Decl.h revision 1274ccd90aec0b205fc838c3d504821ccfb55482
1//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/Redeclarable.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/Basic/Linkage.h"
23
24namespace clang {
25class CXXTemporary;
26class Expr;
27class FunctionTemplateDecl;
28class Stmt;
29class CompoundStmt;
30class StringLiteral;
31class NestedNameSpecifier;
32class TemplateParameterList;
33class TemplateArgumentList;
34class MemberSpecializationInfo;
35class FunctionTemplateSpecializationInfo;
36class DependentFunctionTemplateSpecializationInfo;
37class TypeLoc;
38class UnresolvedSetImpl;
39
40/// \brief A container of type source information.
41///
42/// A client can read the relevant info using TypeLoc wrappers, e.g:
43/// @code
44/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
45/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
46///   PL->getStarLoc().print(OS, SrcMgr);
47/// @endcode
48///
49class TypeSourceInfo {
50  QualType Ty;
51  // Contains a memory block after the class, used for type source information,
52  // allocated by ASTContext.
53  friend class ASTContext;
54  TypeSourceInfo(QualType ty) : Ty(ty) { }
55public:
56  /// \brief Return the type wrapped by this type source info.
57  QualType getType() const { return Ty; }
58
59  /// \brief Return the TypeLoc wrapper for the type source info.
60  TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
61};
62
63/// TranslationUnitDecl - The top declaration context.
64class TranslationUnitDecl : public Decl, public DeclContext {
65  ASTContext &Ctx;
66
67  /// The (most recently entered) anonymous namespace for this
68  /// translation unit, if one has been created.
69  NamespaceDecl *AnonymousNamespace;
70
71  explicit TranslationUnitDecl(ASTContext &ctx)
72    : Decl(TranslationUnit, 0, SourceLocation()),
73      DeclContext(TranslationUnit),
74      Ctx(ctx), AnonymousNamespace(0) {}
75public:
76  ASTContext &getASTContext() const { return Ctx; }
77
78  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
79  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
80
81  static TranslationUnitDecl *Create(ASTContext &C);
82  // Implement isa/cast/dyncast/etc.
83  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
84  static bool classof(const TranslationUnitDecl *D) { return true; }
85  static bool classofKind(Kind K) { return K == TranslationUnit; }
86  static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
87    return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
88  }
89  static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
90    return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
91  }
92};
93
94/// NamedDecl - This represents a decl with a name.  Many decls have names such
95/// as ObjCMethodDecl, but not @class, etc.
96class NamedDecl : public Decl {
97  /// Name - The name of this declaration, which is typically a normal
98  /// identifier but may also be a special kind of name (C++
99  /// constructor, Objective-C selector, etc.)
100  DeclarationName Name;
101
102protected:
103  NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
104    : Decl(DK, DC, L), Name(N) { }
105
106public:
107  /// getIdentifier - Get the identifier that names this declaration,
108  /// if there is one. This will return NULL if this declaration has
109  /// no name (e.g., for an unnamed class) or if the name is a special
110  /// name (C++ constructor, Objective-C selector, etc.).
111  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
112
113  /// getName - Get the name of identifier for this declaration as a StringRef.
114  /// This requires that the declaration have a name and that it be a simple
115  /// identifier.
116  llvm::StringRef getName() const {
117    assert(Name.isIdentifier() && "Name is not a simple identifier");
118    return getIdentifier() ? getIdentifier()->getName() : "";
119  }
120
121  /// getNameAsString - Get a human-readable name for the declaration, even if
122  /// it is one of the special kinds of names (C++ constructor, Objective-C
123  /// selector, etc).  Creating this name requires expensive string
124  /// manipulation, so it should be called only when performance doesn't matter.
125  /// For simple declarations, getNameAsCString() should suffice.
126  //
127  // FIXME: This function should be renamed to indicate that it is not just an
128  // alternate form of getName(), and clients should move as appropriate.
129  //
130  // FIXME: Deprecated, move clients to getName().
131  std::string getNameAsString() const { return Name.getAsString(); }
132
133  void printName(llvm::raw_ostream &os) const { return Name.printName(os); }
134
135  /// getDeclName - Get the actual, stored name of the declaration,
136  /// which may be a special name.
137  DeclarationName getDeclName() const { return Name; }
138
139  /// \brief Set the name of this declaration.
140  void setDeclName(DeclarationName N) { Name = N; }
141
142  /// getQualifiedNameAsString - Returns human-readable qualified name for
143  /// declaration, like A::B::i, for i being member of namespace A::B.
144  /// If declaration is not member of context which can be named (record,
145  /// namespace), it will return same result as getNameAsString().
146  /// Creating this name is expensive, so it should be called only when
147  /// performance doesn't matter.
148  std::string getQualifiedNameAsString() const;
149  std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
150
151  /// getNameForDiagnostic - Appends a human-readable name for this
152  /// declaration into the given string.
153  ///
154  /// This is the method invoked by Sema when displaying a NamedDecl
155  /// in a diagnostic.  It does not necessarily produce the same
156  /// result as getNameAsString(); for example, class template
157  /// specializations are printed with their template arguments.
158  ///
159  /// TODO: use an API that doesn't require so many temporary strings
160  virtual void getNameForDiagnostic(std::string &S,
161                                    const PrintingPolicy &Policy,
162                                    bool Qualified) const {
163    if (Qualified)
164      S += getQualifiedNameAsString(Policy);
165    else
166      S += getNameAsString();
167  }
168
169  /// declarationReplaces - Determine whether this declaration, if
170  /// known to be well-formed within its context, will replace the
171  /// declaration OldD if introduced into scope. A declaration will
172  /// replace another declaration if, for example, it is a
173  /// redeclaration of the same variable or function, but not if it is
174  /// a declaration of a different kind (function vs. class) or an
175  /// overloaded function.
176  bool declarationReplaces(NamedDecl *OldD) const;
177
178  /// \brief Determine whether this declaration has linkage.
179  bool hasLinkage() const;
180
181  /// \brief Determine whether this declaration is a C++ class member.
182  bool isCXXClassMember() const {
183    const DeclContext *DC = getDeclContext();
184
185    // C++0x [class.mem]p1:
186    //   The enumerators of an unscoped enumeration defined in
187    //   the class are members of the class.
188    // FIXME: support C++0x scoped enumerations.
189    if (isa<EnumDecl>(DC))
190      DC = DC->getParent();
191
192    return DC->isRecord();
193  }
194
195  /// \brief Given that this declaration is a C++ class member,
196  /// determine whether it's an instance member of its class.
197  bool isCXXInstanceMember() const;
198
199  /// \brief Determine what kind of linkage this entity has.
200  Linkage getLinkage() const;
201
202  /// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
203  /// the underlying named decl.
204  NamedDecl *getUnderlyingDecl();
205  const NamedDecl *getUnderlyingDecl() const {
206    return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
207  }
208
209  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
210  static bool classof(const NamedDecl *D) { return true; }
211  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
212};
213
214inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
215                                     const NamedDecl *ND) {
216  ND->getDeclName().printName(OS);
217  return OS;
218}
219
220/// NamespaceDecl - Represent a C++ namespace.
221class NamespaceDecl : public NamedDecl, public DeclContext {
222  bool IsInline : 1;
223
224  SourceLocation LBracLoc, RBracLoc;
225
226  // For extended namespace definitions:
227  //
228  // namespace A { int x; }
229  // namespace A { int y; }
230  //
231  // there will be one NamespaceDecl for each declaration.
232  // NextNamespace points to the next extended declaration.
233  // OrigNamespace points to the original namespace declaration.
234  // OrigNamespace of the first namespace decl points to its anonymous namespace
235  NamespaceDecl *NextNamespace;
236
237  /// \brief A pointer to either the original namespace definition for
238  /// this namespace (if the boolean value is false) or the anonymous
239  /// namespace that lives just inside this namespace (if the boolean
240  /// value is true).
241  ///
242  /// We can combine these two notions because the anonymous namespace
243  /// must only be stored in one of the namespace declarations (so all
244  /// of the namespace declarations can find it). We therefore choose
245  /// the original namespace declaration, since all of the namespace
246  /// declarations have a link directly to it; the original namespace
247  /// declaration itself only needs to know that it is the original
248  /// namespace declaration (which the boolean indicates).
249  llvm::PointerIntPair<NamespaceDecl *, 1, bool> OrigOrAnonNamespace;
250
251  NamespaceDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id)
252    : NamedDecl(Namespace, DC, L, Id), DeclContext(Namespace),
253      IsInline(false), NextNamespace(0), OrigOrAnonNamespace(0, true) { }
254
255public:
256  static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
257                               SourceLocation L, IdentifierInfo *Id);
258
259  /// \brief Returns true if this is an anonymous namespace declaration.
260  ///
261  /// For example:
262  /// \code
263  ///   namespace {
264  ///     ...
265  ///   };
266  /// \endcode
267  /// q.v. C++ [namespace.unnamed]
268  bool isAnonymousNamespace() const {
269    return !getIdentifier();
270  }
271
272  /// \brief Returns true if this is an inline namespace declaration.
273  bool isInline() const {
274    return IsInline;
275  }
276
277  /// \brief Set whether this is an inline namespace declaration.
278  void setInline(bool Inline) {
279    IsInline = Inline;
280  }
281
282  /// \brief Return the next extended namespace declaration or null if there
283  /// is none.
284  NamespaceDecl *getNextNamespace() { return NextNamespace; }
285  const NamespaceDecl *getNextNamespace() const { return NextNamespace; }
286
287  /// \brief Set the next extended namespace declaration.
288  void setNextNamespace(NamespaceDecl *ND) { NextNamespace = ND; }
289
290  /// \brief Get the original (first) namespace declaration.
291  NamespaceDecl *getOriginalNamespace() const {
292    if (OrigOrAnonNamespace.getInt())
293      return const_cast<NamespaceDecl *>(this);
294
295    return OrigOrAnonNamespace.getPointer();
296  }
297
298  /// \brief Return true if this declaration is an original (first) declaration
299  /// of the namespace. This is false for non-original (subsequent) namespace
300  /// declarations and anonymous namespaces.
301  bool isOriginalNamespace() const {
302    return getOriginalNamespace() == this;
303  }
304
305  /// \brief Set the original (first) namespace declaration.
306  void setOriginalNamespace(NamespaceDecl *ND) {
307    if (ND != this) {
308      OrigOrAnonNamespace.setPointer(ND);
309      OrigOrAnonNamespace.setInt(false);
310    }
311  }
312
313  NamespaceDecl *getAnonymousNamespace() const {
314    return getOriginalNamespace()->OrigOrAnonNamespace.getPointer();
315  }
316
317  void setAnonymousNamespace(NamespaceDecl *D) {
318    assert(!D || D->isAnonymousNamespace());
319    assert(!D || D->getParent() == this);
320    getOriginalNamespace()->OrigOrAnonNamespace.setPointer(D);
321  }
322
323  virtual NamespaceDecl *getCanonicalDecl() { return getOriginalNamespace(); }
324  const NamespaceDecl *getCanonicalDecl() const {
325    return getOriginalNamespace();
326  }
327
328  virtual SourceRange getSourceRange() const {
329    return SourceRange(getLocation(), RBracLoc);
330  }
331
332  SourceLocation getLBracLoc() const { return LBracLoc; }
333  SourceLocation getRBracLoc() const { return RBracLoc; }
334  void setLBracLoc(SourceLocation LBrace) { LBracLoc = LBrace; }
335  void setRBracLoc(SourceLocation RBrace) { RBracLoc = RBrace; }
336
337  // Implement isa/cast/dyncast/etc.
