  };
1481
1482  /// \brief Return the type for the specified builtin.
1483  ///
1484  /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
1485  /// arguments to the builtin that are required to be integer constant
1486  /// expressions.
1487  QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
1488                          unsigned *IntegerConstantArgs = 0) const;
1489
1490private:
1491  CanQualType getFromTargetType(unsigned Type) const;
1492  std::pair<uint64_t, unsigned> getTypeInfoImpl(const Type *T) const;
1493
1494  //===--------------------------------------------------------------------===//
1495  //                         Type Predicates.
1496  //===--------------------------------------------------------------------===//
1497
1498public:
1499  /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
1500  /// collection attributes.
1501  Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
1502
1503  /// \brief Return true if the given vector types are of the same unqualified
1504  /// type or if they are equivalent to the same GCC vector type.
1505  ///
1506  /// \note This ignores whether they are target-specific (AltiVec or Neon)
1507  /// types.
1508  bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
1509
1510  /// \brief Return true if this is an \c NSObject object with its \c NSObject
1511  /// attribute set.
1512  static bool isObjCNSObjectType(QualType Ty) {
1513    return Ty->isObjCNSObjectType();
1514  }
1515
1516  //===--------------------------------------------------------------------===//
1517  //                         Type Sizing and Analysis
1518  //===--------------------------------------------------------------------===//
1519
1520  /// \brief Return the APFloat 'semantics' for the specified scalar floating
1521  /// point type.
1522  const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
1523
1524  /// \brief Get the size and alignment of the specified complete type in bits.
1525  std::pair<uint64_t, unsigned> getTypeInfo(const Type *T) const;
1526  std::pair<uint64_t, unsigned> getTypeInfo(QualType T) const {
1527    return getTypeInfo(T.getTypePtr());
1528  }
1529
1530  /// \brief Return the size of the specified (complete) type \p T, in bits.
1531  uint64_t getTypeSize(QualType T) const {
1532    return getTypeInfo(T).first;
1533  }
1534  uint64_t getTypeSize(const Type *T) const {
1535    return getTypeInfo(T).first;
1536  }
1537
1538  /// \brief Return the size of the character type, in bits.
1539  uint64_t getCharWidth() const {
1540    return getTypeSize(CharTy);
1541  }
1542
1543  /// \brief Convert a size in bits to a size in characters.
1544  CharUnits toCharUnitsFromBits(int64_t BitSize) const;
1545
1546  /// \brief Convert a size in characters to a size in bits.
1547  int64_t toBits(CharUnits CharSize) const;
1548
1549  /// \brief Return the size of the specified (complete) type \p T, in
1550  /// characters.
1551  CharUnits getTypeSizeInChars(QualType T) const;
1552  CharUnits getTypeSizeInChars(const Type *T) const;
1553
1554  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1555  /// bits.
1556  unsigned getTypeAlign(QualType T) const {
1557    return getTypeInfo(T).second;
1558  }
1559  unsigned getTypeAlign(const Type *T) const {
1560    return getTypeInfo(T).second;
1561  }
1562
1563  /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
1564  /// characters.
1565  CharUnits getTypeAlignInChars(QualType T) const;
1566  CharUnits getTypeAlignInChars(const Type *T) const;
1567
1568  // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
1569  // type is a record, its data size is returned.
1570  std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
1571
1572  std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
1573  std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
1574
1575  /// \brief Return the "preferred" alignment of the specified type \p T for
1576  /// the current target, in bits.
1577  ///
1578  /// This can be different than the ABI alignment in cases where it is
1579  /// beneficial for performance to overalign a data type.
1580  unsigned getPreferredTypeAlign(const Type *T) const;
1581
1582  /// \brief Return a conservative estimate of the alignment of the specified
1583  /// decl \p D.
1584  ///
1585  /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
1586  /// alignment.
1587  ///
1588  /// If \p RefAsPointee, references are treated like their underlying type
1589  /// (for alignof), else they're treated like pointers (for CodeGen).
1590  CharUnits getDeclAlign(const Decl *D, bool RefAsPointee = false) const;
1591
1592  /// \brief Get or compute information about the layout of the specified
1593  /// record (struct/union/class) \p D, which indicates its size and field
1594  /// position information.
