Decl.h revision afdfdc05fe8b2442713f0150a5985a9c6d852cee
1//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Decl subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_DECL_H
15#define LLVM_CLANG_AST_DECL_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/DeclBase.h"
19#include "clang/AST/Redeclarable.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/Basic/Linkage.h"
23
24namespace clang {
25class CXXTemporary;
26class Expr;
27class FunctionTemplateDecl;
28class Stmt;
29class CompoundStmt;
30class StringLiteral;
31class NestedNameSpecifier;
32class TemplateParameterList;
33class TemplateArgumentList;
34class MemberSpecializationInfo;
35class FunctionTemplateSpecializationInfo;
36class DependentFunctionTemplateSpecializationInfo;
37class TypeLoc;
38class UnresolvedSetImpl;
39class LabelStmt;
40
41/// \brief A container of type source information.
42///
43/// A client can read the relevant info using TypeLoc wrappers, e.g:
44/// @code
45/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
46/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
47///   PL->getStarLoc().print(OS, SrcMgr);
48/// @endcode
49///
50class TypeSourceInfo {
51  QualType Ty;
52  // Contains a memory block after the class, used for type source information,
53  // allocated by ASTContext.
54  friend class ASTContext;
55  TypeSourceInfo(QualType ty) : Ty(ty) { }
56public:
57  /// \brief Return the type wrapped by this type source info.
58  QualType getType() const { return Ty; }
59
60  /// \brief Return the TypeLoc wrapper for the type source info.
61  TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
62};
63
64/// TranslationUnitDecl - The top declaration context.
65class TranslationUnitDecl : public Decl, public DeclContext {
66  ASTContext &Ctx;
67
68  /// The (most recently entered) anonymous namespace for this
69  /// translation unit, if one has been created.
70  NamespaceDecl *AnonymousNamespace;
71
72  explicit TranslationUnitDecl(ASTContext &ctx)
73    : Decl(TranslationUnit, 0, SourceLocation()),
74      DeclContext(TranslationUnit),
75      Ctx(ctx), AnonymousNamespace(0) {}
76public:
77  ASTContext &getASTContext() const { return Ctx; }
78
79  NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
80  void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
81
82  static TranslationUnitDecl *Create(ASTContext &C);
83  // Implement isa/cast/dyncast/etc.
84  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
85  static bool classof(const TranslationUnitDecl *D) { return true; }
86  static bool classofKind(Kind K) { return K == TranslationUnit; }
87  static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
88    return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
89  }
90  static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
91    return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
92  }
93};
94
95/// NamedDecl - This represents a decl with a name.  Many decls have names such
96/// as ObjCMethodDecl, but not @class, etc.
97class NamedDecl : public Decl {
98  /// Name - The name of this declaration, which is typically a normal
99  /// identifier but may also be a special kind of name (C++
100  /// constructor, Objective-C selector, etc.)
101  DeclarationName Name;
102
103protected:
104  NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
105    : Decl(DK, DC, L), Name(N) { }
106
107public:
108  /// getIdentifier - Get the identifier that names this declaration,
109  /// if there is one. This will return NULL if this declaration has
110  /// no name (e.g., for an unnamed class) or if the name is a special
111  /// name (C++ constructor, Objective-C selector, etc.).
112  IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
113
114  /// getName - Get the name of identifier for this declaration as a StringRef.
115  /// This requires that the declaration have a name and that it be a simple
116  /// identifier.
117  llvm::StringRef getName() const {
118    assert(Name.isIdentifier() && "Name is not a simple identifier");
119    return getIdentifier() ? getIdentifier()->getName() : "";
120  }
121
122  /// getNameAsString - Get a human-readable name for the declaration, even if
123  /// it is one of the special kinds of names (C++ constructor, Objective-C
124  /// selector, etc).  Creating this name requires expensive string
125  /// manipulation, so it should be called only when performance doesn't matter.
126  /// For simple declarations, getNameAsCString() should suffice.
127  //
128  // FIXME: This function should be renamed to indicate that it is not just an
129  // alternate form of getName(), and clients should move as appropriate.
130  //
131  // FIXME: Deprecated, move clients to getName().
132  std::string getNameAsString() const { return Name.getAsString(); }
133
134  void printName(llvm::raw_ostream &os) const { return Name.printName(os); }
135
136  /// getDeclName - Get the actual, stored name of the declaration,
137  /// which may be a special name.
138  DeclarationName getDeclName() const { return Name; }
139
140  /// \brief Set the name of this declaration.
141  void setDeclName(DeclarationName N) { Name = N; }
142
143  /// getQualifiedNameAsString - Returns human-readable qualified name for
144  /// declaration, like A::B::i, for i being member of namespace A::B.
145  /// If declaration is not member of context which can be named (record,
146  /// namespace), it will return same result as getNameAsString().
147  /// Creating this name is expensive, so it should be called only when
148  /// performance doesn't matter.
149  std::string getQualifiedNameAsString() const;
150  std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
151
152  /// getNameForDiagnostic - Appends a human-readable name for this
153  /// declaration into the given string.
154  ///
155  /// This is the method invoked by Sema when displaying a NamedDecl
156  /// in a diagnostic.  It does not necessarily produce the same
157  /// result as getNameAsString(); for example, class template
158  /// specializations are printed with their template arguments.
159  ///
160  /// TODO: use an API that doesn't require so many temporary strings
161  void getNameForDiagnostic(std::string &S,
162                            const PrintingPolicy &Policy,
163                            bool Qualified) const;
164
165  /// declarationReplaces - Determine whether this declaration, if
166  /// known to be well-formed within its context, will replace the
167  /// declaration OldD if introduced into scope. A declaration will
168  /// replace another declaration if, for example, it is a
169  /// redeclaration of the same variable or function, but not if it is
170  /// a declaration of a different kind (function vs. class) or an
171  /// overloaded function.
172  bool declarationReplaces(NamedDecl *OldD) const;
173
174  /// \brief Determine whether this declaration has linkage.
175  bool hasLinkage() const;
176
177  /// \brief Determine whether this declaration is a C++ class member.
178  bool isCXXClassMember() const {
179    const DeclContext *DC = getDeclContext();
180
181    // C++0x [class.mem]p1:
182    //   The enumerators of an unscoped enumeration defined in
183    //   the class are members of the class.
184    // FIXME: support C++0x scoped enumerations.
185    if (isa<EnumDecl>(DC))
186      DC = DC->getParent();
187
188    return DC->isRecord();
189  }
190
191  /// \brief Given that this declaration is a C++ class member,
192  /// determine whether it's an instance member of its class.
193  bool isCXXInstanceMember() const;
194
195  class LinkageInfo {
196    Linkage linkage_;
197    Visibility visibility_;
198    bool explicit_;
199
200  public:
201    LinkageInfo() : linkage_(ExternalLinkage), visibility_(DefaultVisibility),
202                    explicit_(false) {}
203    LinkageInfo(Linkage L, Visibility V, bool E)
204      : linkage_(L), visibility_(V), explicit_(E) {}
205
206    static LinkageInfo external() {
207      return LinkageInfo();
208    }
209    static LinkageInfo internal() {
210      return LinkageInfo(InternalLinkage, DefaultVisibility, false);
211    }
212    static LinkageInfo uniqueExternal() {
213      return LinkageInfo(UniqueExternalLinkage, DefaultVisibility, false);
214    }
215    static LinkageInfo none() {
216      return LinkageInfo(NoLinkage, DefaultVisibility, false);
217    }
218
219    Linkage linkage() const { return linkage_; }
220    Visibility visibility() const { return visibility_; }
221    bool visibilityExplicit() const { return explicit_; }
222
223    void setLinkage(Linkage L) { linkage_ = L; }
224    void setVisibility(Visibility V) { visibility_ = V; }
225    void setVisibility(Visibility V, bool E) { visibility_ = V; explicit_ = E; }
226    void setVisibility(LinkageInfo Other) {
227      setVisibility(Other.visibility(), Other.visibilityExplicit());
228    }
229
230    void mergeLinkage(Linkage L) {
231      setLinkage(minLinkage(linkage(), L));
232    }
233    void mergeLinkage(LinkageInfo Other) {
234      setLinkage(minLinkage(linkage(), Other.linkage()));
235    }
236
237    void mergeVisibility(Visibility V) {
238      setVisibility(minVisibility(visibility(), V));
239    }
240    void mergeVisibility(Visibility V, bool E) {
241      setVisibility(minVisibility(visibility(), V), visibilityExplicit() || E);
242    }
243    void mergeVisibility(LinkageInfo Other) {
244      mergeVisibility(Other.visibility(), Other.visibilityExplicit());
245    }
246
247    void merge(LinkageInfo Other) {
248      mergeLinkage(Other);
249      mergeVisibility(Other);
250    }
251    void merge(std::pair<Linkage,Visibility> LV) {
252      mergeLinkage(LV.first);
253      mergeVisibility(LV.second);
254    }
255
256    friend LinkageInfo merge(LinkageInfo L, LinkageInfo R) {
257      L.merge(R);
258      return L;
259    }
260  };
261
262  /// \brief Determine what kind of linkage this entity has.
263  Linkage getLinkage() const;
264
265  /// \brief Determines the visibility of this entity.
266  Visibility getVisibility() const { return getLinkageAndVisibility().visibility(); }
267
268  /// \brief Determines the linkage and visibility of this entity.
269  LinkageInfo getLinkageAndVisibility() const;
270
271  /// \brief Clear the linkage cache in response to a change
272  /// to the declaration.
273  void ClearLinkageCache();
274
275  /// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
276  /// the underlying named decl.
277  NamedDecl *getUnderlyingDecl();
278  const NamedDecl *getUnderlyingDecl() const {
279    return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
280  }
281
282  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
283  static bool classof(const NamedDecl *D) { return true; }
284  static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
285};
286
287inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
288                                     const NamedDecl *ND) {
289  ND->getDeclName().printName(OS);
290  return OS;
291}
292
293/// LabelDecl - Represents the declaration of a label.  Labels also have a
294/// corresponding LabelStmt, which indicates the position that the label was
295/// defined at.  For normal labels, the location of the decl is the same as the
296/// location of the statement.  For GNU local labels (__label__), the decl
297/// location is where the __label__ is.
298class LabelDecl : public NamedDecl {
299  /// HasUnusedAttr - True if the label has __attribute__((unused)) on it.
300  /// FIXME: Just use attributes!
301  unsigned HasUnusedAttr : 1;
302
303  LabelStmt *TheStmt;
304  LabelDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *II, LabelStmt *S)
305    : NamedDecl(Label, DC, L, II), TheStmt(S) {}
306
307public:
308  static LabelDecl *Create(ASTContext &C, DeclContext *DC,
309                           SourceLocation L, IdentifierInfo *II);
310
311  LabelStmt *getStmt() const { return TheStmt; }
312  void setStmt(LabelStmt *T) { TheStmt = T; }
313
314  bool hasUnusedAttribute() const { return HasUnusedAttr; }
315  void setHasUnusedAttribute() { HasUnusedAttr = true; }
316
317  // Implement isa/cast/dyncast/etc.
318  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
319  static bool classof(const LabelDecl *D) { return true; }
320  static bool classofKind(Kind K) { return K == Label; }
321};
322
323/// NamespaceDecl - Represent a C++ namespace.
324class NamespaceDecl : public NamedDecl, public DeclContext {
325  bool IsInline : 1;
326
327  SourceLocation LBracLoc, RBracLoc;
328
329  // For extended namespace definitions:
330  //
331  // namespace A { int x; }
332  // namespace A { int y; }
333  //
334  // there will be one NamespaceDecl for each declaration.
335  // NextNamespace points to the next extended declaration.
336  // OrigNamespace points to the original namespace declaration.
337  // OrigNamespace of the first namespace decl points to its anonymous namespace
338  LazyDeclPtr NextNamespace;
339
340  /// \brief A pointer to either the original namespace definition for
341  /// this namespace (if the boolean value is false) or the anonymous
342  /// namespace that lives just inside this namespace (if the boolean
343  /// value is true).
344  ///
345  /// We can combine these two notions because the anonymous namespace
346  /// must only be stored in one of the namespace declarations (so all
347  /// of the namespace declarations can find it). We therefore choose
348  /// the original namespace declaration, since all of the namespace
349  /// declarations have a link directly to it; the original namespace
350  /// declaration itself only needs to know that it is the original
351  /// namespace declaration (which the boolean indicates).
352  llvm::PointerIntPair<NamespaceDecl *, 1, bool> OrigOrAnonNamespace;
353
354  NamespaceDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id)
355    : NamedDecl(Namespace, DC, L, Id), DeclContext(Namespace),
356      IsInline(false), NextNamespace(), OrigOrAnonNamespace(0, true) { }
357
358public:
359  static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
360                               SourceLocation L, IdentifierInfo *Id);
361
362  /// \brief Returns true if this is an anonymous namespace declaration.
