Decl.h revision 5f608aedb6c5d32d2f7c51f9354a75b21f1eeaee
1//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/Redeclarable.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/Basic/Linkage.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/Compiler.h"
26
27namespace clang {
28class CXXTemporary;
29class Expr;
30class FunctionTemplateDecl;
31class Stmt;
32class CompoundStmt;
33class StringLiteral;
34class NestedNameSpecifier;
35class TemplateParameterList;
36class TemplateArgumentList;
37struct ASTTemplateArgumentListInfo;
38class MemberSpecializationInfo;
39class FunctionTemplateSpecializationInfo;
40class DependentFunctionTemplateSpecializationInfo;
41class TypeLoc;
42class UnresolvedSetImpl;
43class LabelStmt;
44class Module;
45
46/// \brief A container of type source information.
47///
48/// A client can read the relevant info using TypeLoc wrappers, e.g:
49/// @code
50/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
51/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
52///   PL->getStarLoc().print(OS, SrcMgr);
53/// @endcode
54///
55class TypeSourceInfo {
56  QualType Ty;
57  // Contains a memory block after the class, used for type source information,
58  // allocated by ASTContext.
59  friend class ASTContext;
60  TypeSourceInfo(QualType ty) : Ty(ty) { }
61public:
62  /// \brief Return the type wrapped by this type source info.
63  QualType getType() const { return Ty; }
64
65  /// \brief Return the TypeLoc wrapper for the type source info.
66  TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
67};
68
69/// TranslationUnitDecl - The top declaration context.
70class TranslationUnitDecl : public Decl, public DeclContext {
71  virtual void anchor();
72  ASTContext &Ctx;
73
74  /// The (most recently entered) anonymous namespace for this
75  /// translation unit, if one has been created.
76  NamespaceDecl *AnonymousNamespace;
77
78  explicit TranslationUnitDecl(ASTContext &ctx)
79    : Decl(TranslationUnit, 0, SourceLocation()),
80      DeclContext(TranslationUnit),
81      Ctx(ctx), AnonymousNamespace(0) {}
82public:
83  ASTContext &getASTContext() const { return Ctx; }
84
85  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
86  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
87
88  static TranslationUnitDecl *Create(ASTContext &C);
89  // Implement isa/cast/dyncast/etc.
90  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
91  static bool classofKind(Kind K) { return K == TranslationUnit; }
92  static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
93    return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
94  }
95  static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
96    return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
97  }
98};
99
100/// NamedDecl - This represents a decl with a name.  Many decls have names such
101/// as ObjCMethodDecl, but not \@class, etc.
102class NamedDecl : public Decl {
103  virtual void anchor();
104  /// Name - The name of this declaration, which is typically a normal
105  /// identifier but may also be a special kind of name (C++
106  /// constructor, Objective-C selector, etc.)
107  DeclarationName Name;
108
109private:
110  NamedDecl *getUnderlyingDeclImpl();
111
112protected:
113  NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
114    : Decl(DK, DC, L), Name(N) { }
115
116public:
117  /// getIdentifier - Get the identifier that names this declaration,
118  /// if there is one. This will return NULL if this declaration has
119  /// no name (e.g., for an unnamed class) or if the name is a special
120  /// name (C++ constructor, Objective-C selector, etc.).
121  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
122
123  /// getName - Get the name of identifier for this declaration as a StringRef.
124  /// This requires that the declaration have a name and that it be a simple
125  /// identifier.
126  StringRef getName() const {
127    assert(Name.isIdentifier() && "Name is not a simple identifier");
128    return getIdentifier() ? getIdentifier()->getName() : "";
129  }
130
131  /// getNameAsString - Get a human-readable name for the declaration, even if
132  /// it is one of the special kinds of names (C++ constructor, Objective-C
133  /// selector, etc).  Creating this name requires expensive string
134  /// manipulation, so it should be called only when performance doesn't matter.
135  /// For simple declarations, getNameAsCString() should suffice.
136  //
137  // FIXME: This function should be renamed to indicate that it is not just an
138  // alternate form of getName(), and clients should move as appropriate.
139  //
140  // FIXME: Deprecated, move clients to getName().
141  std::string getNameAsString() const { return Name.getAsString(); }
142
143  void printName(raw_ostream &os) const { return Name.printName(os); }
144
145  /// getDeclName - Get the actual, stored name of the declaration,
146  /// which may be a special name.
147  DeclarationName getDeclName() const { return Name; }
148
149  /// \brief Set the name of this declaration.
150  void setDeclName(DeclarationName N) { Name = N; }
151
152  /// getQualifiedNameAsString - Returns human-readable qualified name for
153  /// declaration, like A::B::i, for i being member of namespace A::B.
154  /// If declaration is not member of context which can be named (record,
155  /// namespace), it will return same result as getNameAsString().
156  /// Creating this name is expensive, so it should be called only when
157  /// performance doesn't matter.
158  std::string getQualifiedNameAsString() const;
159  std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
160
161  /// getNameForDiagnostic - Appends a human-readable name for this
162  /// declaration into the given string.
163  ///
164  /// This is the method invoked by Sema when displaying a NamedDecl
165  /// in a diagnostic.  It does not necessarily produce the same
166  /// result as getNameAsString(); for example, class template
167  /// specializations are printed with their template arguments.
168  ///
169  /// TODO: use an API that doesn't require so many temporary strings
170  virtual void getNameForDiagnostic(std::string &S,
171                                    const PrintingPolicy &Policy,
172                                    bool Qualified) const {
173    if (Qualified)
174      S += getQualifiedNameAsString(Policy);
175    else
176      S += getNameAsString();
177  }
178
179  /// declarationReplaces - Determine whether this declaration, if
180  /// known to be well-formed within its context, will replace the
181  /// declaration OldD if introduced into scope. A declaration will
182  /// replace another declaration if, for example, it is a
183  /// redeclaration of the same variable or function, but not if it is
184  /// a declaration of a different kind (function vs. class) or an
185  /// overloaded function.
186  bool declarationReplaces(NamedDecl *OldD) const;
187
188  /// \brief Determine whether this declaration has linkage.
189  bool hasLinkage() const;
190
191  using Decl::isModulePrivate;
192  using Decl::setModulePrivate;
193
194  /// \brief Determine whether this declaration is hidden from name lookup.
195  bool isHidden() const { return Hidden; }
196
197  /// \brief Determine whether this declaration is a C++ class member.
198  bool isCXXClassMember() const {
199    const DeclContext *DC = getDeclContext();
200
201    // C++0x [class.mem]p1:
202    //   The enumerators of an unscoped enumeration defined in
203    //   the class are members of the class.
204    // FIXME: support C++0x scoped enumerations.
205    if (isa<EnumDecl>(DC))
206      DC = DC->getParent();
207
208    return DC->isRecord();
209  }
210
211  /// \brief Determine whether the given declaration is an instance member of
212  /// a C++ class.
213  bool isCXXInstanceMember() const;
214
215  class LinkageInfo {
216    uint8_t linkage_    : 4;
217    uint8_t visibility_ : 3;
218    uint8_t explicit_   : 1;
219
220    void setVisibility(Visibility V, bool E) { visibility_ = V; explicit_ = E; }
221  public:
222    LinkageInfo() : linkage_(ExternalLinkage), visibility_(DefaultVisibility),
223                    explicit_(false) {}
224    LinkageInfo(Linkage L, Visibility V, bool E)
225      : linkage_(L), visibility_(V), explicit_(E) {
226      assert(linkage() == L && visibility() == V && visibilityExplicit() == E &&
227             "Enum truncated!");
228    }
229
230    static LinkageInfo external() {
231      return LinkageInfo();
232    }
233    static LinkageInfo internal() {
234      return LinkageInfo(InternalLinkage, DefaultVisibility, false);
235    }
236    static LinkageInfo uniqueExternal() {
237      return LinkageInfo(UniqueExternalLinkage, DefaultVisibility, false);
238    }
239    static LinkageInfo none() {
240      return LinkageInfo(NoLinkage, DefaultVisibility, false);
241    }
242
243    Linkage linkage() const { return (Linkage)linkage_; }
244    Visibility visibility() const { return (Visibility)visibility_; }
245    bool visibilityExplicit() const { return explicit_; }
246
247    void setLinkage(Linkage L) { linkage_ = L; }
248    void mergeLinkage(Linkage L) {
249      setLinkage(minLinkage(linkage(), L));
250    }
251    void mergeLinkage(LinkageInfo Other) {
252      mergeLinkage(Other.linkage());
253    }
254
255    // Merge the visibility V giving preference to explicit ones.
256    // This is used, for example, when merging the visibility of a class
257    // down to one of its members. If the member has no explicit visibility,
258    // the class visibility wins.
259    void mergeVisibility(Visibility V, bool E = false) {
260      // Never increase the visibility
261      if (visibility() < V)
262        return;
263
264      // If we have an explicit visibility, keep it
265      if (visibilityExplicit())
266        return;
267
268      setVisibility(V, E);
269    }
270    // Merge the visibility V, keeping the most restrictive one.
271    // This is used for cases like merging the visibility of a template
272    // argument to an instantiation. If we already have a hidden class,
273    // no argument should give it default visibility.
274    void mergeVisibilityWithMin(Visibility V, bool E = false) {
275      // Never increase the visibility
276      if (visibility() < V)
277        return;
278
279      // FIXME: this
280      // If this visibility is explicit, keep it.
281      if (visibilityExplicit() && !E)
282        return;
283
284      // should be replaced with this
285      // Don't lose the explicit bit for nothing
286      //      if (visibility() == V && visibilityExplicit())
287      //        return;
288
289      setVisibility(V, E);
290    }
291    void mergeVisibility(LinkageInfo Other) {
292      mergeVisibility(Other.visibility(), Other.visibilityExplicit());
293    }
294    void mergeVisibilityWithMin(LinkageInfo Other) {
295      mergeVisibilityWithMin(Other.visibility(), Other.visibilityExplicit());
296    }
297
298    void merge(LinkageInfo Other) {
299      mergeLinkage(Other);
300      mergeVisibility(Other);
301    }
302    void mergeWithMin(LinkageInfo Other) {
303      mergeLinkage(Other);
304      mergeVisibilityWithMin(Other);
305    }
306  };
307
308  /// \brief Determine what kind of linkage this entity has.
309  Linkage getLinkage() const;
310
311  /// \brief Determines the visibility of this entity.
312  Visibility getVisibility() const {
313    return getLinkageAndVisibility().visibility();
314  }
315
316  /// \brief Determines the linkage and visibility of this entity.
317  LinkageInfo getLinkageAndVisibility() const;
318
319  /// \brief If visibility was explicitly specified for this
320  /// declaration, return that visibility.
321  llvm::Optional<Visibility> getExplicitVisibility() const;
322
323  /// \brief Clear the linkage cache in response to a change
324  /// to the declaration.
325  void ClearLinkageCache();
326
327  /// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
328  /// the underlying named decl.
329  NamedDecl *getUnderlyingDecl() {
330    // Fast-path the common case.
331    if (this->getKind() != UsingShadow &&
332        this->getKind() != ObjCCompatibleAlias)
333      return this;
334
335    return getUnderlyingDeclImpl();
336  }
337  const NamedDecl *getUnderlyingDecl() const {
338    return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
339  }
340
341  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
342  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
343};
344
345inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
346  ND.printName(OS);
347  return OS;
348}
349
350/// LabelDecl - Represents the declaration of a label.  Labels also have a
351/// corresponding LabelStmt, which indicates the position that the label was
352/// defined at.  For normal labels, the location of the decl is the same as the
353/// location of the statement.  For GNU local labels (__label__), the decl
354/// location is where the __label__ is.
355class LabelDecl : public NamedDecl {
356  virtual void anchor();
357  LabelStmt *TheStmt;
358  /// LocStart - For normal labels, this is the same as the main declaration
359  /// label, i.e., the location of the identifier; for GNU local labels,
360  /// this is the location of the __label__ keyword.
361  SourceLocation LocStart;
362
363  LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
364            LabelStmt *S, SourceLocation StartL)
365    : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
366
367public:
368  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
369                           SourceLocation IdentL, IdentifierInfo *II);
370  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
371                           SourceLocation IdentL, IdentifierInfo *II,
372                           SourceLocation GnuLabelL);
373  static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
374
375  LabelStmt *getStmt() const { return TheStmt; }
376  void setStmt(LabelStmt *T) { TheStmt = T; }
377
378  bool isGnuLocal() const { return LocStart != getLocation(); }
379  void setLocStart(SourceLocation L) { LocStart = L; }
380
381  SourceRange getSourceRange() const LLVM_READONLY {
382    return SourceRange(LocStart, getLocation());
383  }
384
385  // Implement isa/cast/dyncast/etc.
386  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
387  static bool classofKind(Kind K) { return K == Label; }
388};
389
390/// NamespaceDecl - Represent a C++ namespace.
391class NamespaceDecl : public NamedDecl, public DeclContext,
392                      public Redeclarable<NamespaceDecl>
393{
394  virtual void anchor();
395
396  /// LocStart - The starting location of the source range, pointing
397  /// to either the namespace or the inline keyword.
398  SourceLocation LocStart;
399  /// RBraceLoc - The ending location of the source range.
400  SourceLocation RBraceLoc;
401
402  /// \brief A pointer to either the anonymous namespace that lives just inside
403  /// this namespace or to the first namespace in the chain (the latter case
404  /// only when this is not the first in the chain), along with a
405  /// boolean value indicating whether this is an inline namespace.
406  llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
407
408  NamespaceDecl(DeclContext *DC, bool Inline, SourceLocation StartLoc,
409                SourceLocation IdLoc, IdentifierInfo *Id,
410                NamespaceDecl *PrevDecl);
411
412  typedef Redeclarable<NamespaceDecl> redeclarable_base;
413  virtual NamespaceDecl *getNextRedeclaration() {
414    return RedeclLink.getNext();
415  }
416  virtual NamespaceDecl *getPreviousDeclImpl() {
417    return getPreviousDecl();
418  }
419  virtual NamespaceDecl *getMostRecentDeclImpl() {
420    return getMostRecentDecl();
421  }
422
423public:
424  static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
425                               bool Inline, SourceLocation StartLoc,
426                               SourceLocation IdLoc, IdentifierInfo *Id,
427                               NamespaceDecl *PrevDecl);
428
429  static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
430
431  typedef redeclarable_base::redecl_iterator redecl_iterator;
432  using redeclarable_base::redecls_begin;
433  using redeclarable_base::redecls_end;
434  using redeclarable_base::getPreviousDecl;
435  using redeclarable_base::getMostRecentDecl;
436
437  /// \brief Returns true if this is an anonymous namespace declaration.
438  ///
439  /// For example:
440  /// \code
441  ///   namespace {
442  ///     ...
443  ///   };
444  /// \endcode
445  /// q.v. C++ [namespace.unnamed]
446  bool isAnonymousNamespace() const {
447    return !getIdentifier();
448  }
449
450  /// \brief Returns true if this is an inline namespace declaration.
451  bool isInline() const {
452    return AnonOrFirstNamespaceAndInline.getInt();
453  }
454
455  /// \brief Set whether this is an inline namespace declaration.
456  void setInline(bool Inline) {
457    AnonOrFirstNamespaceAndInline.setInt(Inline);
458  }
459
460  /// \brief Get the original (first) namespace declaration.
461  NamespaceDecl *getOriginalNamespace() {
462    if (isFirstDeclaration())
463      return this;
464
465    return AnonOrFirstNamespaceAndInline.getPointer();
466  }
467
468  /// \brief Get the original (first) namespace declaration.
