1//===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Defines the C++ Decl subclasses, other than those for templates
12/// (found in DeclTemplate.h) and friends (in DeclFriend.h).
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_CLANG_AST_DECLCXX_H
17#define LLVM_CLANG_AST_DECLCXX_H
18
19#include "clang/AST/ASTUnresolvedSet.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/LambdaCapture.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/Support/Compiler.h"
27
28namespace clang {
29
30class ClassTemplateDecl;
31class ClassTemplateSpecializationDecl;
32class CXXBasePath;
33class CXXBasePaths;
34class CXXConstructorDecl;
35class CXXConversionDecl;
36class CXXDestructorDecl;
37class CXXMethodDecl;
38class CXXRecordDecl;
39class CXXMemberLookupCriteria;
40class CXXFinalOverriderMap;
41class CXXIndirectPrimaryBaseSet;
42class FriendDecl;
43class LambdaExpr;
44class UsingDecl;
45
46/// \brief Represents any kind of function declaration, whether it is a
47/// concrete function or a function template.
48class AnyFunctionDecl {
49  NamedDecl *Function;
50
51  AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
52
53public:
54  AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
55  AnyFunctionDecl(FunctionTemplateDecl *FTD);
56
57  /// \brief Implicily converts any function or function template into a
58  /// named declaration.
59  operator NamedDecl *() const { return Function; }
60
61  /// \brief Retrieve the underlying function or function template.
62  NamedDecl *get() const { return Function; }
63
64  static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
65    return AnyFunctionDecl(ND);
66  }
67};
68
69} // end namespace clang
70
71namespace llvm {
72  // Provide PointerLikeTypeTraits for non-cvr pointers.
73  template<>
74  class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
75  public:
76    static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
77      return F.get();
78    }
79    static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
80      return ::clang::AnyFunctionDecl::getFromNamedDecl(
81                                      static_cast< ::clang::NamedDecl*>(P));
82    }
83
84    enum { NumLowBitsAvailable = 2 };
85  };
86
87} // end namespace llvm
88
89namespace clang {
90
91/// \brief Represents an access specifier followed by colon ':'.
92///
93/// An objects of this class represents sugar for the syntactic occurrence
94/// of an access specifier followed by a colon in the list of member
95/// specifiers of a C++ class definition.
96///
97/// Note that they do not represent other uses of access specifiers,
98/// such as those occurring in a list of base specifiers.
99/// Also note that this class has nothing to do with so-called
100/// "access declarations" (C++98 11.3 [class.access.dcl]).
101class AccessSpecDecl : public Decl {
102  virtual void anchor();
103  /// \brief The location of the ':'.
104  SourceLocation ColonLoc;
105
106  AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
107                 SourceLocation ASLoc, SourceLocation ColonLoc)
108    : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
109    setAccess(AS);
110  }
111  AccessSpecDecl(EmptyShell Empty)
112    : Decl(AccessSpec, Empty) { }
113public:
114  /// \brief The location of the access specifier.
115  SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
116  /// \brief Sets the location of the access specifier.
117  void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
118
119  /// \brief The location of the colon following the access specifier.
120  SourceLocation getColonLoc() const { return ColonLoc; }
121  /// \brief Sets the location of the colon.
122  void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
123
124  SourceRange getSourceRange() const override LLVM_READONLY {
125    return SourceRange(getAccessSpecifierLoc(), getColonLoc());
126  }
127
128  static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
129                                DeclContext *DC, SourceLocation ASLoc,
130                                SourceLocation ColonLoc) {
131    return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
132  }
133  static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
134
135  // Implement isa/cast/dyncast/etc.
136  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
137  static bool classofKind(Kind K) { return K == AccessSpec; }
138};
139
140
141/// \brief Represents a base class of a C++ class.
142///
143/// Each CXXBaseSpecifier represents a single, direct base class (or
144/// struct) of a C++ class (or struct). It specifies the type of that
145/// base class, whether it is a virtual or non-virtual base, and what
146/// level of access (public, protected, private) is used for the
147/// derivation. For example:
148///
149/// \code
150///   class A { };
151///   class B { };
152///   class C : public virtual A, protected B { };
153/// \endcode
154///
155/// In this code, C will have two CXXBaseSpecifiers, one for "public
156/// virtual A" and the other for "protected B".
157class CXXBaseSpecifier {
158  /// \brief The source code range that covers the full base
159  /// specifier, including the "virtual" (if present) and access
160  /// specifier (if present).
161  SourceRange Range;
162
163  /// \brief The source location of the ellipsis, if this is a pack
164  /// expansion.
165  SourceLocation EllipsisLoc;
166
167  /// \brief Whether this is a virtual base class or not.
