CXXInheritance.h revision 6bcf27bb9a4b5c3f79cb44c0e4654a6d7619ad89
1//===------ CXXInheritance.h - C++ Inheritance ------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides routines that help analyzing C++ inheritance hierarchies.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
15#define LLVM_CLANG_AST_CXXINHERITANCE_H
16
17#include "clang/AST/DeclBase.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclarationName.h"
20#include "clang/AST/Type.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/MapVector.h"
23#include "llvm/ADT/SmallSet.h"
24#include "llvm/ADT/SmallVector.h"
25#include <cassert>
26#include <list>
27#include <map>
28
29namespace clang {
30
31class CXXBaseSpecifier;
32class CXXMethodDecl;
33class CXXRecordDecl;
34class NamedDecl;
35
36/// \brief Represents an element in a path from a derived class to a
37/// base class.
38///
39/// Each step in the path references the link from a
40/// derived class to one of its direct base classes, along with a
41/// base "number" that identifies which base subobject of the
42/// original derived class we are referencing.
43struct CXXBasePathElement {
44  /// \brief The base specifier that states the link from a derived
45  /// class to a base class, which will be followed by this base
46  /// path element.
47  const CXXBaseSpecifier *Base;
48
49  /// \brief The record decl of the class that the base is a base of.
50  const CXXRecordDecl *Class;
51
52  /// \brief Identifies which base class subobject (of type
53  /// \c Base->getType()) this base path element refers to.
54  ///
55  /// This value is only valid if \c !Base->isVirtual(), because there
56  /// is no base numbering for the zero or one virtual bases of a
57  /// given type.
58  int SubobjectNumber;
59};
60
61/// \brief Represents a path from a specific derived class
62/// (which is not represented as part of the path) to a particular
63/// (direct or indirect) base class subobject.
64///
65/// Individual elements in the path are described by the \c CXXBasePathElement
66/// structure, which captures both the link from a derived class to one of its
67/// direct bases and identification describing which base class
68/// subobject is being used.
69class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
70public:
71  CXXBasePath() : Access(AS_public) {}
72
73  /// \brief The access along this inheritance path.  This is only
74  /// calculated when recording paths.  AS_none is a special value
75  /// used to indicate a path which permits no legal access.
76  AccessSpecifier Access;
77
78  /// \brief The set of declarations found inside this base class
79  /// subobject.
80  DeclContext::lookup_result Decls;
81
82  void clear() {
83    SmallVectorImpl<CXXBasePathElement>::clear();
84    Access = AS_public;
85  }
86};
87
88/// BasePaths - Represents the set of paths from a derived class to
89/// one of its (direct or indirect) bases. For example, given the
90/// following class hierarchy:
91///
92/// @code
93/// class A { };
94/// class B : public A { };
95/// class C : public A { };
96/// class D : public B, public C{ };
97/// @endcode
98///
99/// There are two potential BasePaths to represent paths from D to a
100/// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
101/// and another is (D,0)->(C,0)->(A,1). These two paths actually
102/// refer to two different base class subobjects of the same type,
103/// so the BasePaths object refers to an ambiguous path. On the
104/// other hand, consider the following class hierarchy:
105///
106/// @code
107/// class A { };
108/// class B : public virtual A { };
109/// class C : public virtual A { };
110/// class D : public B, public C{ };
111/// @endcode
112///
113/// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
114/// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
115/// refer to the same base class subobject of type A (the virtual
116/// one), there is no ambiguity.
117class CXXBasePaths {
118  /// \brief The type from which this search originated.
119  CXXRecordDecl *Origin;
120
121  /// Paths - The actual set of paths that can be taken from the
122  /// derived class to the same base class.
123  std::list<CXXBasePath> Paths;
124
125  /// ClassSubobjects - Records the class subobjects for each class
126  /// type that we've seen. The first element in the pair says
127  /// whether we found a path to a virtual base for that class type,
128  /// while the element contains the number of non-virtual base
129  /// class subobjects for that class type. The key of the map is
130  /// the cv-unqualified canonical type of the base class subobject.
131  llvm::SmallDenseMap<QualType, std::pair<bool, unsigned>, 8> ClassSubobjects;
132
133  /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
134  /// ambiguous paths while it is looking for a path from a derived
135  /// type to a base type.
136  bool FindAmbiguities;
137
138  /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
139  /// while it is determining whether there are paths from a derived
140  /// type to a base type.
141  bool RecordPaths;
142
143  /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
144  /// if it finds a path that goes across a virtual base. The virtual class
145  /// is also recorded.