469  const NamespaceDecl *getOriginalNamespace() const {
470    if (isFirstDeclaration())
471      return this;
472
473    return AnonOrFirstNamespaceAndInline.getPointer();
474  }
475
476  /// \brief Return true if this declaration is an original (first) declaration
477  /// of the namespace. This is false for non-original (subsequent) namespace
478  /// declarations and anonymous namespaces.
479  bool isOriginalNamespace() const {
480    return isFirstDeclaration();
481  }
482
483  /// \brief Retrieve the anonymous namespace nested inside this namespace,
484  /// if any.
485  NamespaceDecl *getAnonymousNamespace() const {
486    return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
487  }
488
489  void setAnonymousNamespace(NamespaceDecl *D) {
490    getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
491  }
492
493  /// Retrieves the canonical declaration of this namespace.
494  NamespaceDecl *getCanonicalDecl() {
495    return getOriginalNamespace();
496  }
497  const NamespaceDecl *getCanonicalDecl() const {
498    return getOriginalNamespace();
499  }
500
501  virtual SourceRange getSourceRange() const LLVM_READONLY {
502    return SourceRange(LocStart, RBraceLoc);
503  }
504
505  SourceLocation getLocStart() const LLVM_READONLY { return LocStart; }
506  SourceLocation getRBraceLoc() const { return RBraceLoc; }
507  void setLocStart(SourceLocation L) { LocStart = L; }
508  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
509
510  // Implement isa/cast/dyncast/etc.
511  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
512  static bool classofKind(Kind K) { return K == Namespace; }
513  static DeclContext *castToDeclContext(const NamespaceDecl *D) {
514    return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
515  }
516  static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
517    return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
518  }
519
520  friend class ASTDeclReader;
521  friend class ASTDeclWriter;
522};
523
524/// ValueDecl - Represent the declaration of a variable (in which case it is
525/// an lvalue) a function (in which case it is a function designator) or
526/// an enum constant.
527class ValueDecl : public NamedDecl {
528  virtual void anchor();
529  QualType DeclType;
530
531protected:
532  ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
533            DeclarationName N, QualType T)
534    : NamedDecl(DK, DC, L, N), DeclType(T) {}
535public:
536  QualType getType() const { return DeclType; }
537  void setType(QualType newType) { DeclType = newType; }
538
539  /// \brief Determine whether this symbol is weakly-imported,
540  ///        or declared with the weak or weak-ref attr.
541  bool isWeak() const {
542    return hasAttr<WeakAttr>() || hasAttr<WeakRefAttr>() || isWeakImported();
543  }
544
545  // Implement isa/cast/dyncast/etc.
546  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
547  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
548};
549
550/// QualifierInfo - A struct with extended info about a syntactic
551/// name qualifier, to be used for the case of out-of-line declarations.
552struct QualifierInfo {
553  NestedNameSpecifierLoc QualifierLoc;
554
555  /// NumTemplParamLists - The number of "outer" template parameter lists.
556  /// The count includes all of the template parameter lists that were matched
557  /// against the template-ids occurring into the NNS and possibly (in the
558  /// case of an explicit specialization) a final "template <>".
559  unsigned NumTemplParamLists;
560
561  /// TemplParamLists - A new-allocated array of size NumTemplParamLists,
562  /// containing pointers to the "outer" template parameter lists.
563  /// It includes all of the template parameter lists that were matched
564  /// against the template-ids occurring into the NNS and possibly (in the
565  /// case of an explicit specialization) a final "template <>".
566  TemplateParameterList** TemplParamLists;
567
568  /// Default constructor.
569  QualifierInfo() : QualifierLoc(), NumTemplParamLists(0), TemplParamLists(0) {}
570
571  /// setTemplateParameterListsInfo - Sets info about "outer" template
572  /// parameter lists.
573  void setTemplateParameterListsInfo(ASTContext &Context,
574                                     unsigned NumTPLists,
575                                     TemplateParameterList **TPLists);
576
577private:
578  // Copy constructor and copy assignment are disabled.
579  QualifierInfo(const QualifierInfo&) LLVM_DELETED_FUNCTION;
580  QualifierInfo& operator=(const QualifierInfo&) LLVM_DELETED_FUNCTION;
581};
582
583/// \brief Represents a ValueDecl that came out of a declarator.
584/// Contains type source information through TypeSourceInfo.
585class DeclaratorDecl : public ValueDecl {
586  // A struct representing both a TInfo and a syntactic qualifier,
587  // to be used for the (uncommon) case of out-of-line declarations.
588  struct ExtInfo : public QualifierInfo {
589    TypeSourceInfo *TInfo;
590  };
591
592  llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
593
594  /// InnerLocStart - The start of the source range for this declaration,
595  /// ignoring outer template declarations.
596  SourceLocation InnerLocStart;
597
598  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
599  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
600  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
601
602protected:
603  DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
604                 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
605                 SourceLocation StartL)
606    : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {
607  }
608
609public:
610  TypeSourceInfo *getTypeSourceInfo() const {
611    return hasExtInfo()
612      ? getExtInfo()->TInfo
613      : DeclInfo.get<TypeSourceInfo*>();
614  }
615  void setTypeSourceInfo(TypeSourceInfo *TI) {
616    if (hasExtInfo())
617      getExtInfo()->TInfo = TI;
618    else
619      DeclInfo = TI;
620  }
621
622  /// getInnerLocStart - Return SourceLocation representing start of source
623  /// range ignoring outer template declarations.
624  SourceLocation getInnerLocStart() const { return InnerLocStart; }
625  void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
626
627  /// getOuterLocStart - Return SourceLocation representing start of source
628  /// range taking into account any outer template declarations.
629  SourceLocation getOuterLocStart() const;
630
631  virtual SourceRange getSourceRange() const LLVM_READONLY;
632  SourceLocation getLocStart() const LLVM_READONLY {
633    return getOuterLocStart();
634  }
635
636  /// \brief Retrieve the nested-name-specifier that qualifies the name of this
637  /// declaration, if it was present in the source.
638  NestedNameSpecifier *getQualifier() const {
639    return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
640                        : 0;
641  }
642
643  /// \brief Retrieve the nested-name-specifier (with source-location
644  /// information) that qualifies the name of this declaration, if it was
645  /// present in the source.
646  NestedNameSpecifierLoc getQualifierLoc() const {
647    return hasExtInfo() ? getExtInfo()->QualifierLoc
648                        : NestedNameSpecifierLoc();
649  }
650
651  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
652
653  unsigned getNumTemplateParameterLists() const {
654    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
655  }
656  TemplateParameterList *getTemplateParameterList(unsigned index) const {
657    assert(index < getNumTemplateParameterLists());
658    return getExtInfo()->TemplParamLists[index];
659  }
660  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
661                                     TemplateParameterList **TPLists);
662
663  SourceLocation getTypeSpecStartLoc() const;
664
665  // Implement isa/cast/dyncast/etc.
666  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
667  static bool classofKind(Kind K) {
668    return K >= firstDeclarator && K <= lastDeclarator;
669  }
670
671  friend class ASTDeclReader;
672  friend class ASTDeclWriter;
673};
674
675/// \brief Structure used to store a statement, the constant value to
676/// which it was evaluated (if any), and whether or not the statement
677/// is an integral constant expression (if known).
678struct EvaluatedStmt {
679  EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
680                    CheckingICE(false), IsICE(false) { }
681
682  /// \brief Whether this statement was already evaluated.
683  bool WasEvaluated : 1;
684
685  /// \brief Whether this statement is being evaluated.
686  bool IsEvaluating : 1;
687
688  /// \brief Whether we already checked whether this statement was an
689  /// integral constant expression.
690  bool CheckedICE : 1;
691
692  /// \brief Whether we are checking whether this statement is an
693  /// integral constant expression.
694  bool CheckingICE : 1;
695
696  /// \brief Whether this statement is an integral constant expression,
697  /// or in C++11, whether the statement is a constant expression. Only
698  /// valid if CheckedICE is true.
699  bool IsICE : 1;
700
701  Stmt *Value;
702  APValue Evaluated;
703};
704
705/// VarDecl - An instance of this class is created to represent a variable
706/// declaration or definition.
707class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
708public:
709  typedef clang::StorageClass StorageClass;
710
711  /// getStorageClassSpecifierString - Return the string used to
712  /// specify the storage class \p SC.
713  ///
714  /// It is illegal to call this function with SC == None.
715  static const char *getStorageClassSpecifierString(StorageClass SC);
716
717  /// \brief Initialization styles.
718  enum InitializationStyle {
719    CInit,    ///< C-style initialization with assignment
720    CallInit, ///< Call-style initialization (C++98)
721    ListInit  ///< Direct list-initialization (C++11)
722  };
723
724protected:
725  /// \brief Placeholder type used in Init to denote an unparsed C++ default
726  /// argument.
727  struct UnparsedDefaultArgument;
728
729  /// \brief Placeholder type used in Init to denote an uninstantiated C++
730  /// default argument.
731  struct UninstantiatedDefaultArgument;
732
733  typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
734                              UnparsedDefaultArgument *,
735                              UninstantiatedDefaultArgument *> InitType;
736
737  /// \brief The initializer for this variable or, for a ParmVarDecl, the
738  /// C++ default argument.
739  mutable InitType Init;
740
741private:
742  class VarDeclBitfields {
743    friend class VarDecl;
744    friend class ASTDeclReader;
745
746    unsigned SClass : 3;
747    unsigned SClassAsWritten : 3;
748    unsigned ThreadSpecified : 1;
749    unsigned InitStyle : 2;
750
751    /// \brief Whether this variable is the exception variable in a C++ catch
752    /// or an Objective-C @catch statement.
753    unsigned ExceptionVar : 1;
754
755    /// \brief Whether this local variable could be allocated in the return
756    /// slot of its function, enabling the named return value optimization
757    /// (NRVO).
758    unsigned NRVOVariable : 1;
759
760    /// \brief Whether this variable is the for-range-declaration in a C++0x
761    /// for-range statement.
762    unsigned CXXForRangeDecl : 1;
763
764    /// \brief Whether this variable is an ARC pseudo-__strong
765    /// variable;  see isARCPseudoStrong() for details.
766    unsigned ARCPseudoStrong : 1;
767
768    /// \brief Whether this variable is (C++0x) constexpr.
769    unsigned IsConstexpr : 1;
770  };
771  enum { NumVarDeclBits = 14 };
772
773  friend class ASTDeclReader;
774  friend class StmtIteratorBase;
775
776protected:
777  enum { NumParameterIndexBits = 8 };
778
779  class ParmVarDeclBitfields {
780    friend class ParmVarDecl;
781    friend class ASTDeclReader;
782
783    unsigned : NumVarDeclBits;
784
785    /// Whether this parameter inherits a default argument from a
786    /// prior declaration.
787    unsigned HasInheritedDefaultArg : 1;
788
789    /// Whether this parameter undergoes K&R argument promotion.
790    unsigned IsKNRPromoted : 1;
791
792    /// Whether this parameter is an ObjC method parameter or not.
793    unsigned IsObjCMethodParam : 1;
794
795    /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
796    /// Otherwise, the number of function parameter scopes enclosing
797    /// the function parameter scope in which this parameter was
798    /// declared.
799    unsigned ScopeDepthOrObjCQuals : 7;
800
801    /// The number of parameters preceding this parameter in the
802    /// function parameter scope in which it was declared.
803    unsigned ParameterIndex : NumParameterIndexBits;
804  };
805
806  union {
807    unsigned AllBits;
808    VarDeclBitfields VarDeclBits;
809    ParmVarDeclBitfields ParmVarDeclBits;
810  };
811
812  VarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
813          SourceLocation IdLoc, IdentifierInfo *Id,
814          QualType T, TypeSourceInfo *TInfo, StorageClass SC,
815          StorageClass SCAsWritten)
816    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), Init() {
817    assert(sizeof(VarDeclBitfields) <= sizeof(unsigned));
818    assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned));
819    AllBits = 0;
820    VarDeclBits.SClass = SC;
821    VarDeclBits.SClassAsWritten = SCAsWritten;
822    // Everything else is implicitly initialized to false.
823  }
824
825  typedef Redeclarable<VarDecl> redeclarable_base;
826  virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
827  virtual VarDecl *getPreviousDeclImpl() {
828    return getPreviousDecl();
829  }
830  virtual VarDecl *getMostRecentDeclImpl() {
831    return getMostRecentDecl();
832  }
833
834public:
835  typedef redeclarable_base::redecl_iterator redecl_iterator;
836  using redeclarable_base::redecls_begin;
837  using redeclarable_base::redecls_end;
838  using redeclarable_base::getPreviousDecl;
839  using redeclarable_base::getMostRecentDecl;
840
841  static VarDecl *Create(ASTContext &C, DeclContext *DC,
842                         SourceLocation StartLoc, SourceLocation IdLoc,
843                         IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
844                         StorageClass S, StorageClass SCAsWritten);
845
846  static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
847
848  virtual SourceRange getSourceRange() const LLVM_READONLY;
849
850  StorageClass getStorageClass() const {
851    return (StorageClass) VarDeclBits.SClass;
852  }
853  StorageClass getStorageClassAsWritten() const {
854    return (StorageClass) VarDeclBits.SClassAsWritten;
855  }
856  void setStorageClass(StorageClass SC);
857  void setStorageClassAsWritten(StorageClass SC) {
858    assert(isLegalForVariable(SC));
859    VarDeclBits.SClassAsWritten = SC;
860  }
861
862  void setThreadSpecified(bool T) { VarDeclBits.ThreadSpecified = T; }
863  bool isThreadSpecified() const {
864    return VarDeclBits.ThreadSpecified;
865  }
866
867  /// hasLocalStorage - Returns true if a variable with function scope
868  ///  is a non-static local variable.
869  bool hasLocalStorage() const {
870    if (getStorageClass() == SC_None)
871      return !isFileVarDecl();
872
873    // Return true for:  Auto, Register.
874    // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
875
876    return getStorageClass() >= SC_Auto;
877  }
878
879  /// isStaticLocal - Returns true if a variable with function scope is a
880  /// static local variable.
881  bool isStaticLocal() const {
882    return getStorageClass() == SC_Static && !isFileVarDecl();
883  }
884
885  /// hasExternStorage - Returns true if a variable has extern or
886  /// __private_extern__ storage.
887  bool hasExternalStorage() const {
888    return getStorageClass() == SC_Extern ||
889           getStorageClass() == SC_PrivateExtern;
890  }
891
892  /// hasGlobalStorage - Returns true for all variables that do not
893  ///  have local storage.  This includs all global variables as well
894  ///  as static variables declared within a function.
895  bool hasGlobalStorage() const { return !hasLocalStorage(); }
896
897  /// \brief Determines whether this variable is a variable with
898  /// external, C linkage.
899  bool isExternC() const;
900
901  /// isLocalVarDecl - Returns true for local variable declarations
902  /// other than parameters.  Note that this includes static variables
903  /// inside of functions. It also includes variables inside blocks.
904  ///
905  ///   void foo() { int x; static int y; extern int z; }
906  ///
907  bool isLocalVarDecl() const {
908    if (getKind() != Decl::Var)
909      return false;
910    if (const DeclContext *DC = getDeclContext())
911      return DC->getRedeclContext()->isFunctionOrMethod();
912    return false;
913  }
914
915  /// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but
916  /// excludes variables declared in blocks.
917  bool isFunctionOrMethodVarDecl() const {
918    if (getKind() != Decl::Var)
919      return false;
920    const DeclContext *DC = getDeclContext()->getRedeclContext();
921    return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
922  }
923
924  /// \brief Determines whether this is a static data member.