338  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
339  static bool classof(const NamespaceDecl *D) { return true; }
340  static bool classofKind(Kind K) { return K == Namespace; }
341  static DeclContext *castToDeclContext(const NamespaceDecl *D) {
342    return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
343  }
344  static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
345    return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
346  }
347
348  friend class ASTDeclReader;
349  friend class ASTDeclWriter;
350};
351
352/// ValueDecl - Represent the declaration of a variable (in which case it is
353/// an lvalue) a function (in which case it is a function designator) or
354/// an enum constant.
355class ValueDecl : public NamedDecl {
356  QualType DeclType;
357
358protected:
359  ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
360            DeclarationName N, QualType T)
361    : NamedDecl(DK, DC, L, N), DeclType(T) {}
362public:
363  QualType getType() const { return DeclType; }
364  void setType(QualType newType) { DeclType = newType; }
365
366  // Implement isa/cast/dyncast/etc.
367  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
368  static bool classof(const ValueDecl *D) { return true; }
369  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
370};
371
372/// QualifierInfo - A struct with extended info about a syntactic
373/// name qualifier, to be used for the case of out-of-line declarations.
374struct QualifierInfo {
375  /// NNS - The syntactic name qualifier.
376  NestedNameSpecifier *NNS;
377  /// NNSRange - The source range for the qualifier.
378  SourceRange NNSRange;
379  /// NumTemplParamLists - The number of template parameter lists
380  /// that were matched against the template-ids occurring into the NNS.
381  unsigned NumTemplParamLists;
382  /// TemplParamLists - A new-allocated array of size NumTemplParamLists,
383  /// containing pointers to the matched template parameter lists.
384  TemplateParameterList** TemplParamLists;
385
386  /// Default constructor.
387  QualifierInfo()
388    : NNS(0), NNSRange(), NumTemplParamLists(0), TemplParamLists(0) {}
389  /// setTemplateParameterListsInfo - Sets info about matched template
390  /// parameter lists.
391  void setTemplateParameterListsInfo(ASTContext &Context,
392                                     unsigned NumTPLists,
393                                     TemplateParameterList **TPLists);
394
395private:
396  // Copy constructor and copy assignment are disabled.
397  QualifierInfo(const QualifierInfo&);
398  QualifierInfo& operator=(const QualifierInfo&);
399};
400
401/// \brief Represents a ValueDecl that came out of a declarator.
402/// Contains type source information through TypeSourceInfo.
403class DeclaratorDecl : public ValueDecl {
404  // A struct representing both a TInfo and a syntactic qualifier,
405  // to be used for the (uncommon) case of out-of-line declarations.
406  struct ExtInfo : public QualifierInfo {
407    TypeSourceInfo *TInfo;
408  };
409
410  llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
411
412  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
413  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
414  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
415
416protected:
417  DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
418                 DeclarationName N, QualType T, TypeSourceInfo *TInfo)
419    : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo) {}
420
421public:
422  TypeSourceInfo *getTypeSourceInfo() const {
423    return hasExtInfo()
424      ? getExtInfo()->TInfo
425      : DeclInfo.get<TypeSourceInfo*>();
426  }
427  void setTypeSourceInfo(TypeSourceInfo *TI) {
428    if (hasExtInfo())
429      getExtInfo()->TInfo = TI;
430    else
431      DeclInfo = TI;
432  }
433
434  /// getInnerLocStart - Return SourceLocation representing start of source
435  /// range ignoring outer template declarations.
436  virtual SourceLocation getInnerLocStart() const { return getLocation(); }
437
438  /// getOuterLocStart - Return SourceLocation representing start of source
439  /// range taking into account any outer template declarations.
440  SourceLocation getOuterLocStart() const;
441  SourceRange getSourceRange() const {
442    return SourceRange(getOuterLocStart(), getLocation());
443  }
444
445  NestedNameSpecifier *getQualifier() const {
446    return hasExtInfo() ? getExtInfo()->NNS : 0;
447  }
448  SourceRange getQualifierRange() const {
449    return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
450  }
451  void setQualifierInfo(NestedNameSpecifier *Qualifier,
452                        SourceRange QualifierRange);
453
454  unsigned getNumTemplateParameterLists() const {
455    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
456  }
457  TemplateParameterList *getTemplateParameterList(unsigned index) const {
458    assert(index < getNumTemplateParameterLists());
459    return getExtInfo()->TemplParamLists[index];
460  }
461  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
462                                     TemplateParameterList **TPLists) {
463    getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
464  }
465
466  SourceLocation getTypeSpecStartLoc() const;
467
468  // Implement isa/cast/dyncast/etc.
469  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
470  static bool classof(const DeclaratorDecl *D) { return true; }
471  static bool classofKind(Kind K) {
472    return K >= firstDeclarator && K <= lastDeclarator;
473  }
474};
475
476/// \brief Structure used to store a statement, the constant value to
477/// which it was evaluated (if any), and whether or not the statement
478/// is an integral constant expression (if known).
479struct EvaluatedStmt {
480  EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
481                    CheckingICE(false), IsICE(false) { }
482
483  /// \brief Whether this statement was already evaluated.
484  bool WasEvaluated : 1;
485
486  /// \brief Whether this statement is being evaluated.
487  bool IsEvaluating : 1;
488
489  /// \brief Whether we already checked whether this statement was an
490  /// integral constant expression.
491  bool CheckedICE : 1;
492
493  /// \brief Whether we are checking whether this statement is an
494  /// integral constant expression.
495  bool CheckingICE : 1;
496
497  /// \brief Whether this statement is an integral constant
498  /// expression. Only valid if CheckedICE is true.
499  bool IsICE : 1;
500
501  Stmt *Value;
502  APValue Evaluated;
503};
504
505/// VarDecl - An instance of this class is created to represent a variable
506/// declaration or definition.
507class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
508public:
509  typedef clang::StorageClass StorageClass;
510
511  /// getStorageClassSpecifierString - Return the string used to
512  /// specify the storage class \arg SC.
513  ///
514  /// It is illegal to call this function with SC == None.
515  static const char *getStorageClassSpecifierString(StorageClass SC);
516
517protected:
518  /// \brief Placeholder type used in Init to denote an unparsed C++ default
519  /// argument.
520  struct UnparsedDefaultArgument;
521
522  /// \brief Placeholder type used in Init to denote an uninstantiated C++
523  /// default argument.
524  struct UninstantiatedDefaultArgument;
525
526  typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
527                              UnparsedDefaultArgument *,
528                              UninstantiatedDefaultArgument *> InitType;
529
530  /// \brief The initializer for this variable or, for a ParmVarDecl, the
531  /// C++ default argument.
532  mutable InitType Init;
533
534private:
535  // FIXME: This can be packed into the bitfields in Decl.
536  unsigned SClass : 3;
537  unsigned SClassAsWritten : 3;
538  bool ThreadSpecified : 1;
539  bool HasCXXDirectInit : 1;
540
541  /// \brief Whether this variable is the exception variable in a C++ catch
542  /// or an Objective-C @catch statement.
543  bool ExceptionVar : 1;
544
545  /// \brief Whether this local variable could be allocated in the return
546  /// slot of its function, enabling the named return value optimization (NRVO).
547  bool NRVOVariable : 1;
548
549  friend class StmtIteratorBase;
550protected:
551  VarDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
552          QualType T, TypeSourceInfo *TInfo, StorageClass SC,
553          StorageClass SCAsWritten)
554    : DeclaratorDecl(DK, DC, L, Id, T, TInfo), Init(),
555      ThreadSpecified(false), HasCXXDirectInit(false),
556      ExceptionVar(false), NRVOVariable(false) {
557    SClass = SC;
558    SClassAsWritten = SCAsWritten;
559  }
560
561  typedef Redeclarable<VarDecl> redeclarable_base;
562  virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
563
564public:
565  typedef redeclarable_base::redecl_iterator redecl_iterator;
566  redecl_iterator redecls_begin() const {
567    return redeclarable_base::redecls_begin();
568  }
569  redecl_iterator redecls_end() const {
570    return redeclarable_base::redecls_end();
571  }
572
573  static VarDecl *Create(ASTContext &C, DeclContext *DC,
574                         SourceLocation L, IdentifierInfo *Id,
575                         QualType T, TypeSourceInfo *TInfo, StorageClass S,
576                         StorageClass SCAsWritten);
577
578  virtual SourceLocation getInnerLocStart() const;
579  virtual SourceRange getSourceRange() const;
580
581  StorageClass getStorageClass() const { return (StorageClass)SClass; }
582  StorageClass getStorageClassAsWritten() const {
583    return (StorageClass) SClassAsWritten;
584  }
585  void setStorageClass(StorageClass SC) {
586    assert(isLegalForVariable(SC));
587    SClass = SC;
588  }
589  void setStorageClassAsWritten(StorageClass SC) {
590    assert(isLegalForVariable(SC));
591    SClassAsWritten = SC;
592  }
593
594  void setThreadSpecified(bool T) { ThreadSpecified = T; }
595  bool isThreadSpecified() const {
596    return ThreadSpecified;
597  }
598
599  /// hasLocalStorage - Returns true if a variable with function scope
600  ///  is a non-static local variable.
601  bool hasLocalStorage() const {
602    if (getStorageClass() == SC_None)
603      return !isFileVarDecl();
604
605    // Return true for:  Auto, Register.
606    // Return false for: Extern, Static, PrivateExtern.
607
608    return getStorageClass() >= SC_Auto;
609  }
610
611  /// isStaticLocal - Returns true if a variable with function scope is a
612  /// static local variable.
613  bool isStaticLocal() const {
614    return getStorageClass() == SC_Static && !isFileVarDecl();
615  }
616
617  /// hasExternStorage - Returns true if a variable has extern or
618  /// __private_extern__ storage.
619  bool hasExternalStorage() const {
620    return getStorageClass() == SC_Extern ||
621           getStorageClass() == SC_PrivateExtern;
622  }
623
624  /// hasGlobalStorage - Returns true for all variables that do not
625  ///  have local storage.  This includs all global variables as well
626  ///  as static variables declared within a function.
627  bool hasGlobalStorage() const { return !hasLocalStorage(); }
628
629  /// \brief Determines whether this variable is a variable with
630  /// external, C linkage.
631  bool isExternC() const;
632
633  /// isBlockVarDecl - Returns true for local variable declarations.  Note that
634  /// this includes static variables inside of functions. It also includes
635  /// variables inside blocks.
636  ///
637  ///   void foo() { int x; static int y; extern int z; }
638  ///
639  bool isBlockVarDecl() const {
640    if (getKind() != Decl::Var)
641      return false;
642    if (const DeclContext *DC = getDeclContext())
643      return DC->getRedeclContext()->isFunctionOrMethod();
644    return false;
645  }
646
647  /// isFunctionOrMethodVarDecl - Similar to isBlockVarDecl, but excludes
648  /// variables declared in blocks.