1595  const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
1596
1597  /// \brief Get or compute information about the layout of the specified
1598  /// Objective-C interface.
1599  const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
1600    const;
1601
1602  void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
1603                        bool Simple = false) const;
1604
1605  /// \brief Get or compute information about the layout of the specified
1606  /// Objective-C implementation.
1607  ///
1608  /// This may differ from the interface if synthesized ivars are present.
1609  const ASTRecordLayout &
1610  getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
1611
1612  /// \brief Get our current best idea for the key function of the
1613  /// given record decl, or NULL if there isn't one.
1614  ///
1615  /// The key function is, according to the Itanium C++ ABI section 5.2.3:
1616  ///   ...the first non-pure virtual function that is not inline at the
1617  ///   point of class definition.
1618  ///
1619  /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
1620  /// virtual functions that are defined 'inline', which means that
1621  /// the result of this computation can change.
1622  const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
1623
1624  /// \brief Observe that the given method cannot be a key function.
1625  /// Checks the key-function cache for the method's class and clears it
1626  /// if matches the given declaration.
1627  ///
1628  /// This is used in ABIs where out-of-line definitions marked
1629  /// inline are not considered to be key functions.
1630  ///
1631  /// \param method should be the declaration from the class definition
1632  void setNonKeyFunction(const CXXMethodDecl *method);
1633
1634  /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
1635  uint64_t getFieldOffset(const ValueDecl *FD) const;
1636
1637  bool isNearlyEmpty(const CXXRecordDecl *RD) const;
1638
1639  MangleContext *createMangleContext();
1640
1641  void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
1642                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
1643
1644  unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
1645  void CollectInheritedProtocols(const Decl *CDecl,
1646                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
1647
1648  //===--------------------------------------------------------------------===//
1649  //                            Type Operators
1650  //===--------------------------------------------------------------------===//
1651
1652  /// \brief Return the canonical (structural) type corresponding to the
1653  /// specified potentially non-canonical type \p T.
1654  ///
1655  /// The non-canonical version of a type may have many "decorated" versions of
1656  /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
1657  /// returned type is guaranteed to be free of any of these, allowing two
1658  /// canonical types to be compared for exact equality with a simple pointer
1659  /// comparison.
1660  CanQualType getCanonicalType(QualType T) const {
1661    return CanQualType::CreateUnsafe(T.getCanonicalType());
1662  }
1663
1664  const Type *getCanonicalType(const Type *T) const {
1665    return T->getCanonicalTypeInternal().getTypePtr();
1666  }
1667
1668  /// \brief Return the canonical parameter type corresponding to the specific
1669  /// potentially non-canonical one.
1670  ///
1671  /// Qualifiers are stripped off, functions are turned into function
1672  /// pointers, and arrays decay one level into pointers.
1673  CanQualType getCanonicalParamType(QualType T) const;
1674
1675  /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
1676  bool hasSameType(QualType T1, QualType T2) const {
1677    return getCanonicalType(T1) == getCanonicalType(T2);
1678  }
1679
1680  /// \brief Return this type as a completely-unqualified array type,
1681  /// capturing the qualifiers in \p Quals.
1682  ///
1683  /// This will remove the minimal amount of sugaring from the types, similar
1684  /// to the behavior of QualType::getUnqualifiedType().
1685  ///
1686  /// \param T is the qualified type, which may be an ArrayType
1687  ///
1688  /// \param Quals will receive the full set of qualifiers that were
1689  /// applied to the array.
1690  ///
1691  /// \returns if this is an array type, the completely unqualified array type
1692  /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
1693  QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
1694
1695  /// \brief Determine whether the given types are equivalent after
1696  /// cvr-qualifiers have been removed.
1697  bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
1698    return getCanonicalType(T1).getTypePtr() ==
1699           getCanonicalType(T2).getTypePtr();
1700  }
1701
1702  bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
1703
1704  /// \brief Retrieves the "canonical" nested name specifier for a
1705  /// given nested name specifier.