363  ///
364  /// For example:
365  /// \code
366  ///   namespace {
367  ///     ...
368  ///   };
369  /// \endcode
370  /// q.v. C++ [namespace.unnamed]
371  bool isAnonymousNamespace() const {
372    return !getIdentifier();
373  }
374
375  /// \brief Returns true if this is an inline namespace declaration.
376  bool isInline() const {
377    return IsInline;
378  }
379
380  /// \brief Set whether this is an inline namespace declaration.
381  void setInline(bool Inline) {
382    IsInline = Inline;
383  }
384
385  /// \brief Return the next extended namespace declaration or null if there
386  /// is none.
387  NamespaceDecl *getNextNamespace();
388  const NamespaceDecl *getNextNamespace() const {
389    return const_cast<NamespaceDecl *>(this)->getNextNamespace();
390  }
391
392  /// \brief Set the next extended namespace declaration.
393  void setNextNamespace(NamespaceDecl *ND) { NextNamespace = ND; }
394
395  /// \brief Get the original (first) namespace declaration.
396  NamespaceDecl *getOriginalNamespace() const {
397    if (OrigOrAnonNamespace.getInt())
398      return const_cast<NamespaceDecl *>(this);
399
400    return OrigOrAnonNamespace.getPointer();
401  }
402
403  /// \brief Return true if this declaration is an original (first) declaration
404  /// of the namespace. This is false for non-original (subsequent) namespace
405  /// declarations and anonymous namespaces.
406  bool isOriginalNamespace() const {
407    return getOriginalNamespace() == this;
408  }
409
410  /// \brief Set the original (first) namespace declaration.
411  void setOriginalNamespace(NamespaceDecl *ND) {
412    if (ND != this) {
413      OrigOrAnonNamespace.setPointer(ND);
414      OrigOrAnonNamespace.setInt(false);
415    }
416  }
417
418  NamespaceDecl *getAnonymousNamespace() const {
419    return getOriginalNamespace()->OrigOrAnonNamespace.getPointer();
420  }
421
422  void setAnonymousNamespace(NamespaceDecl *D) {
423    assert(!D || D->isAnonymousNamespace());
424    assert(!D || D->getParent() == this);
425    getOriginalNamespace()->OrigOrAnonNamespace.setPointer(D);
426  }
427
428  NamespaceDecl *getCanonicalDecl() { return getOriginalNamespace(); }
429  const NamespaceDecl *getCanonicalDecl() const {
430    return getOriginalNamespace();
431  }
432
433  SourceRange getSourceRange() const {
434    return SourceRange(getLocation(), RBracLoc);
435  }
436
437  SourceLocation getLBracLoc() const { return LBracLoc; }
438  SourceLocation getRBracLoc() const { return RBracLoc; }
439  void setLBracLoc(SourceLocation L) { LBracLoc = L; }
440  void setRBracLoc(SourceLocation R) { RBracLoc = R; }
441
442  // Implement isa/cast/dyncast/etc.
443  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
444  static bool classof(const NamespaceDecl *D) { return true; }
445  static bool classofKind(Kind K) { return K == Namespace; }
446  static DeclContext *castToDeclContext(const NamespaceDecl *D) {
447    return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
448  }
449  static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
450    return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
451  }
452
453  friend class ASTDeclReader;
454  friend class ASTDeclWriter;
455};
456
457/// ValueDecl - Represent the declaration of a variable (in which case it is
458/// an lvalue) a function (in which case it is a function designator) or
459/// an enum constant.
460class ValueDecl : public NamedDecl {
461  QualType DeclType;
462
463protected:
464  ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
465            DeclarationName N, QualType T)
466    : NamedDecl(DK, DC, L, N), DeclType(T) {}
467public:
468  QualType getType() const { return DeclType; }
469  void setType(QualType newType) { DeclType = newType; }
470
471  // Implement isa/cast/dyncast/etc.
472  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
473  static bool classof(const ValueDecl *D) { return true; }
474  static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
475};
476
477/// QualifierInfo - A struct with extended info about a syntactic
478/// name qualifier, to be used for the case of out-of-line declarations.
479struct QualifierInfo {
480  /// NNS - The syntactic name qualifier.
481  NestedNameSpecifier *NNS;
482  /// NNSRange - The source range for the qualifier.
483  SourceRange NNSRange;
484  /// NumTemplParamLists - The number of template parameter lists
485  /// that were matched against the template-ids occurring into the NNS.
486  unsigned NumTemplParamLists;
487  /// TemplParamLists - A new-allocated array of size NumTemplParamLists,
488  /// containing pointers to the matched template parameter lists.
489  TemplateParameterList** TemplParamLists;
490
491  /// Default constructor.
492  QualifierInfo()
493    : NNS(0), NNSRange(), NumTemplParamLists(0), TemplParamLists(0) {}
494  /// setTemplateParameterListsInfo - Sets info about matched template
495  /// parameter lists.
496  void setTemplateParameterListsInfo(ASTContext &Context,
497                                     unsigned NumTPLists,
498                                     TemplateParameterList **TPLists);
499
500private:
501  // Copy constructor and copy assignment are disabled.
502  QualifierInfo(const QualifierInfo&);
503  QualifierInfo& operator=(const QualifierInfo&);
504};
505
506/// \brief Represents a ValueDecl that came out of a declarator.
507/// Contains type source information through TypeSourceInfo.
508class DeclaratorDecl : public ValueDecl {
509  // A struct representing both a TInfo and a syntactic qualifier,
510  // to be used for the (uncommon) case of out-of-line declarations.
511  struct ExtInfo : public QualifierInfo {
512    TypeSourceInfo *TInfo;
513  };
514
515  llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
516
517  bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
518  ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
519  const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
520
521protected:
522  DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
523                 DeclarationName N, QualType T, TypeSourceInfo *TInfo)
524    : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo) {}
525
526public:
527  TypeSourceInfo *getTypeSourceInfo() const {
528    return hasExtInfo()
529      ? getExtInfo()->TInfo
530      : DeclInfo.get<TypeSourceInfo*>();
531  }
532  void setTypeSourceInfo(TypeSourceInfo *TI) {
533    if (hasExtInfo())
534      getExtInfo()->TInfo = TI;
535    else
536      DeclInfo = TI;
537  }
538
539  /// getInnerLocStart - Return SourceLocation representing start of source
540  /// range ignoring outer template declarations.
541  SourceLocation getInnerLocStart() const;
542
543  /// getOuterLocStart - Return SourceLocation representing start of source
544  /// range taking into account any outer template declarations.
545  SourceLocation getOuterLocStart() const;
546  SourceRange getSourceRange() const {
547    return SourceRange(getOuterLocStart(), getLocation());
548  }
549
550  NestedNameSpecifier *getQualifier() const {
551    return hasExtInfo() ? getExtInfo()->NNS : 0;
552  }
553  SourceRange getQualifierRange() const {
554    return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
555  }
556  void setQualifierInfo(NestedNameSpecifier *Qualifier,
557                        SourceRange QualifierRange);
558
559  unsigned getNumTemplateParameterLists() const {
560    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
561  }
562  TemplateParameterList *getTemplateParameterList(unsigned index) const {
563    assert(index < getNumTemplateParameterLists());
564    return getExtInfo()->TemplParamLists[index];
565  }
566  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
567                                     TemplateParameterList **TPLists) {
568    getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
569  }
570
571  SourceLocation getTypeSpecStartLoc() const;
572
573  // Implement isa/cast/dyncast/etc.
574  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
575  static bool classof(const DeclaratorDecl *D) { return true; }
576  static bool classofKind(Kind K) {
577    return K >= firstDeclarator && K <= lastDeclarator;
578  }
579
580  friend class ASTDeclReader;
581  friend class ASTDeclWriter;
582};
583
584/// \brief Structure used to store a statement, the constant value to
585/// which it was evaluated (if any), and whether or not the statement
586/// is an integral constant expression (if known).
587struct EvaluatedStmt {
588  EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
589                    CheckingICE(false), IsICE(false) { }
590
591  /// \brief Whether this statement was already evaluated.
592  bool WasEvaluated : 1;
593
594  /// \brief Whether this statement is being evaluated.
595  bool IsEvaluating : 1;
596
597  /// \brief Whether we already checked whether this statement was an
598  /// integral constant expression.
599  bool CheckedICE : 1;
600
601  /// \brief Whether we are checking whether this statement is an
602  /// integral constant expression.
603  bool CheckingICE : 1;
604
605  /// \brief Whether this statement is an integral constant
606  /// expression. Only valid if CheckedICE is true.
607  bool IsICE : 1;
608
609  Stmt *Value;
610  APValue Evaluated;
611};
612
613/// VarDecl - An instance of this class is created to represent a variable
614/// declaration or definition.
615class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
616public:
617  typedef clang::StorageClass StorageClass;
618
619  /// getStorageClassSpecifierString - Return the string used to
620  /// specify the storage class \arg SC.
621  ///
622  /// It is illegal to call this function with SC == None.
623  static const char *getStorageClassSpecifierString(StorageClass SC);
624
625protected:
626  /// \brief Placeholder type used in Init to denote an unparsed C++ default
627  /// argument.
628  struct UnparsedDefaultArgument;
629
630  /// \brief Placeholder type used in Init to denote an uninstantiated C++
631  /// default argument.
632  struct UninstantiatedDefaultArgument;
633
634  typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
635                              UnparsedDefaultArgument *,
636                              UninstantiatedDefaultArgument *> InitType;
637
638  /// \brief The initializer for this variable or, for a ParmVarDecl, the
639  /// C++ default argument.
640  mutable InitType Init;
641
642private:
643  // FIXME: This can be packed into the bitfields in Decl.
644  unsigned SClass : 3;
645  unsigned SClassAsWritten : 3;
646  bool ThreadSpecified : 1;
647  bool HasCXXDirectInit : 1;
648
649  /// \brief Whether this variable is the exception variable in a C++ catch
650  /// or an Objective-C @catch statement.
651  bool ExceptionVar : 1;
652
653  /// \brief Whether this local variable could be allocated in the return
654  /// slot of its function, enabling the named return value optimization (NRVO).
655  bool NRVOVariable : 1;
656
657  friend class StmtIteratorBase;
658  friend class ASTDeclReader;
659
660protected:
661  VarDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
662          QualType T, TypeSourceInfo *TInfo, StorageClass SC,
663          StorageClass SCAsWritten)
664    : DeclaratorDecl(DK, DC, L, Id, T, TInfo), Init(),
665      ThreadSpecified(false), HasCXXDirectInit(false),
666      ExceptionVar(false), NRVOVariable(false) {
667    SClass = SC;
668    SClassAsWritten = SCAsWritten;
669  }
670
671  typedef Redeclarable<VarDecl> redeclarable_base;
672  VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
673  friend class Decl;
674
675public:
676  typedef redeclarable_base::redecl_iterator redecl_iterator;
677  redecl_iterator redecls_begin() const {
678    return redeclarable_base::redecls_begin();
679  }
680  redecl_iterator redecls_end() const {
681    return redeclarable_base::redecls_end();
682  }
683
684  static VarDecl *Create(ASTContext &C, DeclContext *DC,
685                         SourceLocation L, IdentifierInfo *Id,
686                         QualType T, TypeSourceInfo *TInfo, StorageClass S,
687                         StorageClass SCAsWritten);
688
689  SourceRange getSourceRange() const;
690
691  StorageClass getStorageClass() const { return (StorageClass)SClass; }
692  StorageClass getStorageClassAsWritten() const {
693    return (StorageClass) SClassAsWritten;
694  }
695  void setStorageClass(StorageClass SC);
696  void setStorageClassAsWritten(StorageClass SC) {
697    assert(isLegalForVariable(SC));
698    SClassAsWritten = SC;
699  }
700
701  void setThreadSpecified(bool T) { ThreadSpecified = T; }
702  bool isThreadSpecified() const {
703    return ThreadSpecified;
704  }
705
706  /// hasLocalStorage - Returns true if a variable with function scope
707  ///  is a non-static local variable.
708  bool hasLocalStorage() const {
709    if (getStorageClass() == SC_None)
710      return !isFileVarDecl();
711
712    // Return true for:  Auto, Register.
713    // Return false for: Extern, Static, PrivateExtern.
714
715    return getStorageClass() >= SC_Auto;
716  }
717
718  /// isStaticLocal - Returns true if a variable with function scope is a
719  /// static local variable.
720  bool isStaticLocal() const {
721    return getStorageClass() == SC_Static && !isFileVarDecl();
722  }
723
724  /// hasExternStorage - Returns true if a variable has extern or
725  /// __private_extern__ storage.