925  ///
926  /// This will only be true in C++, and applies to, e.g., the
927  /// variable 'x' in:
928  /// \code
929  /// struct S {
930  ///   static int x;
931  /// };
932  /// \endcode
933  bool isStaticDataMember() const {
934    // If it wasn't static, it would be a FieldDecl.
935    return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
936  }
937
938  virtual VarDecl *getCanonicalDecl();
939  const VarDecl *getCanonicalDecl() const {
940    return const_cast<VarDecl*>(this)->getCanonicalDecl();
941  }
942
943  enum DefinitionKind {
944    DeclarationOnly,      ///< This declaration is only a declaration.
945    TentativeDefinition,  ///< This declaration is a tentative definition.
946    Definition            ///< This declaration is definitely a definition.
947  };
948
949  /// \brief Check whether this declaration is a definition. If this could be
950  /// a tentative definition (in C), don't check whether there's an overriding
951  /// definition.
952  DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
953  DefinitionKind isThisDeclarationADefinition() const {
954    return isThisDeclarationADefinition(getASTContext());
955  }
956
957  /// \brief Check whether this variable is defined in this
958  /// translation unit.
959  DefinitionKind hasDefinition(ASTContext &) const;
960  DefinitionKind hasDefinition() const {
961    return hasDefinition(getASTContext());
962  }
963
964  /// \brief Get the tentative definition that acts as the real definition in
965  /// a TU. Returns null if there is a proper definition available.
966  VarDecl *getActingDefinition();
967  const VarDecl *getActingDefinition() const {
968    return const_cast<VarDecl*>(this)->getActingDefinition();
969  }
970
971  /// \brief Determine whether this is a tentative definition of a
972  /// variable in C.
973  bool isTentativeDefinitionNow() const;
974
975  /// \brief Get the real (not just tentative) definition for this declaration.
976  VarDecl *getDefinition(ASTContext &);
977  const VarDecl *getDefinition(ASTContext &C) const {
978    return const_cast<VarDecl*>(this)->getDefinition(C);
979  }
980  VarDecl *getDefinition() {
981    return getDefinition(getASTContext());
982  }
983  const VarDecl *getDefinition() const {
984    return const_cast<VarDecl*>(this)->getDefinition();
985  }
986
987  /// \brief Determine whether this is or was instantiated from an out-of-line
988  /// definition of a static data member.
989  virtual bool isOutOfLine() const;
990
991  /// \brief If this is a static data member, find its out-of-line definition.
992  VarDecl *getOutOfLineDefinition();
993
994  /// isFileVarDecl - Returns true for file scoped variable declaration.
995  bool isFileVarDecl() const {
996    if (getKind() != Decl::Var)
997      return false;
998
999    if (getDeclContext()->getRedeclContext()->isFileContext())
1000      return true;
1001
1002    if (isStaticDataMember())
1003      return true;
1004
1005    return false;
1006  }
1007
1008  /// getAnyInitializer - Get the initializer for this variable, no matter which
1009  /// declaration it is attached to.
1010  const Expr *getAnyInitializer() const {
1011    const VarDecl *D;
1012    return getAnyInitializer(D);
1013  }
1014
1015  /// getAnyInitializer - Get the initializer for this variable, no matter which
1016  /// declaration it is attached to. Also get that declaration.
1017  const Expr *getAnyInitializer(const VarDecl *&D) const;
1018
1019  bool hasInit() const {
1020    return !Init.isNull() && (Init.is<Stmt *>() || Init.is<EvaluatedStmt *>());
1021  }
1022  const Expr *getInit() const {
1023    if (Init.isNull())
1024      return 0;
1025
1026    const Stmt *S = Init.dyn_cast<Stmt *>();
1027    if (!S) {
1028      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
1029        S = ES->Value;
1030    }
1031    return (const Expr*) S;
1032  }
1033  Expr *getInit() {
1034    if (Init.isNull())
1035      return 0;
1036
1037    Stmt *S = Init.dyn_cast<Stmt *>();
1038    if (!S) {
1039      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
1040        S = ES->Value;
1041    }
1042
1043    return (Expr*) S;
1044  }
1045
1046  /// \brief Retrieve the address of the initializer expression.
1047  Stmt **getInitAddress() {
1048    if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
1049      return &ES->Value;
1050
1051    // This union hack tip-toes around strict-aliasing rules.
1052    union {
1053      InitType *InitPtr;
1054      Stmt **StmtPtr;
1055    };
1056
1057    InitPtr = &Init;
1058    return StmtPtr;
1059  }
1060
1061  void setInit(Expr *I);
1062
1063  /// \brief Determine whether this variable is a reference that
1064  /// extends the lifetime of its temporary initializer.
1065  ///
1066  /// A reference extends the lifetime of its temporary initializer if
1067  /// it's initializer is an rvalue that would normally go out of scope
1068  /// at the end of the initializer (a full expression). In such cases,
1069  /// the reference itself takes ownership of the temporary, which will
1070  /// be destroyed when the reference goes out of scope. For example:
1071  ///
1072  /// \code
1073  /// const int &r = 1.0; // creates a temporary of type 'int'
1074  /// \endcode
1075  bool extendsLifetimeOfTemporary() const;
1076
1077  /// \brief Determine whether this variable's value can be used in a
1078  /// constant expression, according to the relevant language standard.
1079  /// This only checks properties of the declaration, and does not check
1080  /// whether the initializer is in fact a constant expression.
1081  bool isUsableInConstantExpressions(ASTContext &C) const;
1082
1083  EvaluatedStmt *ensureEvaluatedStmt() const;
1084
1085  /// \brief Attempt to evaluate the value of the initializer attached to this
1086  /// declaration, and produce notes explaining why it cannot be evaluated or is
1087  /// not a constant expression. Returns a pointer to the value if evaluation
1088  /// succeeded, 0 otherwise.
1089  APValue *evaluateValue() const;
1090  APValue *evaluateValue(
1091    llvm::SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1092
1093  /// \brief Return the already-evaluated value of this variable's
1094  /// initializer, or NULL if the value is not yet known. Returns pointer
1095  /// to untyped APValue if the value could not be evaluated.
1096  APValue *getEvaluatedValue() const {
1097    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
1098      if (Eval->WasEvaluated)
1099        return &Eval->Evaluated;
1100
1101    return 0;
1102  }
1103
1104  /// \brief Determines whether it is already known whether the
1105  /// initializer is an integral constant expression or not.
1106  bool isInitKnownICE() const {
1107    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
1108      return Eval->CheckedICE;
1109
1110    return false;
1111  }
1112
1113  /// \brief Determines whether the initializer is an integral constant
1114  /// expression, or in C++11, whether the initializer is a constant
1115  /// expression.
1116  ///
1117  /// \pre isInitKnownICE()
1118  bool isInitICE() const {
1119    assert(isInitKnownICE() &&
1120           "Check whether we already know that the initializer is an ICE");
1121    return Init.get<EvaluatedStmt *>()->IsICE;
1122  }
1123
1124  /// \brief Determine whether the value of the initializer attached to this
1125  /// declaration is an integral constant expression.
1126  bool checkInitIsICE() const;
1127
1128  void setInitStyle(InitializationStyle Style) {
1129    VarDeclBits.InitStyle = Style;
1130  }
1131
1132  /// \brief The style of initialization for this declaration.
1133  ///
1134  /// C-style initialization is "int x = 1;". Call-style initialization is
1135  /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1136  /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1137  /// expression for class types. List-style initialization is C++11 syntax,
1138  /// e.g. "int x{1};". Clients can distinguish between different forms of
1139  /// initialization by checking this value. In particular, "int x = {1};" is
1140  /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1141  /// Init expression in all three cases is an InitListExpr.
1142  InitializationStyle getInitStyle() const {
1143    return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1144  }
1145
1146  /// \brief Whether the initializer is a direct-initializer (list or call).
1147  bool isDirectInit() const {
1148    return getInitStyle() != CInit;
1149  }
1150
1151  /// \brief Determine whether this variable is the exception variable in a
1152  /// C++ catch statememt or an Objective-C \@catch statement.
1153  bool isExceptionVariable() const {
1154    return VarDeclBits.ExceptionVar;
1155  }
1156  void setExceptionVariable(bool EV) { VarDeclBits.ExceptionVar = EV; }
1157
1158  /// \brief Determine whether this local variable can be used with the named
1159  /// return value optimization (NRVO).
1160  ///
1161  /// The named return value optimization (NRVO) works by marking certain
1162  /// non-volatile local variables of class type as NRVO objects. These
1163  /// locals can be allocated within the return slot of their containing
1164  /// function, in which case there is no need to copy the object to the
1165  /// return slot when returning from the function. Within the function body,
1166  /// each return that returns the NRVO object will have this variable as its
1167  /// NRVO candidate.
1168  bool isNRVOVariable() const { return VarDeclBits.NRVOVariable; }
1169  void setNRVOVariable(bool NRVO) { VarDeclBits.NRVOVariable = NRVO; }
1170
1171  /// \brief Determine whether this variable is the for-range-declaration in
1172  /// a C++0x for-range statement.
1173  bool isCXXForRangeDecl() const { return VarDeclBits.CXXForRangeDecl; }
1174  void setCXXForRangeDecl(bool FRD) { VarDeclBits.CXXForRangeDecl = FRD; }
1175
1176  /// \brief Determine whether this variable is an ARC pseudo-__strong
1177  /// variable.  A pseudo-__strong variable has a __strong-qualified
1178  /// type but does not actually retain the object written into it.
1179  /// Generally such variables are also 'const' for safety.
1180  bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1181  void setARCPseudoStrong(bool ps) { VarDeclBits.ARCPseudoStrong = ps; }
1182
1183  /// Whether this variable is (C++11) constexpr.
1184  bool isConstexpr() const { return VarDeclBits.IsConstexpr; }
1185  void setConstexpr(bool IC) { VarDeclBits.IsConstexpr = IC; }
1186
1187  /// \brief If this variable is an instantiated static data member of a
1188  /// class template specialization, returns the templated static data member
1189  /// from which it was instantiated.
1190  VarDecl *getInstantiatedFromStaticDataMember() const;
1191
1192  /// \brief If this variable is a static data member, determine what kind of
1193  /// template specialization or instantiation this is.
1194  TemplateSpecializationKind getTemplateSpecializationKind() const;
1195
1196  /// \brief If this variable is an instantiation of a static data member of a
1197  /// class template specialization, retrieves the member specialization
1198  /// information.
1199  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1200
1201  /// \brief For a static data member that was instantiated from a static
1202  /// data member of a class template, set the template specialiation kind.
1203  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1204                        SourceLocation PointOfInstantiation = SourceLocation());
1205
1206  // Implement isa/cast/dyncast/etc.
1207  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1208  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1209};
1210
1211class ImplicitParamDecl : public VarDecl {
1212  virtual void anchor();
1213public:
1214  static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1215                                   SourceLocation IdLoc, IdentifierInfo *Id,
1216                                   QualType T);
1217
1218  static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1219
1220  ImplicitParamDecl(DeclContext *DC, SourceLocation IdLoc,
1221                    IdentifierInfo *Id, QualType Type)
1222    : VarDecl(ImplicitParam, DC, IdLoc, IdLoc, Id, Type,
1223              /*tinfo*/ 0, SC_None, SC_None) {
1224    setImplicit();
1225  }
1226
1227  // Implement isa/cast/dyncast/etc.
1228  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1229  static bool classofKind(Kind K) { return K == ImplicitParam; }
1230};
1231
1232/// ParmVarDecl - Represents a parameter to a function.
1233class ParmVarDecl : public VarDecl {
1234public:
1235  enum { MaxFunctionScopeDepth = 255 };
1236  enum { MaxFunctionScopeIndex = 255 };
1237
1238protected:
1239  ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
1240              SourceLocation IdLoc, IdentifierInfo *Id,
1241              QualType T, TypeSourceInfo *TInfo,
1242              StorageClass S, StorageClass SCAsWritten, Expr *DefArg)
1243    : VarDecl(DK, DC, StartLoc, IdLoc, Id, T, TInfo, S, SCAsWritten) {
1244    assert(ParmVarDeclBits.HasInheritedDefaultArg == false);
1245    assert(ParmVarDeclBits.IsKNRPromoted == false);
1246    assert(ParmVarDeclBits.IsObjCMethodParam == false);
1247    setDefaultArg(DefArg);
1248  }
1249
1250public:
1251  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1252                             SourceLocation StartLoc,
1253                             SourceLocation IdLoc, IdentifierInfo *Id,
1254                             QualType T, TypeSourceInfo *TInfo,
1255                             StorageClass S, StorageClass SCAsWritten,
1256                             Expr *DefArg);
1257
1258  static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1259
1260  virtual SourceRange getSourceRange() const LLVM_READONLY;
1261
1262  void setObjCMethodScopeInfo(unsigned parameterIndex) {
1263    ParmVarDeclBits.IsObjCMethodParam = true;
1264    setParameterIndex(parameterIndex);
1265  }
1266
1267  void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1268    assert(!ParmVarDeclBits.IsObjCMethodParam);
1269
1270    ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1271    assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth
1272           && "truncation!");
1273
1274    setParameterIndex(parameterIndex);
1275  }
1276
1277  bool isObjCMethodParameter() const {
1278    return ParmVarDeclBits.IsObjCMethodParam;
1279  }
1280
1281  unsigned getFunctionScopeDepth() const {
1282    if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1283    return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1284  }
1285
1286  /// Returns the index of this parameter in its prototype or method scope.
1287  unsigned getFunctionScopeIndex() const {
1288    return getParameterIndex();
1289  }
1290
1291  ObjCDeclQualifier getObjCDeclQualifier() const {
1292    if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1293    return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1294  }
1295  void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1296    assert(ParmVarDeclBits.IsObjCMethodParam);
1297    ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1298  }
1299
1300  /// True if the value passed to this parameter must undergo
1301  /// K&R-style default argument promotion:
1302  ///
1303  /// C99 6.5.2.2.
1304  ///   If the expression that denotes the called function has a type
1305  ///   that does not include a prototype, the integer promotions are
1306  ///   performed on each argument, and arguments that have type float
1307  ///   are promoted to double.
1308  bool isKNRPromoted() const {
1309    return ParmVarDeclBits.IsKNRPromoted;
1310  }
1311  void setKNRPromoted(bool promoted) {
1312    ParmVarDeclBits.IsKNRPromoted = promoted;
1313  }
1314
1315  Expr *getDefaultArg();
1316  const Expr *getDefaultArg() const {
1317    return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1318  }
1319
1320  void setDefaultArg(Expr *defarg) {
1321    Init = reinterpret_cast<Stmt *>(defarg);
1322  }
1323
1324  /// \brief Retrieve the source range that covers the entire default
1325  /// argument.
1326  SourceRange getDefaultArgRange() const;
1327  void setUninstantiatedDefaultArg(Expr *arg) {
1328    Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
1329  }
1330  Expr *getUninstantiatedDefaultArg() {
1331    return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
1332  }
1333  const Expr *getUninstantiatedDefaultArg() const {
1334    return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
1335  }
1336
1337  /// hasDefaultArg - Determines whether this parameter has a default argument,
1338  /// either parsed or not.