1706  ///
1707  /// The canonical nested name specifier is a nested name specifier
1708  /// that uniquely identifies a type or namespace within the type
1709  /// system. For example, given:
1710  ///
1711  /// \code
1712  /// namespace N {
1713  ///   struct S {
1714  ///     template<typename T> struct X { typename T* type; };
1715  ///   };
1716  /// }
1717  ///
1718  /// template<typename T> struct Y {
1719  ///   typename N::S::X<T>::type member;
1720  /// };
1721  /// \endcode
1722  ///
1723  /// Here, the nested-name-specifier for N::S::X<T>:: will be
1724  /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
1725  /// by declarations in the type system and the canonical type for
1726  /// the template type parameter 'T' is template-param-0-0.
1727  NestedNameSpecifier *
1728  getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
1729
1730  /// \brief Retrieves the default calling convention to use for
1731  /// C++ instance methods.
1732  CallingConv getDefaultCXXMethodCallConv(bool isVariadic);
1733
1734  /// \brief Retrieves the canonical representation of the given
1735  /// calling convention.
1736  CallingConv getCanonicalCallConv(CallingConv CC) const;
1737
1738  /// \brief Determines whether two calling conventions name the same
1739  /// calling convention.
1740  bool isSameCallConv(CallingConv lcc, CallingConv rcc) {
1741    return (getCanonicalCallConv(lcc) == getCanonicalCallConv(rcc));
1742  }
1743
1744  /// \brief Retrieves the "canonical" template name that refers to a
1745  /// given template.
1746  ///
1747  /// The canonical template name is the simplest expression that can
1748  /// be used to refer to a given template. For most templates, this
1749  /// expression is just the template declaration itself. For example,
1750  /// the template std::vector can be referred to via a variety of
1751  /// names---std::vector, \::std::vector, vector (if vector is in
1752  /// scope), etc.---but all of these names map down to the same
1753  /// TemplateDecl, which is used to form the canonical template name.
1754  ///
1755  /// Dependent template names are more interesting. Here, the
1756  /// template name could be something like T::template apply or
1757  /// std::allocator<T>::template rebind, where the nested name
1758  /// specifier itself is dependent. In this case, the canonical
1759  /// template name uses the shortest form of the dependent
1760  /// nested-name-specifier, which itself contains all canonical
1761  /// types, values, and templates.
1762  TemplateName getCanonicalTemplateName(TemplateName Name) const;
1763
1764  /// \brief Determine whether the given template names refer to the same
1765  /// template.
1766  bool hasSameTemplateName(TemplateName X, TemplateName Y);
1767
1768  /// \brief Retrieve the "canonical" template argument.
1769  ///
1770  /// The canonical template argument is the simplest template argument
1771  /// (which may be a type, value, expression, or declaration) that
1772  /// expresses the value of the argument.
1773  TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
1774    const;
1775
1776  /// Type Query functions.  If the type is an instance of the specified class,
1777  /// return the Type pointer for the underlying maximally pretty type.  This
1778  /// is a member of ASTContext because this may need to do some amount of
1779  /// canonicalization, e.g. to move type qualifiers into the element type.
1780  const ArrayType *getAsArrayType(QualType T) const;
1781  const ConstantArrayType *getAsConstantArrayType(QualType T) const {
1782    return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
1783  }
1784  const VariableArrayType *getAsVariableArrayType(QualType T) const {
1785    return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
1786  }
1787  const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
1788    return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
1789  }
1790  const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
1791    const {
1792    return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
1793  }
1794
1795  /// \brief Return the innermost element type of an array type.
1796  ///
1797  /// For example, will return "int" for int[m][n]
1798  QualType getBaseElementType(const ArrayType *VAT) const;
1799
1800  /// \brief Return the innermost element type of a type (which needn't
1801  /// actually be an array type).
1802  QualType getBaseElementType(QualType QT) const;
1803
1804  /// \brief Return number of constant array elements.
1805  uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
1806
1807  /// \brief Perform adjustment on the parameter type of a function.
1808  ///
1809  /// This routine adjusts the given parameter type @p T to the actual
1810  /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
1811  /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
1812  QualType getAdjustedParameterType(QualType T) const;
1813
1814  /// \brief Retrieve the parameter type as adjusted for use in the signature
1815  /// of a function, decaying array and function types and removing top-level
1816  /// cv-qualifiers.
1817  QualType getSignatureParameterType(QualType T) const;
1818
1819  /// \brief Return the properly qualified result of decaying the specified
1820  /// array type to a pointer.