726  bool hasExternalStorage() const {
727    return getStorageClass() == SC_Extern ||
728           getStorageClass() == SC_PrivateExtern;
729  }
730
731  /// hasGlobalStorage - Returns true for all variables that do not
732  ///  have local storage.  This includs all global variables as well
733  ///  as static variables declared within a function.
734  bool hasGlobalStorage() const { return !hasLocalStorage(); }
735
736  /// \brief Determines whether this variable is a variable with
737  /// external, C linkage.
738  bool isExternC() const;
739
740  /// isLocalVarDecl - Returns true for local variable declarations
741  /// other than parameters.  Note that this includes static variables
742  /// inside of functions. It also includes variables inside blocks.
743  ///
744  ///   void foo() { int x; static int y; extern int z; }
745  ///
746  bool isLocalVarDecl() const {
747    if (getKind() != Decl::Var)
748      return false;
749    if (const DeclContext *DC = getDeclContext())
750      return DC->getRedeclContext()->isFunctionOrMethod();
751    return false;
752  }
753
754  /// isFunctionOrMethodVarDecl - Similar to isLocalVarDecl, but
755  /// excludes variables declared in blocks.
756  bool isFunctionOrMethodVarDecl() const {
757    if (getKind() != Decl::Var)
758      return false;
759    const DeclContext *DC = getDeclContext()->getRedeclContext();
760    return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
761  }
762
763  /// \brief Determines whether this is a static data member.
764  ///
765  /// This will only be true in C++, and applies to, e.g., the
766  /// variable 'x' in:
767  /// \code
768  /// struct S {
769  ///   static int x;
770  /// };
771  /// \endcode
772  bool isStaticDataMember() const {
773    // If it wasn't static, it would be a FieldDecl.
774    return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
775  }
776
777  VarDecl *getCanonicalDecl();
778  const VarDecl *getCanonicalDecl() const {
779    return const_cast<VarDecl*>(this)->getCanonicalDecl();
780  }
781
782  enum DefinitionKind {
783    DeclarationOnly,      ///< This declaration is only a declaration.
784    TentativeDefinition,  ///< This declaration is a tentative definition.
785    Definition            ///< This declaration is definitely a definition.
786  };
787
788  /// \brief Check whether this declaration is a definition. If this could be
789  /// a tentative definition (in C), don't check whether there's an overriding
790  /// definition.
791  DefinitionKind isThisDeclarationADefinition() const;
792
793  /// \brief Check whether this variable is defined in this
794  /// translation unit.
795  DefinitionKind hasDefinition() const;
796
797  /// \brief Get the tentative definition that acts as the real definition in
798  /// a TU. Returns null if there is a proper definition available.
799  VarDecl *getActingDefinition();
800  const VarDecl *getActingDefinition() const {
801    return const_cast<VarDecl*>(this)->getActingDefinition();
802  }
803
804  /// \brief Determine whether this is a tentative definition of a
805  /// variable in C.
806  bool isTentativeDefinitionNow() const;
807
808  /// \brief Get the real (not just tentative) definition for this declaration.
809  VarDecl *getDefinition();
810  const VarDecl *getDefinition() const {
811    return const_cast<VarDecl*>(this)->getDefinition();
812  }
813
814  /// \brief Determine whether this is or was instantiated from an out-of-line
815  /// definition of a static data member.
816  bool isOutOfLine() const;
817
818  /// \brief If this is a static data member, find its out-of-line definition.
819  VarDecl *getOutOfLineDefinition();
820
821  /// isFileVarDecl - Returns true for file scoped variable declaration.
822  bool isFileVarDecl() const {
823    if (getKind() != Decl::Var)
824      return false;
825
826    if (getDeclContext()->getRedeclContext()->isFileContext())
827      return true;
828
829    if (isStaticDataMember())
830      return true;
831
832    return false;
833  }
834
835  /// getAnyInitializer - Get the initializer for this variable, no matter which
836  /// declaration it is attached to.
837  const Expr *getAnyInitializer() const {
838    const VarDecl *D;
839    return getAnyInitializer(D);
840  }
841
842  /// getAnyInitializer - Get the initializer for this variable, no matter which
843  /// declaration it is attached to. Also get that declaration.
844  const Expr *getAnyInitializer(const VarDecl *&D) const;
845
846  bool hasInit() const {
847    return !Init.isNull() && (Init.is<Stmt *>() || Init.is<EvaluatedStmt *>());
848  }
849  const Expr *getInit() const {
850    if (Init.isNull())
851      return 0;
852
853    const Stmt *S = Init.dyn_cast<Stmt *>();
854    if (!S) {
855      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
856        S = ES->Value;
857    }
858    return (const Expr*) S;
859  }
860  Expr *getInit() {
861    if (Init.isNull())
862      return 0;
863
864    Stmt *S = Init.dyn_cast<Stmt *>();
865    if (!S) {
866      if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
867        S = ES->Value;
868    }
869
870    return (Expr*) S;
871  }
872
873  /// \brief Retrieve the address of the initializer expression.
874  Stmt **getInitAddress() {
875    if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
876      return &ES->Value;
877
878    // This union hack tip-toes around strict-aliasing rules.
879    union {
880      InitType *InitPtr;
881      Stmt **StmtPtr;
882    };
883
884    InitPtr = &Init;
885    return StmtPtr;
886  }
887
888  void setInit(Expr *I);
889
890  EvaluatedStmt *EnsureEvaluatedStmt() const {
891    EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
892    if (!Eval) {
893      Stmt *S = Init.get<Stmt *>();
894      Eval = new (getASTContext()) EvaluatedStmt;
895      Eval->Value = S;
896      Init = Eval;
897    }
898    return Eval;
899  }
900
901  /// \brief Check whether we are in the process of checking whether the
902  /// initializer can be evaluated.
903  bool isEvaluatingValue() const {
904    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
905      return Eval->IsEvaluating;
906
907    return false;
908  }
909
910  /// \brief Note that we now are checking whether the initializer can be
911  /// evaluated.
912  void setEvaluatingValue() const {
913    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
914    Eval->IsEvaluating = true;
915  }
916
917  /// \brief Note that constant evaluation has computed the given
918  /// value for this variable's initializer.
919  void setEvaluatedValue(const APValue &Value) const {
920    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
921    Eval->IsEvaluating = false;
922    Eval->WasEvaluated = true;
923    Eval->Evaluated = Value;
924  }
925
926  /// \brief Return the already-evaluated value of this variable's
927  /// initializer, or NULL if the value is not yet known. Returns pointer
928  /// to untyped APValue if the value could not be evaluated.
929  APValue *getEvaluatedValue() const {
930    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
931      if (Eval->WasEvaluated)
932        return &Eval->Evaluated;
933
934    return 0;
935  }
936
937  /// \brief Determines whether it is already known whether the
938  /// initializer is an integral constant expression or not.
939  bool isInitKnownICE() const {
940    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
941      return Eval->CheckedICE;
942
943    return false;
944  }
945
946  /// \brief Determines whether the initializer is an integral
947  /// constant expression.
948  ///
949  /// \pre isInitKnownICE()
950  bool isInitICE() const {
951    assert(isInitKnownICE() &&
952           "Check whether we already know that the initializer is an ICE");
953    return Init.get<EvaluatedStmt *>()->IsICE;
954  }
955
956  /// \brief Check whether we are in the process of checking the initializer
957  /// is an integral constant expression.
958  bool isCheckingICE() const {
959    if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
960      return Eval->CheckingICE;
961
962    return false;
963  }
964
965  /// \brief Note that we now are checking whether the initializer is an
966  /// integral constant expression.
967  void setCheckingICE() const {
968    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
969    Eval->CheckingICE = true;
970  }
971
972  /// \brief Note that we now know whether the initializer is an
973  /// integral constant expression.
974  void setInitKnownICE(bool IsICE) const {
975    EvaluatedStmt *Eval = EnsureEvaluatedStmt();
976    Eval->CheckingICE = false;
977    Eval->CheckedICE = true;
978    Eval->IsICE = IsICE;
979  }
980
981  void setCXXDirectInitializer(bool T) { HasCXXDirectInit = T; }
982
983  /// hasCXXDirectInitializer - If true, the initializer was a direct
984  /// initializer, e.g: "int x(1);". The Init expression will be the expression
985  /// inside the parens or a "ClassType(a,b,c)" class constructor expression for
986  /// class types. Clients can distinguish between "int x(1);" and "int x=1;"
987  /// by checking hasCXXDirectInitializer.
988  ///
989  bool hasCXXDirectInitializer() const {
990    return HasCXXDirectInit;
991  }
992
993  /// \brief Determine whether this variable is the exception variable in a
994  /// C++ catch statememt or an Objective-C @catch statement.
995  bool isExceptionVariable() const {
996    return ExceptionVar;
997  }
998  void setExceptionVariable(bool EV) { ExceptionVar = EV; }
999
1000  /// \brief Determine whether this local variable can be used with the named
1001  /// return value optimization (NRVO).
1002  ///
1003  /// The named return value optimization (NRVO) works by marking certain
1004  /// non-volatile local variables of class type as NRVO objects. These
1005  /// locals can be allocated within the return slot of their containing
1006  /// function, in which case there is no need to copy the object to the
1007  /// return slot when returning from the function. Within the function body,
1008  /// each return that returns the NRVO object will have this variable as its
1009  /// NRVO candidate.
1010  bool isNRVOVariable() const { return NRVOVariable; }
1011  void setNRVOVariable(bool NRVO) { NRVOVariable = NRVO; }
1012
1013  /// \brief If this variable is an instantiated static data member of a
1014  /// class template specialization, returns the templated static data member
1015  /// from which it was instantiated.
1016  VarDecl *getInstantiatedFromStaticDataMember() const;
1017
1018  /// \brief If this variable is a static data member, determine what kind of
1019  /// template specialization or instantiation this is.
1020  TemplateSpecializationKind getTemplateSpecializationKind() const;
1021
1022  /// \brief If this variable is an instantiation of a static data member of a
1023  /// class template specialization, retrieves the member specialization
1024  /// information.
1025  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1026
1027  /// \brief For a static data member that was instantiated from a static
1028  /// data member of a class template, set the template specialiation kind.
1029  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1030                        SourceLocation PointOfInstantiation = SourceLocation());
1031
1032  // Implement isa/cast/dyncast/etc.
1033  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1034  static bool classof(const VarDecl *D) { return true; }
1035  static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1036};
1037
1038class ImplicitParamDecl : public VarDecl {
1039protected:
1040  ImplicitParamDecl(Kind DK, DeclContext *DC, SourceLocation L,
1041                    IdentifierInfo *Id, QualType Tw)
1042    : VarDecl(DK, DC, L, Id, Tw, /*TInfo=*/0, SC_None, SC_None) {
1043    setImplicit();
1044  }
1045public:
1046  static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1047                                   SourceLocation L, IdentifierInfo *Id,
1048                                   QualType T);
1049  // Implement isa/cast/dyncast/etc.
1050  static bool classof(const ImplicitParamDecl *D) { return true; }
1051  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1052  static bool classofKind(Kind K) { return K == ImplicitParam; }
1053};
1054
1055/// ParmVarDecl - Represent a parameter to a function.
1056class ParmVarDecl : public VarDecl {
1057  // NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
1058  /// FIXME: Also can be paced into the bitfields in Decl.
1059  /// in, inout, etc.
1060  unsigned objcDeclQualifier : 6;
1061  bool HasInheritedDefaultArg : 1;
1062
1063protected:
1064  ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation L,
1065              IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1066              StorageClass S, StorageClass SCAsWritten, Expr *DefArg)
1067    : VarDecl(DK, DC, L, Id, T, TInfo, S, SCAsWritten),
1068      objcDeclQualifier(OBJC_TQ_None), HasInheritedDefaultArg(false) {
1069    setDefaultArg(DefArg);
1070  }
1071
1072public:
1073  static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1074                             SourceLocation L,IdentifierInfo *Id,
1075                             QualType T, TypeSourceInfo *TInfo,
1076                             StorageClass S, StorageClass SCAsWritten,
1077                             Expr *DefArg);
1078
1079  ObjCDeclQualifier getObjCDeclQualifier() const {
1080    return ObjCDeclQualifier(objcDeclQualifier);
1081  }
1082  void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1083    objcDeclQualifier = QTVal;
1084  }
1085
1086  Expr *getDefaultArg();
1087  const Expr *getDefaultArg() const {
1088    return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1089  }
1090
1091  void setDefaultArg(Expr *defarg) {
1092    Init = reinterpret_cast<Stmt *>(defarg);
1093  }
1094
1095  unsigned getNumDefaultArgTemporaries() const;
1096  CXXTemporary *getDefaultArgTemporary(unsigned i);
1097  const CXXTemporary *getDefaultArgTemporary(unsigned i) const {
1098    return const_cast<ParmVarDecl *>(this)->getDefaultArgTemporary(i);
1099  }
1100
1101  /// \brief Retrieve the source range that covers the entire default
1102  /// argument.