1339  bool hasDefaultArg() const {
1340    return getInit() || hasUnparsedDefaultArg() ||
1341      hasUninstantiatedDefaultArg();
1342  }
1343
1344  /// hasUnparsedDefaultArg - Determines whether this parameter has a
1345  /// default argument that has not yet been parsed. This will occur
1346  /// during the processing of a C++ class whose member functions have
1347  /// default arguments, e.g.,
1348  /// @code
1349  ///   class X {
1350  ///   public:
1351  ///     void f(int x = 17); // x has an unparsed default argument now
1352  ///   }; // x has a regular default argument now
1353  /// @endcode
1354  bool hasUnparsedDefaultArg() const {
1355    return Init.is<UnparsedDefaultArgument*>();
1356  }
1357
1358  bool hasUninstantiatedDefaultArg() const {
1359    return Init.is<UninstantiatedDefaultArgument*>();
1360  }
1361
1362  /// setUnparsedDefaultArg - Specify that this parameter has an
1363  /// unparsed default argument. The argument will be replaced with a
1364  /// real default argument via setDefaultArg when the class
1365  /// definition enclosing the function declaration that owns this
1366  /// default argument is completed.
1367  void setUnparsedDefaultArg() {
1368    Init = (UnparsedDefaultArgument *)0;
1369  }
1370
1371  bool hasInheritedDefaultArg() const {
1372    return ParmVarDeclBits.HasInheritedDefaultArg;
1373  }
1374
1375  void setHasInheritedDefaultArg(bool I = true) {
1376    ParmVarDeclBits.HasInheritedDefaultArg = I;
1377  }
1378
1379  QualType getOriginalType() const {
1380    if (getTypeSourceInfo())
1381      return getTypeSourceInfo()->getType();
1382    return getType();
1383  }
1384
1385  /// \brief Determine whether this parameter is actually a function
1386  /// parameter pack.
1387  bool isParameterPack() const;
1388
1389  /// setOwningFunction - Sets the function declaration that owns this
1390  /// ParmVarDecl. Since ParmVarDecls are often created before the
1391  /// FunctionDecls that own them, this routine is required to update
1392  /// the DeclContext appropriately.
1393  void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1394
1395  // Implement isa/cast/dyncast/etc.
1396  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1397  static bool classofKind(Kind K) { return K == ParmVar; }
1398
1399private:
1400  enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1401
1402  void setParameterIndex(unsigned parameterIndex) {
1403    if (parameterIndex >= ParameterIndexSentinel) {
1404      setParameterIndexLarge(parameterIndex);
1405      return;
1406    }
1407
1408    ParmVarDeclBits.ParameterIndex = parameterIndex;
1409    assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!");
1410  }
1411  unsigned getParameterIndex() const {
1412    unsigned d = ParmVarDeclBits.ParameterIndex;
1413    return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1414  }
1415
1416  void setParameterIndexLarge(unsigned parameterIndex);
1417  unsigned getParameterIndexLarge() const;
1418};
1419
1420/// FunctionDecl - An instance of this class is created to represent a
1421/// function declaration or definition.
1422///
1423/// Since a given function can be declared several times in a program,
1424/// there may be several FunctionDecls that correspond to that
1425/// function. Only one of those FunctionDecls will be found when
1426/// traversing the list of declarations in the context of the
1427/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1428/// contains all of the information known about the function. Other,
1429/// previous declarations of the function are available via the
1430/// getPreviousDecl() chain.
1431class FunctionDecl : public DeclaratorDecl, public DeclContext,
1432                     public Redeclarable<FunctionDecl> {
1433public:
1434  typedef clang::StorageClass StorageClass;
1435
1436  /// \brief The kind of templated function a FunctionDecl can be.
1437  enum TemplatedKind {
1438    TK_NonTemplate,
1439    TK_FunctionTemplate,
1440    TK_MemberSpecialization,
1441    TK_FunctionTemplateSpecialization,
1442    TK_DependentFunctionTemplateSpecialization
1443  };
1444
1445private:
1446  /// ParamInfo - new[]'d array of pointers to VarDecls for the formal
1447  /// parameters of this function.  This is null if a prototype or if there are
1448  /// no formals.
1449  ParmVarDecl **ParamInfo;
1450
1451  /// DeclsInPrototypeScope - Array of pointers to NamedDecls for
1452  /// decls defined in the function prototype that are not parameters. E.g.
1453  /// 'enum Y' in 'void f(enum Y {AA} x) {}'.
1454  llvm::ArrayRef<NamedDecl*> DeclsInPrototypeScope;
1455
1456  LazyDeclStmtPtr Body;
1457
1458  // FIXME: This can be packed into the bitfields in Decl.
1459  // NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
1460  unsigned SClass : 2;
1461  unsigned SClassAsWritten : 2;
1462  bool IsInline : 1;
1463  bool IsInlineSpecified : 1;
1464  bool IsVirtualAsWritten : 1;
1465  bool IsPure : 1;
1466  bool HasInheritedPrototype : 1;
1467  bool HasWrittenPrototype : 1;
1468  bool IsDeleted : 1;
1469  bool IsTrivial : 1; // sunk from CXXMethodDecl
1470  bool IsDefaulted : 1; // sunk from CXXMethoDecl
1471  bool IsExplicitlyDefaulted : 1; //sunk from CXXMethodDecl
1472  bool HasImplicitReturnZero : 1;
1473  bool IsLateTemplateParsed : 1;
1474  bool IsConstexpr : 1;
1475
1476  /// \brief End part of this FunctionDecl's source range.
1477  ///
1478  /// We could compute the full range in getSourceRange(). However, when we're
1479  /// dealing with a function definition deserialized from a PCH/AST file,
1480  /// we can only compute the full range once the function body has been
1481  /// de-serialized, so it's far better to have the (sometimes-redundant)
1482  /// EndRangeLoc.
1483  SourceLocation EndRangeLoc;
1484
1485  /// \brief The template or declaration that this declaration
1486  /// describes or was instantiated from, respectively.
1487  ///
1488  /// For non-templates, this value will be NULL. For function
1489  /// declarations that describe a function template, this will be a
1490  /// pointer to a FunctionTemplateDecl. For member functions
1491  /// of class template specializations, this will be a MemberSpecializationInfo
1492  /// pointer containing information about the specialization.
1493  /// For function template specializations, this will be a
1494  /// FunctionTemplateSpecializationInfo, which contains information about
1495  /// the template being specialized and the template arguments involved in
1496  /// that specialization.
1497  llvm::PointerUnion4<FunctionTemplateDecl *,
1498                      MemberSpecializationInfo *,
1499                      FunctionTemplateSpecializationInfo *,
1500                      DependentFunctionTemplateSpecializationInfo *>
1501    TemplateOrSpecialization;
1502
1503  /// DNLoc - Provides source/type location info for the
1504  /// declaration name embedded in the DeclaratorDecl base class.
1505  DeclarationNameLoc DNLoc;
1506
1507  /// \brief Specify that this function declaration is actually a function
1508  /// template specialization.
1509  ///
1510  /// \param C the ASTContext.
1511  ///
1512  /// \param Template the function template that this function template
1513  /// specialization specializes.
1514  ///
1515  /// \param TemplateArgs the template arguments that produced this
1516  /// function template specialization from the template.
1517  ///
1518  /// \param InsertPos If non-NULL, the position in the function template
1519  /// specialization set where the function template specialization data will
1520  /// be inserted.
1521  ///
1522  /// \param TSK the kind of template specialization this is.
1523  ///
1524  /// \param TemplateArgsAsWritten location info of template arguments.
1525  ///
1526  /// \param PointOfInstantiation point at which the function template
1527  /// specialization was first instantiated.
1528  void setFunctionTemplateSpecialization(ASTContext &C,
1529                                         FunctionTemplateDecl *Template,
1530                                       const TemplateArgumentList *TemplateArgs,
1531                                         void *InsertPos,
1532                                         TemplateSpecializationKind TSK,
1533                          const TemplateArgumentListInfo *TemplateArgsAsWritten,
1534                                         SourceLocation PointOfInstantiation);
1535
1536  /// \brief Specify that this record is an instantiation of the
1537  /// member function FD.
1538  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1539                                        TemplateSpecializationKind TSK);
1540
1541  void setParams(ASTContext &C, llvm::ArrayRef<ParmVarDecl *> NewParamInfo);
1542
1543protected:
1544  FunctionDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
1545               const DeclarationNameInfo &NameInfo,
1546               QualType T, TypeSourceInfo *TInfo,
1547               StorageClass S, StorageClass SCAsWritten, bool isInlineSpecified,
1548               bool isConstexprSpecified)
1549    : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
1550                     StartLoc),
1551      DeclContext(DK),
1552      ParamInfo(0), Body(),
1553      SClass(S), SClassAsWritten(SCAsWritten),
1554      IsInline(isInlineSpecified), IsInlineSpecified(isInlineSpecified),
1555      IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
1556      HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
1557      IsDefaulted(false), IsExplicitlyDefaulted(false),
1558      HasImplicitReturnZero(false), IsLateTemplateParsed(false),
1559      IsConstexpr(isConstexprSpecified), EndRangeLoc(NameInfo.getEndLoc()),
1560      TemplateOrSpecialization(),
1561      DNLoc(NameInfo.getInfo()) {}
1562
1563  typedef Redeclarable<FunctionDecl> redeclarable_base;
1564  virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1565  virtual FunctionDecl *getPreviousDeclImpl() {
1566    return getPreviousDecl();
1567  }
1568  virtual FunctionDecl *getMostRecentDeclImpl() {
1569    return getMostRecentDecl();
1570  }
1571
1572public:
1573  typedef redeclarable_base::redecl_iterator redecl_iterator;
1574  using redeclarable_base::redecls_begin;
1575  using redeclarable_base::redecls_end;
1576  using redeclarable_base::getPreviousDecl;
1577  using redeclarable_base::getMostRecentDecl;
1578
1579  static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1580                              SourceLocation StartLoc, SourceLocation NLoc,
1581                              DeclarationName N, QualType T,
1582                              TypeSourceInfo *TInfo,
1583                              StorageClass SC = SC_None,
1584                              StorageClass SCAsWritten = SC_None,
1585                              bool isInlineSpecified = false,
1586                              bool hasWrittenPrototype = true,
1587                              bool isConstexprSpecified = false) {
1588    DeclarationNameInfo NameInfo(N, NLoc);
1589    return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo,
1590                                SC, SCAsWritten,
1591                                isInlineSpecified, hasWrittenPrototype,
1592                                isConstexprSpecified);
1593  }
1594
1595  static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1596                              SourceLocation StartLoc,
1597                              const DeclarationNameInfo &NameInfo,
1598                              QualType T, TypeSourceInfo *TInfo,
1599                              StorageClass SC = SC_None,
1600                              StorageClass SCAsWritten = SC_None,
1601                              bool isInlineSpecified = false,
1602                              bool hasWrittenPrototype = true,
1603                              bool isConstexprSpecified = false);
1604
1605  static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1606
1607  DeclarationNameInfo getNameInfo() const {
1608    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1609  }
1610
1611  virtual void getNameForDiagnostic(std::string &S,
1612                                    const PrintingPolicy &Policy,
1613                                    bool Qualified) const;
1614
1615  void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
1616
1617  virtual SourceRange getSourceRange() const LLVM_READONLY;
1618
1619  /// \brief Returns true if the function has a body (definition). The
1620  /// function body might be in any of the (re-)declarations of this
1621  /// function. The variant that accepts a FunctionDecl pointer will
1622  /// set that function declaration to the actual declaration
1623  /// containing the body (if there is one).
1624  bool hasBody(const FunctionDecl *&Definition) const;
1625
1626  virtual bool hasBody() const {
1627    const FunctionDecl* Definition;
1628    return hasBody(Definition);
1629  }
1630
1631  /// hasTrivialBody - Returns whether the function has a trivial body that does
1632  /// not require any specific codegen.
1633  bool hasTrivialBody() const;
1634
1635  /// isDefined - Returns true if the function is defined at all, including
1636  /// a deleted definition. Except for the behavior when the function is
1637  /// deleted, behaves like hasBody.
1638  bool isDefined(const FunctionDecl *&Definition) const;
1639
1640  virtual bool isDefined() const {
1641    const FunctionDecl* Definition;
1642    return isDefined(Definition);
1643  }
1644
1645  /// getBody - Retrieve the body (definition) of the function. The
1646  /// function body might be in any of the (re-)declarations of this
1647  /// function. The variant that accepts a FunctionDecl pointer will
1648  /// set that function declaration to the actual declaration
1649  /// containing the body (if there is one).
1650  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1651  /// unnecessary AST de-serialization of the body.
1652  Stmt *getBody(const FunctionDecl *&Definition) const;
1653
1654  virtual Stmt *getBody() const {
1655    const FunctionDecl* Definition;
1656    return getBody(Definition);
1657  }
1658
1659  /// isThisDeclarationADefinition - Returns whether this specific
1660  /// declaration of the function is also a definition. This does not
1661  /// determine whether the function has been defined (e.g., in a
1662  /// previous definition); for that information, use isDefined. Note
1663  /// that this returns false for a defaulted function unless that function
1664  /// has been implicitly defined (possibly as deleted).
1665  bool isThisDeclarationADefinition() const {
1666    return IsDeleted || Body || IsLateTemplateParsed;
1667  }
1668
1669  /// doesThisDeclarationHaveABody - Returns whether this specific
1670  /// declaration of the function has a body - that is, if it is a non-
1671  /// deleted definition.
1672  bool doesThisDeclarationHaveABody() const {
1673    return Body || IsLateTemplateParsed;
1674  }
1675
1676  void setBody(Stmt *B);
1677  void setLazyBody(uint64_t Offset) { Body = Offset; }
1678
1679  /// Whether this function is variadic.
1680  bool isVariadic() const;
1681
1682  /// Whether this function is marked as virtual explicitly.
1683  bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
1684  void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
1685
1686  /// Whether this virtual function is pure, i.e. makes the containing class
1687  /// abstract.
1688  bool isPure() const { return IsPure; }
1689  void setPure(bool P = true);
1690
1691  /// Whether this templated function will be late parsed.
1692  bool isLateTemplateParsed() const { return IsLateTemplateParsed; }
1693  void setLateTemplateParsed(bool ILT = true) { IsLateTemplateParsed = ILT; }
1694
1695  /// Whether this function is "trivial" in some specialized C++ senses.
1696  /// Can only be true for default constructors, copy constructors,
1697  /// copy assignment operators, and destructors.  Not meaningful until
1698  /// the class has been fully built by Sema.
1699  bool isTrivial() const { return IsTrivial; }
1700  void setTrivial(bool IT) { IsTrivial = IT; }
1701
1702  /// Whether this function is defaulted per C++0x. Only valid for
1703  /// special member functions.
1704  bool isDefaulted() const { return IsDefaulted; }
1705  void setDefaulted(bool D = true) { IsDefaulted = D; }
1706
1707  /// Whether this function is explicitly defaulted per C++0x. Only valid
1708  /// for special member functions.
1709  bool isExplicitlyDefaulted() const { return IsExplicitlyDefaulted; }
1710  void setExplicitlyDefaulted(bool ED = true) { IsExplicitlyDefaulted = ED; }
1711
1712  /// Whether falling off this function implicitly returns null/zero.
1713  /// If a more specific implicit return value is required, front-ends
1714  /// should synthesize the appropriate return statements.
1715  bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
1716  void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
1717
1718  /// \brief Whether this function has a prototype, either because one
1719  /// was explicitly written or because it was "inherited" by merging
1720  /// a declaration without a prototype with a declaration that has a
1721  /// prototype.
1722  bool hasPrototype() const {
1723    return HasWrittenPrototype || HasInheritedPrototype;
1724  }
1725
1726  bool hasWrittenPrototype() const { return HasWrittenPrototype; }
1727
1728  /// \brief Whether this function inherited its prototype from a
1729  /// previous declaration.
1730  bool hasInheritedPrototype() const { return HasInheritedPrototype; }
1731  void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
1732
1733  /// Whether this is a (C++11) constexpr function or constexpr constructor.