1821  ///
1822  /// This operation is non-trivial when handling typedefs etc.  The canonical
1823  /// type of \p T must be an array type, this returns a pointer to a properly
1824  /// qualified element of the array.
1825  ///
1826  /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
1827  QualType getArrayDecayedType(QualType T) const;
1828
1829  /// \brief Return the type that \p PromotableType will promote to: C99
1830  /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
1831  QualType getPromotedIntegerType(QualType PromotableType) const;
1832
1833  /// \brief Recurses in pointer/array types until it finds an Objective-C
1834  /// retainable type and returns its ownership.
1835  Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
1836
1837  /// \brief Whether this is a promotable bitfield reference according
1838  /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
1839  ///
1840  /// \returns the type this bit-field will promote to, or NULL if no
1841  /// promotion occurs.
1842  QualType isPromotableBitField(Expr *E) const;
1843
1844  /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
1845  ///
1846  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1847  /// \p LHS < \p RHS, return -1.
1848  int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
1849
1850  /// \brief Compare the rank of the two specified floating point types,
1851  /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
1852  ///
1853  /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
1854  /// \p LHS < \p RHS, return -1.
1855  int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
1856
1857  /// \brief Return a real floating point or a complex type (based on
1858  /// \p typeDomain/\p typeSize).
1859  ///
1860  /// \param typeDomain a real floating point or complex type.
1861  /// \param typeSize a real floating point or complex type.
1862  QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
1863                                             QualType typeDomain) const;
1864
1865  unsigned getTargetAddressSpace(QualType T) const {
1866    return getTargetAddressSpace(T.getQualifiers());
1867  }
1868
1869  unsigned getTargetAddressSpace(Qualifiers Q) const {
1870    return getTargetAddressSpace(Q.getAddressSpace());
1871  }
1872
1873  unsigned getTargetAddressSpace(unsigned AS) const {
1874    if (AS < LangAS::Offset || AS >= LangAS::Offset + LangAS::Count)
1875      return AS;
1876    else
1877      return (*AddrSpaceMap)[AS - LangAS::Offset];
1878  }
1879
1880private:
1881  // Helper for integer ordering
1882  unsigned getIntegerRank(const Type *T) const;
1883
1884public:
1885
1886  //===--------------------------------------------------------------------===//
1887  //                    Type Compatibility Predicates
1888  //===--------------------------------------------------------------------===//
1889
1890  /// Compatibility predicates used to check assignment expressions.
1891  bool typesAreCompatible(QualType T1, QualType T2,
1892                          bool CompareUnqualified = false); // C99 6.2.7p1
1893
1894  bool propertyTypesAreCompatible(QualType, QualType);
1895  bool typesAreBlockPointerCompatible(QualType, QualType);
1896
1897  bool isObjCIdType(QualType T) const {
1898    return T == getObjCIdType();
1899  }
1900  bool isObjCClassType(QualType T) const {
1901    return T == getObjCClassType();
1902  }
1903  bool isObjCSelType(QualType T) const {
1904    return T == getObjCSelType();
1905  }
1906  bool QualifiedIdConformsQualifiedId(QualType LHS, QualType RHS);
1907  bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
1908                                         bool ForCompare);
1909
1910  bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
1911
1912  // Check the safety of assignment from LHS to RHS
1913  bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
1914                               const ObjCObjectPointerType *RHSOPT);
1915  bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
1916                               const ObjCObjectType *RHS);
1917  bool canAssignObjCInterfacesInBlockPointer(
1918                                          const ObjCObjectPointerType *LHSOPT,
1919                                          const ObjCObjectPointerType *RHSOPT,
1920                                          bool BlockReturnType);
1921  bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
1922  QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
1923                                   const ObjCObjectPointerType *RHSOPT);
1924  bool canBindObjCObjectType(QualType To, QualType From);
1925
1926  // Functions for calculating composite types
1927  QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
1928                      bool Unqualified = false, bool BlockReturnType = false);
1929  QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
1930                              bool Unqualified = false);
1931  QualType mergeFunctionArgumentTypes(QualType, QualType,
1932                                      bool OfBlockPointer=false,
1933                                      bool Unqualified = false);
1934  QualType mergeTransparentUnionType(QualType, QualType,
1935                                     bool OfBlockPointer=false,
1936                                     bool Unqualified = false);
1937
1938  QualType mergeObjCGCQualifiers(QualType, QualType);
1939
1940  bool FunctionTypesMatchOnNSConsumedAttrs(
1941         const FunctionProtoType *FromFunctionType,
1942         const FunctionProtoType *ToFunctionType);
1943
1944  void ResetObjCLayout(const ObjCContainerDecl *CD) {
1945    ObjCLayouts[CD] = 0;
1946  }
1947
1948  //===--------------------------------------------------------------------===//
1949  //                    Integer Predicates
1950  //===--------------------------------------------------------------------===//
1951
1952  // The width of an integer, as defined in C99 6.2.6.2. This is the number
1953  // of bits in an integer type excluding any padding bits.