1103  SourceRange getDefaultArgRange() const;
1104  void setUninstantiatedDefaultArg(Expr *arg) {
1105    Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
1106  }
1107  Expr *getUninstantiatedDefaultArg() {
1108    return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
1109  }
1110  const Expr *getUninstantiatedDefaultArg() const {
1111    return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
1112  }
1113
1114  /// hasDefaultArg - Determines whether this parameter has a default argument,
1115  /// either parsed or not.
1116  bool hasDefaultArg() const {
1117    return getInit() || hasUnparsedDefaultArg() ||
1118      hasUninstantiatedDefaultArg();
1119  }
1120
1121  /// hasUnparsedDefaultArg - Determines whether this parameter has a
1122  /// default argument that has not yet been parsed. This will occur
1123  /// during the processing of a C++ class whose member functions have
1124  /// default arguments, e.g.,
1125  /// @code
1126  ///   class X {
1127  ///   public:
1128  ///     void f(int x = 17); // x has an unparsed default argument now
1129  ///   }; // x has a regular default argument now
1130  /// @endcode
1131  bool hasUnparsedDefaultArg() const {
1132    return Init.is<UnparsedDefaultArgument*>();
1133  }
1134
1135  bool hasUninstantiatedDefaultArg() const {
1136    return Init.is<UninstantiatedDefaultArgument*>();
1137  }
1138
1139  /// setUnparsedDefaultArg - Specify that this parameter has an
1140  /// unparsed default argument. The argument will be replaced with a
1141  /// real default argument via setDefaultArg when the class
1142  /// definition enclosing the function declaration that owns this
1143  /// default argument is completed.
1144  void setUnparsedDefaultArg() {
1145    Init = (UnparsedDefaultArgument *)0;
1146  }
1147
1148  bool hasInheritedDefaultArg() const {
1149    return HasInheritedDefaultArg;
1150  }
1151
1152  void setHasInheritedDefaultArg(bool I = true) {
1153    HasInheritedDefaultArg = I;
1154  }
1155
1156  QualType getOriginalType() const {
1157    if (getTypeSourceInfo())
1158      return getTypeSourceInfo()->getType();
1159    return getType();
1160  }
1161
1162  /// \brief Determine whether this parameter is actually a function
1163  /// parameter pack.
1164  bool isParameterPack() const;
1165
1166  /// setOwningFunction - Sets the function declaration that owns this
1167  /// ParmVarDecl. Since ParmVarDecls are often created before the
1168  /// FunctionDecls that own them, this routine is required to update
1169  /// the DeclContext appropriately.
1170  void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1171
1172  // Implement isa/cast/dyncast/etc.
1173  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1174  static bool classof(const ParmVarDecl *D) { return true; }
1175  static bool classofKind(Kind K) { return K == ParmVar; }
1176};
1177
1178/// FunctionDecl - An instance of this class is created to represent a
1179/// function declaration or definition.
1180///
1181/// Since a given function can be declared several times in a program,
1182/// there may be several FunctionDecls that correspond to that
1183/// function. Only one of those FunctionDecls will be found when
1184/// traversing the list of declarations in the context of the
1185/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1186/// contains all of the information known about the function. Other,
1187/// previous declarations of the function are available via the
1188/// getPreviousDeclaration() chain.
1189class FunctionDecl : public DeclaratorDecl, public DeclContext,
1190                     public Redeclarable<FunctionDecl> {
1191public:
1192  typedef clang::StorageClass StorageClass;
1193
1194  /// \brief The kind of templated function a FunctionDecl can be.
1195  enum TemplatedKind {
1196    TK_NonTemplate,
1197    TK_FunctionTemplate,
1198    TK_MemberSpecialization,
1199    TK_FunctionTemplateSpecialization,
1200    TK_DependentFunctionTemplateSpecialization
1201  };
1202
1203private:
1204  /// ParamInfo - new[]'d array of pointers to VarDecls for the formal
1205  /// parameters of this function.  This is null if a prototype or if there are
1206  /// no formals.
1207  ParmVarDecl **ParamInfo;
1208
1209  LazyDeclStmtPtr Body;
1210
1211  // FIXME: This can be packed into the bitfields in Decl.
1212  // NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
1213  unsigned SClass : 2;
1214  unsigned SClassAsWritten : 2;
1215  bool IsInline : 1;
1216  bool IsInlineSpecified : 1;
1217  bool IsVirtualAsWritten : 1;
1218  bool IsPure : 1;
1219  bool HasInheritedPrototype : 1;
1220  bool HasWrittenPrototype : 1;
1221  bool IsDeleted : 1;
1222  bool IsTrivial : 1; // sunk from CXXMethodDecl
1223  bool HasImplicitReturnZero : 1;
1224
1225  /// \brief End part of this FunctionDecl's source range.
1226  ///
1227  /// We could compute the full range in getSourceRange(). However, when we're
1228  /// dealing with a function definition deserialized from a PCH/AST file,
1229  /// we can only compute the full range once the function body has been
1230  /// de-serialized, so it's far better to have the (sometimes-redundant)
1231  /// EndRangeLoc.
1232  SourceLocation EndRangeLoc;
1233
1234  /// \brief The template or declaration that this declaration
1235  /// describes or was instantiated from, respectively.
1236  ///
1237  /// For non-templates, this value will be NULL. For function
1238  /// declarations that describe a function template, this will be a
1239  /// pointer to a FunctionTemplateDecl. For member functions
1240  /// of class template specializations, this will be a MemberSpecializationInfo
1241  /// pointer containing information about the specialization.
1242  /// For function template specializations, this will be a
1243  /// FunctionTemplateSpecializationInfo, which contains information about
1244  /// the template being specialized and the template arguments involved in
1245  /// that specialization.
1246  llvm::PointerUnion4<FunctionTemplateDecl *,
1247                      MemberSpecializationInfo *,
1248                      FunctionTemplateSpecializationInfo *,
1249                      DependentFunctionTemplateSpecializationInfo *>
1250    TemplateOrSpecialization;
1251
1252  /// DNLoc - Provides source/type location info for the
1253  /// declaration name embedded in the DeclaratorDecl base class.
1254  DeclarationNameLoc DNLoc;
1255
1256  /// \brief Specify that this function declaration is actually a function
1257  /// template specialization.
1258  ///
1259  /// \param C the ASTContext.
1260  ///
1261  /// \param Template the function template that this function template
1262  /// specialization specializes.
1263  ///
1264  /// \param TemplateArgs the template arguments that produced this
1265  /// function template specialization from the template.
1266  ///
1267  /// \param InsertPos If non-NULL, the position in the function template
1268  /// specialization set where the function template specialization data will
1269  /// be inserted.
1270  ///
1271  /// \param TSK the kind of template specialization this is.
1272  ///
1273  /// \param TemplateArgsAsWritten location info of template arguments.
1274  ///
1275  /// \param PointOfInstantiation point at which the function template
1276  /// specialization was first instantiated.
1277  void setFunctionTemplateSpecialization(ASTContext &C,
1278                                         FunctionTemplateDecl *Template,
1279                                       const TemplateArgumentList *TemplateArgs,
1280                                         void *InsertPos,
1281                                         TemplateSpecializationKind TSK,
1282                          const TemplateArgumentListInfo *TemplateArgsAsWritten,
1283                                         SourceLocation PointOfInstantiation);
1284
1285  /// \brief Specify that this record is an instantiation of the
1286  /// member function FD.
1287  void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1288                                        TemplateSpecializationKind TSK);
1289
1290  void setParams(ASTContext &C, ParmVarDecl **NewParamInfo, unsigned NumParams);
1291
1292protected:
1293  FunctionDecl(Kind DK, DeclContext *DC, const DeclarationNameInfo &NameInfo,
1294               QualType T, TypeSourceInfo *TInfo,
1295               StorageClass S, StorageClass SCAsWritten, bool isInlineSpecified)
1296    : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo),
1297      DeclContext(DK),
1298      ParamInfo(0), Body(),
1299      SClass(S), SClassAsWritten(SCAsWritten),
1300      IsInline(isInlineSpecified), IsInlineSpecified(isInlineSpecified),
1301      IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
1302      HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
1303      HasImplicitReturnZero(false), EndRangeLoc(NameInfo.getEndLoc()),
1304      TemplateOrSpecialization(),
1305      DNLoc(NameInfo.getInfo()) {}
1306
1307  typedef Redeclarable<FunctionDecl> redeclarable_base;
1308  FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1309
1310  friend class Decl;
1311
1312public:
1313
1314  typedef redeclarable_base::redecl_iterator redecl_iterator;
1315  redecl_iterator redecls_begin() const {
1316    return redeclarable_base::redecls_begin();
1317  }
1318  redecl_iterator redecls_end() const {
1319    return redeclarable_base::redecls_end();
1320  }
1321
1322  static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
1323                              DeclarationName N, QualType T,
1324                              TypeSourceInfo *TInfo,
1325                              StorageClass S = SC_None,
1326                              StorageClass SCAsWritten = SC_None,
1327                              bool isInlineSpecified = false,
1328                              bool hasWrittenPrototype = true) {
1329    DeclarationNameInfo NameInfo(N, L);
1330    return FunctionDecl::Create(C, DC, NameInfo, T, TInfo, S, SCAsWritten,
1331                                isInlineSpecified, hasWrittenPrototype);
1332  }
1333
1334  static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
1335                              const DeclarationNameInfo &NameInfo,
1336                              QualType T, TypeSourceInfo *TInfo,
1337                              StorageClass S = SC_None,
1338                              StorageClass SCAsWritten = SC_None,
1339                              bool isInlineSpecified = false,
1340                              bool hasWrittenPrototype = true);
1341
1342  DeclarationNameInfo getNameInfo() const {
1343    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
1344  }
1345
1346  SourceRange getSourceRange() const {
1347    return SourceRange(getOuterLocStart(), EndRangeLoc);
1348  }
1349  void setLocEnd(SourceLocation E) {
1350    EndRangeLoc = E;
1351  }
1352
1353  /// \brief Returns true if the function has a body (definition). The
1354  /// function body might be in any of the (re-)declarations of this
1355  /// function. The variant that accepts a FunctionDecl pointer will
1356  /// set that function declaration to the actual declaration
1357  /// containing the body (if there is one).
1358  bool hasBody(const FunctionDecl *&Definition) const;
1359
1360  bool hasBody() const {
1361    const FunctionDecl* Definition;
1362    return hasBody(Definition);
1363  }
1364
1365  /// getBody - Retrieve the body (definition) of the function. The
1366  /// function body might be in any of the (re-)declarations of this
1367  /// function. The variant that accepts a FunctionDecl pointer will
1368  /// set that function declaration to the actual declaration
1369  /// containing the body (if there is one).
1370  /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
1371  /// unnecessary AST de-serialization of the body.
1372  Stmt *getBody(const FunctionDecl *&Definition) const;
1373
1374  Stmt *getBody() const {
1375    const FunctionDecl* Definition;
1376    return getBody(Definition);
1377  }
1378
1379  /// isThisDeclarationADefinition - Returns whether this specific
1380  /// declaration of the function is also a definition. This does not
1381  /// determine whether the function has been defined (e.g., in a
1382  /// previous definition); for that information, use getBody.
1383  /// FIXME: Should return true if function is deleted or defaulted. However,
1384  /// CodeGenModule.cpp uses it, and I don't know if this would break it.
1385  bool isThisDeclarationADefinition() const { return Body; }
1386
1387  void setBody(Stmt *B);
1388  void setLazyBody(uint64_t Offset) { Body = Offset; }
1389
1390  /// Whether this function is variadic.
1391  bool isVariadic() const;
1392
1393  /// Whether this function is marked as virtual explicitly.
1394  bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
1395  void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
1396
1397  /// Whether this virtual function is pure, i.e. makes the containing class
1398  /// abstract.
1399  bool isPure() const { return IsPure; }
1400  void setPure(bool P = true);
1401
1402  /// Whether this function is "trivial" in some specialized C++ senses.
1403  /// Can only be true for default constructors, copy constructors,
1404  /// copy assignment operators, and destructors.  Not meaningful until
1405  /// the class has been fully built by Sema.
1406  bool isTrivial() const { return IsTrivial; }
1407  void setTrivial(bool IT) { IsTrivial = IT; }
1408
1409  /// Whether falling off this function implicitly returns null/zero.
1410  /// If a more specific implicit return value is required, front-ends
1411  /// should synthesize the appropriate return statements.
1412  bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
1413  void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
1414
1415  /// \brief Whether this function has a prototype, either because one
1416  /// was explicitly written or because it was "inherited" by merging
1417  /// a declaration without a prototype with a declaration that has a
1418  /// prototype.