1734  bool isConstexpr() const { return IsConstexpr; }
1735  void setConstexpr(bool IC);
1736
1737  /// \brief Whether this function has been deleted.
1738  ///
1739  /// A function that is "deleted" (via the C++0x "= delete" syntax)
1740  /// acts like a normal function, except that it cannot actually be
1741  /// called or have its address taken. Deleted functions are
1742  /// typically used in C++ overload resolution to attract arguments
1743  /// whose type or lvalue/rvalue-ness would permit the use of a
1744  /// different overload that would behave incorrectly. For example,
1745  /// one might use deleted functions to ban implicit conversion from
1746  /// a floating-point number to an Integer type:
1747  ///
1748  /// @code
1749  /// struct Integer {
1750  ///   Integer(long); // construct from a long
1751  ///   Integer(double) = delete; // no construction from float or double
1752  ///   Integer(long double) = delete; // no construction from long double
1753  /// };
1754  /// @endcode
1755  // If a function is deleted, its first declaration must be.
1756  bool isDeleted() const { return getCanonicalDecl()->IsDeleted; }
1757  bool isDeletedAsWritten() const { return IsDeleted && !IsDefaulted; }
1758  void setDeletedAsWritten(bool D = true) { IsDeleted = D; }
1759
1760  /// \brief Determines whether this function is "main", which is the
1761  /// entry point into an executable program.
1762  bool isMain() const;
1763
1764  /// \brief Determines whether this operator new or delete is one
1765  /// of the reserved global placement operators:
1766  ///    void *operator new(size_t, void *);
1767  ///    void *operator new[](size_t, void *);
1768  ///    void operator delete(void *, void *);
1769  ///    void operator delete[](void *, void *);
1770  /// These functions have special behavior under [new.delete.placement]:
1771  ///    These functions are reserved, a C++ program may not define
1772  ///    functions that displace the versions in the Standard C++ library.
1773  ///    The provisions of [basic.stc.dynamic] do not apply to these
1774  ///    reserved placement forms of operator new and operator delete.
1775  ///
1776  /// This function must be an allocation or deallocation function.
1777  bool isReservedGlobalPlacementOperator() const;
1778
1779  /// \brief Determines whether this function is a function with
1780  /// external, C linkage.
1781  bool isExternC() const;
1782
1783  /// \brief Determines whether this is a global function.
1784  bool isGlobal() const;
1785
1786  void setPreviousDeclaration(FunctionDecl * PrevDecl);
1787
1788  virtual const FunctionDecl *getCanonicalDecl() const;
1789  virtual FunctionDecl *getCanonicalDecl();
1790
1791  unsigned getBuiltinID() const;
1792
1793  // Iterator access to formal parameters.
1794  unsigned param_size() const { return getNumParams(); }
1795  typedef ParmVarDecl **param_iterator;
1796  typedef ParmVarDecl * const *param_const_iterator;
1797
1798  param_iterator param_begin() { return ParamInfo; }
1799  param_iterator param_end()   { return ParamInfo+param_size(); }
1800
1801  param_const_iterator param_begin() const { return ParamInfo; }
1802  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
1803
1804  /// getNumParams - Return the number of parameters this function must have
1805  /// based on its FunctionType.  This is the length of the ParamInfo array
1806  /// after it has been created.
1807  unsigned getNumParams() const;
1808
1809  const ParmVarDecl *getParamDecl(unsigned i) const {
1810    assert(i < getNumParams() && "Illegal param #");
1811    return ParamInfo[i];
1812  }
1813  ParmVarDecl *getParamDecl(unsigned i) {
1814    assert(i < getNumParams() && "Illegal param #");
1815    return ParamInfo[i];
1816  }
1817  void setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo) {
1818    setParams(getASTContext(), NewParamInfo);
1819  }
1820
1821  const llvm::ArrayRef<NamedDecl*> &getDeclsInPrototypeScope() const {
1822    return DeclsInPrototypeScope;
1823  }
1824  void setDeclsInPrototypeScope(llvm::ArrayRef<NamedDecl *> NewDecls);
1825
1826  /// getMinRequiredArguments - Returns the minimum number of arguments
1827  /// needed to call this function. This may be fewer than the number of
1828  /// function parameters, if some of the parameters have default
1829  /// arguments (in C++).
1830  unsigned getMinRequiredArguments() const;
1831
1832  QualType getResultType() const {
1833    return getType()->getAs<FunctionType>()->getResultType();
1834  }
1835
1836  /// \brief Determine the type of an expression that calls this function.
1837  QualType getCallResultType() const {
1838    return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
1839  }
1840
1841  StorageClass getStorageClass() const { return StorageClass(SClass); }
1842  void setStorageClass(StorageClass SC);
1843
1844  StorageClass getStorageClassAsWritten() const {
1845    return StorageClass(SClassAsWritten);
1846  }
1847
1848  /// \brief Determine whether the "inline" keyword was specified for this
1849  /// function.
1850  bool isInlineSpecified() const { return IsInlineSpecified; }
1851
1852  /// Set whether the "inline" keyword was specified for this function.
1853  void setInlineSpecified(bool I) {
1854    IsInlineSpecified = I;
1855    IsInline = I;
1856  }
1857
1858  /// Flag that this function is implicitly inline.
1859  void setImplicitlyInline() {
1860    IsInline = true;
1861  }
1862
1863  /// \brief Determine whether this function should be inlined, because it is
1864  /// either marked "inline" or "constexpr" or is a member function of a class
1865  /// that was defined in the class body.
1866  bool isInlined() const;
1867
1868  bool isInlineDefinitionExternallyVisible() const;
1869
1870  bool doesDeclarationForceExternallyVisibleDefinition() const;
1871
1872  /// isOverloadedOperator - Whether this function declaration
1873  /// represents an C++ overloaded operator, e.g., "operator+".
1874  bool isOverloadedOperator() const {
1875    return getOverloadedOperator() != OO_None;
1876  }
1877
1878  OverloadedOperatorKind getOverloadedOperator() const;
1879
1880  const IdentifierInfo *getLiteralIdentifier() const;
1881
1882  /// \brief If this function is an instantiation of a member function
1883  /// of a class template specialization, retrieves the function from
1884  /// which it was instantiated.
1885  ///
1886  /// This routine will return non-NULL for (non-templated) member
1887  /// functions of class templates and for instantiations of function
1888  /// templates. For example, given:
1889  ///
1890  /// \code
1891  /// template<typename T>
1892  /// struct X {
1893  ///   void f(T);
1894  /// };
1895  /// \endcode
1896  ///
1897  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
1898  /// whose parent is the class template specialization X<int>. For
1899  /// this declaration, getInstantiatedFromFunction() will return
1900  /// the FunctionDecl X<T>::A. When a complete definition of
1901  /// X<int>::A is required, it will be instantiated from the
1902  /// declaration returned by getInstantiatedFromMemberFunction().
1903  FunctionDecl *getInstantiatedFromMemberFunction() const;
1904
1905  /// \brief What kind of templated function this is.
1906  TemplatedKind getTemplatedKind() const;
1907
1908  /// \brief If this function is an instantiation of a member function of a
1909  /// class template specialization, retrieves the member specialization
1910  /// information.
1911  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1912
1913  /// \brief Specify that this record is an instantiation of the
1914  /// member function FD.
1915  void setInstantiationOfMemberFunction(FunctionDecl *FD,
1916                                        TemplateSpecializationKind TSK) {
1917    setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
1918  }
1919
1920  /// \brief Retrieves the function template that is described by this
1921  /// function declaration.
1922  ///
1923  /// Every function template is represented as a FunctionTemplateDecl
1924  /// and a FunctionDecl (or something derived from FunctionDecl). The
1925  /// former contains template properties (such as the template
1926  /// parameter lists) while the latter contains the actual
1927  /// description of the template's
1928  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
1929  /// FunctionDecl that describes the function template,
1930  /// getDescribedFunctionTemplate() retrieves the
1931  /// FunctionTemplateDecl from a FunctionDecl.
1932  FunctionTemplateDecl *getDescribedFunctionTemplate() const {
1933    return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
1934  }
1935
1936  void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
1937    TemplateOrSpecialization = Template;
1938  }
1939
1940  /// \brief Determine whether this function is a function template
1941  /// specialization.
1942  bool isFunctionTemplateSpecialization() const {
1943    return getPrimaryTemplate() != 0;
1944  }
1945
1946  /// \brief Retrieve the class scope template pattern that this function
1947  ///  template specialization is instantiated from.
1948  FunctionDecl *getClassScopeSpecializationPattern() const;
1949
1950  /// \brief If this function is actually a function template specialization,
1951  /// retrieve information about this function template specialization.
1952  /// Otherwise, returns NULL.
1953  FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
1954    return TemplateOrSpecialization.
1955             dyn_cast<FunctionTemplateSpecializationInfo*>();
1956  }
1957
1958  /// \brief Determines whether this function is a function template
1959  /// specialization or a member of a class template specialization that can
1960  /// be implicitly instantiated.
1961  bool isImplicitlyInstantiable() const;
1962
1963  /// \brief Determines if the given function was instantiated from a
1964  /// function template.
1965  bool isTemplateInstantiation() const;
1966
1967  /// \brief Retrieve the function declaration from which this function could
1968  /// be instantiated, if it is an instantiation (rather than a non-template
1969  /// or a specialization, for example).
1970  FunctionDecl *getTemplateInstantiationPattern() const;
1971
1972  /// \brief Retrieve the primary template that this function template
1973  /// specialization either specializes or was instantiated from.
1974  ///
1975  /// If this function declaration is not a function template specialization,
1976  /// returns NULL.
1977  FunctionTemplateDecl *getPrimaryTemplate() const;
1978
1979  /// \brief Retrieve the template arguments used to produce this function
1980  /// template specialization from the primary template.
1981  ///
1982  /// If this function declaration is not a function template specialization,
1983  /// returns NULL.
1984  const TemplateArgumentList *getTemplateSpecializationArgs() const;
1985
1986  /// \brief Retrieve the template argument list as written in the sources,
1987  /// if any.
1988  ///
1989  /// If this function declaration is not a function template specialization
1990  /// or if it had no explicit template argument list, returns NULL.
1991  /// Note that it an explicit template argument list may be written empty,
1992  /// e.g., template<> void foo<>(char* s);
1993  const ASTTemplateArgumentListInfo*
1994  getTemplateSpecializationArgsAsWritten() const;
1995
1996  /// \brief Specify that this function declaration is actually a function
1997  /// template specialization.
1998  ///
1999  /// \param Template the function template that this function template
2000  /// specialization specializes.
2001  ///
2002  /// \param TemplateArgs the template arguments that produced this
2003  /// function template specialization from the template.
2004  ///
2005  /// \param InsertPos If non-NULL, the position in the function template
2006  /// specialization set where the function template specialization data will
2007  /// be inserted.
2008  ///
2009  /// \param TSK the kind of template specialization this is.
2010  ///
2011  /// \param TemplateArgsAsWritten location info of template arguments.
2012  ///
2013  /// \param PointOfInstantiation point at which the function template
2014  /// specialization was first instantiated.
2015  void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2016                                      const TemplateArgumentList *TemplateArgs,
2017                                         void *InsertPos,
2018                    TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2019                    const TemplateArgumentListInfo *TemplateArgsAsWritten = 0,
2020                    SourceLocation PointOfInstantiation = SourceLocation()) {
2021    setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2022                                      InsertPos, TSK, TemplateArgsAsWritten,
2023                                      PointOfInstantiation);
2024  }
2025
2026  /// \brief Specifies that this function declaration is actually a
2027  /// dependent function template specialization.
2028  void setDependentTemplateSpecialization(ASTContext &Context,
2029                             const UnresolvedSetImpl &Templates,
2030                      const TemplateArgumentListInfo &TemplateArgs);
2031
2032  DependentFunctionTemplateSpecializationInfo *
2033  getDependentSpecializationInfo() const {
2034    return TemplateOrSpecialization.
2035             dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
2036  }
2037
2038  /// \brief Determine what kind of template instantiation this function
2039  /// represents.
2040  TemplateSpecializationKind getTemplateSpecializationKind() const;
2041
2042  /// \brief Determine what kind of template instantiation this function
2043  /// represents.
2044  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2045                        SourceLocation PointOfInstantiation = SourceLocation());
2046
2047  /// \brief Retrieve the (first) point of instantiation of a function template
2048  /// specialization or a member of a class template specialization.
2049  ///
2050  /// \returns the first point of instantiation, if this function was
2051  /// instantiated from a template; otherwise, returns an invalid source
2052  /// location.
2053  SourceLocation getPointOfInstantiation() const;
2054
2055  /// \brief Determine whether this is or was instantiated from an out-of-line
2056  /// definition of a member function.
2057  virtual bool isOutOfLine() const;
2058
2059  /// \brief Identify a memory copying or setting function.
2060  /// If the given function is a memory copy or setting function, returns
2061  /// the corresponding Builtin ID. If the function is not a memory function,
2062  /// returns 0.
2063  unsigned getMemoryFunctionKind() const;
2064
2065  // Implement isa/cast/dyncast/etc.
2066  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2067  static bool classofKind(Kind K) {
2068    return K >= firstFunction && K <= lastFunction;
2069  }
2070  static DeclContext *castToDeclContext(const FunctionDecl *D) {
2071    return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2072  }
2073  static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2074    return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2075  }
2076
2077  friend class ASTDeclReader;
2078  friend class ASTDeclWriter;
2079};
2080
2081
2082/// FieldDecl - An instance of this class is created by Sema::ActOnField to
2083/// represent a member of a struct/union/class.
2084class FieldDecl : public DeclaratorDecl {
2085  // FIXME: This can be packed into the bitfields in Decl.
2086  bool Mutable : 1;
2087  mutable unsigned CachedFieldIndex : 31;
2088
2089  /// \brief An InClassInitStyle value, and either a bit width expression (if
2090  /// the InClassInitStyle value is ICIS_NoInit), or a pointer to the in-class
2091  /// initializer for this field (otherwise).
2092  ///
2093  /// We can safely combine these two because in-class initializers are not
2094  /// permitted for bit-fields.
2095  ///
2096  /// If the InClassInitStyle is not ICIS_NoInit and the initializer is null,
2097  /// then this field has an in-class initializer which has not yet been parsed
2098  /// and attached.
2099  llvm::PointerIntPair<Expr *, 2, unsigned> InitializerOrBitWidth;
2100protected:
2101  FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2102            SourceLocation IdLoc, IdentifierInfo *Id,
2103            QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2104            InClassInitStyle InitStyle)
2105    : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2106      Mutable(Mutable), CachedFieldIndex(0),
2107      InitializerOrBitWidth(BW, InitStyle) {
2108    assert((!BW || InitStyle == ICIS_NoInit) && "got initializer for bitfield");
2109  }
2110
2111public:
2112  static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2113                           SourceLocation StartLoc, SourceLocation IdLoc,
2114                           IdentifierInfo *Id, QualType T,
2115                           TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2116                           InClassInitStyle InitStyle);
2117
2118  static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2119
2120  /// getFieldIndex - Returns the index of this field within its record,
2121  /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2122  unsigned getFieldIndex() const;
2123
2124  /// isMutable - Determines whether this field is mutable (C++ only).
2125  bool isMutable() const { return Mutable; }
2126
2127  /// isBitfield - Determines whether this field is a bitfield.
2128  bool isBitField() const {
2129    return getInClassInitStyle() == ICIS_NoInit &&
2130           InitializerOrBitWidth.getPointer();
2131  }
2132
2133  /// @brief Determines whether this is an unnamed bitfield.