146  bool DetectVirtual;
147
148  /// ScratchPath - A BasePath that is used by Sema::lookupInBases
149  /// to help build the set of paths.
150  CXXBasePath ScratchPath;
151
152  /// DetectedVirtual - The base class that is virtual.
153  const RecordType *DetectedVirtual;
154
155  /// \brief Array of the declarations that have been found. This
156  /// array is constructed only if needed, e.g., to iterate over the
157  /// results within LookupResult.
158  NamedDecl **DeclsFound;
159  unsigned NumDeclsFound;
160
161  friend class CXXRecordDecl;
162
163  void ComputeDeclsFound();
164
165  bool lookupInBases(ASTContext &Context,
166                     const CXXRecordDecl *Record,
167                     CXXRecordDecl::BaseMatchesCallback *BaseMatches,
168                     void *UserData);
169public:
170  typedef std::list<CXXBasePath>::iterator paths_iterator;
171  typedef std::list<CXXBasePath>::const_iterator const_paths_iterator;
172  typedef NamedDecl **decl_iterator;
173
174  /// BasePaths - Construct a new BasePaths structure to record the
175  /// paths for a derived-to-base search.
176  explicit CXXBasePaths(bool FindAmbiguities = true,
177                        bool RecordPaths = true,
178                        bool DetectVirtual = true)
179    : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
180      DetectVirtual(DetectVirtual), DetectedVirtual(nullptr),
181      DeclsFound(nullptr), NumDeclsFound(0) { }
182
183  ~CXXBasePaths() { delete [] DeclsFound; }
184
185  paths_iterator begin() { return Paths.begin(); }
186  paths_iterator end()   { return Paths.end(); }
187  const_paths_iterator begin() const { return Paths.begin(); }
188  const_paths_iterator end()   const { return Paths.end(); }
189
190  CXXBasePath&       front()       { return Paths.front(); }
191  const CXXBasePath& front() const { return Paths.front(); }
192
193  typedef llvm::iterator_range<decl_iterator> decl_range;
194  decl_range found_decls();
195
196  /// \brief Determine whether the path from the most-derived type to the
197  /// given base type is ambiguous (i.e., it refers to multiple subobjects of
198  /// the same base type).
199  bool isAmbiguous(CanQualType BaseType);
200
201  /// \brief Whether we are finding multiple paths to detect ambiguities.
202  bool isFindingAmbiguities() const { return FindAmbiguities; }
203
204  /// \brief Whether we are recording paths.
205  bool isRecordingPaths() const { return RecordPaths; }
206
207  /// \brief Specify whether we should be recording paths or not.
208  void setRecordingPaths(bool RP) { RecordPaths = RP; }
209
210  /// \brief Whether we are detecting virtual bases.
211  bool isDetectingVirtual() const { return DetectVirtual; }
212
213  /// \brief The virtual base discovered on the path (if we are merely
214  /// detecting virtuals).
215  const RecordType* getDetectedVirtual() const {
216    return DetectedVirtual;
217  }
218
219  /// \brief Retrieve the type from which this base-paths search
220  /// began
221  CXXRecordDecl *getOrigin() const { return Origin; }
222  void setOrigin(CXXRecordDecl *Rec) { Origin = Rec; }
223
224  /// \brief Clear the base-paths results.
225  void clear();
226
227  /// \brief Swap this data structure's contents with another CXXBasePaths
228  /// object.
229  void swap(CXXBasePaths &Other);
230};
231
232/// \brief Uniquely identifies a virtual method within a class
233/// hierarchy by the method itself and a class subobject number.
234struct UniqueVirtualMethod {
235  UniqueVirtualMethod()
236    : Method(nullptr), Subobject(0), InVirtualSubobject(nullptr) { }
237
238  UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
239                      const CXXRecordDecl *InVirtualSubobject)
240    : Method(Method), Subobject(Subobject),
241      InVirtualSubobject(InVirtualSubobject) { }
242
243  /// \brief The overriding virtual method.
244  CXXMethodDecl *Method;
245
246  /// \brief The subobject in which the overriding virtual method
247  /// resides.
248  unsigned Subobject;
249
250  /// \brief The virtual base class subobject of which this overridden
251  /// virtual method is a part. Note that this records the closest
252  /// derived virtual base class subobject.