1419  bool hasPrototype() const {
1420    return HasWrittenPrototype || HasInheritedPrototype;
1421  }
1422
1423  bool hasWrittenPrototype() const { return HasWrittenPrototype; }
1424
1425  /// \brief Whether this function inherited its prototype from a
1426  /// previous declaration.
1427  bool hasInheritedPrototype() const { return HasInheritedPrototype; }
1428  void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
1429
1430  /// \brief Whether this function has been deleted.
1431  ///
1432  /// A function that is "deleted" (via the C++0x "= delete" syntax)
1433  /// acts like a normal function, except that it cannot actually be
1434  /// called or have its address taken. Deleted functions are
1435  /// typically used in C++ overload resolution to attract arguments
1436  /// whose type or lvalue/rvalue-ness would permit the use of a
1437  /// different overload that would behave incorrectly. For example,
1438  /// one might use deleted functions to ban implicit conversion from
1439  /// a floating-point number to an Integer type:
1440  ///
1441  /// @code
1442  /// struct Integer {
1443  ///   Integer(long); // construct from a long
1444  ///   Integer(double) = delete; // no construction from float or double
1445  ///   Integer(long double) = delete; // no construction from long double
1446  /// };
1447  /// @endcode
1448  bool isDeleted() const { return IsDeleted; }
1449  void setDeleted(bool D = true) { IsDeleted = D; }
1450
1451  /// \brief Determines whether this is a function "main", which is
1452  /// the entry point into an executable program.
1453  bool isMain() const;
1454
1455  /// \brief Determines whether this function is a function with
1456  /// external, C linkage.
1457  bool isExternC() const;
1458
1459  /// \brief Determines whether this is a global function.
1460  bool isGlobal() const;
1461
1462  void setPreviousDeclaration(FunctionDecl * PrevDecl);
1463
1464  const FunctionDecl *getCanonicalDecl() const;
1465  FunctionDecl *getCanonicalDecl();
1466
1467  unsigned getBuiltinID() const;
1468
1469  // Iterator access to formal parameters.
1470  unsigned param_size() const { return getNumParams(); }
1471  typedef ParmVarDecl **param_iterator;
1472  typedef ParmVarDecl * const *param_const_iterator;
1473
1474  param_iterator param_begin() { return ParamInfo; }
1475  param_iterator param_end()   { return ParamInfo+param_size(); }
1476
1477  param_const_iterator param_begin() const { return ParamInfo; }
1478  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
1479
1480  /// getNumParams - Return the number of parameters this function must have
1481  /// based on its FunctionType.  This is the length of the ParamInfo array
1482  /// after it has been created.
1483  unsigned getNumParams() const;
1484
1485  const ParmVarDecl *getParamDecl(unsigned i) const {
1486    assert(i < getNumParams() && "Illegal param #");
1487    return ParamInfo[i];
1488  }
1489  ParmVarDecl *getParamDecl(unsigned i) {
1490    assert(i < getNumParams() && "Illegal param #");
1491    return ParamInfo[i];
1492  }
1493  void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams) {
1494    setParams(getASTContext(), NewParamInfo, NumParams);
1495  }
1496
1497  /// getMinRequiredArguments - Returns the minimum number of arguments
1498  /// needed to call this function. This may be fewer than the number of
1499  /// function parameters, if some of the parameters have default
1500  /// arguments (in C++).
1501  unsigned getMinRequiredArguments() const;
1502
1503  QualType getResultType() const {
1504    return getType()->getAs<FunctionType>()->getResultType();
1505  }
1506
1507  /// \brief Determine the type of an expression that calls this function.
1508  QualType getCallResultType() const {
1509    return getType()->getAs<FunctionType>()->getCallResultType(getASTContext());
1510  }
1511
1512  StorageClass getStorageClass() const { return StorageClass(SClass); }
1513  void setStorageClass(StorageClass SC);
1514
1515  StorageClass getStorageClassAsWritten() const {
1516    return StorageClass(SClassAsWritten);
1517  }
1518
1519  /// \brief Determine whether the "inline" keyword was specified for this
1520  /// function.
1521  bool isInlineSpecified() const { return IsInlineSpecified; }
1522
1523  /// Set whether the "inline" keyword was specified for this function.
1524  void setInlineSpecified(bool I) {
1525    IsInlineSpecified = I;
1526    IsInline = I;
1527  }
1528
1529  /// Flag that this function is implicitly inline.
1530  void setImplicitlyInline() {
1531    IsInline = true;
1532  }
1533
1534  /// \brief Determine whether this function should be inlined, because it is
1535  /// either marked "inline" or is a member function of a C++ class that
1536  /// was defined in the class body.
1537  bool isInlined() const;
1538
1539  bool isInlineDefinitionExternallyVisible() const;
1540
1541  /// isOverloadedOperator - Whether this function declaration
1542  /// represents an C++ overloaded operator, e.g., "operator+".
1543  bool isOverloadedOperator() const {
1544    return getOverloadedOperator() != OO_None;
1545  }
1546
1547  OverloadedOperatorKind getOverloadedOperator() const;
1548
1549  const IdentifierInfo *getLiteralIdentifier() const;
1550
1551  /// \brief If this function is an instantiation of a member function
1552  /// of a class template specialization, retrieves the function from
1553  /// which it was instantiated.
1554  ///
1555  /// This routine will return non-NULL for (non-templated) member
1556  /// functions of class templates and for instantiations of function
1557  /// templates. For example, given:
1558  ///
1559  /// \code
1560  /// template<typename T>
1561  /// struct X {
1562  ///   void f(T);
1563  /// };
1564  /// \endcode
1565  ///
1566  /// The declaration for X<int>::f is a (non-templated) FunctionDecl
1567  /// whose parent is the class template specialization X<int>. For
1568  /// this declaration, getInstantiatedFromFunction() will return
1569  /// the FunctionDecl X<T>::A. When a complete definition of
1570  /// X<int>::A is required, it will be instantiated from the
1571  /// declaration returned by getInstantiatedFromMemberFunction().
1572  FunctionDecl *getInstantiatedFromMemberFunction() const;
1573
1574  /// \brief What kind of templated function this is.
1575  TemplatedKind getTemplatedKind() const;
1576
1577  /// \brief If this function is an instantiation of a member function of a
1578  /// class template specialization, retrieves the member specialization
1579  /// information.
1580  MemberSpecializationInfo *getMemberSpecializationInfo() const;
1581
1582  /// \brief Specify that this record is an instantiation of the
1583  /// member function FD.
1584  void setInstantiationOfMemberFunction(FunctionDecl *FD,
1585                                        TemplateSpecializationKind TSK) {
1586    setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
1587  }
1588
1589  /// \brief Retrieves the function template that is described by this
1590  /// function declaration.
1591  ///
1592  /// Every function template is represented as a FunctionTemplateDecl
1593  /// and a FunctionDecl (or something derived from FunctionDecl). The
1594  /// former contains template properties (such as the template
1595  /// parameter lists) while the latter contains the actual
1596  /// description of the template's
1597  /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
1598  /// FunctionDecl that describes the function template,
1599  /// getDescribedFunctionTemplate() retrieves the
1600  /// FunctionTemplateDecl from a FunctionDecl.
1601  FunctionTemplateDecl *getDescribedFunctionTemplate() const {
1602    return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
1603  }
1604
1605  void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
1606    TemplateOrSpecialization = Template;
1607  }
1608
1609  /// \brief Determine whether this function is a function template
1610  /// specialization.
1611  bool isFunctionTemplateSpecialization() const {
1612    return getPrimaryTemplate() != 0;
1613  }
1614
1615  /// \brief If this function is actually a function template specialization,
1616  /// retrieve information about this function template specialization.
1617  /// Otherwise, returns NULL.
1618  FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
1619    return TemplateOrSpecialization.
1620             dyn_cast<FunctionTemplateSpecializationInfo*>();
1621  }
1622
1623  /// \brief Determines whether this function is a function template
1624  /// specialization or a member of a class template specialization that can
1625  /// be implicitly instantiated.
1626  bool isImplicitlyInstantiable() const;
1627
1628  /// \brief Retrieve the function declaration from which this function could
1629  /// be instantiated, if it is an instantiation (rather than a non-template
1630  /// or a specialization, for example).
1631  FunctionDecl *getTemplateInstantiationPattern() const;
1632
1633  /// \brief Retrieve the primary template that this function template
1634  /// specialization either specializes or was instantiated from.
1635  ///
1636  /// If this function declaration is not a function template specialization,
1637  /// returns NULL.
1638  FunctionTemplateDecl *getPrimaryTemplate() const;
1639
1640  /// \brief Retrieve the template arguments used to produce this function
1641  /// template specialization from the primary template.
1642  ///
1643  /// If this function declaration is not a function template specialization,
1644  /// returns NULL.
1645  const TemplateArgumentList *getTemplateSpecializationArgs() const;
1646
1647  /// \brief Retrieve the template argument list as written in the sources,
1648  /// if any.
1649  ///
1650  /// If this function declaration is not a function template specialization
1651  /// or if it had no explicit template argument list, returns NULL.
1652  /// Note that it an explicit template argument list may be written empty,
1653  /// e.g., template<> void foo<>(char* s);
1654  const TemplateArgumentListInfo*
1655  getTemplateSpecializationArgsAsWritten() const;
1656
1657  /// \brief Specify that this function declaration is actually a function
1658  /// template specialization.
1659  ///
1660  /// \param Template the function template that this function template
1661  /// specialization specializes.
1662  ///
1663  /// \param TemplateArgs the template arguments that produced this
1664  /// function template specialization from the template.
1665  ///
1666  /// \param InsertPos If non-NULL, the position in the function template
1667  /// specialization set where the function template specialization data will
1668  /// be inserted.
1669  ///
1670  /// \param TSK the kind of template specialization this is.
1671  ///
1672  /// \param TemplateArgsAsWritten location info of template arguments.
1673  ///
1674  /// \param PointOfInstantiation point at which the function template
1675  /// specialization was first instantiated.
1676  void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
1677                                      const TemplateArgumentList *TemplateArgs,
1678                                         void *InsertPos,
1679                    TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
1680                    const TemplateArgumentListInfo *TemplateArgsAsWritten = 0,
1681                    SourceLocation PointOfInstantiation = SourceLocation()) {
1682    setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
1683                                      InsertPos, TSK, TemplateArgsAsWritten,
1684                                      PointOfInstantiation);
1685  }
1686
1687  /// \brief Specifies that this function declaration is actually a
1688  /// dependent function template specialization.
1689  void setDependentTemplateSpecialization(ASTContext &Context,
1690                             const UnresolvedSetImpl &Templates,
1691                      const TemplateArgumentListInfo &TemplateArgs);
1692
1693  DependentFunctionTemplateSpecializationInfo *
1694  getDependentSpecializationInfo() const {
1695    return TemplateOrSpecialization.
1696             dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
1697  }
1698
1699  /// \brief Determine what kind of template instantiation this function
1700  /// represents.
1701  TemplateSpecializationKind getTemplateSpecializationKind() const;
1702
1703  /// \brief Determine what kind of template instantiation this function
1704  /// represents.
1705  void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1706                        SourceLocation PointOfInstantiation = SourceLocation());
1707
1708  /// \brief Retrieve the (first) point of instantiation of a function template
1709  /// specialization or a member of a class template specialization.
1710  ///
1711  /// \returns the first point of instantiation, if this function was
1712  /// instantiated from a template; otherwie, returns an invalid source
1713  /// location.
1714  SourceLocation getPointOfInstantiation() const;
1715
1716  /// \brief Determine whether this is or was instantiated from an out-of-line
1717  /// definition of a member function.
1718  bool isOutOfLine() const;
1719
1720  // Implement isa/cast/dyncast/etc.
1721  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1722  static bool classof(const FunctionDecl *D) { return true; }
1723  static bool classofKind(Kind K) {
1724    return K >= firstFunction && K <= lastFunction;
1725  }
1726  static DeclContext *castToDeclContext(const FunctionDecl *D) {
1727    return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
1728  }
1729  static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
1730    return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
1731  }
1732
1733  friend class ASTDeclReader;
1734  friend class ASTDeclWriter;
1735};
1736
1737
1738/// FieldDecl - An instance of this class is created by Sema::ActOnField to
1739/// represent a member of a struct/union/class.
1740class FieldDecl : public DeclaratorDecl {
1741  // FIXME: This can be packed into the bitfields in Decl.