1954  unsigned getIntWidth(QualType T) const;
1955
1956  // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
1957  // unsigned integer type.  This method takes a signed type, and returns the
1958  // corresponding unsigned integer type.
1959  QualType getCorrespondingUnsignedType(QualType T) const;
1960
1961  //===--------------------------------------------------------------------===//
1962  //                    Type Iterators.
1963  //===--------------------------------------------------------------------===//
1964
1965  typedef SmallVectorImpl<Type *>::iterator       type_iterator;
1966  typedef SmallVectorImpl<Type *>::const_iterator const_type_iterator;
1967
1968  type_iterator types_begin() { return Types.begin(); }
1969  type_iterator types_end() { return Types.end(); }
1970  const_type_iterator types_begin() const { return Types.begin(); }
1971  const_type_iterator types_end() const { return Types.end(); }
1972
1973  //===--------------------------------------------------------------------===//
1974  //                    Integer Values
1975  //===--------------------------------------------------------------------===//
1976
1977  /// \brief Make an APSInt of the appropriate width and signedness for the
1978  /// given \p Value and integer \p Type.
1979  llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
1980    llvm::APSInt Res(getIntWidth(Type),
1981                     !Type->isSignedIntegerOrEnumerationType());
1982    Res = Value;
1983    return Res;
1984  }
1985
1986  bool isSentinelNullExpr(const Expr *E);
1987
1988  /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
1989  /// none exists.
1990  ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
1991  /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
1992  /// none exists.
1993  ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
1994
1995  /// \brief Return true if there is at least one \@implementation in the TU.
1996  bool AnyObjCImplementation() {
1997    return !ObjCImpls.empty();
1998  }
1999
2000  /// \brief Set the implementation of ObjCInterfaceDecl.
2001  void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2002                             ObjCImplementationDecl *ImplD);
2003  /// \brief Set the implementation of ObjCCategoryDecl.
2004  void setObjCImplementation(ObjCCategoryDecl *CatD,
2005                             ObjCCategoryImplDecl *ImplD);
2006
2007  /// \brief Get the duplicate declaration of a ObjCMethod in the same
2008  /// interface, or null if none exists.
2009  const ObjCMethodDecl *getObjCMethodRedeclaration(
2010                                               const ObjCMethodDecl *MD) const {
2011    return ObjCMethodRedecls.lookup(MD);
2012  }
2013
2014  void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2015                                  const ObjCMethodDecl *Redecl) {
2016    assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2017    ObjCMethodRedecls[MD] = Redecl;
2018  }
2019
2020  /// \brief Returns the Objective-C interface that \p ND belongs to if it is
2021  /// an Objective-C method/property/ivar etc. that is part of an interface,
2022  /// otherwise returns null.
2023  const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2024
2025  /// \brief Set the copy inialization expression of a block var decl.
2026  void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
2027  /// \brief Get the copy initialization expression of the VarDecl \p VD, or
2028  /// NULL if none exists.
2029  Expr *getBlockVarCopyInits(const VarDecl* VD);
2030
2031  /// \brief Allocate an uninitialized TypeSourceInfo.
2032  ///
2033  /// The caller should initialize the memory held by TypeSourceInfo using
2034  /// the TypeLoc wrappers.
2035  ///
2036  /// \param T the type that will be the basis for type source info. This type
2037  /// should refer to how the declarator was written in source code, not to
2038  /// what type semantic analysis resolved the declarator to.
2039  ///
2040  /// \param Size the size of the type info to create, or 0 if the size
2041  /// should be calculated based on the type.