649  bool isFunctionOrMethodVarDecl() const {
650    if (getKind() != Decl::Var)
651      return false;
652    const DeclContext *DC = getDeclContext()->getRedeclContext();
653    return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
654  }
655
656  /// \brief Determines whether this is a static data member.
657  ///
658  /// This will only be true in C++, and applies to, e.g., the
659  /// variable 'x' in:
660  /// \code
661  /// struct S {
662  ///   static int x;
663  /// };
664  /// \endcode
665  bool isStaticDataMember() const {
666    // If it wasn't static, it would be a FieldDecl.
667    return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
668  }
669
670  virtual VarDecl *getCanonicalDecl();
671  const VarDecl *getCanonicalDecl() const {
672    return const_cast<VarDecl*>(this)->getCanonicalDecl();
673  }
674
675  enum DefinitionKind {
676    DeclarationOnly,      ///< This declaration is only a declaration.
677    TentativeDefinition,  ///< This declaration is a tentative definition.
678    Definition            ///< This declaration is definitely a definition.
679  };
680
681  /// \brief Check whether this declaration is a definition. If this could be
682  /// a tentative definition (in C), don't check whether there's an overriding
683  /// definition.
684  DefinitionKind isThisDeclarationADefinition() const;
685
686  /// \brief Get the tentative definition that acts as the real definition in
687  /// a TU. Returns null if there is a proper definition available.
688  VarDecl *getActingDefinition();
689  const VarDecl *getActingDefinition() const {
690    return const_cast<VarDecl*>(this)->getActingDefinition();
691  }
692
693  /// \brief Determine whether this is a tentative definition of a
694  /// variable in C.
695  bool isTentativeDefinitionNow() const;
696
697  /// \brief Get the real (not just tentative) definition for this declaration.
698  VarDecl *getDefinition();
699  const VarDecl *getDefinition() const {
700    return const_cast<VarDecl*>(this)->getDefinition();
701  }
702
703  /// \brief Determine whether this is or was instantiated from an out-of-line
704  /// definition of a static data member.
705  virtual bool isOutOfLine() const;
706
707  /// \brief If this is a static data member, find its out-of-line definition.
708  VarDecl *getOutOfLineDefinition();
709
710  /// isFileVarDecl - Returns true for file scoped variable declaration.
711  bool isFileVarDecl() const {
712    if (getKind() != Decl::Var)
713      return false;
714
715    if (getDeclContext()->getRedeclContext()->isFileContext())
716      return true;
717
718    if (isStaticDataMember())
719      return true;
720
721    return false;
722  }
723
724  /// getAnyInitializer - Get the initializer for this variable, no matter which
725  /// declaration it is attached to.
726  const Expr *getAnyInitializer() const {
727    const VarDecl *D;
728    return getAnyInitializer(D);
729  }
730
731  /// getAnyInitializer - Get the initializer for this variable, no matter which
732  /// declaration it is attached to. Also get that declaration.
733  const Expr *getAnyInitializer(const VarDecl *&D) const;
734
735  bool hasInit() const {
736    return !Init.isNull();
737  }
738  const Expr *getInit() const {
739    if (Init.isNull())
740      return 0;
741
742    const Stmt *S = Init.dyn_cast<Stmt *>();
743    if (!S) {
744      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
745        S = ES->Value;
746    }
747    return (const Expr*) S;
748  }
749  Expr *getInit() {
750    if (Init.isNull())
751      return 0;
752
753    Stmt *S = Init.dyn_cast<Stmt *>();
754    if (!S) {
755      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
756        S = ES->Value;
757    }
758
759    return (Expr*) S;
760  }
761
762  /// \brief Retrieve the address of the initializer expression.
763  Stmt **getInitAddress() {
764    if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
765      return &ES->Value;
766
767    // This union hack tip-toes around strict-aliasing rules.
768    union {
769      InitType *InitPtr;
770      Stmt **StmtPtr;
771    };
772
773    InitPtr = &Init;
774    return StmtPtr;
775  }
776
777  void setInit(Expr *I);
778
779  EvaluatedStmt *EnsureEvaluatedStmt() const {
780    EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
781    if (!Eval) {
782      Stmt *S = Init.get<Stmt *>();
783      Eval = new (getASTContext()) EvaluatedStmt;
784      Eval->Value = S;
785      Init = Eval;
786    }
787    return Eval;
788  }
789
790  /// \brief Check whether we are in the process of checking whether the
791  /// initializer can be evaluated.
792  bool isEvaluatingValue() const {
793    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
794      return Eval->IsEvaluating;
795
796    return false;
797  }
798
799  /// \brief Note that we now are checking whether the initializer can be
800  /// evaluated.
801  void setEvaluatingValue() const {
802    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
803    Eval->IsEvaluating = true;
804  }
805
806  /// \brief Note that constant evaluation has computed the given
807  /// value for this variable's initializer.
808  void setEvaluatedValue(const APValue &Value) const {
809    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
810    Eval->IsEvaluating = false;
811    Eval->WasEvaluated = true;
812    Eval->Evaluated = Value;
813  }
814
815  /// \brief Return the already-evaluated value of this variable's
816  /// initializer, or NULL if the value is not yet known. Returns pointer
817  /// to untyped APValue if the value could not be evaluated.
818  APValue *getEvaluatedValue() const {
819    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
820      if (Eval->WasEvaluated)
821        return &Eval->Evaluated;
822
823    return 0;
824  }
825
826  /// \brief Determines whether it is already known whether the
827  /// initializer is an integral constant expression or not.
828  bool isInitKnownICE() const {
829    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
830      return Eval->CheckedICE;
831
832    return false;
833  }
834
835  /// \brief Determines whether the initializer is an integral
836  /// constant expression.
837  ///
838  /// \pre isInitKnownICE()
839  bool isInitICE() const {
840    assert(isInitKnownICE() &&
841           "Check whether we already know that the initializer is an ICE");
842    return Init.get<EvaluatedStmt *>()->IsICE;
843  }
844
845  /// \brief Check whether we are in the process of checking the initializer
846  /// is an integral constant expression.
847  bool isCheckingICE() const {
848    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
849      return Eval->CheckingICE;
850
851    return false;
852  }
853
854  /// \brief Note that we now are checking whether the initializer is an
855  /// integral constant expression.
856  void setCheckingICE() const {
857    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
858    Eval->CheckingICE = true;
859  }
860
861  /// \brief Note that we now know whether the initializer is an
862  /// integral constant expression.
863  void setInitKnownICE(bool IsICE) const {
864    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
865    Eval->CheckingICE = false;
866    Eval->CheckedICE = true;
867    Eval->IsICE = IsICE;
868  }
869
870  void setCXXDirectInitializer(bool T) { HasCXXDirectInit = T; }
871
872  /// hasCXXDirectInitializer - If true, the initializer was a direct
873  /// initializer, e.g: "int x(1);". The Init expression will be the expression
874  /// inside the parens or a "ClassType(a,b,c)" class constructor expression for
875  /// class types. Clients can distinguish between "int x(1);" and "int x=1;"
876  /// by checking hasCXXDirectInitializer.
877  ///
878  bool hasCXXDirectInitializer() const {
879    return HasCXXDirectInit;
880  }
881
882  /// \brief Determine whether this variable is the exception variable in a
883  /// C++ catch statememt or an Objective-C @catch statement.
884  bool isExceptionVariable() const {
885    return ExceptionVar;
886  }
887  void setExceptionVariable(bool EV) { ExceptionVar = EV; }
888
889  /// \brief Determine whether this local variable can be used with the named
890  /// return value optimization (NRVO).
891  ///
892  /// The named return value optimization (NRVO) works by marking certain
893  /// non-volatile local variables of class type as NRVO objects. These
894  /// locals can be allocated within the return slot of their containing
895  /// function, in which case there is no need to copy the object to the
896  /// return slot when returning from the function. Within the function body,
897  /// each return that returns the NRVO object will have this variable as its
898  /// NRVO candidate.
899  bool isNRVOVariable() const { return NRVOVariable; }
900  void setNRVOVariable(bool NRVO) { NRVOVariable = NRVO; }
901
902  /// \brief If this variable is an instantiated static data member of a
903  /// class template specialization, returns the templated static data member
904  /// from which it was instantiated.
905  VarDecl *getInstantiatedFromStaticDataMember() const;
906
907  /// \brief If this variable is a static data member, determine what kind of
908  /// template specialization or instantiation this is.
909  TemplateSpecializationKind getTemplateSpecializationKind() const;
910
911  /// \brief If this variable is an instantiation of a static data member of a
912  /// class template specialization, retrieves the member specialization
913  /// information.
914  MemberSpecializationInfo *getMemberSpecializationInfo() const;
915
916  /// \brief For a static data member that was instantiated from a static
917  /// data member of a class template, set the template specialiation kind.
918  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
919                        SourceLocation PointOfInstantiation = SourceLocation());
920
921  // Implement isa/cast/dyncast/etc.
922  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
923  static bool classof(const VarDecl *D) { return true; }
924  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
925};
926
927class ImplicitParamDecl : public VarDecl {
928protected:
929  ImplicitParamDecl(Kind DK, DeclContext *DC, SourceLocation L,
930                    IdentifierInfo *Id, QualType Tw)
931    : VarDecl(DK, DC, L, Id, Tw, /*TInfo=*/0, SC_None, SC_None) {
932    setImplicit();
933  }
934public:
935  static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
936                                   SourceLocation L, IdentifierInfo *Id,
937                                   QualType T);
938  // Implement isa/cast/dyncast/etc.
939  static bool classof(const ImplicitParamDecl *D) { return true; }
940  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
941  static bool classofKind(Kind K) { return K == ImplicitParam; }
942};
943
944/// ParmVarDecl - Represent a parameter to a function.
945class ParmVarDecl : public VarDecl {
946  // NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
947  /// FIXME: Also can be paced into the bitfields in Decl.
948  /// in, inout, etc.
949  unsigned objcDeclQualifier : 6;
950  bool HasInheritedDefaultArg : 1;
951
952protected:
953  ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation L,
954              IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
955              StorageClass S, StorageClass SCAsWritten, Expr *DefArg)
956    : VarDecl(DK, DC, L, Id, T, TInfo, S, SCAsWritten),
957      objcDeclQualifier(OBJC_TQ_None), HasInheritedDefaultArg(false) {
958    setDefaultArg(DefArg);
959  }
960
961public:
962  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
963                             SourceLocation L,IdentifierInfo *Id,
964                             QualType T, TypeSourceInfo *TInfo,
965                             StorageClass S, StorageClass SCAsWritten,
966                             Expr *DefArg);
967
968  ObjCDeclQualifier getObjCDeclQualifier() const {
969    return ObjCDeclQualifier(objcDeclQualifier);
970  }
971  void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
972    objcDeclQualifier = QTVal;
973  }
974
975  Expr *getDefaultArg();
976  const Expr *getDefaultArg() const {
977    return const_cast<ParmVarDecl *>(this)->getDefaultArg();
978  }
979
980  void setDefaultArg(Expr *defarg) {
981    Init = reinterpret_cast<Stmt *>(defarg);
982  }
983
984  unsigned getNumDefaultArgTemporaries() const;
985  CXXTemporary *getDefaultArgTemporary(unsigned i);
986  const CXXTemporary *getDefaultArgTemporary(unsigned i) const {
987    return const_cast<ParmVarDecl *>(this)->getDefaultArgTemporary(i);
988  }
989
990  /// \brief Retrieve the source range that covers the entire default
991  /// argument.