1742  bool Mutable : 1;
1743  mutable unsigned CachedFieldIndex : 31;
1744
1745  Expr *BitWidth;
1746protected:
1747  FieldDecl(Kind DK, DeclContext *DC, SourceLocation L,
1748            IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1749            Expr *BW, bool Mutable)
1750    : DeclaratorDecl(DK, DC, L, Id, T, TInfo),
1751      Mutable(Mutable), CachedFieldIndex(0), BitWidth(BW) {
1752  }
1753
1754public:
1755  static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
1756                           SourceLocation L, IdentifierInfo *Id, QualType T,
1757                           TypeSourceInfo *TInfo, Expr *BW, bool Mutable);
1758
1759  /// getFieldIndex - Returns the index of this field within its record,
1760  /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
1761  unsigned getFieldIndex() const;
1762
1763  /// isMutable - Determines whether this field is mutable (C++ only).
1764  bool isMutable() const { return Mutable; }
1765
1766  /// \brief Set whether this field is mutable (C++ only).
1767  void setMutable(bool M) { Mutable = M; }
1768
1769  /// isBitfield - Determines whether this field is a bitfield.
1770  bool isBitField() const { return BitWidth != NULL; }
1771
1772  /// @brief Determines whether this is an unnamed bitfield.
1773  bool isUnnamedBitfield() const { return BitWidth != NULL && !getDeclName(); }
1774
1775  /// isAnonymousStructOrUnion - Determines whether this field is a
1776  /// representative for an anonymous struct or union. Such fields are
1777  /// unnamed and are implicitly generated by the implementation to
1778  /// store the data for the anonymous union or struct.
1779  bool isAnonymousStructOrUnion() const;
1780
1781  Expr *getBitWidth() const { return BitWidth; }
1782  void setBitWidth(Expr *BW) { BitWidth = BW; }
1783
1784  /// getParent - Returns the parent of this field declaration, which
1785  /// is the struct in which this method is defined.
1786  const RecordDecl *getParent() const {
1787    return cast<RecordDecl>(getDeclContext());
1788  }
1789
1790  RecordDecl *getParent() {
1791    return cast<RecordDecl>(getDeclContext());
1792  }
1793
1794  // Implement isa/cast/dyncast/etc.
1795  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1796  static bool classof(const FieldDecl *D) { return true; }
1797  static bool classofKind(Kind K) { return K >= firstField && K <= lastField; }
1798};
1799
1800/// EnumConstantDecl - An instance of this object exists for each enum constant
1801/// that is defined.  For example, in "enum X {a,b}", each of a/b are
1802/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
1803/// TagType for the X EnumDecl.
1804class EnumConstantDecl : public ValueDecl {
1805  Stmt *Init; // an integer constant expression
1806  llvm::APSInt Val; // The value.
1807protected:
1808  EnumConstantDecl(DeclContext *DC, SourceLocation L,
1809                   IdentifierInfo *Id, QualType T, Expr *E,
1810                   const llvm::APSInt &V)
1811    : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
1812
1813public:
1814
1815  static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
1816                                  SourceLocation L, IdentifierInfo *Id,
1817                                  QualType T, Expr *E,
1818                                  const llvm::APSInt &V);
1819
1820  const Expr *getInitExpr() const { return (const Expr*) Init; }
1821  Expr *getInitExpr() { return (Expr*) Init; }
1822  const llvm::APSInt &getInitVal() const { return Val; }
1823
1824  void setInitExpr(Expr *E) { Init = (Stmt*) E; }
1825  void setInitVal(const llvm::APSInt &V) { Val = V; }
1826
1827  SourceRange getSourceRange() const;
1828
1829  // Implement isa/cast/dyncast/etc.
1830  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1831  static bool classof(const EnumConstantDecl *D) { return true; }
1832  static bool classofKind(Kind K) { return K == EnumConstant; }
1833
1834  friend class StmtIteratorBase;
1835};
1836
1837/// IndirectFieldDecl - An instance of this class is created to represent a
1838/// field injected from an anonymous union/struct into the parent scope.
1839/// IndirectFieldDecl are always implicit.
1840class IndirectFieldDecl : public ValueDecl {
1841  NamedDecl **Chaining;
1842  unsigned ChainingSize;
1843
1844  IndirectFieldDecl(DeclContext *DC, SourceLocation L,
1845                    DeclarationName N, QualType T,
1846                    NamedDecl **CH, unsigned CHS)
1847    : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH), ChainingSize(CHS) {}
1848
1849public:
1850  static IndirectFieldDecl *Create(ASTContext &C, DeclContext *DC,
1851                                   SourceLocation L, IdentifierInfo *Id,
1852                                   QualType T, NamedDecl **CH, unsigned CHS);
1853
1854  typedef NamedDecl * const *chain_iterator;
1855  chain_iterator chain_begin() const { return Chaining; }
1856  chain_iterator chain_end() const  { return Chaining+ChainingSize; }
1857
1858  unsigned getChainingSize() const { return ChainingSize; }
1859
1860  FieldDecl *getAnonField() const {
1861    assert(ChainingSize >= 2);
1862    return cast<FieldDecl>(Chaining[ChainingSize - 1]);
1863  }
1864
1865  VarDecl *getVarDecl() const {
1866    assert(ChainingSize >= 2);
1867    return dyn_cast<VarDecl>(*chain_begin());
1868  }
1869
1870  // Implement isa/cast/dyncast/etc.
1871  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1872  static bool classof(const IndirectFieldDecl *D) { return true; }
1873  static bool classofKind(Kind K) { return K == IndirectField; }
1874  friend class ASTDeclReader;
1875};
1876
1877/// TypeDecl - Represents a declaration of a type.
1878///
1879class TypeDecl : public NamedDecl {
1880  /// TypeForDecl - This indicates the Type object that represents
1881  /// this TypeDecl.  It is a cache maintained by
1882  /// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
1883  /// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
1884  mutable const Type *TypeForDecl;
1885  friend class ASTContext;
1886  friend class DeclContext;
1887  friend class TagDecl;
1888  friend class TemplateTypeParmDecl;
1889  friend class TagType;
1890
1891protected:
1892  TypeDecl(Kind DK, DeclContext *DC, SourceLocation L,
1893           IdentifierInfo *Id)
1894    : NamedDecl(DK, DC, L, Id), TypeForDecl(0) {}
1895
1896public:
1897  // Low-level accessor
1898  const Type *getTypeForDecl() const { return TypeForDecl; }
1899  void setTypeForDecl(const Type *TD) { TypeForDecl = TD; }
1900
1901  // Implement isa/cast/dyncast/etc.
1902  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1903  static bool classof(const TypeDecl *D) { return true; }
1904  static bool classofKind(Kind K) { return K >= firstType && K <= lastType; }
1905};
1906
1907
1908class TypedefDecl : public TypeDecl, public Redeclarable<TypedefDecl> {
1909  /// UnderlyingType - This is the type the typedef is set to.
1910  TypeSourceInfo *TInfo;
1911
1912  TypedefDecl(DeclContext *DC, SourceLocation L,
1913              IdentifierInfo *Id, TypeSourceInfo *TInfo)
1914    : TypeDecl(Typedef, DC, L, Id), TInfo(TInfo) {}
1915
1916protected:
1917  typedef Redeclarable<TypedefDecl> redeclarable_base;
1918  TypedefDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
1919
1920  friend class Decl;
1921
1922public:
1923  typedef redeclarable_base::redecl_iterator redecl_iterator;
1924  redecl_iterator redecls_begin() const {
1925    return redeclarable_base::redecls_begin();
1926  }
1927  redecl_iterator redecls_end() const {
1928    return redeclarable_base::redecls_end();
1929  }
1930
1931  static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
1932                             SourceLocation L, IdentifierInfo *Id,
1933                             TypeSourceInfo *TInfo);
1934
1935  TypeSourceInfo *getTypeSourceInfo() const {
1936    return TInfo;
1937  }
1938
1939  /// Retrieves the canonical declaration of this typedef.
1940  TypedefDecl *getCanonicalDecl() {
1941    return getFirstDeclaration();
1942  }
1943  const TypedefDecl *getCanonicalDecl() const {
1944    return getFirstDeclaration();
1945  }
1946
1947  QualType getUnderlyingType() const {
1948    return TInfo->getType();
1949  }
1950  void setTypeSourceInfo(TypeSourceInfo *newType) {
1951    TInfo = newType;
1952  }
1953
1954  // Implement isa/cast/dyncast/etc.
1955  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1956  static bool classof(const TypedefDecl *D) { return true; }
1957  static bool classofKind(Kind K) { return K == Typedef; }
1958};
1959
1960class TypedefDecl;
1961
1962/// TagDecl - Represents the declaration of a struct/union/class/enum.
1963class TagDecl
1964  : public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
1965public:
1966  // This is really ugly.
1967  typedef TagTypeKind TagKind;
1968
1969private:
1970  // FIXME: This can be packed into the bitfields in Decl.
1971  /// TagDeclKind - The TagKind enum.
1972  unsigned TagDeclKind : 2;
1973
1974  /// IsDefinition - True if this is a definition ("struct foo {};"), false if
1975  /// it is a declaration ("struct foo;").
1976  bool IsDefinition : 1;
1977
1978  /// IsBeingDefined - True if this is currently being defined.
1979  bool IsBeingDefined : 1;
1980
1981  /// IsEmbeddedInDeclarator - True if this tag declaration is
1982  /// "embedded" (i.e., defined or declared for the very first time)
1983  /// in the syntax of a declarator.
1984  bool IsEmbeddedInDeclarator : 1;
1985
1986protected:
1987  // These are used by (and only defined for) EnumDecl.
1988  unsigned NumPositiveBits : 8;
1989  unsigned NumNegativeBits : 8;
1990
1991  /// IsScoped - True if this tag declaration is a scoped enumeration. Only
1992  /// possible in C++0x mode.
1993  bool IsScoped : 1;
1994  /// IsScopedUsingClassTag - If this tag declaration is a scoped enum,
1995  /// then this is true if the scoped enum was declared using the class
1996  /// tag, false if it was declared with the struct tag. No meaning is
1997  /// associated if this tag declaration is not a scoped enum.
1998  bool IsScopedUsingClassTag : 1;
1999
2000  /// IsFixed - True if this is an enumeration with fixed underlying type. Only
2001  /// possible in C++0x mode.
2002  bool IsFixed : 1;
2003
2004private:
2005  SourceLocation TagKeywordLoc;
2006  SourceLocation RBraceLoc;
2007
2008  // A struct representing syntactic qualifier info,
2009  // to be used for the (uncommon) case of out-of-line declarations.
2010  typedef QualifierInfo ExtInfo;
2011
2012  /// TypedefDeclOrQualifier - If the (out-of-line) tag declaration name
2013  /// is qualified, it points to the qualifier info (nns and range);
2014  /// otherwise, if the tag declaration is anonymous and it is part of
2015  /// a typedef, it points to the TypedefDecl (used for mangling);
2016  /// otherwise, it is a null (TypedefDecl) pointer.
2017  llvm::PointerUnion<TypedefDecl*, ExtInfo*> TypedefDeclOrQualifier;
2018
2019  bool hasExtInfo() const { return TypedefDeclOrQualifier.is<ExtInfo*>(); }
2020  ExtInfo *getExtInfo() { return TypedefDeclOrQualifier.get<ExtInfo*>(); }
2021  const ExtInfo *getExtInfo() const {
2022    return TypedefDeclOrQualifier.get<ExtInfo*>();
2023  }
2024
2025protected:
2026  TagDecl(Kind DK, TagKind TK, DeclContext *DC,
2027          SourceLocation L, IdentifierInfo *Id,
2028          TagDecl *PrevDecl, SourceLocation TKL = SourceLocation())
2029    : TypeDecl(DK, DC, L, Id), DeclContext(DK), TagKeywordLoc(TKL),
2030      TypedefDeclOrQualifier((TypedefDecl*) 0) {
2031    assert((DK != Enum || TK == TTK_Enum) &&
2032           "EnumDecl not matched with TTK_Enum");
2033    TagDeclKind = TK;
2034    IsDefinition = false;
2035    IsBeingDefined = false;
2036    IsEmbeddedInDeclarator = false;
2037    setPreviousDeclaration(PrevDecl);
2038  }
2039
2040  typedef Redeclarable<TagDecl> redeclarable_base;
2041  TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
2042
2043  /// @brief Completes the definition of this tag declaration.
2044  ///
2045  /// This is a helper function for derived classes.
2046  void completeDefinition();
2047
2048  friend class Decl;
2049
2050public:
2051  typedef redeclarable_base::redecl_iterator redecl_iterator;
2052  redecl_iterator redecls_begin() const {
2053    return redeclarable_base::redecls_begin();
2054  }
2055  redecl_iterator redecls_end() const {
2056    return redeclarable_base::redecls_end();
2057  }
2058
2059  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2060  void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
2061
2062  SourceLocation getTagKeywordLoc() const { return TagKeywordLoc; }
2063  void setTagKeywordLoc(SourceLocation TKL) { TagKeywordLoc = TKL; }
2064
2065  /// getInnerLocStart - Return SourceLocation representing start of source
2066  /// range ignoring outer template declarations.