168  bool Virtual : 1;
169
170  /// \brief Whether this is the base of a class (true) or of a struct (false).
171  ///
172  /// This determines the mapping from the access specifier as written in the
173  /// source code to the access specifier used for semantic analysis.
174  bool BaseOfClass : 1;
175
176  /// \brief Access specifier as written in the source code (may be AS_none).
177  ///
178  /// The actual type of data stored here is an AccessSpecifier, but we use
179  /// "unsigned" here to work around a VC++ bug.
180  unsigned Access : 2;
181
182  /// \brief Whether the class contains a using declaration
183  /// to inherit the named class's constructors.
184  bool InheritConstructors : 1;
185
186  /// \brief The type of the base class.
187  ///
188  /// This will be a class or struct (or a typedef of such). The source code
189  /// range does not include the \c virtual or the access specifier.
190  TypeSourceInfo *BaseTypeInfo;
191
192public:
193  CXXBaseSpecifier() { }
194
195  CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
196                   TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
197    : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
198      Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
199
200  /// \brief Retrieves the source range that contains the entire base specifier.
201  SourceRange getSourceRange() const LLVM_READONLY { return Range; }
202  SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
203  SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
204
205  /// \brief Determines whether the base class is a virtual base class (or not).
206  bool isVirtual() const { return Virtual; }
207
208  /// \brief Determine whether this base class is a base of a class declared
209  /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
210  bool isBaseOfClass() const { return BaseOfClass; }
211
212  /// \brief Determine whether this base specifier is a pack expansion.
213  bool isPackExpansion() const { return EllipsisLoc.isValid(); }
214
215  /// \brief Determine whether this base class's constructors get inherited.
216  bool getInheritConstructors() const { return InheritConstructors; }
217
218  /// \brief Set that this base class's constructors should be inherited.
219  void setInheritConstructors(bool Inherit = true) {
220    InheritConstructors = Inherit;
221  }
222
223  /// \brief For a pack expansion, determine the location of the ellipsis.
224  SourceLocation getEllipsisLoc() const {
225    return EllipsisLoc;
226  }
227
228  /// \brief Returns the access specifier for this base specifier.
229  ///
230  /// This is the actual base specifier as used for semantic analysis, so
231  /// the result can never be AS_none. To retrieve the access specifier as
232  /// written in the source code, use getAccessSpecifierAsWritten().
233  AccessSpecifier getAccessSpecifier() const {
234    if ((AccessSpecifier)Access == AS_none)
235      return BaseOfClass? AS_private : AS_public;
236    else
237      return (AccessSpecifier)Access;
238  }
239
240  /// \brief Retrieves the access specifier as written in the source code
241  /// (which may mean that no access specifier was explicitly written).
242  ///
243  /// Use getAccessSpecifier() to retrieve the access specifier for use in
244  /// semantic analysis.
245  AccessSpecifier getAccessSpecifierAsWritten() const {
246    return (AccessSpecifier)Access;
247  }
248
249  /// \brief Retrieves the type of the base class.
250  ///
251  /// This type will always be an unqualified class type.
252  QualType getType() const {
253    return BaseTypeInfo->getType().getUnqualifiedType();
254  }
255
256  /// \brief Retrieves the type and source location of the base class.
257  TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
258};
259
260/// \brief A lazy pointer to the definition data for a declaration.
261/// FIXME: This is a little CXXRecordDecl-specific that the moment.
262template<typename Decl, typename T> class LazyDefinitionDataPtr {
263  llvm::PointerUnion<T *, Decl *> DataOrCanonicalDecl;
264
265  LazyDefinitionDataPtr update() {
266    if (Decl *Canon = DataOrCanonicalDecl.template dyn_cast<Decl*>()) {
267      if (Canon->isCanonicalDecl())
268        Canon->getMostRecentDecl();
269      else
270        // Declaration isn't canonical any more;
271        // update it and perform path compression.
272        *this = Canon->getPreviousDecl()->DefinitionData.update();
273    }
274    return *this;
275  }
276
277public:
278  LazyDefinitionDataPtr(Decl *Canon) : DataOrCanonicalDecl(Canon) {}
279  LazyDefinitionDataPtr(T *Data) : DataOrCanonicalDecl(Data) {}
280  T *getNotUpdated() { return DataOrCanonicalDecl.template dyn_cast<T*>(); }
281  T *get() { return update().getNotUpdated(); }
282};
283
284/// \brief Represents a C++ struct/union/class.
285class CXXRecordDecl : public RecordDecl {
286
287  friend void TagDecl::startDefinition();
288
289  /// Values used in DefinitionData fields to represent special members.