992  SourceRange getDefaultArgRange() const;
993  void setUninstantiatedDefaultArg(Expr *arg) {
994    Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
995  }
996  Expr *getUninstantiatedDefaultArg() {
997    return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
998  }
999  const Expr *getUninstantiatedDefaultArg() const {
1000    return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
1001  }
1002
1003  /// hasDefaultArg - Determines whether this parameter has a default argument,
1004  /// either parsed or not.
1005  bool hasDefaultArg() const {
1006    return getInit() || hasUnparsedDefaultArg() ||
1007      hasUninstantiatedDefaultArg();
1008  }
1009
1010  /// hasUnparsedDefaultArg - Determines whether this parameter has a
1011  /// default argument that has not yet been parsed. This will occur
1012  /// during the processing of a C++ class whose member functions have
1013  /// default arguments, e.g.,
1014  /// @code
1015  ///   class X {
1016  ///   public:
1017  ///     void f(int x = 17); // x has an unparsed default argument now
1018  ///   }; // x has a regular default argument now
1019  /// @endcode
1020  bool hasUnparsedDefaultArg() const {
1021    return Init.is<UnparsedDefaultArgument*>();
1022  }
1023
1024  bool hasUninstantiatedDefaultArg() const {
1025    return Init.is<UninstantiatedDefaultArgument*>();
1026  }
1027
1028  /// setUnparsedDefaultArg - Specify that this parameter has an
1029  /// unparsed default argument. The argument will be replaced with a
1030  /// real default argument via setDefaultArg when the class
1031  /// definition enclosing the function declaration that owns this
1032  /// default argument is completed.
1033  void setUnparsedDefaultArg() {
1034    Init = (UnparsedDefaultArgument *)0;
1035  }
1036
1037  bool hasInheritedDefaultArg() const {
1038    return HasInheritedDefaultArg;
1039  }
1040
1041  void setHasInheritedDefaultArg(bool I = true) {
1042    HasInheritedDefaultArg = I;
1043  }
1044
1045  QualType getOriginalType() const {
1046    if (getTypeSourceInfo())
1047      return getTypeSourceInfo()->getType();
1048    return getType();
1049  }
1050
1051  /// setOwningFunction - Sets the function declaration that owns this
1052  /// ParmVarDecl. Since ParmVarDecls are often created before the
1053  /// FunctionDecls that own them, this routine is required to update
1054  /// the DeclContext appropriately.
1055  void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1056
1057  // Implement isa/cast/dyncast/etc.
1058  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1059  static bool classof(const ParmVarDecl *D) { return true; }
1060  static bool classofKind(Kind K) { return K == ParmVar; }
1061};
1062
1063/// FunctionDecl - An instance of this class is created to represent a
1064/// function declaration or definition.
1065///
1066/// Since a given function can be declared several times in a program,
1067/// there may be several FunctionDecls that correspond to that
1068/// function. Only one of those FunctionDecls will be found when
1069/// traversing the list of declarations in the context of the
1070/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1071/// contains all of the information known about the function. Other,
1072/// previous declarations of the function are available via the
1073/// getPreviousDeclaration() chain.
1074class FunctionDecl : public DeclaratorDecl, public DeclContext,
1075                     public Redeclarable<FunctionDecl> {
1076public:
1077  typedef clang::StorageClass StorageClass;
1078
1079  /// \brief The kind of templated function a FunctionDecl can be.
1080  enum TemplatedKind {
1081    TK_NonTemplate,
1082    TK_FunctionTemplate,
1083    TK_MemberSpecialization,
1084    TK_FunctionTemplateSpecialization,
1085    TK_DependentFunctionTemplateSpecialization
1086  };
1087
1088private:
1089  /// ParamInfo - new[]'d array of pointers to VarDecls for the formal
1090  /// parameters of this function.  This is null if a prototype or if there are
1091  /// no formals.
1092  ParmVarDecl **ParamInfo;
1093
1094  LazyDeclStmtPtr Body;
1095
1096  // FIXME: This can be packed into the bitfields in Decl.
1097  // NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
1098  unsigned SClass : 2;
1099  unsigned SClassAsWritten : 2;
1100  bool IsInline : 1;
1101  bool IsVirtualAsWritten : 1;
1102  bool IsPure : 1;
1103  bool HasInheritedPrototype : 1;
1104  bool HasWrittenPrototype : 1;
1105  bool IsDeleted : 1;
1106  bool IsTrivial : 1; // sunk from CXXMethodDecl
1107  bool HasImplicitReturnZero : 1;
1108
1109  /// \brief End part of this FunctionDecl's source range.
1110  ///
1111  /// We could compute the full range in getSourceRange(). However, when we're
1112  /// dealing with a function definition deserialized from a PCH/AST file,
1113  /// we can only compute the full range once the function body has been
1114  /// de-serialized, so it's far better to have the (sometimes-redundant)
1115  /// EndRangeLoc.
1116  SourceLocation EndRangeLoc;
1117
1118  /// \brief The template or declaration that this declaration
1119  /// describes or was instantiated from, respectively.
1120  ///
1121  /// For non-templates, this value will be NULL. For function
1122  /// declarations that describe a function template, this will be a
1123  /// pointer to a FunctionTemplateDecl. For member functions
1124  /// of class template specializations, this will be a MemberSpecializationInfo
1125  /// pointer containing information about the specialization.
1126  /// For function template specializations, this will be a
1127  /// FunctionTemplateSpecializationInfo, which contains information about
1128  /// the template being specialized and the template arguments involved in
1129  /// that specialization.
1130  llvm::PointerUnion4<FunctionTemplateDecl *,
1131                      MemberSpecializationInfo *,
1132                      FunctionTemplateSpecializationInfo *,
1133                      DependentFunctionTemplateSpecializationInfo *>
1134    TemplateOrSpecialization;
1135
1136  /// DNLoc - Provides source/type location info for the
1137  /// declaration name embedded in the DeclaratorDecl base class.
1138  DeclarationNameLoc DNLoc;
1139
1140  /// \brief Specify that this function declaration is actually a function
1141  /// template specialization.
1142  ///
1143  /// \param C the ASTContext.
1144  ///
1145  /// \param Template the function template that this function template
1146  /// specialization specializes.
1147  ///
1148  /// \param TemplateArgs the template arguments that produced this
1149  /// function template specialization from the template.
1150  ///
1151  /// \param InsertPos If non-NULL, the position in the function template
1152  /// specialization set where the function template specialization data will
1153  /// be inserted.
1154  ///
1155  /// \param TSK the kind of template specialization this is.
1156  ///
1157  /// \param TemplateArgsAsWritten location info of template arguments.
1158  ///
1159  /// \param PointOfInstantiation point at which the function template
1160  /// specialization was first instantiated.
1161  void setFunctionTemplateSpecialization(ASTContext &C,
1162                                         FunctionTemplateDecl *Template,
1163                                       const TemplateArgumentList *TemplateArgs,
1164                                         void *InsertPos,
1165                                         TemplateSpecializationKind TSK,
1166                          const TemplateArgumentListInfo *TemplateArgsAsWritten,
1167                                         SourceLocation PointOfInstantiation);
1168
1169  /// \brief Specify that this record is an instantiation of the
1170  /// member function FD.
1171  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1172                                        TemplateSpecializationKind TSK);
1173
1174  void setParams(ASTContext &C, ParmVarDecl **NewParamInfo, unsigned NumParams);
1175
1176protected:
1177  FunctionDecl(Kind DK, DeclContext *DC, const DeclarationNameInfo &NameInfo,
1178               QualType T, TypeSourceInfo *TInfo,
1179               StorageClass S, StorageClass SCAsWritten, bool isInline)
1180    : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo),
1181      DeclContext(DK),
1182      ParamInfo(0), Body(),
1183      SClass(S), SClassAsWritten(SCAsWritten), IsInline(isInline),
1184      IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
1185      HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
1186      HasImplicitReturnZero(false),
1187      EndRangeLoc(NameInfo.getEndLoc()),
1188      TemplateOrSpecialization(),
1189      DNLoc(NameInfo.getInfo()) {}
1190
1191  typedef Redeclarable<FunctionDecl> redeclarable_base;
1192  virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1193
1194public:
1195  typedef redeclarable_base::redecl_iterator redecl_iterator;
1196  redecl_iterator redecls_begin() const {
1197    return redeclarable_base::redecls_begin();
1198  }
1199  redecl_iterator redecls_end() const {
1200    return redeclarable_base::redecls_end();
1201  }
1202
1203  static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
1204                              DeclarationName N, QualType T,
1205                              TypeSourceInfo *TInfo,
1206                              StorageClass S = SC_None,
1207                              StorageClass SCAsWritten = SC_None,
1208                              bool isInline = false,
1209                              bool hasWrittenPrototype = true) {
1210    DeclarationNameInfo NameInfo(N, L);
1211    return FunctionDecl::Create(C, DC, NameInfo, T, TInfo, S, SCAsWritten,
1212                                isInline, hasWrittenPrototype);
1213  }
1214
1215  static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1216                              const DeclarationNameInfo &NameInfo,
1217                              QualType T, TypeSourceInfo *TInfo,
1218                              StorageClass S = SC_None,
1219                              StorageClass SCAsWritten = SC_None,
1220                              bool isInline = false,
1221                              bool hasWrittenPrototype = true);
1222
1223  DeclarationNameInfo getNameInfo() const {
1224    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1225  }
1226
1227  virtual void getNameForDiagnostic(std::string &S,
1228                                    const PrintingPolicy &Policy,
1229                                    bool Qualified) const;
1230
1231  virtual SourceRange getSourceRange() const {
1232    return SourceRange(getOuterLocStart(), EndRangeLoc);
1233  }
1234  void setLocEnd(SourceLocation E) {
1235    EndRangeLoc = E;
1236  }
1237
1238  /// \brief Returns true if the function has a body (definition). The
1239  /// function body might be in any of the (re-)declarations of this
1240  /// function. The variant that accepts a FunctionDecl pointer will
1241  /// set that function declaration to the actual declaration
1242  /// containing the body (if there is one).
1243  bool hasBody(const FunctionDecl *&Definition) const;
1244
1245  virtual bool hasBody() const {
1246    const FunctionDecl* Definition;
1247    return hasBody(Definition);
1248  }
1249
1250  /// getBody - Retrieve the body (definition) of the function. The
1251  /// function body might be in any of the (re-)declarations of this
1252  /// function. The variant that accepts a FunctionDecl pointer will
1253  /// set that function declaration to the actual declaration
1254  /// containing the body (if there is one).
1255  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1256  /// unnecessary AST de-serialization of the body.