2067    SourceLocation getInnerLocStart() const;
2068
2069  /// getOuterLocStart - Return SourceLocation representing start of source
2070  /// range taking into account any outer template declarations.
2071  SourceLocation getOuterLocStart() const;
2072  SourceRange getSourceRange() const;
2073
2074  TagDecl* getCanonicalDecl();
2075  const TagDecl* getCanonicalDecl() const {
2076    return const_cast<TagDecl*>(this)->getCanonicalDecl();
2077  }
2078
2079  /// isThisDeclarationADefinition() - Return true if this declaration
2080  /// defines the type.  Provided for consistency.
2081  bool isThisDeclarationADefinition() const {
2082    return isDefinition();
2083  }
2084
2085  /// isDefinition - Return true if this decl has its body specified.
2086  bool isDefinition() const {
2087    return IsDefinition;
2088  }
2089
2090  /// isBeingDefined - Return true if this decl is currently being defined.
2091  bool isBeingDefined() const {
2092    return IsBeingDefined;
2093  }
2094
2095  bool isEmbeddedInDeclarator() const {
2096    return IsEmbeddedInDeclarator;
2097  }
2098  void setEmbeddedInDeclarator(bool isInDeclarator) {
2099    IsEmbeddedInDeclarator = isInDeclarator;
2100  }
2101
2102  /// \brief Whether this declaration declares a type that is
2103  /// dependent, i.e., a type that somehow depends on template
2104  /// parameters.
2105  bool isDependentType() const { return isDependentContext(); }
2106
2107  /// @brief Starts the definition of this tag declaration.
2108  ///
2109  /// This method should be invoked at the beginning of the definition
2110  /// of this tag declaration. It will set the tag type into a state
2111  /// where it is in the process of being defined.
2112  void startDefinition();
2113
2114  /// getDefinition - Returns the TagDecl that actually defines this
2115  ///  struct/union/class/enum.  When determining whether or not a
2116  ///  struct/union/class/enum is completely defined, one should use this method
2117  ///  as opposed to 'isDefinition'.  'isDefinition' indicates whether or not a
2118  ///  specific TagDecl is defining declaration, not whether or not the
2119  ///  struct/union/class/enum type is defined.  This method returns NULL if
2120  ///  there is no TagDecl that defines the struct/union/class/enum.
2121  TagDecl* getDefinition() const;
2122
2123  void setDefinition(bool V) { IsDefinition = V; }
2124
2125  const char *getKindName() const {
2126    return TypeWithKeyword::getTagTypeKindName(getTagKind());
2127  }
2128
2129  TagKind getTagKind() const {
2130    return TagKind(TagDeclKind);
2131  }
2132
2133  void setTagKind(TagKind TK) { TagDeclKind = TK; }
2134
2135  bool isStruct() const { return getTagKind() == TTK_Struct; }
2136  bool isClass()  const { return getTagKind() == TTK_Class; }
2137  bool isUnion()  const { return getTagKind() == TTK_Union; }
2138  bool isEnum()   const { return getTagKind() == TTK_Enum; }
2139
2140  TypedefDecl *getTypedefForAnonDecl() const {
2141    return hasExtInfo() ? 0 : TypedefDeclOrQualifier.get<TypedefDecl*>();
2142  }
2143
2144  void setTypedefForAnonDecl(TypedefDecl *TDD);
2145
2146  NestedNameSpecifier *getQualifier() const {
2147    return hasExtInfo() ? getExtInfo()->NNS : 0;
2148  }
2149  SourceRange getQualifierRange() const {
2150    return hasExtInfo() ? getExtInfo()->NNSRange : SourceRange();
2151  }
2152  void setQualifierInfo(NestedNameSpecifier *Qualifier,
2153                        SourceRange QualifierRange);
2154
2155  unsigned getNumTemplateParameterLists() const {
2156    return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
2157  }
2158  TemplateParameterList *getTemplateParameterList(unsigned i) const {
2159    assert(i < getNumTemplateParameterLists());
2160    return getExtInfo()->TemplParamLists[i];
2161  }
2162  void setTemplateParameterListsInfo(ASTContext &Context, unsigned NumTPLists,
2163                                     TemplateParameterList **TPLists) {
2164    getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
2165  }
2166
2167  // Implement isa/cast/dyncast/etc.
2168  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2169  static bool classof(const TagDecl *D) { return true; }
2170  static bool classofKind(Kind K) { return K >= firstTag && K <= lastTag; }
2171
2172  static DeclContext *castToDeclContext(const TagDecl *D) {
2173    return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
2174  }
2175  static TagDecl *castFromDeclContext(const DeclContext *DC) {
2176    return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
2177  }
2178
2179  friend class ASTDeclReader;
2180  friend class ASTDeclWriter;
2181};
2182
2183/// EnumDecl - Represents an enum.  As an extension, we allow forward-declared
2184/// enums.
2185class EnumDecl : public TagDecl {
2186  /// IntegerType - This represent the integer type that the enum corresponds
2187  /// to for code generation purposes.  Note that the enumerator constants may
2188  /// have a different type than this does.
2189  ///
2190  /// If the underlying integer type was explicitly stated in the source
2191  /// code, this is a TypeSourceInfo* for that type. Otherwise this type
2192  /// was automatically deduced somehow, and this is a Type*.
2193  ///
2194  /// Normally if IsFixed(), this would contain a TypeSourceInfo*, but in
2195  /// some cases it won't.
2196  ///
2197  /// The underlying type of an enumeration never has any qualifiers, so
2198  /// we can get away with just storing a raw Type*, and thus save an
2199  /// extra pointer when TypeSourceInfo is needed.
2200
2201  llvm::PointerUnion<const Type*, TypeSourceInfo*> IntegerType;
2202
2203  /// PromotionType - The integer type that values of this type should
2204  /// promote to.  In C, enumerators are generally of an integer type
2205  /// directly, but gcc-style large enumerators (and all enumerators
2206  /// in C++) are of the enum type instead.
2207  QualType PromotionType;
2208
2209  /// \brief If the enumeration was instantiated from an enumeration
2210  /// within a class or function template, this pointer refers to the
2211  /// enumeration declared within the template.
2212  EnumDecl *InstantiatedFrom;
2213
2214  // The number of positive and negative bits required by the
2215  // enumerators are stored in the SubclassBits field.
2216  enum {
2217    NumBitsWidth = 8,
2218    NumBitsMask = (1 << NumBitsWidth) - 1
2219  };
2220
2221  EnumDecl(DeclContext *DC, SourceLocation L,
2222           IdentifierInfo *Id, EnumDecl *PrevDecl, SourceLocation TKL,
2223           bool Scoped, bool ScopedUsingClassTag, bool Fixed)
2224    : TagDecl(Enum, TTK_Enum, DC, L, Id, PrevDecl, TKL), InstantiatedFrom(0) {
2225      assert(Scoped || !ScopedUsingClassTag);
2226      IntegerType = (const Type*)0;
2227      NumNegativeBits = 0;
2228      NumPositiveBits = 0;
2229      IsScoped = Scoped;
2230      IsScopedUsingClassTag = ScopedUsingClassTag;
2231      IsFixed = Fixed;
2232    }
2233public:
2234  EnumDecl *getCanonicalDecl() {
2235    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2236  }
2237  const EnumDecl *getCanonicalDecl() const {
2238    return cast<EnumDecl>(TagDecl::getCanonicalDecl());
2239  }
2240
2241  const EnumDecl *getPreviousDeclaration() const {
2242    return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2243  }
2244  EnumDecl *getPreviousDeclaration() {
2245    return cast_or_null<EnumDecl>(TagDecl::getPreviousDeclaration());
2246  }
2247
2248  static EnumDecl *Create(ASTContext &C, DeclContext *DC,
2249                          SourceLocation L, IdentifierInfo *Id,
2250                          SourceLocation TKL, EnumDecl *PrevDecl,
2251                          bool IsScoped, bool IsScopedUsingClassTag,
2252                          bool IsFixed);
2253  static EnumDecl *Create(ASTContext &C, EmptyShell Empty);
2254
2255  /// completeDefinition - When created, the EnumDecl corresponds to a
2256  /// forward-declared enum. This method is used to mark the
2257  /// declaration as being defined; it's enumerators have already been
2258  /// added (via DeclContext::addDecl). NewType is the new underlying
2259  /// type of the enumeration type.
2260  void completeDefinition(QualType NewType,
2261                          QualType PromotionType,
2262                          unsigned NumPositiveBits,
2263                          unsigned NumNegativeBits);
2264
2265  // enumerator_iterator - Iterates through the enumerators of this
2266  // enumeration.
2267  typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
2268
2269  enumerator_iterator enumerator_begin() const {
2270    const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2271    if (!E)
2272      E = this;
2273    return enumerator_iterator(E->decls_begin());
2274  }
2275
2276  enumerator_iterator enumerator_end() const {
2277    const EnumDecl *E = cast_or_null<EnumDecl>(getDefinition());
2278    if (!E)
2279      E = this;
2280    return enumerator_iterator(E->decls_end());
2281  }
2282
2283  /// getPromotionType - Return the integer type that enumerators
2284  /// should promote to.
2285  QualType getPromotionType() const { return PromotionType; }
2286
2287  /// \brief Set the promotion type.
2288  void setPromotionType(QualType T) { PromotionType = T; }
2289
2290  /// getIntegerType - Return the integer type this enum decl corresponds to.
2291  /// This returns a null qualtype for an enum forward definition.
2292  QualType getIntegerType() const {
2293    if (!IntegerType)
2294      return QualType();
2295    if (const Type* T = IntegerType.dyn_cast<const Type*>())
2296      return QualType(T, 0);
2297    return IntegerType.get<TypeSourceInfo*>()->getType();
2298  }
2299
2300  /// \brief Set the underlying integer type.
2301  void setIntegerType(QualType T) { IntegerType = T.getTypePtrOrNull(); }
2302
2303  /// \brief Set the underlying integer type source info.
2304  void setIntegerTypeSourceInfo(TypeSourceInfo* TInfo) { IntegerType = TInfo; }
2305
2306  /// \brief Return the type source info for the underlying integer type,
2307  /// if no type source info exists, return 0.
2308  TypeSourceInfo* getIntegerTypeSourceInfo() const {
2309    return IntegerType.dyn_cast<TypeSourceInfo*>();
2310  }
2311
2312  /// \brief Returns the width in bits requred to store all the
2313  /// non-negative enumerators of this enum.
2314  unsigned getNumPositiveBits() const {
2315    return NumPositiveBits;
2316  }
2317  void setNumPositiveBits(unsigned Num) {
2318    NumPositiveBits = Num;
2319    assert(NumPositiveBits == Num && "can't store this bitcount");
2320  }
2321
2322  /// \brief Returns the width in bits requred to store all the
2323  /// negative enumerators of this enum.  These widths include
2324  /// the rightmost leading 1;  that is:
2325  ///
2326  /// MOST NEGATIVE ENUMERATOR     PATTERN     NUM NEGATIVE BITS
2327  /// ------------------------     -------     -----------------
2328  ///                       -1     1111111                     1
2329  ///                      -10     1110110                     5
2330  ///                     -101     1001011                     8
2331  unsigned getNumNegativeBits() const {
2332    return NumNegativeBits;
2333  }
2334  void setNumNegativeBits(unsigned Num) {
2335    NumNegativeBits = Num;
2336  }
2337
2338  /// \brief Returns true if this is a C++0x scoped enumeration.
2339  bool isScoped() const {
2340    return IsScoped;
2341  }
2342
2343  /// \brief Returns true if this is a C++0x scoped enumeration.
2344  bool isScopedUsingClassTag() const {
2345    return IsScopedUsingClassTag;
2346  }
2347
2348  /// \brief Returns true if this is a C++0x enumeration with fixed underlying
2349  /// type.
2350  bool isFixed() const {
2351    return IsFixed;
2352  }
2353
2354  /// \brief Returns true if this can be considered a complete type.
2355  bool isComplete() const {
2356    return isDefinition() || isFixed();
2357  }
2358
2359  /// \brief Returns the enumeration (declared within the template)
2360  /// from which this enumeration type was instantiated, or NULL if
2361  /// this enumeration was not instantiated from any template.
2362  EnumDecl *getInstantiatedFromMemberEnum() const {
2363    return InstantiatedFrom;
2364  }
2365
2366  void setInstantiationOfMemberEnum(EnumDecl *IF) { InstantiatedFrom = IF; }
2367
2368  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2369  static bool classof(const EnumDecl *D) { return true; }
2370  static bool classofKind(Kind K) { return K == Enum; }
2371
2372  friend class ASTDeclReader;
2373};
2374
2375
2376/// RecordDecl - Represents a struct/union/class.  For example:
2377///   struct X;                  // Forward declaration, no "body".