2042  TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2043
2044  /// \brief Allocate a TypeSourceInfo where all locations have been
2045  /// initialized to a given location, which defaults to the empty
2046  /// location.
2047  TypeSourceInfo *
2048  getTrivialTypeSourceInfo(QualType T,
2049                           SourceLocation Loc = SourceLocation()) const;
2050
2051  TypeSourceInfo *getNullTypeSourceInfo() { return &NullTypeSourceInfo; }
2052
2053  /// \brief Add a deallocation callback that will be invoked when the
2054  /// ASTContext is destroyed.
2055  ///
2056  /// \param Callback A callback function that will be invoked on destruction.
2057  ///
2058  /// \param Data Pointer data that will be provided to the callback function
2059  /// when it is called.
2060  void AddDeallocation(void (*Callback)(void*), void *Data);
2061
2062  GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD);
2063  GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2064
2065  /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
2066  /// lazily, only when used; this is only relevant for function or file scoped
2067  /// var definitions.
2068  ///
2069  /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2070  /// it is not used.
2071  bool DeclMustBeEmitted(const Decl *D);
2072
2073  void addUnnamedTag(const TagDecl *Tag);
2074  int getUnnamedTagManglingNumber(const TagDecl *Tag) const;
2075
2076  /// \brief Retrieve the lambda mangling number for a lambda expression.
2077  unsigned getLambdaManglingNumber(CXXMethodDecl *CallOperator);
2078
2079  /// \brief Used by ParmVarDecl to store on the side the
2080  /// index of the parameter when it exceeds the size of the normal bitfield.
2081  void setParameterIndex(const ParmVarDecl *D, unsigned index);
2082
2083  /// \brief Used by ParmVarDecl to retrieve on the side the
2084  /// index of the parameter when it exceeds the size of the normal bitfield.
2085  unsigned getParameterIndex(const ParmVarDecl *D) const;
2086
2087  //===--------------------------------------------------------------------===//
2088  //                    Statistics
2089  //===--------------------------------------------------------------------===//
2090
2091  /// \brief The number of implicitly-declared default constructors.
2092  static unsigned NumImplicitDefaultConstructors;
2093
2094  /// \brief The number of implicitly-declared default constructors for
2095  /// which declarations were built.
2096  static unsigned NumImplicitDefaultConstructorsDeclared;
2097
2098  /// \brief The number of implicitly-declared copy constructors.
2099  static unsigned NumImplicitCopyConstructors;
2100
2101  /// \brief The number of implicitly-declared copy constructors for
2102  /// which declarations were built.
2103  static unsigned NumImplicitCopyConstructorsDeclared;
2104
2105  /// \brief The number of implicitly-declared move constructors.
2106  static unsigned NumImplicitMoveConstructors;
2107
2108  /// \brief The number of implicitly-declared move constructors for
2109  /// which declarations were built.
2110  static unsigned NumImplicitMoveConstructorsDeclared;
2111
2112  /// \brief The number of implicitly-declared copy assignment operators.
2113  static unsigned NumImplicitCopyAssignmentOperators;
2114
2115  /// \brief The number of implicitly-declared copy assignment operators for
2116  /// which declarations were built.
2117  static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
2118
2119  /// \brief The number of implicitly-declared move assignment operators.
2120  static unsigned NumImplicitMoveAssignmentOperators;
2121
2122  /// \brief The number of implicitly-declared move assignment operators for
2123  /// which declarations were built.
2124  static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
2125
2126  /// \brief The number of implicitly-declared destructors.
2127  static unsigned NumImplicitDestructors;
2128
2129  /// \brief The number of implicitly-declared destructors for which
2130  /// declarations were built.
2131  static unsigned NumImplicitDestructorsDeclared;
2132
2133private:
2134  ASTContext(const ASTContext &) LLVM_DELETED_FUNCTION;
2135  void operator=(const ASTContext &) LLVM_DELETED_FUNCTION;
2136
2137public:
2138  /// \brief Initialize built-in types.
2139  ///
2140  /// This routine may only be invoked once for a given ASTContext object.
2141  /// It is normally invoked by the ASTContext constructor. However, the
2142  /// constructor can be asked to delay initialization, which places the burden
2143  /// of calling this function on the user of that object.