2134  bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2135
2136  /// isAnonymousStructOrUnion - Determines whether this field is a
2137  /// representative for an anonymous struct or union. Such fields are
2138  /// unnamed and are implicitly generated by the implementation to
2139  /// store the data for the anonymous union or struct.
2140  bool isAnonymousStructOrUnion() const;
2141
2142  Expr *getBitWidth() const {
2143    return isBitField() ? InitializerOrBitWidth.getPointer() : 0;
2144  }
2145  unsigned getBitWidthValue(const ASTContext &Ctx) const;
2146
2147  /// setBitWidth - Set the bit-field width for this member.
2148  // Note: used by some clients (i.e., do not remove it).
2149  void setBitWidth(Expr *Width);
2150  /// removeBitWidth - Remove the bit-field width from this member.
2151  // Note: used by some clients (i.e., do not remove it).
2152  void removeBitWidth() {
2153    assert(isBitField() && "no bitfield width to remove");
2154    InitializerOrBitWidth.setPointer(0);
2155  }
2156
2157  /// getInClassInitStyle - Get the kind of (C++11) in-class initializer which
2158  /// this field has.
2159  InClassInitStyle getInClassInitStyle() const {
2160    return static_cast<InClassInitStyle>(InitializerOrBitWidth.getInt());
2161  }
2162
2163  /// hasInClassInitializer - Determine whether this member has a C++11 in-class
2164  /// initializer.
2165  bool hasInClassInitializer() const {
2166    return getInClassInitStyle() != ICIS_NoInit;
2167  }
2168  /// getInClassInitializer - Get the C++11 in-class initializer for this
2169  /// member, or null if one has not been set. If a valid declaration has an
2170  /// in-class initializer, but this returns null, then we have not parsed and
2171  /// attached it yet.
2172  Expr *getInClassInitializer() const {
2173    return hasInClassInitializer() ? InitializerOrBitWidth.getPointer() : 0;
2174  }
2175  /// setInClassInitializer - Set the C++11 in-class initializer for this
2176  /// member.
2177  void setInClassInitializer(Expr *Init);
2178  /// removeInClassInitializer - Remove the C++11 in-class initializer from this
2179  /// member.
2180  void removeInClassInitializer() {
2181    assert(hasInClassInitializer() && "no initializer to remove");
2182    InitializerOrBitWidth.setPointer(0);
2183    InitializerOrBitWidth.setInt(ICIS_NoInit);
2184  }
2185
2186  /// getParent - Returns the parent of this field declaration, which
2187  /// is the struct in which this method is defined.
2188  const RecordDecl *getParent() const {
2189    return cast<RecordDecl>(getDeclContext());
2190  }
2191
2192  RecordDecl *getParent() {
2193    return cast<RecordDecl>(getDeclContext());
2194  }
2195
2196  SourceRange getSourceRange() const LLVM_READONLY;
2197
2198  // Implement isa/cast/dyncast/etc.
2199  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2200  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
2201
2202  friend class ASTDeclReader;
2203  friend class ASTDeclWriter;
2204};
2205
2206/// EnumConstantDecl - An instance of this object exists for each enum constant
2207/// that is defined.  For example, in "enum X {a,b}", each of a/b are
2208/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
2209/// TagType for the X EnumDecl.
2210class EnumConstantDecl : public ValueDecl {
2211  Stmt *Init; // an integer constant expression
2212  llvm::APSInt Val; // The value.
2213protected:
2214  EnumConstantDecl(DeclContext *DC, SourceLocation L,
2215                   IdentifierInfo *Id, QualType T, Expr *E,
2216                   const llvm::APSInt &V)
2217    : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
2218
2219public:
2220
2221  static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
2222                                  SourceLocation L, IdentifierInfo *Id,
2223                                  QualType T, Expr *E,
2224                                  const llvm::APSInt &V);
2225  static EnumConstantDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2226
2227  const Expr *getInitExpr() const { return (const Expr*) Init; }
2228  Expr *getInitExpr() { return (Expr*) Init; }
2229  const llvm::APSInt &getInitVal() const { return Val; }
2230
2231  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
2232  void setInitVal(const llvm::APSInt &V) { Val = V; }
2233
2234  SourceRange getSourceRange() const LLVM_READONLY;
2235
2236  // Implement isa/cast/dyncast/etc.
2237  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2238  static bool classofKind(Kind K) { return K == EnumConstant; }
2239
2240  friend class StmtIteratorBase;
2241};
2242
2243/// IndirectFieldDecl - An instance of this class is created to represent a
2244/// field injected from an anonymous union/struct into the parent scope.
2245/// IndirectFieldDecl are always implicit.
2246class IndirectFieldDecl : public ValueDecl {
2247  virtual void anchor();
2248  NamedDecl **Chaining;
2249  unsigned ChainingSize;
2250
2251  IndirectFieldDecl(DeclContext *DC, SourceLocation L,
2252                    DeclarationName N, QualType T,
2253                    NamedDecl **CH, unsigned CHS)
2254    : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH), ChainingSize(CHS) {}
2255
2256public:
2257  static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
2258                                   SourceLocation L, IdentifierInfo *Id,
2259                                   QualType T, NamedDecl **CH, unsigned CHS);
2260
2261  static IndirectFieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2262
2263  typedef NamedDecl * const *chain_iterator;
2264  chain_iterator chain_begin() const { return Chaining; }
2265  chain_iterator chain_end() const  { return Chaining+ChainingSize; }
2266
2267  unsigned getChainingSize() const { return ChainingSize; }
2268
2269  FieldDecl *getAnonField() const {
2270    assert(ChainingSize >= 2);
2271    return cast<FieldDecl>(Chaining[ChainingSize - 1]);
2272  }
2273
2274  VarDecl *getVarDecl() const {
2275    assert(ChainingSize >= 2);
2276    return dyn_cast<VarDecl>(*chain_begin());
2277  }
2278
2279  // Implement isa/cast/dyncast/etc.
2280  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2281  static bool classofKind(Kind K) { return K == IndirectField; }
2282  friend class ASTDeclReader;
2283};
2284
2285/// TypeDecl - Represents a declaration of a type.
2286///
2287class TypeDecl : public NamedDecl {
2288  virtual void anchor();
2289  /// TypeForDecl - This indicates the Type object that represents
2290  /// this TypeDecl.  It is a cache maintained by
2291  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
2292  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
2293  mutable const Type *TypeForDecl;
2294  /// LocStart - The start of the source range for this declaration.
2295  SourceLocation LocStart;
2296  friend class ASTContext;
2297  friend class DeclContext;
2298  friend class TagDecl;
2299  friend class TemplateTypeParmDecl;
2300  friend class TagType;
2301  friend class ASTReader;
2302
2303protected:
2304  TypeDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
2305           SourceLocation StartL = SourceLocation())
2306    : NamedDecl(DK, DC, L, Id), TypeForDecl(0), LocStart(StartL) {}
2307
2308public:
2309  // Low-level accessor. If you just want the type defined by this node,
2310  // check out ASTContext::getTypeDeclType or one of
2311  // ASTContext::getTypedefType, ASTContext::getRecordType, etc. if you
2312  // already know the specific kind of node this is.
2313  const Type *getTypeForDecl() const { return TypeForDecl; }
2314  void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
2315
2316  SourceLocation getLocStart() const LLVM_READONLY { return LocStart; }
2317  void setLocStart(SourceLocation L) { LocStart = L; }
2318  virtual SourceRange getSourceRange() const LLVM_READONLY {
2319    if (LocStart.isValid())
2320      return SourceRange(LocStart, getLocation());
2321    else
2322      return SourceRange(getLocation());
2323  }
2324
2325  // Implement isa/cast/dyncast/etc.
2326  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2327  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
2328};
2329
2330
2331/// Base class for declarations which introduce a typedef-name.
2332class TypedefNameDecl : public TypeDecl, public Redeclarable<TypedefNameDecl> {
2333  virtual void anchor();
2334  /// UnderlyingType - This is the type the typedef is set to.
2335  TypeSourceInfo *TInfo;
2336
2337protected:
2338  TypedefNameDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2339                  SourceLocation IdLoc, IdentifierInfo *Id,
2340                  TypeSourceInfo *TInfo)
2341    : TypeDecl(DK, DC, IdLoc, Id, StartLoc), TInfo(TInfo) {}
2342
2343  typedef Redeclarable<TypedefNameDecl> redeclarable_base;
2344  virtual TypedefNameDecl *getNextRedeclaration() {
2345    return RedeclLink.getNext();
2346  }
2347  virtual TypedefNameDecl *getPreviousDeclImpl() {
2348    return getPreviousDecl();
2349  }
2350  virtual TypedefNameDecl *getMostRecentDeclImpl() {
2351    return getMostRecentDecl();
2352  }
2353
2354public:
2355  typedef redeclarable_base::redecl_iterator redecl_iterator;
2356  using redeclarable_base::redecls_begin;
2357  using redeclarable_base::redecls_end;
2358  using redeclarable_base::getPreviousDecl;
2359  using redeclarable_base::getMostRecentDecl;
2360
2361  TypeSourceInfo *getTypeSourceInfo() const {
2362    return TInfo;
2363  }
2364
2365  /// Retrieves the canonical declaration of this typedef-name.
2366  TypedefNameDecl *getCanonicalDecl() {
2367    return getFirstDeclaration();
2368  }
2369  const TypedefNameDecl *getCanonicalDecl() const {
2370    return getFirstDeclaration();
2371  }
2372
2373  QualType getUnderlyingType() const {
2374    return TInfo->getType();
2375  }
2376  void setTypeSourceInfo(TypeSourceInfo *newType) {
2377    TInfo = newType;
2378  }
2379
2380  // Implement isa/cast/dyncast/etc.
2381  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2382  static bool classofKind(Kind K) {
2383    return K >= firstTypedefName && K <= lastTypedefName;
2384  }
2385};
2386
2387/// TypedefDecl - Represents the declaration of a typedef-name via the 'typedef'
2388/// type specifier.
2389class TypedefDecl : public TypedefNameDecl {
2390  TypedefDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc,
2391              IdentifierInfo *Id, TypeSourceInfo *TInfo)
2392    : TypedefNameDecl(Typedef, DC, StartLoc, IdLoc, Id, TInfo) {}
2393
2394public:
2395  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
2396                             SourceLocation StartLoc, SourceLocation IdLoc,
2397                             IdentifierInfo *Id, TypeSourceInfo *TInfo);
2398  static TypedefDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2399
2400  SourceRange getSourceRange() const LLVM_READONLY;
2401
2402  // Implement isa/cast/dyncast/etc.
2403  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2404  static bool classofKind(Kind K) { return K == Typedef; }
2405};
2406
2407/// TypeAliasDecl - Represents the declaration of a typedef-name via a C++0x
2408/// alias-declaration.
2409class TypeAliasDecl : public TypedefNameDecl {
2410  TypeAliasDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc,
2411                IdentifierInfo *Id, TypeSourceInfo *TInfo)
2412    : TypedefNameDecl(TypeAlias, DC, StartLoc, IdLoc, Id, TInfo) {}
2413
2414public:
2415  static TypeAliasDecl *Create(ASTContext &C, DeclContext *DC,
2416                               SourceLocation StartLoc, SourceLocation IdLoc,
2417                               IdentifierInfo *Id, TypeSourceInfo *TInfo);
2418  static TypeAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2419
2420  SourceRange getSourceRange() const LLVM_READONLY;
2421
2422  // Implement isa/cast/dyncast/etc.
2423  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2424  static bool classofKind(Kind K) { return K == TypeAlias; }
2425};
2426
2427/// TagDecl - Represents the declaration of a struct/union/class/enum.
2428class TagDecl
2429  : public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
2430public:
2431  // This is really ugly.
2432  typedef TagTypeKind TagKind;
2433
2434private:
2435  // FIXME: This can be packed into the bitfields in Decl.
2436  /// TagDeclKind - The TagKind enum.
2437  unsigned TagDeclKind : 3;
2438
2439  /// IsCompleteDefinition - True if this is a definition ("struct foo
2440  /// {};"), false if it is a declaration ("struct foo;").  It is not
2441  /// a definition until the definition has been fully processed.
2442  bool IsCompleteDefinition : 1;
2443
2444protected:
2445  /// IsBeingDefined - True if this is currently being defined.
2446  bool IsBeingDefined : 1;
2447
2448private:
2449  /// IsEmbeddedInDeclarator - True if this tag declaration is
2450  /// "embedded" (i.e., defined or declared for the very first time)
2451  /// in the syntax of a declarator.
2452  bool IsEmbeddedInDeclarator : 1;
2453
2454  /// \brief True if this tag is free standing, e.g. "struct foo;".
2455  bool IsFreeStanding : 1;
2456
2457protected:
2458  // These are used by (and only defined for) EnumDecl.
2459  unsigned NumPositiveBits : 8;
2460  unsigned NumNegativeBits : 8;
2461
2462  /// IsScoped - True if this tag declaration is a scoped enumeration. Only
2463  /// possible in C++11 mode.
2464  bool IsScoped : 1;
2465  /// IsScopedUsingClassTag - If this tag declaration is a scoped enum,
2466  /// then this is true if the scoped enum was declared using the class
2467  /// tag, false if it was declared with the struct tag. No meaning is
2468  /// associated if this tag declaration is not a scoped enum.
2469  bool IsScopedUsingClassTag : 1;
2470
2471  /// IsFixed - True if this is an enumeration with fixed underlying type. Only
2472  /// possible in C++11 or Microsoft extensions mode.
2473  bool IsFixed : 1;
2474
2475private:
2476  SourceLocation RBraceLoc;
2477
2478  // A struct representing syntactic qualifier info,
2479  // to be used for the (uncommon) case of out-of-line declarations.
2480  typedef QualifierInfo ExtInfo;
2481
2482  /// TypedefNameDeclOrQualifier - If the (out-of-line) tag declaration name
2483  /// is qualified, it points to the qualifier info (nns and range);
2484  /// otherwise, if the tag declaration is anonymous and it is part of
2485  /// a typedef or alias, it points to the TypedefNameDecl (used for mangling);
2486  /// otherwise, it is a null (TypedefNameDecl) pointer.
2487  llvm::PointerUnion<TypedefNameDecl*, ExtInfo*> TypedefNameDeclOrQualifier;
2488
2489  bool hasExtInfo() const { return TypedefNameDeclOrQualifier.is<ExtInfo*>(); }
2490  ExtInfo *getExtInfo() { return TypedefNameDeclOrQualifier.get<ExtInfo*>(); }
2491  const ExtInfo *getExtInfo() const {
2492    return TypedefNameDeclOrQualifier.get<ExtInfo*>();
2493  }
2494
2495protected:
2496  TagDecl(Kind DK, TagKind TK, DeclContext *DC,
2497          SourceLocation L, IdentifierInfo *Id,
2498          TagDecl *PrevDecl, SourceLocation StartL)
2499    : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK),
2500      TypedefNameDeclOrQualifier((TypedefNameDecl*) 0) {
2501    assert((DK != Enum || TK == TTK_Enum) &&
2502           "EnumDecl not matched with TTK_Enum");
2503    TagDeclKind = TK;
2504    IsCompleteDefinition = false;
2505    IsBeingDefined = false;
2506    IsEmbeddedInDeclarator = false;
2507    IsFreeStanding = false;
2508    setPreviousDeclaration(PrevDecl);
2509  }
2510
2511  typedef Redeclarable<TagDecl> redeclarable_base;
2512  virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
2513  virtual TagDecl *getPreviousDeclImpl() {
2514    return getPreviousDecl();
2515  }
2516  virtual TagDecl *getMostRecentDeclImpl() {
2517    return getMostRecentDecl();
2518  }
2519
2520  /// @brief Completes the definition of this tag declaration.