253  const CXXRecordDecl *InVirtualSubobject;
254
255  friend bool operator==(const UniqueVirtualMethod &X,
256                         const UniqueVirtualMethod &Y) {
257    return X.Method == Y.Method && X.Subobject == Y.Subobject &&
258      X.InVirtualSubobject == Y.InVirtualSubobject;
259  }
260
261  friend bool operator!=(const UniqueVirtualMethod &X,
262                         const UniqueVirtualMethod &Y) {
263    return !(X == Y);
264  }
265};
266
267/// \brief The set of methods that override a given virtual method in
268/// each subobject where it occurs.
269///
270/// The first part of the pair is the subobject in which the
271/// overridden virtual function occurs, while the second part of the
272/// pair is the virtual method that overrides it (including the
273/// subobject in which that virtual function occurs).
274class OverridingMethods {
275  typedef SmallVector<UniqueVirtualMethod, 4> ValuesT;
276  typedef llvm::MapVector<unsigned, ValuesT> MapType;
277  MapType Overrides;
278
279public:
280  // Iterate over the set of subobjects that have overriding methods.
281  typedef MapType::iterator iterator;
282  typedef MapType::const_iterator const_iterator;
283  iterator begin() { return Overrides.begin(); }
284  const_iterator begin() const { return Overrides.begin(); }
285  iterator end() { return Overrides.end(); }
286  const_iterator end() const { return Overrides.end(); }
287  unsigned size() const { return Overrides.size(); }
288
289  // Iterate over the set of overriding virtual methods in a given
290  // subobject.
291  typedef SmallVectorImpl<UniqueVirtualMethod>::iterator
292    overriding_iterator;
293  typedef SmallVectorImpl<UniqueVirtualMethod>::const_iterator
294    overriding_const_iterator;
295
296  // Add a new overriding method for a particular subobject.
297  void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
298
299  // Add all of the overriding methods from "other" into overrides for
300  // this method. Used when merging the overrides from multiple base
301  // class subobjects.
302  void add(const OverridingMethods &Other);
303
304  // Replace all overriding virtual methods in all subobjects with the
305  // given virtual method.
306  void replaceAll(UniqueVirtualMethod Overriding);
307};
308
309/// \brief A mapping from each virtual member function to its set of
310/// final overriders.
311///
312/// Within a class hierarchy for a given derived class, each virtual
313/// member function in that hierarchy has one or more "final
314/// overriders" (C++ [class.virtual]p2). A final overrider for a
315/// virtual function "f" is the virtual function that will actually be
316/// invoked when dispatching a call to "f" through the
317/// vtable. Well-formed classes have a single final overrider for each
318/// virtual function; in abstract classes, the final overrider for at
319/// least one virtual function is a pure virtual function. Due to
320/// multiple, virtual inheritance, it is possible for a class to have
321/// more than one final overrider. Athough this is an error (per C++
322/// [class.virtual]p2), it is not considered an error here: the final
323/// overrider map can represent multiple final overriders for a
324/// method, and it is up to the client to determine whether they are
325/// problem. For example, the following class \c D has two final
326/// overriders for the virtual function \c A::f(), one in \c C and one
327/// in \c D:
328///
329/// \code
330///   struct A { virtual void f(); };
331///   struct B : virtual A { virtual void f(); };
332///   struct C : virtual A { virtual void f(); };
333///   struct D : B, C { };
334/// \endcode
335///
336/// This data structure contaings a mapping from every virtual
337/// function *that does not override an existing virtual function* and
338/// in every subobject where that virtual function occurs to the set
339/// of virtual functions that override it. Thus, the same virtual
340/// function \c A::f can actually occur in multiple subobjects of type
341/// \c A due to multiple inheritance, and may be overriden by
342/// different virtual functions in each, as in the following example:
343///
344/// \code
345///   struct A { virtual void f(); };
346///   struct B : A { virtual void f(); };
347///   struct C : A { virtual void f(); };
348///   struct D : B, C { };
349/// \endcode
350///
351/// Unlike in the previous example, where the virtual functions \c
352/// B::f and \c C::f both overrode \c A::f in the same subobject of
353/// type \c A, in this example the two virtual functions both override
354/// \c A::f but in *different* subobjects of type A. This is
355/// represented by numbering the subobjects in which the overridden
356/// and the overriding virtual member functions are located. Subobject
357/// 0 represents the virtua base class subobject of that type, while
358/// subobject numbers greater than 0 refer to non-virtual base class
359/// subobjects of that type.
360class CXXFinalOverriderMap
361  : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> { };
362
363/// \brief A set of all the primary bases for a class.
364class CXXIndirectPrimaryBaseSet
365  : public llvm::SmallSet<const CXXRecordDecl*, 32> { };
366
367} // end namespace clang
368
369#endif
370