2144  ///
2145  /// \param Target The target
2146  void InitBuiltinTypes(const TargetInfo &Target);
2147
2148private:
2149  void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2150
2151  // Return the Objective-C type encoding for a given type.
2152  void getObjCEncodingForTypeImpl(QualType t, std::string &S,
2153                                  bool ExpandPointedToStructures,
2154                                  bool ExpandStructures,
2155                                  const FieldDecl *Field,
2156                                  bool OutermostType = false,
2157                                  bool EncodingProperty = false,
2158                                  bool StructField = false,
2159                                  bool EncodeBlockParameters = false,
2160                                  bool EncodeClassNames = false,
2161                                  bool EncodePointerToObjCTypedef = false) const;
2162
2163  // Adds the encoding of the structure's members.
2164  void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
2165                                       const FieldDecl *Field,
2166                                       bool includeVBases = true) const;
2167
2168  // Adds the encoding of a method parameter or return type.
2169  void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
2170                                         QualType T, std::string& S,
2171                                         bool Extended) const;
2172
2173  const ASTRecordLayout &
2174  getObjCLayout(const ObjCInterfaceDecl *D,
2175                const ObjCImplementationDecl *Impl) const;
2176
2177private:
2178  /// \brief A set of deallocations that should be performed when the
2179  /// ASTContext is destroyed.
2180  SmallVector<std::pair<void (*)(void*), void *>, 16> Deallocations;
2181
2182  // FIXME: This currently contains the set of StoredDeclMaps used
2183  // by DeclContext objects.  This probably should not be in ASTContext,
2184  // but we include it here so that ASTContext can quickly deallocate them.
2185  llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
2186
2187  /// \brief A counter used to uniquely identify "blocks".
2188  mutable unsigned int UniqueBlockByRefTypeID;
2189
2190  friend class DeclContext;
2191  friend class DeclarationNameTable;
2192  void ReleaseDeclContextMaps();
2193
2194  /// \brief A \c RecursiveASTVisitor that builds a map from nodes to their
2195  /// parents as defined by the \c RecursiveASTVisitor.
2196  ///
2197  /// Note that the relationship described here is purely in terms of AST
2198  /// traversal - there are other relationships (for example declaration context)
2199  /// in the AST that are better modeled by special matchers.
2200  ///
2201  /// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
2202  class ParentMapASTVisitor : public RecursiveASTVisitor<ParentMapASTVisitor> {
2203  public:
2204    /// \brief Builds and returns the translation unit's parent map.
2205    ///
2206    ///  The caller takes ownership of the returned \c ParentMap.
2207    static ParentMap *buildMap(TranslationUnitDecl &TU) {
2208      ParentMapASTVisitor Visitor(new ParentMap);
2209      Visitor.TraverseDecl(&TU);
2210      return Visitor.Parents;
2211    }
2212
2213  private:
2214    typedef RecursiveASTVisitor<ParentMapASTVisitor> VisitorBase;
2215
2216    ParentMapASTVisitor(ParentMap *Parents) : Parents(Parents) {
2217    }
2218
2219    bool shouldVisitTemplateInstantiations() const {
2220      return true;
2221    }
2222    bool shouldVisitImplicitCode() const {
2223      return true;
2224    }
2225    // Disables data recursion. We intercept Traverse* methods in the RAV, which
2226    // are not triggered during data recursion.
2227    bool shouldUseDataRecursionFor(clang::Stmt *S) const {
2228      return false;
2229    }
2230
2231    template <typename T>
2232    bool TraverseNode(T *Node, bool(VisitorBase:: *traverse) (T *)) {
2233      if (Node == NULL)
2234        return true;
2235      if (ParentStack.size() > 0)
2236        // FIXME: Currently we add the same parent multiple times, for example
2237        // when we visit all subexpressions of template instantiations; this is
2238        // suboptimal, bug benign: the only way to visit those is with
2239        // hasAncestor / hasParent, and those do not create new matches.
2240        // The plan is to enable DynTypedNode to be storable in a map or hash
2241        // map. The main problem there is to implement hash functions /
2242        // comparison operators for all types that DynTypedNode supports that
2243        // do not have pointer identity.