1257  Stmt *getBody(const FunctionDecl *&Definition) const;
1258
1259  virtual Stmt *getBody() const {
1260    const FunctionDecl* Definition;
1261    return getBody(Definition);
1262  }
1263
1264  /// isThisDeclarationADefinition - Returns whether this specific
1265  /// declaration of the function is also a definition. This does not
1266  /// determine whether the function has been defined (e.g., in a
1267  /// previous definition); for that information, use getBody.
1268  /// FIXME: Should return true if function is deleted or defaulted. However,
1269  /// CodeGenModule.cpp uses it, and I don't know if this would break it.
1270  bool isThisDeclarationADefinition() const { return Body; }
1271
1272  void setBody(Stmt *B);
1273  void setLazyBody(uint64_t Offset) { Body = Offset; }
1274
1275  /// Whether this function is variadic.
1276  bool isVariadic() const;
1277
1278  /// Whether this function is marked as virtual explicitly.
1279  bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
1280  void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
1281
1282  /// Whether this virtual function is pure, i.e. makes the containing class
1283  /// abstract.
1284  bool isPure() const { return IsPure; }
1285  void setPure(bool P = true);
1286
1287  /// Whether this function is "trivial" in some specialized C++ senses.
1288  /// Can only be true for default constructors, copy constructors,
1289  /// copy assignment operators, and destructors.  Not meaningful until
1290  /// the class has been fully built by Sema.
1291  bool isTrivial() const { return IsTrivial; }
1292  void setTrivial(bool IT) { IsTrivial = IT; }
1293
1294  /// Whether falling off this function implicitly returns null/zero.
1295  /// If a more specific implicit return value is required, front-ends
1296  /// should synthesize the appropriate return statements.
1297  bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
1298  void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
1299
1300  /// \brief Whether this function has a prototype, either because one
1301  /// was explicitly written or because it was "inherited" by merging
1302  /// a declaration without a prototype with a declaration that has a
1303  /// prototype.
1304  bool hasPrototype() const {
1305    return HasWrittenPrototype || HasInheritedPrototype;
1306  }
1307
1308  bool hasWrittenPrototype() const { return HasWrittenPrototype; }
1309  void setHasWrittenPrototype(bool P) { HasWrittenPrototype = P; }
1310
1311  /// \brief Whether this function inherited its prototype from a
1312  /// previous declaration.
1313  bool hasInheritedPrototype() const { return HasInheritedPrototype; }
1314  void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
1315
1316  /// \brief Whether this function has been deleted.
1317  ///
1318  /// A function that is "deleted" (via the C++0x "= delete" syntax)
1319  /// acts like a normal function, except that it cannot actually be
1320  /// called or have its address taken. Deleted functions are
1321  /// typically used in C++ overload resolution to attract arguments
1322  /// whose type or lvalue/rvalue-ness would permit the use of a
1323  /// different overload that would behave incorrectly. For example,
1324  /// one might use deleted functions to ban implicit conversion from
1325  /// a floating-point number to an Integer type:
1326  ///
1327  /// @code
1328  /// struct Integer {
1329  ///   Integer(long); // construct from a long
1330  ///   Integer(double) = delete; // no construction from float or double
1331  ///   Integer(long double) = delete; // no construction from long double
1332  /// };
1333  /// @endcode
1334  bool isDeleted() const { return IsDeleted; }
1335  void setDeleted(bool D = true) { IsDeleted = D; }
1336
1337  /// \brief Determines whether this is a function "main", which is
1338  /// the entry point into an executable program.
1339  bool isMain() const;
1340
1341  /// \brief Determines whether this function is a function with
1342  /// external, C linkage.
1343  bool isExternC() const;
1344
1345  /// \brief Determines whether this is a global function.
1346  bool isGlobal() const;
1347
1348  void setPreviousDeclaration(FunctionDecl * PrevDecl);
1349
1350  virtual const FunctionDecl *getCanonicalDecl() const;
1351  virtual FunctionDecl *getCanonicalDecl();
1352
1353  unsigned getBuiltinID() const;
1354
1355  // Iterator access to formal parameters.
1356  unsigned param_size() const { return getNumParams(); }
1357  typedef ParmVarDecl **param_iterator;
1358  typedef ParmVarDecl * const *param_const_iterator;
1359
1360  param_iterator param_begin() { return ParamInfo; }
1361  param_iterator param_end()   { return ParamInfo+param_size(); }
1362
1363  param_const_iterator param_begin() const { return ParamInfo; }
1364  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
1365
1366  /// getNumParams - Return the number of parameters this function must have
1367  /// based on its FunctionType.  This is the length of the ParamInfo array
1368  /// after it has been created.
1369  unsigned getNumParams() const;
1370
1371  const ParmVarDecl *getParamDecl(unsigned i) const {
1372    assert(i < getNumParams() && "Illegal param #");
1373    return ParamInfo[i];
1374  }
1375  ParmVarDecl *getParamDecl(unsigned i) {
1376    assert(i < getNumParams() && "Illegal param #");
1377    return ParamInfo[i];
1378  }
1379  void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams) {
1380    setParams(getASTContext(), NewParamInfo, NumParams);
1381  }
1382
1383  /// getMinRequiredArguments - Returns the minimum number of arguments
1384  /// needed to call this function. This may be fewer than the number of
1385  /// function parameters, if some of the parameters have default
1386  /// arguments (in C++).
1387  unsigned getMinRequiredArguments() const;
1388
1389  QualType getResultType() const {
1390    return getType()->getAs<FunctionType>()->getResultType();
1391  }
1392
1393  /// \brief Determine the type of an expression that calls this function.
1394  QualType getCallResultType() const {
1395    return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
1396  }
1397
1398  StorageClass getStorageClass() const { return StorageClass(SClass); }
1399  void setStorageClass(StorageClass SC) {
1400    assert(isLegalForFunction(SC));
1401    SClass = SC;
1402  }
1403
1404  StorageClass getStorageClassAsWritten() const {
1405    return StorageClass(SClassAsWritten);
1406  }
1407  void setStorageClassAsWritten(StorageClass SC) {
1408    assert(isLegalForFunction(SC));
1409    SClassAsWritten = SC;
1410  }
1411
1412  /// \brief Determine whether the "inline" keyword was specified for this
1413  /// function.
1414  bool isInlineSpecified() const { return IsInline; }
1415
1416  /// Set whether the "inline" keyword was specified for this function.
1417  void setInlineSpecified(bool I) { IsInline = I; }
1418
1419  /// \brief Determine whether this function should be inlined, because it is
1420  /// either marked "inline" or is a member function of a C++ class that
1421  /// was defined in the class body.
1422  bool isInlined() const;
1423
1424  bool isInlineDefinitionExternallyVisible() const;
1425
1426  /// isOverloadedOperator - Whether this function declaration
1427  /// represents an C++ overloaded operator, e.g., "operator+".
1428  bool isOverloadedOperator() const {
1429    return getOverloadedOperator() != OO_None;
1430  }
1431
1432  OverloadedOperatorKind getOverloadedOperator() const;
1433
1434  const IdentifierInfo *getLiteralIdentifier() const;
1435
1436  /// \brief If this function is an instantiation of a member function
1437  /// of a class template specialization, retrieves the function from
1438  /// which it was instantiated.
1439  ///
1440  /// This routine will return non-NULL for (non-templated) member
1441  /// functions of class templates and for instantiations of function
1442  /// templates. For example, given:
1443  ///
1444  /// \code
1445  /// template<typename T>
1446  /// struct X {
1447  ///   void f(T);
1448  /// };
1449  /// \endcode
1450  ///
1451  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
1452  /// whose parent is the class template specialization X<int>. For
1453  /// this declaration, getInstantiatedFromFunction() will return
1454  /// the FunctionDecl X<T>::A. When a complete definition of
1455  /// X<int>::A is required, it will be instantiated from the
1456  /// declaration returned by getInstantiatedFromMemberFunction().
1457  FunctionDecl *getInstantiatedFromMemberFunction() const;
1458
1459  /// \brief What kind of templated function this is.
1460  TemplatedKind getTemplatedKind() const;
1461
1462  /// \brief If this function is an instantiation of a member function of a
1463  /// class template specialization, retrieves the member specialization
1464  /// information.
1465  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1466
1467  /// \brief Specify that this record is an instantiation of the
1468  /// member function FD.
1469  void setInstantiationOfMemberFunction(FunctionDecl *FD,
1470                                        TemplateSpecializationKind TSK) {
1471    setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
1472  }
1473
1474  /// \brief Retrieves the function template that is described by this
1475  /// function declaration.
1476  ///
1477  /// Every function template is represented as a FunctionTemplateDecl
1478  /// and a FunctionDecl (or something derived from FunctionDecl). The
1479  /// former contains template properties (such as the template
1480  /// parameter lists) while the latter contains the actual
1481  /// description of the template's
1482  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
1483  /// FunctionDecl that describes the function template,
1484  /// getDescribedFunctionTemplate() retrieves the
1485  /// FunctionTemplateDecl from a FunctionDecl.
1486  FunctionTemplateDecl *getDescribedFunctionTemplate() const {
1487    return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
1488  }
1489
1490  void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
1491    TemplateOrSpecialization = Template;
1492  }
1493
1494  /// \brief Determine whether this function is a function template
1495  /// specialization.
1496  bool isFunctionTemplateSpecialization() const {
1497    return getPrimaryTemplate() != 0;
1498  }
1499
1500  /// \brief If this function is actually a function template specialization,
1501  /// retrieve information about this function template specialization.
1502  /// Otherwise, returns NULL.
1503  FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
1504    return TemplateOrSpecialization.
1505             dyn_cast<FunctionTemplateSpecializationInfo*>();
1506  }
1507
1508  /// \brief Determines whether this function is a function template
1509  /// specialization or a member of a class template specialization that can
1510  /// be implicitly instantiated.
1511  bool isImplicitlyInstantiable() const;
1512
1513  /// \brief Retrieve the function declaration from which this function could
1514  /// be instantiated, if it is an instantiation (rather than a non-template
1515  /// or a specialization, for example).
1516  FunctionDecl *getTemplateInstantiationPattern() const;
1517
1518  /// \brief Retrieve the primary template that this function template
1519  /// specialization either specializes or was instantiated from.
1520  ///
1521  /// If this function declaration is not a function template specialization,
1522  /// returns NULL.
1523  FunctionTemplateDecl *getPrimaryTemplate() const;
1524
1525  /// \brief Retrieve the template arguments used to produce this function
1526  /// template specialization from the primary template.
1527  ///
1528  /// If this function declaration is not a function template specialization,
1529  /// returns NULL.
1530  const TemplateArgumentList *getTemplateSpecializationArgs() const;
1531
1532  /// \brief Retrieve the template argument list as written in the sources,
1533  /// if any.
1534  ///
1535  /// If this function declaration is not a function template specialization
1536  /// or if it had no explicit template argument list, returns NULL.
1537  /// Note that it an explicit template argument list may be written empty,
1538  /// e.g., template<> void foo<>(char* s);
1539  const TemplateArgumentListInfo*
1540  getTemplateSpecializationArgsAsWritten() const;
1541
1542  /// \brief Specify that this function declaration is actually a function
1543  /// template specialization.