2378///   union Y { int A, B; };     // Has body with members A and B (FieldDecls).
2379/// This decl will be marked invalid if *any* members are invalid.
2380///
2381class RecordDecl : public TagDecl {
2382  // FIXME: This can be packed into the bitfields in Decl.
2383  /// HasFlexibleArrayMember - This is true if this struct ends with a flexible
2384  /// array member (e.g. int X[]) or if this union contains a struct that does.
2385  /// If so, this cannot be contained in arrays or other structs as a member.
2386  bool HasFlexibleArrayMember : 1;
2387
2388  /// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
2389  /// or union.
2390  bool AnonymousStructOrUnion : 1;
2391
2392  /// HasObjectMember - This is true if this struct has at least one member
2393  /// containing an object.
2394  bool HasObjectMember : 1;
2395
2396  /// \brief Whether the field declarations of this record have been loaded
2397  /// from external storage. To avoid unnecessary deserialization of
2398  /// methods/nested types we allow deserialization of just the fields
2399  /// when needed.
2400  mutable bool LoadedFieldsFromExternalStorage : 1;
2401  friend class DeclContext;
2402
2403protected:
2404  RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
2405             SourceLocation L, IdentifierInfo *Id,
2406             RecordDecl *PrevDecl, SourceLocation TKL);
2407
2408public:
2409  static RecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
2410                            SourceLocation L, IdentifierInfo *Id,
2411                            SourceLocation TKL = SourceLocation(),
2412                            RecordDecl* PrevDecl = 0);
2413  static RecordDecl *Create(const ASTContext &C, EmptyShell Empty);
2414
2415  const RecordDecl *getPreviousDeclaration() const {
2416    return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2417  }
2418  RecordDecl *getPreviousDeclaration() {
2419    return cast_or_null<RecordDecl>(TagDecl::getPreviousDeclaration());
2420  }
2421
2422  bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
2423  void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
2424
2425  /// isAnonymousStructOrUnion - Whether this is an anonymous struct
2426  /// or union. To be an anonymous struct or union, it must have been
2427  /// declared without a name and there must be no objects of this
2428  /// type declared, e.g.,
2429  /// @code
2430  ///   union { int i; float f; };
2431  /// @endcode
2432  /// is an anonymous union but neither of the following are:
2433  /// @code
2434  ///  union X { int i; float f; };
2435  ///  union { int i; float f; } obj;
2436  /// @endcode
2437  bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
2438  void setAnonymousStructOrUnion(bool Anon) {
2439    AnonymousStructOrUnion = Anon;
2440  }
2441
2442  bool hasObjectMember() const { return HasObjectMember; }
2443  void setHasObjectMember (bool val) { HasObjectMember = val; }
2444
2445  /// \brief Determines whether this declaration represents the
2446  /// injected class name.
2447  ///
2448  /// The injected class name in C++ is the name of the class that
2449  /// appears inside the class itself. For example:
2450  ///
2451  /// \code
2452  /// struct C {
2453  ///   // C is implicitly declared here as a synonym for the class name.
2454  /// };
2455  ///
2456  /// C::C c; // same as "C c;"
2457  /// \endcode
2458  bool isInjectedClassName() const;
2459
2460  /// getDefinition - Returns the RecordDecl that actually defines this
2461  ///  struct/union/class.  When determining whether or not a struct/union/class
2462  ///  is completely defined, one should use this method as opposed to
2463  ///  'isDefinition'.  'isDefinition' indicates whether or not a specific
2464  ///  RecordDecl is defining declaration, not whether or not the record
2465  ///  type is defined.  This method returns NULL if there is no RecordDecl
2466  ///  that defines the struct/union/tag.
2467  RecordDecl* getDefinition() const {
2468    return cast_or_null<RecordDecl>(TagDecl::getDefinition());
2469  }
2470
2471  // Iterator access to field members. The field iterator only visits
2472  // the non-static data members of this class, ignoring any static
2473  // data members, functions, constructors, destructors, etc.
2474  typedef specific_decl_iterator<FieldDecl> field_iterator;
2475
2476  field_iterator field_begin() const;
2477
2478  field_iterator field_end() const {
2479    return field_iterator(decl_iterator());
2480  }
2481
2482  // field_empty - Whether there are any fields (non-static data
2483  // members) in this record.
2484  bool field_empty() const {
2485    return field_begin() == field_end();
2486  }
2487
2488  /// completeDefinition - Notes that the definition of this type is
2489  /// now complete.
2490  virtual void completeDefinition();
2491
2492  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2493  static bool classof(const RecordDecl *D) { return true; }
2494  static bool classofKind(Kind K) {
2495    return K >= firstRecord && K <= lastRecord;
2496  }
2497
2498private:
2499  /// \brief Deserialize just the fields.
2500  void LoadFieldsFromExternalStorage() const;
2501};
2502
2503class FileScopeAsmDecl : public Decl {
2504  StringLiteral *AsmString;
2505  FileScopeAsmDecl(DeclContext *DC, SourceLocation L, StringLiteral *asmstring)
2506    : Decl(FileScopeAsm, DC, L), AsmString(asmstring) {}
2507public:
2508  static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
2509                                  SourceLocation L, StringLiteral *Str);
2510
2511  const StringLiteral *getAsmString() const { return AsmString; }
2512  StringLiteral *getAsmString() { return AsmString; }
2513  void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
2514
2515  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2516  static bool classof(const FileScopeAsmDecl *D) { return true; }
2517  static bool classofKind(Kind K) { return K == FileScopeAsm; }
2518};
2519
2520/// BlockDecl - This represents a block literal declaration, which is like an
2521/// unnamed FunctionDecl.  For example:
2522/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
2523///
2524class BlockDecl : public Decl, public DeclContext {
2525public:
2526  /// A class which contains all the information about a particular
2527  /// captured value.
2528  class Capture {
2529    enum {
2530      flag_isByRef = 0x1,
2531      flag_isNested = 0x2
2532    };
2533
2534    /// The variable being captured.
2535    llvm::PointerIntPair<VarDecl*, 2> VariableAndFlags;
2536
2537    /// The copy expression, expressed in terms of a DeclRef (or
2538    /// BlockDeclRef) to the captured variable.  Only required if the
2539    /// variable has a C++ class type.
2540    Expr *CopyExpr;
2541
2542  public:
2543    Capture(VarDecl *variable, bool byRef, bool nested, Expr *copy)
2544      : VariableAndFlags(variable,
2545                  (byRef ? flag_isByRef : 0) | (nested ? flag_isNested : 0)),
2546        CopyExpr(copy) {}
2547
2548    /// The variable being captured.
2549    VarDecl *getVariable() const { return VariableAndFlags.getPointer(); }
2550
2551    /// Whether this is a "by ref" capture, i.e. a capture of a __block
2552    /// variable.
2553    bool isByRef() const { return VariableAndFlags.getInt() & flag_isByRef; }
2554
2555    /// Whether this is a nested capture, i.e. the variable captured
2556    /// is not from outside the immediately enclosing function/block.
2557    bool isNested() const { return VariableAndFlags.getInt() & flag_isNested; }
2558
2559    bool hasCopyExpr() const { return CopyExpr != 0; }
2560    Expr *getCopyExpr() const { return CopyExpr; }
2561    void setCopyExpr(Expr *e) { CopyExpr = e; }
2562  };
2563
2564private:
2565  // FIXME: This can be packed into the bitfields in Decl.
2566  bool IsVariadic : 1;
2567  bool CapturesCXXThis : 1;
2568  /// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
2569  /// parameters of this function.  This is null if a prototype or if there are
2570  /// no formals.
2571  ParmVarDecl **ParamInfo;
2572  unsigned NumParams;
2573
2574  Stmt *Body;
2575  TypeSourceInfo *SignatureAsWritten;
2576
2577  Capture *Captures;
2578  unsigned NumCaptures;
2579
2580protected:
2581  BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
2582    : Decl(Block, DC, CaretLoc), DeclContext(Block),
2583      IsVariadic(false), CapturesCXXThis(false),
2584      ParamInfo(0), NumParams(0), Body(0),
2585      SignatureAsWritten(0), Captures(0), NumCaptures(0) {}
2586
2587public:
2588  static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
2589
2590  SourceLocation getCaretLocation() const { return getLocation(); }
2591
2592  bool isVariadic() const { return IsVariadic; }
2593  void setIsVariadic(bool value) { IsVariadic = value; }
2594
2595  CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
2596  Stmt *getBody() const { return (Stmt*) Body; }
2597  void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
2598
2599  void setSignatureAsWritten(TypeSourceInfo *Sig) { SignatureAsWritten = Sig; }
2600  TypeSourceInfo *getSignatureAsWritten() const { return SignatureAsWritten; }
2601
2602  // Iterator access to formal parameters.
2603  unsigned param_size() const { return getNumParams(); }
2604  typedef ParmVarDecl **param_iterator;
2605  typedef ParmVarDecl * const *param_const_iterator;
2606
2607  bool param_empty() const { return NumParams == 0; }
2608  param_iterator param_begin()  { return ParamInfo; }
2609  param_iterator param_end()   { return ParamInfo+param_size(); }
2610
2611  param_const_iterator param_begin() const { return ParamInfo; }
2612  param_const_iterator param_end() const   { return ParamInfo+param_size(); }
2613
2614  unsigned getNumParams() const { return NumParams; }
2615  const ParmVarDecl *getParamDecl(unsigned i) const {
2616    assert(i < getNumParams() && "Illegal param #");
2617    return ParamInfo[i];
2618  }
2619  ParmVarDecl *getParamDecl(unsigned i) {
2620    assert(i < getNumParams() && "Illegal param #");
2621    return ParamInfo[i];
2622  }
2623  void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams);
2624
2625  /// hasCaptures - True if this block (or its nested blocks) captures
2626  /// anything of local storage from its enclosing scopes.
2627  bool hasCaptures() const { return NumCaptures != 0 || CapturesCXXThis; }
2628
2629  /// getNumCaptures - Returns the number of captured variables.
2630  /// Does not include an entry for 'this'.
2631  unsigned getNumCaptures() const { return NumCaptures; }
2632
2633  typedef const Capture *capture_iterator;
2634  typedef const Capture *capture_const_iterator;
2635  capture_iterator capture_begin() { return Captures; }
2636  capture_iterator capture_end() { return Captures + NumCaptures; }
2637  capture_const_iterator capture_begin() const { return Captures; }
2638  capture_const_iterator capture_end() const { return Captures + NumCaptures; }
2639
2640  bool capturesCXXThis() const { return CapturesCXXThis; }
2641
2642  void setCaptures(ASTContext &Context,
2643                   const Capture *begin,
2644                   const Capture *end,
2645                   bool capturesCXXThis);
2646
2647  SourceRange getSourceRange() const;
2648
2649  // Implement isa/cast/dyncast/etc.
2650  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2651  static bool classof(const BlockDecl *D) { return true; }
2652  static bool classofKind(Kind K) { return K == Block; }
2653  static DeclContext *castToDeclContext(const BlockDecl *D) {
2654    return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
2655  }
2656  static BlockDecl *castFromDeclContext(const DeclContext *DC) {
2657    return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
2658  }
2659};
2660
2661/// Insertion operator for diagnostics.  This allows sending NamedDecl's
2662/// into a diagnostic with <<.
2663inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
2664                                           NamedDecl* ND) {
2665  DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), Diagnostic::ak_nameddecl);
2666  return DB;
2667}
2668
2669template<typename decl_type>
2670void Redeclarable<decl_type>::setPreviousDeclaration(decl_type *PrevDecl) {
2671  // Note: This routine is implemented here because we need both NamedDecl
2672  // and Redeclarable to be defined.
2673
2674  decl_type *First;
2675
2676  if (PrevDecl) {
2677    // Point to previous. Make sure that this is actually the most recent
2678    // redeclaration, or we can build invalid chains. If the most recent
2679    // redeclaration is invalid, it won't be PrevDecl, but we want it anyway.
2680    RedeclLink = PreviousDeclLink(llvm::cast<decl_type>(
2681                                                        PrevDecl->getMostRecentDeclaration()));
2682    First = PrevDecl->getFirstDeclaration();
2683    assert(First->RedeclLink.NextIsLatest() && "Expected first");
2684  } else {
2685    // Make this first.
2686    First = static_cast<decl_type*>(this);
2687  }
2688
2689  // First one will point to this one as latest.
2690  First->RedeclLink = LatestDeclLink(static_cast<decl_type*>(this));
2691  if (NamedDecl *ND = dyn_cast<NamedDecl>(static_cast<decl_type*>(this)))
2692    ND->ClearLinkageCache();
2693}
2694
2695}  // end namespace clang
2696
2697#endif
2698