2521  ///
2522  /// This is a helper function for derived classes.
2523  void completeDefinition();
2524
2525public:
2526  typedef redeclarable_base::redecl_iterator redecl_iterator;
2527  using redeclarable_base::redecls_begin;
2528  using redeclarable_base::redecls_end;
2529  using redeclarable_base::getPreviousDecl;
2530  using redeclarable_base::getMostRecentDecl;
2531
2532  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2533  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
2534
2535  /// getInnerLocStart - Return SourceLocation representing start of source
2536  /// range ignoring outer template declarations.
2537  SourceLocation getInnerLocStart() const { return getLocStart(); }
2538
2539  /// getOuterLocStart - Return SourceLocation representing start of source
2540  /// range taking into account any outer template declarations.
2541  SourceLocation getOuterLocStart() const;
2542  virtual SourceRange getSourceRange() const LLVM_READONLY;
2543
2544  virtual TagDecl* getCanonicalDecl();
2545  const TagDecl* getCanonicalDecl() const {
2546    return const_cast<TagDecl*>(this)->getCanonicalDecl();
2547  }
2548
2549  /// isThisDeclarationADefinition() - Return true if this declaration
2550  /// is a completion definintion of the type.  Provided for consistency.
2551  bool isThisDeclarationADefinition() const {
2552    return isCompleteDefinition();
2553  }
2554
2555  /// isCompleteDefinition - Return true if this decl has its body
2556  /// fully specified.
2557  bool isCompleteDefinition() const {
2558    return IsCompleteDefinition;
2559  }
2560
2561  /// isBeingDefined - Return true if this decl is currently being defined.
2562  bool isBeingDefined() const {
2563    return IsBeingDefined;
2564  }
2565
2566  bool isEmbeddedInDeclarator() const {
2567    return IsEmbeddedInDeclarator;
2568  }
2569  void setEmbeddedInDeclarator(bool isInDeclarator) {
2570    IsEmbeddedInDeclarator = isInDeclarator;
2571  }
2572
2573  bool isFreeStanding() const { return IsFreeStanding; }
2574  void setFreeStanding(bool isFreeStanding = true) {
2575    IsFreeStanding = isFreeStanding;
2576  }
2577
2578  /// \brief Whether this declaration declares a type that is
2579  /// dependent, i.e., a type that somehow depends on template
2580  /// parameters.
2581  bool isDependentType() const { return isDependentContext(); }
2582
2583  /// @brief Starts the definition of this tag declaration.
2584  ///
2585  /// This method should be invoked at the beginning of the definition
2586  /// of this tag declaration. It will set the tag type into a state
2587  /// where it is in the process of being defined.
2588  void startDefinition();
2589
2590  /// getDefinition - Returns the TagDecl that actually defines this
2591  ///  struct/union/class/enum.  When determining whether or not a
2592  ///  struct/union/class/enum has a definition, one should use this
2593  ///  method as opposed to 'isDefinition'.  'isDefinition' indicates
2594  ///  whether or not a specific TagDecl is defining declaration, not
2595  ///  whether or not the struct/union/class/enum type is defined.
2596  ///  This method returns NULL if there is no TagDecl that defines
2597  ///  the struct/union/class/enum.
2598  TagDecl *getDefinition() const;
2599
2600  void setCompleteDefinition(bool V) { IsCompleteDefinition = V; }
2601
2602  // FIXME: Return StringRef;
2603  const char *getKindName() const {
2604    return TypeWithKeyword::getTagTypeKindName(getTagKind());
2605  }
2606
2607  TagKind getTagKind() const {
2608    return TagKind(TagDeclKind);
2609  }
2610
2611  void setTagKind(TagKind TK) { TagDeclKind = TK; }
2612
2613  bool isStruct() const { return getTagKind() == TTK_Struct; }
2614  bool isInterface() const { return getTagKind() == TTK_Interface; }
2615  bool isClass()  const { return getTagKind() == TTK_Class; }
2616  bool isUnion()  const { return getTagKind() == TTK_Union; }
2617  bool isEnum()   const { return getTagKind() == TTK_Enum; }
2618
2619  TypedefNameDecl *getTypedefNameForAnonDecl() const {
2620    return hasExtInfo() ? 0 :
2621           TypedefNameDeclOrQualifier.get<TypedefNameDecl*>();
2622  }
2623
2624  void setTypedefNameForAnonDecl(TypedefNameDecl *TDD);
2625
2626  /// \brief Retrieve the nested-name-specifier that qualifies the name of this
2627  /// declaration, if it was present in the source.
2628  NestedNameSpecifier *getQualifier() const {
2629    return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
2630                        : 0;
2631  }
2632
2633  /// \brief Retrieve the nested-name-specifier (with source-location
2634  /// information) that qualifies the name of this declaration, if it was
2635  /// present in the source.
2636  NestedNameSpecifierLoc getQualifierLoc() const {
2637    return hasExtInfo() ? getExtInfo()->QualifierLoc
2638                        : NestedNameSpecifierLoc();
2639  }
2640
2641  void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
2642
2643  unsigned getNumTemplateParameterLists() const {
2644    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
2645  }
2646  TemplateParameterList *getTemplateParameterList(unsigned i) const {
2647    assert(i < getNumTemplateParameterLists());
2648    return getExtInfo()->TemplParamLists[i];
2649  }
2650  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
2651                                     TemplateParameterList **TPLists);
2652
2653  // Implement isa/cast/dyncast/etc.
2654  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2655  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
2656
2657  static DeclContext *castToDeclContext(const TagDecl *D) {
2658    return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
2659  }
2660  static TagDecl *castFromDeclContext(const DeclContext *DC) {
2661    return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
2662  }
2663
2664  friend class ASTDeclReader;
2665  friend class ASTDeclWriter;
2666};
2667
2668/// EnumDecl - Represents an enum.  In C++11, enums can be forward-declared
2669/// with a fixed underlying type, and in C we allow them to be forward-declared
2670/// with no underlying type as an extension.
2671class EnumDecl : public TagDecl {
2672  virtual void anchor();
2673  /// IntegerType - This represent the integer type that the enum corresponds
2674  /// to for code generation purposes.  Note that the enumerator constants may
2675  /// have a different type than this does.
2676  ///
2677  /// If the underlying integer type was explicitly stated in the source
2678  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
2679  /// was automatically deduced somehow, and this is a Type*.
2680  ///
2681  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
2682  /// some cases it won't.
2683  ///
2684  /// The underlying type of an enumeration never has any qualifiers, so
2685  /// we can get away with just storing a raw Type*, and thus save an
2686  /// extra pointer when TypeSourceInfo is needed.
2687
2688  llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
2689
2690  /// PromotionType - The integer type that values of this type should
2691  /// promote to.  In C, enumerators are generally of an integer type
2692  /// directly, but gcc-style large enumerators (and all enumerators
2693  /// in C++) are of the enum type instead.
2694  QualType PromotionType;
2695
2696  /// \brief If this enumeration is an instantiation of a member enumeration
2697  /// of a class template specialization, this is the member specialization
2698  /// information.
2699  MemberSpecializationInfo *SpecializationInfo;
2700
2701  EnumDecl(DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc,
2702           IdentifierInfo *Id, EnumDecl *PrevDecl,
2703           bool Scoped, bool ScopedUsingClassTag, bool Fixed)
2704    : TagDecl(Enum, TTK_Enum, DC, IdLoc, Id, PrevDecl, StartLoc),
2705      SpecializationInfo(0) {
2706    assert(Scoped || !ScopedUsingClassTag);
2707    IntegerType = (const Type*)0;
2708    NumNegativeBits = 0;
2709    NumPositiveBits = 0;
2710    IsScoped = Scoped;
2711    IsScopedUsingClassTag = ScopedUsingClassTag;
2712    IsFixed = Fixed;
2713  }
2714
2715  void setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
2716                                    TemplateSpecializationKind TSK);
2717public:
2718  EnumDecl *getCanonicalDecl() {
2719    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2720  }
2721  const EnumDecl *getCanonicalDecl() const {
2722    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2723  }
2724
2725  const EnumDecl *getPreviousDecl() const {
2726    return cast_or_null<EnumDecl>(TagDecl::getPreviousDecl());
2727  }
2728  EnumDecl *getPreviousDecl() {
2729    return cast_or_null<EnumDecl>(TagDecl::getPreviousDecl());
2730  }
2731
2732  const EnumDecl *getMostRecentDecl() const {
2733    return cast<EnumDecl>(TagDecl::getMostRecentDecl());
2734  }
2735  EnumDecl *getMostRecentDecl() {
2736    return cast<EnumDecl>(TagDecl::getMostRecentDecl());
2737  }
2738
2739  EnumDecl *getDefinition() const {
2740    return cast_or_null<EnumDecl>(TagDecl::getDefinition());
2741  }
2742
2743  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
2744                          SourceLocation StartLoc, SourceLocation IdLoc,
2745                          IdentifierInfo *Id, EnumDecl *PrevDecl,
2746                          bool IsScoped, bool IsScopedUsingClassTag,
2747                          bool IsFixed);
2748  static EnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2749
2750  /// completeDefinition - When created, the EnumDecl corresponds to a
2751  /// forward-declared enum. This method is used to mark the
2752  /// declaration as being defined; it's enumerators have already been
2753  /// added (via DeclContext::addDecl). NewType is the new underlying
2754  /// type of the enumeration type.
2755  void completeDefinition(QualType NewType,
2756                          QualType PromotionType,
2757                          unsigned NumPositiveBits,
2758                          unsigned NumNegativeBits);
2759
2760  // enumerator_iterator - Iterates through the enumerators of this
2761  // enumeration.
2762  typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
2763
2764  enumerator_iterator enumerator_begin() const {
2765    const EnumDecl *E = getDefinition();
2766    if (!E)
2767      E = this;
2768    return enumerator_iterator(E->decls_begin());
2769  }
2770
2771  enumerator_iterator enumerator_end() const {
2772    const EnumDecl *E = getDefinition();
2773    if (!E)
2774      E = this;
2775    return enumerator_iterator(E->decls_end());
2776  }
2777
2778  /// getPromotionType - Return the integer type that enumerators
2779  /// should promote to.
2780  QualType getPromotionType() const { return PromotionType; }
2781
2782  /// \brief Set the promotion type.
2783  void setPromotionType(QualType T) { PromotionType = T; }
2784
2785  /// getIntegerType - Return the integer type this enum decl corresponds to.
2786  /// This returns a null qualtype for an enum forward definition.
2787  QualType getIntegerType() const {
2788    if (!IntegerType)
2789      return QualType();
2790    if (const Type* T = IntegerType.dyn_cast<const Type*>())
2791      return QualType(T, 0);
2792    return IntegerType.get<TypeSourceInfo*>()->getType();
2793  }
2794
2795  /// \brief Set the underlying integer type.
2796  void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
2797
2798  /// \brief Set the underlying integer type source info.
2799  void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; }
2800
2801  /// \brief Return the type source info for the underlying integer type,
2802  /// if no type source info exists, return 0.
2803  TypeSourceInfo* getIntegerTypeSourceInfo() const {
2804    return IntegerType.dyn_cast<TypeSourceInfo*>();
2805  }
2806
2807  /// \brief Returns the width in bits required to store all the
2808  /// non-negative enumerators of this enum.
2809  unsigned getNumPositiveBits() const {
2810    return NumPositiveBits;
2811  }
2812  void setNumPositiveBits(unsigned Num) {
2813    NumPositiveBits = Num;
2814    assert(NumPositiveBits == Num && "can't store this bitcount");
2815  }
2816
2817  /// \brief Returns the width in bits required to store all the
2818  /// negative enumerators of this enum.  These widths include
2819  /// the rightmost leading 1;  that is:
2820  ///
2821  /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
2822  /// ------------------------     -------     -----------------
2823  ///                       -1     1111111                     1
2824  ///                      -10     1110110                     5
2825  ///                     -101     1001011                     8
2826  unsigned getNumNegativeBits() const {
2827    return NumNegativeBits;
2828  }
2829  void setNumNegativeBits(unsigned Num) {
2830    NumNegativeBits = Num;
2831  }
2832
2833  /// \brief Returns true if this is a C++0x scoped enumeration.
2834  bool isScoped() const {
2835    return IsScoped;
2836  }
2837
2838  /// \brief Returns true if this is a C++0x scoped enumeration.
2839  bool isScopedUsingClassTag() const {
2840    return IsScopedUsingClassTag;
2841  }
2842
2843  /// \brief Returns true if this is a C++0x enumeration with fixed underlying
2844  /// type.
2845  bool isFixed() const {
2846    return IsFixed;
2847  }
2848
2849  /// \brief Returns true if this can be considered a complete type.
2850  bool isComplete() const {
2851    return isCompleteDefinition() || isFixed();
2852  }
2853
2854  /// \brief Returns the enumeration (declared within the template)
2855  /// from which this enumeration type was instantiated, or NULL if
2856  /// this enumeration was not instantiated from any template.
2857  EnumDecl *getInstantiatedFromMemberEnum() const;
2858
2859  /// \brief If this enumeration is a member of a specialization of a
2860  /// templated class, determine what kind of template specialization
2861  /// or instantiation this is.
2862  TemplateSpecializationKind getTemplateSpecializationKind() const;
2863
2864  /// \brief For an enumeration member that was instantiated from a member
2865  /// enumeration of a templated class, set the template specialiation kind.
2866  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2867                        SourceLocation PointOfInstantiation = SourceLocation());
2868
2869  /// \brief If this enumeration is an instantiation of a member enumeration of
2870  /// a class template specialization, retrieves the member specialization
2871  /// information.
2872  MemberSpecializationInfo *getMemberSpecializationInfo() const {
2873    return SpecializationInfo;
2874  }
2875
2876  /// \brief Specify that this enumeration is an instantiation of the
2877  /// member enumeration ED.
2878  void setInstantiationOfMemberEnum(EnumDecl *ED,
2879                                    TemplateSpecializationKind TSK) {
2880    setInstantiationOfMemberEnum(getASTContext(), ED, TSK);
2881  }
2882
2883  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2884  static bool classofKind(Kind K) { return K == Enum; }
2885
2886  friend class ASTDeclReader;
2887};
2888
2889
2890/// RecordDecl - Represents a struct/union/class.  For example:
2891///   struct X;                  // Forward declaration, no "body".
2892///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
2893/// This decl will be marked invalid if *any* members are invalid.
2894///
2895class RecordDecl : public TagDecl {
2896  // FIXME: This can be packed into the bitfields in Decl.
2897  /// HasFlexibleArrayMember - This is true if this struct ends with a flexible
2898  /// array member (e.g. int X[]) or if this union contains a struct that does.
2899  /// If so, this cannot be contained in arrays or other structs as a member.
2900  bool HasFlexibleArrayMember : 1;
2901
2902  /// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
2903  /// or union.
2904  bool AnonymousStructOrUnion : 1;
2905
2906  /// HasObjectMember - This is true if this struct has at least one member
2907  /// containing an Objective-C object pointer type.
2908  bool HasObjectMember : 1;
2909
2910  /// \brief Whether the field declarations of this record have been loaded
2911  /// from external storage. To avoid unnecessary deserialization of
2912  /// methods/nested types we allow deserialization of just the fields
2913  /// when needed.