1544  ///
1545  /// \param Template the function template that this function template
1546  /// specialization specializes.
1547  ///
1548  /// \param TemplateArgs the template arguments that produced this
1549  /// function template specialization from the template.
1550  ///
1551  /// \param InsertPos If non-NULL, the position in the function template
1552  /// specialization set where the function template specialization data will
1553  /// be inserted.
1554  ///
1555  /// \param TSK the kind of template specialization this is.
1556  ///
1557  /// \param TemplateArgsAsWritten location info of template arguments.
1558  ///
1559  /// \param PointOfInstantiation point at which the function template
1560  /// specialization was first instantiated.
1561  void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
1562                                      const TemplateArgumentList *TemplateArgs,
1563                                         void *InsertPos,
1564                    TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
1565                    const TemplateArgumentListInfo *TemplateArgsAsWritten = 0,
1566                    SourceLocation PointOfInstantiation = SourceLocation()) {
1567    setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
1568                                      InsertPos, TSK, TemplateArgsAsWritten,
1569                                      PointOfInstantiation);
1570  }
1571
1572  /// \brief Specifies that this function declaration is actually a
1573  /// dependent function template specialization.
1574  void setDependentTemplateSpecialization(ASTContext &Context,
1575                             const UnresolvedSetImpl &Templates,
1576                      const TemplateArgumentListInfo &TemplateArgs);
1577
1578  DependentFunctionTemplateSpecializationInfo *
1579  getDependentSpecializationInfo() const {
1580    return TemplateOrSpecialization.
1581             dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
1582  }
1583
1584  /// \brief Determine what kind of template instantiation this function
1585  /// represents.
1586  TemplateSpecializationKind getTemplateSpecializationKind() const;
1587
1588  /// \brief Determine what kind of template instantiation this function
1589  /// represents.
1590  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1591                        SourceLocation PointOfInstantiation = SourceLocation());
1592
1593  /// \brief Retrieve the (first) point of instantiation of a function template
1594  /// specialization or a member of a class template specialization.
1595  ///
1596  /// \returns the first point of instantiation, if this function was
1597  /// instantiated from a template; otherwie, returns an invalid source
1598  /// location.
1599  SourceLocation getPointOfInstantiation() const;
1600
1601  /// \brief Determine whether this is or was instantiated from an out-of-line
1602  /// definition of a member function.
1603  virtual bool isOutOfLine() const;
1604
1605  // Implement isa/cast/dyncast/etc.
1606  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1607  static bool classof(const FunctionDecl *D) { return true; }
1608  static bool classofKind(Kind K) {
1609    return K >= firstFunction && K <= lastFunction;
1610  }
1611  static DeclContext *castToDeclContext(const FunctionDecl *D) {
1612    return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
1613  }
1614  static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
1615    return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
1616  }
1617
1618  friend class ASTDeclReader;
1619  friend class ASTDeclWriter;
1620};
1621
1622
1623/// FieldDecl - An instance of this class is created by Sema::ActOnField to
1624/// represent a member of a struct/union/class.
1625class FieldDecl : public DeclaratorDecl {
1626  // FIXME: This can be packed into the bitfields in Decl.
1627  bool Mutable : 1;
1628  Expr *BitWidth;
1629protected:
1630  FieldDecl(Kind DK, DeclContext *DC, SourceLocation L,
1631            IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1632            Expr *BW, bool Mutable)
1633    : DeclaratorDecl(DK, DC, L, Id, T, TInfo), Mutable(Mutable), BitWidth(BW) {
1634  }
1635
1636public:
1637  static FieldDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
1638                           IdentifierInfo *Id, QualType T,
1639                           TypeSourceInfo *TInfo, Expr *BW, bool Mutable);
1640
1641  /// isMutable - Determines whether this field is mutable (C++ only).
1642  bool isMutable() const { return Mutable; }
1643
1644  /// \brief Set whether this field is mutable (C++ only).
1645  void setMutable(bool M) { Mutable = M; }
1646
1647  /// isBitfield - Determines whether this field is a bitfield.
1648  bool isBitField() const { return BitWidth != NULL; }
1649
1650  /// @brief Determines whether this is an unnamed bitfield.
1651  bool isUnnamedBitfield() const { return BitWidth != NULL && !getDeclName(); }
1652
1653  /// isAnonymousStructOrUnion - Determines whether this field is a
1654  /// representative for an anonymous struct or union. Such fields are
1655  /// unnamed and are implicitly generated by the implementation to
1656  /// store the data for the anonymous union or struct.
1657  bool isAnonymousStructOrUnion() const;
1658
1659  Expr *getBitWidth() const { return BitWidth; }
1660  void setBitWidth(Expr *BW) { BitWidth = BW; }
1661
1662  /// getParent - Returns the parent of this field declaration, which
1663  /// is the struct in which this method is defined.
1664  const RecordDecl *getParent() const {
1665    return cast<RecordDecl>(getDeclContext());
1666  }
1667
1668  RecordDecl *getParent() {
1669    return cast<RecordDecl>(getDeclContext());
1670  }
1671
1672  // Implement isa/cast/dyncast/etc.
1673  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1674  static bool classof(const FieldDecl *D) { return true; }
1675  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
1676};
1677
1678/// EnumConstantDecl - An instance of this object exists for each enum constant
1679/// that is defined.  For example, in "enum X {a,b}", each of a/b are
1680/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
1681/// TagType for the X EnumDecl.
1682class EnumConstantDecl : public ValueDecl {
1683  Stmt *Init; // an integer constant expression
1684  llvm::APSInt Val; // The value.
1685protected:
1686  EnumConstantDecl(DeclContext *DC, SourceLocation L,
1687                   IdentifierInfo *Id, QualType T, Expr *E,
1688                   const llvm::APSInt &V)
1689    : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
1690
1691public:
1692
1693  static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
1694                                  SourceLocation L, IdentifierInfo *Id,
1695                                  QualType T, Expr *E,
1696                                  const llvm::APSInt &V);
1697
1698  const Expr *getInitExpr() const { return (const Expr*) Init; }
1699  Expr *getInitExpr() { return (Expr*) Init; }
1700  const llvm::APSInt &getInitVal() const { return Val; }
1701
1702  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
1703  void setInitVal(const llvm::APSInt &V) { Val = V; }
1704
1705  SourceRange getSourceRange() const;
1706
1707  // Implement isa/cast/dyncast/etc.
1708  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1709  static bool classof(const EnumConstantDecl *D) { return true; }
1710  static bool classofKind(Kind K) { return K == EnumConstant; }
1711
1712  friend class StmtIteratorBase;
1713};
1714
1715
1716/// TypeDecl - Represents a declaration of a type.
1717///
1718class TypeDecl : public NamedDecl {
1719  /// TypeForDecl - This indicates the Type object that represents
1720  /// this TypeDecl.  It is a cache maintained by
1721  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
1722  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
1723  mutable Type *TypeForDecl;
1724  friend class ASTContext;
1725  friend class DeclContext;
1726  friend class TagDecl;
1727  friend class TemplateTypeParmDecl;
1728  friend class TagType;
1729
1730protected:
1731  TypeDecl(Kind DK, DeclContext *DC, SourceLocation L,
1732           IdentifierInfo *Id)
1733    : NamedDecl(DK, DC, L, Id), TypeForDecl(0) {}
1734
1735public:
1736  // Low-level accessor
1737  Type *getTypeForDecl() const { return TypeForDecl; }
1738  void setTypeForDecl(Type *TD) { TypeForDecl = TD; }
1739
1740  // Implement isa/cast/dyncast/etc.
1741  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1742  static bool classof(const TypeDecl *D) { return true; }
1743  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
1744};
1745
1746
1747class TypedefDecl : public TypeDecl, public Redeclarable<TypedefDecl> {
1748  /// UnderlyingType - This is the type the typedef is set to.
1749  TypeSourceInfo *TInfo;
1750
1751  TypedefDecl(DeclContext *DC, SourceLocation L,
1752              IdentifierInfo *Id, TypeSourceInfo *TInfo)
1753    : TypeDecl(Typedef, DC, L, Id), TInfo(TInfo) {}
1754
1755protected:
1756  typedef Redeclarable<TypedefDecl> redeclarable_base;
1757  virtual TypedefDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1758
1759public:
1760  typedef redeclarable_base::redecl_iterator redecl_iterator;
1761  redecl_iterator redecls_begin() const {
1762    return redeclarable_base::redecls_begin();
1763  }
1764  redecl_iterator redecls_end() const {
1765    return redeclarable_base::redecls_end();
1766  }
1767
1768  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
1769                             SourceLocation L, IdentifierInfo *Id,
1770                             TypeSourceInfo *TInfo);
1771
1772  TypeSourceInfo *getTypeSourceInfo() const {
1773    return TInfo;
1774  }
1775
1776  /// Retrieves the canonical declaration of this typedef.
1777  TypedefDecl *getCanonicalDecl() {
1778    return getFirstDeclaration();
1779  }
1780  const TypedefDecl *getCanonicalDecl() const {
1781    return getFirstDeclaration();
1782  }
1783
1784  QualType getUnderlyingType() const {
1785    return TInfo->getType();
1786  }
1787  void setTypeSourceInfo(TypeSourceInfo *newType) {
1788    TInfo = newType;
1789  }
1790
1791  // Implement isa/cast/dyncast/etc.
1792  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1793  static bool classof(const TypedefDecl *D) { return true; }
1794  static bool classofKind(Kind K) { return K == Typedef; }
1795};
1796
1797class TypedefDecl;
1798
1799/// TagDecl - Represents the declaration of a struct/union/class/enum.
1800class TagDecl
1801  : public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
1802public:
1803  // This is really ugly.
1804  typedef TagTypeKind TagKind;
1805
1806private:
1807  // FIXME: This can be packed into the bitfields in Decl.
1808  /// TagDeclKind - The TagKind enum.
1809  unsigned TagDeclKind : 2;
1810
1811  /// IsDefinition - True if this is a definition ("struct foo {};"), false if
1812  /// it is a declaration ("struct foo;").
1813  bool IsDefinition : 1;
1814
1815  /// IsBeingDefined - True if this is currently being defined.
1816  bool IsBeingDefined : 1;
1817
1818  /// IsEmbeddedInDeclarator - True if this tag declaration is
1819  /// "embedded" (i.e., defined or declared for the very first time)
1820  /// in the syntax of a declarator.
1821  bool IsEmbeddedInDeclarator : 1;
1822
1823protected:
1824  // These are used by (and only defined for) EnumDecl.
1825  unsigned NumPositiveBits : 8;
1826  unsigned NumNegativeBits : 8;
1827
1828  /// IsScoped - True if this is tag declaration is a scoped enumeration. Only
1829  /// possible in C++0x mode.
1830  bool IsScoped : 1;
1831
1832  /// IsFixed - True if this is an enumeration with fixed underlying type. Only
1833  /// possible in C++0x mode.
1834  bool IsFixed : 1;
1835
1836private:
1837  SourceLocation TagKeywordLoc;
1838  SourceLocation RBraceLoc;
1839
1840  // A struct representing syntactic qualifier info,
1841  // to be used for the (uncommon) case of out-of-line declarations.