2244        (*Parents)[Node].push_back(ParentStack.back());
2245      ParentStack.push_back(ast_type_traits::DynTypedNode::create(*Node));
2246      bool Result = (this ->* traverse) (Node);
2247      ParentStack.pop_back();
2248      return Result;
2249    }
2250
2251    bool TraverseDecl(Decl *DeclNode) {
2252      return TraverseNode(DeclNode, &VisitorBase::TraverseDecl);
2253    }
2254
2255    bool TraverseStmt(Stmt *StmtNode) {
2256      return TraverseNode(StmtNode, &VisitorBase::TraverseStmt);
2257    }
2258
2259    ParentMap *Parents;
2260    llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
2261
2262    friend class RecursiveASTVisitor<ParentMapASTVisitor>;
2263  };
2264
2265  llvm::OwningPtr<ParentMap> AllParents;
2266};
2267
2268/// \brief Utility function for constructing a nullary selector.
2269static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
2270  IdentifierInfo* II = &Ctx.Idents.get(name);
2271  return Ctx.Selectors.getSelector(0, &II);
2272}
2273
2274/// \brief Utility function for constructing an unary selector.
2275static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
2276  IdentifierInfo* II = &Ctx.Idents.get(name);
2277  return Ctx.Selectors.getSelector(1, &II);
2278}
2279
2280}  // end namespace clang
2281
2282// operator new and delete aren't allowed inside namespaces.
2283
2284/// @brief Placement new for using the ASTContext's allocator.
2285///
2286/// This placement form of operator new uses the ASTContext's allocator for
2287/// obtaining memory.
2288///
2289/// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
2290/// here need to also be made there.
2291///
2292/// We intentionally avoid using a nothrow specification here so that the calls
2293/// to this operator will not perform a null check on the result -- the
2294/// underlying allocator never returns null pointers.
2295///
2296/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2297/// @code
2298/// // Default alignment (8)
2299/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
2300/// // Specific alignment
2301/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
2302/// @endcode
2303/// Please note that you cannot use delete on the pointer; it must be
2304/// deallocated using an explicit destructor call followed by
2305/// @c Context.Deallocate(Ptr).
2306///
2307/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2308/// @param C The ASTContext that provides the allocator.
2309/// @param Alignment The alignment of the allocated memory (if the underlying
2310///                  allocator supports it).
2311/// @return The allocated memory. Could be NULL.
2312inline void *operator new(size_t Bytes, const clang::ASTContext &C,
2313                          size_t Alignment) {
2314  return C.Allocate(Bytes, Alignment);
2315}
2316/// @brief Placement delete companion to the new above.
2317///
2318/// This operator is just a companion to the new above. There is no way of
2319/// invoking it directly; see the new operator for more details. This operator
2320/// is called implicitly by the compiler if a placement new expression using
2321/// the ASTContext throws in the object constructor.
2322inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
2323  C.Deallocate(Ptr);
2324}
2325
2326/// This placement form of operator new[] uses the ASTContext's allocator for
2327/// obtaining memory.
2328///
2329/// We intentionally avoid using a nothrow specification here so that the calls
2330/// to this operator will not perform a null check on the result -- the
2331/// underlying allocator never returns null pointers.
2332///
2333/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
2334/// @code
2335/// // Default alignment (8)
2336/// char *data = new (Context) char[10];
2337/// // Specific alignment
2338/// char *data = new (Context, 4) char[10];
2339/// @endcode
2340/// Please note that you cannot use delete on the pointer; it must be
2341/// deallocated using an explicit destructor call followed by
2342/// @c Context.Deallocate(Ptr).
2343///
2344/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
2345/// @param C The ASTContext that provides the allocator.
2346/// @param Alignment The alignment of the allocated memory (if the underlying
2347///                  allocator supports it).
2348/// @return The allocated memory. Could be NULL.
2349inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
2350                            size_t Alignment = 8) {
2351  return C.Allocate(Bytes, Alignment);
2352}
2353
2354/// @brief Placement delete[] companion to the new[] above.
2355///
2356/// This operator is just a companion to the new[] above. There is no way of
2357/// invoking it directly; see the new[] operator for more details. This operator
2358/// is called implicitly by the compiler if a placement new[] expression using
2359/// the ASTContext throws in the object constructor.
2360inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
2361  C.Deallocate(Ptr);
2362}
2363
2364#endif
2365