2914  mutable bool LoadedFieldsFromExternalStorage : 1;
2915  friend class DeclContext;
2916
2917protected:
2918  RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2919             SourceLocation StartLoc, SourceLocation IdLoc,
2920             IdentifierInfo *Id, RecordDecl *PrevDecl);
2921
2922public:
2923  static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
2924                            SourceLocation StartLoc, SourceLocation IdLoc,
2925                            IdentifierInfo *Id, RecordDecl* PrevDecl = 0);
2926  static RecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
2927
2928  const RecordDecl *getPreviousDecl() const {
2929    return cast_or_null<RecordDecl>(TagDecl::getPreviousDecl());
2930  }
2931  RecordDecl *getPreviousDecl() {
2932    return cast_or_null<RecordDecl>(TagDecl::getPreviousDecl());
2933  }
2934
2935  const RecordDecl *getMostRecentDecl() const {
2936    return cast<RecordDecl>(TagDecl::getMostRecentDecl());
2937  }
2938  RecordDecl *getMostRecentDecl() {
2939    return cast<RecordDecl>(TagDecl::getMostRecentDecl());
2940  }
2941
2942  bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
2943  void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
2944
2945  /// isAnonymousStructOrUnion - Whether this is an anonymous struct
2946  /// or union. To be an anonymous struct or union, it must have been
2947  /// declared without a name and there must be no objects of this
2948  /// type declared, e.g.,
2949  /// @code
2950  ///   union { int i; float f; };
2951  /// @endcode
2952  /// is an anonymous union but neither of the following are:
2953  /// @code
2954  ///  union X { int i; float f; };
2955  ///  union { int i; float f; } obj;
2956  /// @endcode
2957  bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
2958  void setAnonymousStructOrUnion(bool Anon) {
2959    AnonymousStructOrUnion = Anon;
2960  }
2961
2962  bool hasObjectMember() const { return HasObjectMember; }
2963  void setHasObjectMember (bool val) { HasObjectMember = val; }
2964
2965  /// \brief Determines whether this declaration represents the
2966  /// injected class name.
2967  ///
2968  /// The injected class name in C++ is the name of the class that
2969  /// appears inside the class itself. For example:
2970  ///
2971  /// \code
2972  /// struct C {
2973  ///   // C is implicitly declared here as a synonym for the class name.
2974  /// };
2975  ///
2976  /// C::C c; // same as "C c;"
2977  /// \endcode
2978  bool isInjectedClassName() const;
2979
2980  /// getDefinition - Returns the RecordDecl that actually defines
2981  ///  this struct/union/class.  When determining whether or not a
2982  ///  struct/union/class is completely defined, one should use this
2983  ///  method as opposed to 'isCompleteDefinition'.
2984  ///  'isCompleteDefinition' indicates whether or not a specific
2985  ///  RecordDecl is a completed definition, not whether or not the
2986  ///  record type is defined.  This method returns NULL if there is
2987  ///  no RecordDecl that defines the struct/union/tag.
2988  RecordDecl *getDefinition() const {
2989    return cast_or_null<RecordDecl>(TagDecl::getDefinition());
2990  }
2991
2992  // Iterator access to field members. The field iterator only visits
2993  // the non-static data members of this class, ignoring any static
2994  // data members, functions, constructors, destructors, etc.
2995  typedef specific_decl_iterator<FieldDecl> field_iterator;
2996
2997  field_iterator field_begin() const;
2998
2999  field_iterator field_end() const {
3000    return field_iterator(decl_iterator());
3001  }
3002
3003  // field_empty - Whether there are any fields (non-static data
3004  // members) in this record.
3005  bool field_empty() const {
3006    return field_begin() == field_end();
3007  }
3008
3009  /// completeDefinition - Notes that the definition of this type is
3010  /// now complete.
3011  virtual void completeDefinition();
3012
3013  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3014  static bool classofKind(Kind K) {
3015    return K >= firstRecord && K <= lastRecord;
3016  }
3017
3018  /// isMsStrust - Get whether or not this is an ms_struct which can
3019  /// be turned on with an attribute, pragma, or -mms-bitfields
3020  /// commandline option.
3021  bool isMsStruct(const ASTContext &C) const;
3022
3023private:
3024  /// \brief Deserialize just the fields.
3025  void LoadFieldsFromExternalStorage() const;
3026};
3027
3028class FileScopeAsmDecl : public Decl {
3029  virtual void anchor();
3030  StringLiteral *AsmString;
3031  SourceLocation RParenLoc;
3032  FileScopeAsmDecl(DeclContext *DC, StringLiteral *asmstring,
3033                   SourceLocation StartL, SourceLocation EndL)
3034    : Decl(FileScopeAsm, DC, StartL), AsmString(asmstring), RParenLoc(EndL) {}
3035public:
3036  static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
3037                                  StringLiteral *Str, SourceLocation AsmLoc,
3038                                  SourceLocation RParenLoc);
3039
3040  static FileScopeAsmDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3041
3042  SourceLocation getAsmLoc() const { return getLocation(); }
3043  SourceLocation getRParenLoc() const { return RParenLoc; }
3044  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3045  SourceRange getSourceRange() const LLVM_READONLY {
3046    return SourceRange(getAsmLoc(), getRParenLoc());
3047  }
3048
3049  const StringLiteral *getAsmString() const { return AsmString; }
3050  StringLiteral *getAsmString() { return AsmString; }
3051  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
3052
3053  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3054  static bool classofKind(Kind K) { return K == FileScopeAsm; }
3055};
3056
3057/// BlockDecl - This represents a block literal declaration, which is like an
3058/// unnamed FunctionDecl.  For example:
3059/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
3060///
3061class BlockDecl : public Decl, public DeclContext {
3062public:
3063  /// A class which contains all the information about a particular
3064  /// captured value.
3065  class Capture {
3066    enum {
3067      flag_isByRef = 0x1,
3068      flag_isNested = 0x2
3069    };
3070
3071    /// The variable being captured.
3072    llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
3073
3074    /// The copy expression, expressed in terms of a DeclRef (or
3075    /// BlockDeclRef) to the captured variable.  Only required if the
3076    /// variable has a C++ class type.
3077    Expr *CopyExpr;
3078
3079  public:
3080    Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
3081      : VariableAndFlags(variable,
3082                  (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
3083        CopyExpr(copy) {}
3084
3085    /// The variable being captured.
3086    VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
3087
3088    /// Whether this is a "by ref" capture, i.e. a capture of a __block
3089    /// variable.
3090    bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
3091
3092    /// Whether this is a nested capture, i.e. the variable captured
3093    /// is not from outside the immediately enclosing function/block.
3094    bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
3095
3096    bool hasCopyExpr() const { return CopyExpr != 0; }
3097    Expr *getCopyExpr() const { return CopyExpr; }
3098    void setCopyExpr(Expr *e) { CopyExpr = e; }
3099  };
3100
3101private:
3102  // FIXME: This can be packed into the bitfields in Decl.
3103  bool IsVariadic : 1;
3104  bool CapturesCXXThis : 1;
3105  bool BlockMissingReturnType : 1;
3106  bool IsConversionFromLambda : 1;
3107  /// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
3108  /// parameters of this function.  This is null if a prototype or if there are
3109  /// no formals.
3110  ParmVarDecl **ParamInfo;
3111  unsigned NumParams;
3112
3113  Stmt *Body;
3114  TypeSourceInfo *SignatureAsWritten;
3115
3116  Capture *Captures;
3117  unsigned NumCaptures;
3118
3119protected:
3120  BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
3121    : Decl(Block, DC, CaretLoc), DeclContext(Block),
3122      IsVariadic(false), CapturesCXXThis(false),
3123      BlockMissingReturnType(true), IsConversionFromLambda(false),
3124      ParamInfo(0), NumParams(0), Body(0),
3125      SignatureAsWritten(0), Captures(0), NumCaptures(0) {}
3126
3127public:
3128  static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
3129  static BlockDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3130
3131  SourceLocation getCaretLocation() const { return getLocation(); }
3132
3133  bool isVariadic() const { return IsVariadic; }
3134  void setIsVariadic(bool value) { IsVariadic = value; }
3135
3136  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
3137  Stmt *getBody() const { return (Stmt*) Body; }
3138  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
3139
3140  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
3141  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
3142
3143  // Iterator access to formal parameters.
3144  unsigned param_size() const { return getNumParams(); }
3145  typedef ParmVarDecl **param_iterator;
3146  typedef ParmVarDecl * const *param_const_iterator;
3147
3148  bool param_empty() const { return NumParams == 0; }
3149  param_iterator param_begin()  { return ParamInfo; }
3150  param_iterator param_end()   { return ParamInfo+param_size(); }
3151
3152  param_const_iterator param_begin() const { return ParamInfo; }
3153  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
3154
3155  unsigned getNumParams() const { return NumParams; }
3156  const ParmVarDecl *getParamDecl(unsigned i) const {
3157    assert(i < getNumParams() && "Illegal param #");
3158    return ParamInfo[i];
3159  }
3160  ParmVarDecl *getParamDecl(unsigned i) {
3161    assert(i < getNumParams() && "Illegal param #");
3162    return ParamInfo[i];
3163  }
3164  void setParams(llvm::ArrayRef<ParmVarDecl *> NewParamInfo);
3165
3166  /// hasCaptures - True if this block (or its nested blocks) captures
3167  /// anything of local storage from its enclosing scopes.
3168  bool hasCaptures() const { return NumCaptures != 0 || CapturesCXXThis; }
3169
3170  /// getNumCaptures - Returns the number of captured variables.
3171  /// Does not include an entry for 'this'.
3172  unsigned getNumCaptures() const { return NumCaptures; }
3173
3174  typedef const Capture *capture_iterator;
3175  typedef const Capture *capture_const_iterator;
3176  capture_iterator capture_begin() { return Captures; }
3177  capture_iterator capture_end() { return Captures + NumCaptures; }
3178  capture_const_iterator capture_begin() const { return Captures; }
3179  capture_const_iterator capture_end() const { return Captures + NumCaptures; }
3180
3181  bool capturesCXXThis() const { return CapturesCXXThis; }
3182  bool blockMissingReturnType() const { return BlockMissingReturnType; }
3183  void setBlockMissingReturnType(bool val) { BlockMissingReturnType = val; }
3184
3185  bool isConversionFromLambda() const { return IsConversionFromLambda; }
3186  void setIsConversionFromLambda(bool val) { IsConversionFromLambda = val; }
3187
3188  bool capturesVariable(const VarDecl *var) const;
3189
3190  void setCaptures(ASTContext &Context,
3191                   const Capture *begin,
3192                   const Capture *end,
3193                   bool capturesCXXThis);
3194
3195  virtual SourceRange getSourceRange() const LLVM_READONLY;
3196
3197  // Implement isa/cast/dyncast/etc.
3198  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3199  static bool classofKind(Kind K) { return K == Block; }
3200  static DeclContext *castToDeclContext(const BlockDecl *D) {
3201    return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
3202  }
3203  static BlockDecl *castFromDeclContext(const DeclContext *DC) {
3204    return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
3205  }
3206};
3207
3208/// \brief Describes a module import declaration, which makes the contents
3209/// of the named module visible in the current translation unit.
3210///
3211/// An import declaration imports the named module (or submodule). For example:
3212/// \code
3213///   @__experimental_modules_import std.vector;
3214/// \endcode
3215///
3216/// Import declarations can also be implicitly generated from
3217/// \#include/\#import directives.
3218class ImportDecl : public Decl {
3219  /// \brief The imported module, along with a bit that indicates whether
3220  /// we have source-location information for each identifier in the module
3221  /// name.
3222  ///
3223  /// When the bit is false, we only have a single source location for the
3224  /// end of the import declaration.
3225  llvm::PointerIntPair<Module *, 1, bool> ImportedAndComplete;
3226
3227  /// \brief The next import in the list of imports local to the translation
3228  /// unit being parsed (not loaded from an AST file).
3229  ImportDecl *NextLocalImport;
3230
3231  friend class ASTReader;
3232  friend class ASTDeclReader;
3233  friend class ASTContext;
3234
3235  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
3236             ArrayRef<SourceLocation> IdentifierLocs);
3237
3238  ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported,
3239             SourceLocation EndLoc);
3240
3241  ImportDecl(EmptyShell Empty) : Decl(Import, Empty), NextLocalImport() { }
3242
3243public:
3244  /// \brief Create a new module import declaration.
3245  static ImportDecl *Create(ASTContext &C, DeclContext *DC,
3246                            SourceLocation StartLoc, Module *Imported,
3247                            ArrayRef<SourceLocation> IdentifierLocs);
3248
3249  /// \brief Create a new module import declaration for an implicitly-generated
3250  /// import.
3251  static ImportDecl *CreateImplicit(ASTContext &C, DeclContext *DC,
3252                                    SourceLocation StartLoc, Module *Imported,
3253                                    SourceLocation EndLoc);
3254
3255  /// \brief Create a new, deserialized module import declaration.
3256  static ImportDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3257                                        unsigned NumLocations);
3258
3259  /// \brief Retrieve the module that was imported by the import declaration.
3260  Module *getImportedModule() const { return ImportedAndComplete.getPointer(); }
3261
3262  /// \brief Retrieves the locations of each of the identifiers that make up
3263  /// the complete module name in the import declaration.
3264  ///
3265  /// This will return an empty array if the locations of the individual
3266  /// identifiers aren't available.
3267  ArrayRef<SourceLocation> getIdentifierLocs() const;
3268
3269  virtual SourceRange getSourceRange() const LLVM_READONLY;
3270
3271  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3272  static bool classofKind(Kind K) { return K == Import; }
3273};
3274
3275
3276/// Insertion operator for diagnostics.  This allows sending NamedDecl's
3277/// into a diagnostic with <<.
3278inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3279                                           const NamedDecl* ND) {
3280  DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
3281                  DiagnosticsEngine::ak_nameddecl);
3282  return DB;
3283}
3284inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
3285                                           const NamedDecl* ND) {
3286  PD.AddTaggedVal(reinterpret_cast<intptr_t>(ND),
3287                  DiagnosticsEngine::ak_nameddecl);
3288  return PD;
3289}
3290
3291template<typename decl_type>
3292void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) {
3293  // Note: This routine is implemented here because we need both NamedDecl
3294  // and Redeclarable to be defined.
3295
3296  decl_type *First;
3297
3298  if (PrevDecl) {
3299    // Point to previous. Make sure that this is actually the most recent
3300    // redeclaration, or we can build invalid chains. If the most recent
3301    // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
3302    RedeclLink = PreviousDeclLink(
3303                   llvm::cast<decl_type>(PrevDecl->getMostRecentDecl()));
3304    First = PrevDecl->getFirstDeclaration();
3305    assert(First->RedeclLink.NextIsLatest() && "Expected first");
3306  } else {
3307    // Make this first.
3308    First = static_cast<decl_type*>(this);
3309  }
3310
3311  // First one will point to this one as latest.
3312  First->RedeclLink = LatestDeclLink(static_cast<decl_type*>(this));
3313  if (NamedDecl *ND = dyn_cast<NamedDecl>(static_cast<decl_type*>(this)))
3314    ND->ClearLinkageCache();
3315}
3316
3317// Inline function definitions.
3318
3319/// \brief Check if the given decl is complete.
3320///
3321/// We use this function to break a cycle between the inline definitions in
3322/// Type.h and Decl.h.
3323inline bool IsEnumDeclComplete(EnumDecl *ED) {
3324  return ED->isComplete();
3325}
3326
3327/// \brief Check if the given decl is scoped.
3328///
3329/// We use this function to break a cycle between the inline definitions in
3330/// Type.h and Decl.h.
3331inline bool IsEnumDeclScoped(EnumDecl *ED) {
3332  return ED->isScoped();
3333}
3334
3335}  // end namespace clang
3336
3337#endif
3338