1842  typedef QualifierInfo ExtInfo;
1843
1844  /// TypedefDeclOrQualifier - If the (out-of-line) tag declaration name
1845  /// is qualified, it points to the qualifier info (nns and range);
1846  /// otherwise, if the tag declaration is anonymous and it is part of
1847  /// a typedef, it points to the TypedefDecl (used for mangling);
1848  /// otherwise, it is a null (TypedefDecl) pointer.
1849  llvm::PointerUnion<TypedefDecl*, ExtInfo*> TypedefDeclOrQualifier;
1850
1851  bool hasExtInfo() const { return TypedefDeclOrQualifier.is<ExtInfo*>(); }
1852  ExtInfo *getExtInfo() { return TypedefDeclOrQualifier.get<ExtInfo*>(); }
1853  const ExtInfo *getExtInfo() const {
1854    return TypedefDeclOrQualifier.get<ExtInfo*>();
1855  }
1856
1857protected:
1858  TagDecl(Kind DK, TagKind TK, DeclContext *DC,
1859          SourceLocation L, IdentifierInfo *Id,
1860          TagDecl *PrevDecl, SourceLocation TKL = SourceLocation())
1861    : TypeDecl(DK, DC, L, Id), DeclContext(DK), TagKeywordLoc(TKL),
1862      TypedefDeclOrQualifier((TypedefDecl*) 0) {
1863    assert((DK != Enum || TK == TTK_Enum) &&
1864           "EnumDecl not matched with TTK_Enum");
1865    TagDeclKind = TK;
1866    IsDefinition = false;
1867    IsBeingDefined = false;
1868    IsEmbeddedInDeclarator = false;
1869    setPreviousDeclaration(PrevDecl);
1870  }
1871
1872  typedef Redeclarable<TagDecl> redeclarable_base;
1873  virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1874
1875  /// @brief Completes the definition of this tag declaration.
1876  ///
1877  /// This is a helper function for derived classes.
1878  void completeDefinition();
1879
1880public:
1881  typedef redeclarable_base::redecl_iterator redecl_iterator;
1882  redecl_iterator redecls_begin() const {
1883    return redeclarable_base::redecls_begin();
1884  }
1885  redecl_iterator redecls_end() const {
1886    return redeclarable_base::redecls_end();
1887  }
1888
1889  SourceLocation getRBraceLoc() const { return RBraceLoc; }
1890  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
1891
1892  SourceLocation getTagKeywordLoc() const { return TagKeywordLoc; }
1893  void setTagKeywordLoc(SourceLocation TKL) { TagKeywordLoc = TKL; }
1894
1895  /// getInnerLocStart - Return SourceLocation representing start of source
1896  /// range ignoring outer template declarations.
1897  virtual SourceLocation getInnerLocStart() const { return TagKeywordLoc; }
1898
1899  /// getOuterLocStart - Return SourceLocation representing start of source
1900  /// range taking into account any outer template declarations.
1901  SourceLocation getOuterLocStart() const;
1902  virtual SourceRange getSourceRange() const;
1903
1904  virtual TagDecl* getCanonicalDecl();
1905  const TagDecl* getCanonicalDecl() const {
1906    return const_cast<TagDecl*>(this)->getCanonicalDecl();
1907  }
1908
1909  /// isThisDeclarationADefinition() - Return true if this declaration
1910  /// defines the type.  Provided for consistency.
1911  bool isThisDeclarationADefinition() const {
1912    return isDefinition();
1913  }
1914
1915  /// isDefinition - Return true if this decl has its body specified.
1916  bool isDefinition() const {
1917    return IsDefinition;
1918  }
1919
1920  /// isBeingDefined - Return true if this decl is currently being defined.
1921  bool isBeingDefined() const {
1922    return IsBeingDefined;
1923  }
1924
1925  bool isEmbeddedInDeclarator() const {
1926    return IsEmbeddedInDeclarator;
1927  }
1928  void setEmbeddedInDeclarator(bool isInDeclarator) {
1929    IsEmbeddedInDeclarator = isInDeclarator;
1930  }
1931
1932  /// \brief Whether this declaration declares a type that is
1933  /// dependent, i.e., a type that somehow depends on template
1934  /// parameters.
1935  bool isDependentType() const { return isDependentContext(); }
1936
1937  /// @brief Starts the definition of this tag declaration.
1938  ///
1939  /// This method should be invoked at the beginning of the definition
1940  /// of this tag declaration. It will set the tag type into a state
1941  /// where it is in the process of being defined.
1942  void startDefinition();
1943
1944  /// getDefinition - Returns the TagDecl that actually defines this
1945  ///  struct/union/class/enum.  When determining whether or not a
1946  ///  struct/union/class/enum is completely defined, one should use this method
1947  ///  as opposed to 'isDefinition'.  'isDefinition' indicates whether or not a
1948  ///  specific TagDecl is defining declaration, not whether or not the
1949  ///  struct/union/class/enum type is defined.  This method returns NULL if
1950  ///  there is no TagDecl that defines the struct/union/class/enum.
1951  TagDecl* getDefinition() const;
1952
1953  void setDefinition(bool V) { IsDefinition = V; }
1954
1955  const char *getKindName() const {
1956    return TypeWithKeyword::getTagTypeKindName(getTagKind());
1957  }
1958
1959  TagKind getTagKind() const {
1960    return TagKind(TagDeclKind);
1961  }
1962
1963  void setTagKind(TagKind TK) { TagDeclKind = TK; }
1964
1965  bool isStruct() const { return getTagKind() == TTK_Struct; }
1966  bool isClass()  const { return getTagKind() == TTK_Class; }
1967  bool isUnion()  const { return getTagKind() == TTK_Union; }
1968  bool isEnum()   const { return getTagKind() == TTK_Enum; }
1969
1970  TypedefDecl *getTypedefForAnonDecl() const {
1971    return hasExtInfo() ? 0 : TypedefDeclOrQualifier.get<TypedefDecl*>();
1972  }
1973
1974  void setTypedefForAnonDecl(TypedefDecl *TDD);
1975
1976  NestedNameSpecifier *getQualifier() const {
1977    return hasExtInfo() ? getExtInfo()->NNS : 0;
1978  }
1979  SourceRange getQualifierRange() const {
1980    return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
1981  }
1982  void setQualifierInfo(NestedNameSpecifier *Qualifier,
1983                        SourceRange QualifierRange);
1984
1985  unsigned getNumTemplateParameterLists() const {
1986    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
1987  }
1988  TemplateParameterList *getTemplateParameterList(unsigned i) const {
1989    assert(i < getNumTemplateParameterLists());
1990    return getExtInfo()->TemplParamLists[i];
1991  }
1992  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
1993                                     TemplateParameterList **TPLists) {
1994    getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1995  }
1996
1997  // Implement isa/cast/dyncast/etc.
1998  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1999  static bool classof(const TagDecl *D) { return true; }
2000  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
2001
2002  static DeclContext *castToDeclContext(const TagDecl *D) {
2003    return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
2004  }
2005  static TagDecl *castFromDeclContext(const DeclContext *DC) {
2006    return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
2007  }
2008
2009  friend class ASTDeclReader;
2010  friend class ASTDeclWriter;
2011};
2012
2013/// EnumDecl - Represents an enum.  As an extension, we allow forward-declared
2014/// enums.
2015class EnumDecl : public TagDecl {
2016  /// IntegerType - This represent the integer type that the enum corresponds
2017  /// to for code generation purposes.  Note that the enumerator constants may
2018  /// have a different type than this does.
2019  ///
2020  /// If the underlying integer type was explicitly stated in the source
2021  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
2022  /// was automatically deduced somehow, and this is a Type*.
2023  ///
2024  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
2025  /// some cases it won't.
2026  ///
2027  /// The underlying type of an enumeration never has any qualifiers, so
2028  /// we can get away with just storing a raw Type*, and thus save an
2029  /// extra pointer when TypeSourceInfo is needed.
2030
2031  llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
2032
2033  /// PromotionType - The integer type that values of this type should
2034  /// promote to.  In C, enumerators are generally of an integer type
2035  /// directly, but gcc-style large enumerators (and all enumerators
2036  /// in C++) are of the enum type instead.
2037  QualType PromotionType;
2038
2039  /// \brief If the enumeration was instantiated from an enumeration
2040  /// within a class or function template, this pointer refers to the
2041  /// enumeration declared within the template.
2042  EnumDecl *InstantiatedFrom;
2043
2044  // The number of positive and negative bits required by the
2045  // enumerators are stored in the SubclassBits field.
2046  enum {
2047    NumBitsWidth = 8,
2048    NumBitsMask = (1 << NumBitsWidth) - 1
2049  };
2050
2051  EnumDecl(DeclContext *DC, SourceLocation L,
2052           IdentifierInfo *Id, EnumDecl *PrevDecl, SourceLocation TKL,
2053           bool Scoped, bool Fixed)
2054    : TagDecl(Enum, TTK_Enum, DC, L, Id, PrevDecl, TKL), InstantiatedFrom(0) {
2055      IntegerType = (const Type*)0;
2056      NumNegativeBits = 0;
2057      NumPositiveBits = 0;
2058      IsScoped = Scoped;
2059      IsFixed = Fixed;
2060    }
2061public:
2062  EnumDecl *getCanonicalDecl() {
2063    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2064  }
2065  const EnumDecl *getCanonicalDecl() const {
2066    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2067  }
2068
2069  const EnumDecl *getPreviousDeclaration() const {
2070    return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2071  }
2072  EnumDecl *getPreviousDeclaration() {
2073    return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2074  }
2075
2076  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
2077                          SourceLocation L, IdentifierInfo *Id,
2078                          SourceLocation TKL, EnumDecl *PrevDecl,
2079                          bool IsScoped, bool IsFixed);
2080  static EnumDecl *Create(ASTContext &C, EmptyShell Empty);
2081
2082  /// completeDefinition - When created, the EnumDecl corresponds to a
2083  /// forward-declared enum. This method is used to mark the
2084  /// declaration as being defined; it's enumerators have already been
2085  /// added (via DeclContext::addDecl). NewType is the new underlying
2086  /// type of the enumeration type.
2087  void completeDefinition(QualType NewType,
2088                          QualType PromotionType,
2089                          unsigned NumPositiveBits,
2090                          unsigned NumNegativeBits);
2091
2092  // enumerator_iterator - Iterates through the enumerators of this
2093  // enumeration.
2094  typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
2095
2096  enumerator_iterator enumerator_begin() const {
2097    const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2098    if (!E)
2099      E = this;
2100    return enumerator_iterator(E->decls_begin());
2101  }
2102
2103  enumerator_iterator enumerator_end() const {
2104    const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2105    if (!E)
2106      E = this;
2107    return enumerator_iterator(E->decls_end());
2108  }
2109
2110  /// getPromotionType - Return the integer type that enumerators
2111  /// should promote to.
2112  QualType getPromotionType() const { return PromotionType; }
2113
2114  /// \brief Set the promotion type.
2115  void setPromotionType(QualType T) { PromotionType = T; }
2116
2117  /// getIntegerType - Return the integer type this enum decl corresponds to.
2118  /// This returns a null qualtype for an enum forward definition.
2119  QualType getIntegerType() const {
2120    if (!IntegerType)
2121      return QualType();
2122    if (const Type* T = IntegerType.dyn_cast<const Type*>())
2123      return QualType(T, 0);
2124    return IntegerType.get<TypeSourceInfo*>()->getType();
2125  }
2126
2127  /// \brief Set the underlying integer type.
2128  void setIntegerType(QualType T) { IntegerType = T.getTypePtr(); }
2129
2130  /// \brief Set the underlying integer type source info.
2131  void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; }
2132
2133  /// \brief Return the type source info for the underlying integer type,
2134  /// if no type source info exists, return 0.
2135  TypeSourceInfo* getIntegerTypeSourceInfo() const {
2136    return IntegerType.dyn_cast<TypeSourceInfo*>();
2137  }
2138
2139  /// \brief Returns the width in bits requred to store all the
2140  /// non-negative enumerators of this enum.
2141  unsigned getNumPositiveBits() const {
2142    return NumPositiveBits;
2143  }
2144  void setNumPositiveBits(unsigned Num) {
2145    NumPositiveBits = Num;
2146    assert(NumPositiveBits == Num && "can't store this bitcount");
2147  }
2148
2149  /// \brief Returns the width in bits requred to store all the
2150  /// negative enumerators of this enum.  These widths include
2151  /// the rightmost leading 1;  that is:
2152  ///
2153  /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
2154  /// ------------------------     -------     -----------------
2155  ///                       -1     1111111                     1
2156  ///                      -10     1110110                     5
2157  ///                     -101     1001011                     8
2158  unsigned getNumNegativeBits() const {
2159    return NumNegativeBits;
2160  }
2161  void setNumNegativeBits(unsigned Num) {
2162    NumNegativeBits = Num;
2163  }
2164
2165  /// \brief Returns true if this is a C++0x scoped enumeration.
2166  bool isScoped() const {
2167    return IsScoped;
2168  }
2169
2170  /// \brief Returns true if this is a C++0x enumeration with fixed underlying
2171  /// type.
2172  bool isFixed() const {
2173    return IsFixed;
2174  }
2175
2176  /// \brief Returns true if this can be considered a complete type.
2177  bool isComplete() const {
2178    return isDefinition() || isFixed();
2179  }
2180
2181  /// \brief Returns the enumeration (declared within the template)
2182  /// from which this enumeration type was instantiated, or NULL if
2183  /// this enumeration was not instantiated from any template.
2184  EnumDecl *getInstantiatedFromMemberEnum() const {
2185    return InstantiatedFrom;
2186  }
2187
2188  void setInstantiationOfMemberEnum(EnumDecl *IF) { InstantiatedFrom = IF; }
2189
2190  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2191  static bool classof(const EnumDecl *D) { return true; }
2192  static bool classofKind(Kind K) { return K == Enum; }
2193
2194  friend class ASTDeclReader;
2195};
2196
2197
2198/// RecordDecl - Represents a struct/union/class.  For example:
2199///   struct X;                  // Forward declaration, no "body".
2200///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
2201/// This decl will be marked invalid if *any* members are invalid.
2202///
2203class RecordDecl : public TagDecl {
2204  // FIXME: This can be packed into the bitfields in Decl.
2205  /// HasFlexibleArrayMember - This is true if this struct ends with a flexible
2206  /// array member (e.g. int X[]) or if this union contains a struct that does.
2207  /// If so, this cannot be contained in arrays or other structs as a member.
2208  bool HasFlexibleArrayMember : 1;
2209
2210  /// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
2211  /// or union.
2212  bool AnonymousStructOrUnion : 1;
2213
2214  /// HasObjectMember - This is true if this struct has at least one member
2215  /// containing an object.
2216  bool HasObjectMember : 1;
2217
2218protected:
2219  RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2220             SourceLocation L, IdentifierInfo *Id,
2221             RecordDecl *PrevDecl, SourceLocation TKL);
2222
2223public:
2224  static RecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC,
2225                            SourceLocation L, IdentifierInfo *Id,
2226                            SourceLocation TKL = SourceLocation(),
2227                            RecordDecl* PrevDecl = 0);
2228  static RecordDecl *Create(ASTContext &C, EmptyShell Empty);
2229
2230  const RecordDecl *getPreviousDeclaration() const {
2231    return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2232  }
2233  RecordDecl *getPreviousDeclaration() {
2234    return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2235  }
2236
2237  bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
2238  void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
2239
2240  /// isAnonymousStructOrUnion - Whether this is an anonymous struct
2241  /// or union. To be an anonymous struct or union, it must have been
2242  /// declared without a name and there must be no objects of this
2243  /// type declared, e.g.,
2244  /// @code
2245  ///   union { int i; float f; };
2246  /// @endcode
2247  /// is an anonymous union but neither of the following are:
2248  /// @code
2249  ///  union X { int i; float f; };
2250  ///  union { int i; float f; } obj;
2251  /// @endcode
2252  bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
2253  void setAnonymousStructOrUnion(bool Anon) {
2254    AnonymousStructOrUnion = Anon;
2255  }
2256
2257  ValueDecl *getAnonymousStructOrUnionObject();
2258  const ValueDecl *getAnonymousStructOrUnionObject() const {
2259    return const_cast<RecordDecl*>(this)->getAnonymousStructOrUnionObject();
2260  }
2261
2262  bool hasObjectMember() const { return HasObjectMember; }
2263  void setHasObjectMember (bool val) { HasObjectMember = val; }
2264
2265  /// \brief Determines whether this declaration represents the
2266  /// injected class name.
2267  ///
2268  /// The injected class name in C++ is the name of the class that
2269  /// appears inside the class itself. For example:
2270  ///
2271  /// \code
2272  /// struct C {
2273  ///   // C is implicitly declared here as a synonym for the class name.
2274  /// };
2275  ///
2276  /// C::C c; // same as "C c;"
2277  /// \endcode
2278  bool isInjectedClassName() const;
2279
2280  /// getDefinition - Returns the RecordDecl that actually defines this
2281  ///  struct/union/class.  When determining whether or not a struct/union/class
2282  ///  is completely defined, one should use this method as opposed to
2283  ///  'isDefinition'.  'isDefinition' indicates whether or not a specific
2284  ///  RecordDecl is defining declaration, not whether or not the record
2285  ///  type is defined.  This method returns NULL if there is no RecordDecl
2286  ///  that defines the struct/union/tag.
2287  RecordDecl* getDefinition() const {
2288    return cast_or_null<RecordDecl>(TagDecl::getDefinition());
2289  }
2290
2291  // Iterator access to field members. The field iterator only visits
2292  // the non-static data members of this class, ignoring any static
2293  // data members, functions, constructors, destructors, etc.
2294  typedef specific_decl_iterator<FieldDecl> field_iterator;
2295
2296  field_iterator field_begin() const {
2297    return field_iterator(decls_begin());
2298  }
2299  field_iterator field_end() const {
2300    return field_iterator(decls_end());
2301  }
2302
2303  // field_empty - Whether there are any fields (non-static data
2304  // members) in this record.
2305  bool field_empty() const {
2306    return field_begin() == field_end();
2307  }
2308
2309  /// completeDefinition - Notes that the definition of this type is
2310  /// now complete.
2311  virtual void completeDefinition();
2312
2313  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2314  static bool classof(const RecordDecl *D) { return true; }
2315  static bool classofKind(Kind K) {
2316    return K >= firstRecord && K <= lastRecord;
2317  }
2318};
2319
2320class FileScopeAsmDecl : public Decl {
2321  StringLiteral *AsmString;
2322  FileScopeAsmDecl(DeclContext *DC, SourceLocation L, StringLiteral *asmstring)
2323    : Decl(FileScopeAsm, DC, L), AsmString(asmstring) {}
2324public:
2325  static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
2326                                  SourceLocation L, StringLiteral *Str);
2327
2328  const StringLiteral *getAsmString() const { return AsmString; }
2329  StringLiteral *getAsmString() { return AsmString; }
2330  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
2331
2332  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2333  static bool classof(const FileScopeAsmDecl *D) { return true; }
2334  static bool classofKind(Kind K) { return K == FileScopeAsm; }
2335};
2336
2337/// BlockDecl - This represents a block literal declaration, which is like an
2338/// unnamed FunctionDecl.  For example:
2339/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2340///
2341class BlockDecl : public Decl, public DeclContext {
2342  // FIXME: This can be packed into the bitfields in Decl.
2343  bool IsVariadic : 1;
2344  /// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
2345  /// parameters of this function.  This is null if a prototype or if there are
2346  /// no formals.
2347  ParmVarDecl **ParamInfo;
2348  unsigned NumParams;
2349
2350  Stmt *Body;
2351  TypeSourceInfo *SignatureAsWritten;
2352
2353protected:
2354  BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
2355    : Decl(Block, DC, CaretLoc), DeclContext(Block),
2356      IsVariadic(false), ParamInfo(0), NumParams(0), Body(0),
2357      SignatureAsWritten(0) {}
2358
2359public:
2360  static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
2361
2362  SourceLocation getCaretLocation() const { return getLocation(); }
2363
2364  bool isVariadic() const { return IsVariadic; }
2365  void setIsVariadic(bool value) { IsVariadic = value; }
2366
2367  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
2368  Stmt *getBody() const { return (Stmt*) Body; }
2369  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
2370
2371  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
2372  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
2373
2374  // Iterator access to formal parameters.
2375  unsigned param_size() const { return getNumParams(); }
2376  typedef ParmVarDecl **param_iterator;
2377  typedef ParmVarDecl * const *param_const_iterator;
2378
2379  bool param_empty() const { return NumParams == 0; }
2380  param_iterator param_begin()  { return ParamInfo; }
2381  param_iterator param_end()   { return ParamInfo+param_size(); }
2382
2383  param_const_iterator param_begin() const { return ParamInfo; }
2384  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
2385
2386  unsigned getNumParams() const;
2387  const ParmVarDecl *getParamDecl(unsigned i) const {
2388    assert(i < getNumParams() && "Illegal param #");
2389    return ParamInfo[i];
2390  }
2391  ParmVarDecl *getParamDecl(unsigned i) {
2392    assert(i < getNumParams() && "Illegal param #");
2393    return ParamInfo[i];
2394  }
2395  void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams);
2396
2397  // Implement isa/cast/dyncast/etc.
2398  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2399  static bool classof(const BlockDecl *D) { return true; }
2400  static bool classofKind(Kind K) { return K == Block; }
2401  static DeclContext *castToDeclContext(const BlockDecl *D) {
2402    return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
2403  }
2404  static BlockDecl *castFromDeclContext(const DeclContext *DC) {
2405    return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
2406  }
2407};
2408
2409/// Insertion operator for diagnostics.  This allows sending NamedDecl's
2410/// into a diagnostic with <<.
2411inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2412                                           NamedDecl* ND) {
2413  DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), Diagnostic::ak_nameddecl);
2414  return DB;
2415}
2416
2417}  // end namespace clang
2418
2419#endif
2420