290  enum SpecialMemberFlags {
291    SMF_DefaultConstructor = 0x1,
292    SMF_CopyConstructor = 0x2,
293    SMF_MoveConstructor = 0x4,
294    SMF_CopyAssignment = 0x8,
295    SMF_MoveAssignment = 0x10,
296    SMF_Destructor = 0x20,
297    SMF_All = 0x3f
298  };
299
300  struct DefinitionData {
301    DefinitionData(CXXRecordDecl *D);
302
303    /// \brief True if this class has any user-declared constructors.
304    bool UserDeclaredConstructor : 1;
305
306    /// \brief The user-declared special members which this class has.
307    unsigned UserDeclaredSpecialMembers : 6;
308
309    /// \brief True when this class is an aggregate.
310    bool Aggregate : 1;
311
312    /// \brief True when this class is a POD-type.
313    bool PlainOldData : 1;
314
315    /// true when this class is empty for traits purposes,
316    /// i.e. has no data members other than 0-width bit-fields, has no
317    /// virtual function/base, and doesn't inherit from a non-empty
318    /// class. Doesn't take union-ness into account.
319    bool Empty : 1;
320
321    /// \brief True when this class is polymorphic, i.e., has at
322    /// least one virtual member or derives from a polymorphic class.
323    bool Polymorphic : 1;
324
325    /// \brief True when this class is abstract, i.e., has at least
326    /// one pure virtual function, (that can come from a base class).
327    bool Abstract : 1;
328
329    /// \brief True when this class has standard layout.
330    ///
331    /// C++11 [class]p7.  A standard-layout class is a class that:
332    /// * has no non-static data members of type non-standard-layout class (or
333    ///   array of such types) or reference,
334    /// * has no virtual functions (10.3) and no virtual base classes (10.1),
335    /// * has the same access control (Clause 11) for all non-static data
336    ///   members
337    /// * has no non-standard-layout base classes,
338    /// * either has no non-static data members in the most derived class and at
339    ///   most one base class with non-static data members, or has no base
340    ///   classes with non-static data members, and
341    /// * has no base classes of the same type as the first non-static data
342    ///   member.
343    bool IsStandardLayout : 1;
344
345    /// \brief True when there are no non-empty base classes.
346    ///
347    /// This is a helper bit of state used to implement IsStandardLayout more
348    /// efficiently.
349    bool HasNoNonEmptyBases : 1;
350
351    /// \brief True when there are private non-static data members.
352    bool HasPrivateFields : 1;
353
354    /// \brief True when there are protected non-static data members.
355    bool HasProtectedFields : 1;
356
357    /// \brief True when there are private non-static data members.
358    bool HasPublicFields : 1;
359
360    /// \brief True if this class (or any subobject) has mutable fields.
361    bool HasMutableFields : 1;
362
363    /// \brief True if this class (or any nested anonymous struct or union)
364    /// has variant members.
365    bool HasVariantMembers : 1;
366
367    /// \brief True if there no non-field members declared by the user.
368    bool HasOnlyCMembers : 1;
369
370    /// \brief True if any field has an in-class initializer, including those
371    /// within anonymous unions or structs.
372    bool HasInClassInitializer : 1;
373
374    /// \brief True if any field is of reference type, and does not have an
375    /// in-class initializer.
376    ///
377    /// In this case, value-initialization of this class is illegal in C++98
378    /// even if the class has a trivial default constructor.
379    bool HasUninitializedReferenceMember : 1;
380
381    /// \brief These flags are \c true if a defaulted corresponding special
382    /// member can't be fully analyzed without performing overload resolution.
383    /// @{
384    bool NeedOverloadResolutionForMoveConstructor : 1;
385    bool NeedOverloadResolutionForMoveAssignment : 1;
386    bool NeedOverloadResolutionForDestructor : 1;
387    /// @}
388
389    /// \brief These flags are \c true if an implicit defaulted corresponding
390    /// special member would be defined as deleted.
391    /// @{
392    bool DefaultedMoveConstructorIsDeleted : 1;
393    bool DefaultedMoveAssignmentIsDeleted : 1;
394    bool DefaultedDestructorIsDeleted : 1;
395    /// @}
396
397    /// \brief The trivial special members which this class has, per
398    /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
399    /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
400    ///
401    /// This excludes any user-declared but not user-provided special members
402    /// which have been declared but not yet defined.
403    unsigned HasTrivialSpecialMembers : 6;
404
405    /// \brief The declared special members of this class which are known to be
406    /// non-trivial.
407    ///
408    /// This excludes any user-declared but not user-provided special members
409    /// which have been declared but not yet defined, and any implicit special
410    /// members which have not yet been declared.
411    unsigned DeclaredNonTrivialSpecialMembers : 6;
412
413    /// \brief True when this class has a destructor with no semantic effect.
414    bool HasIrrelevantDestructor : 1;
415
416    /// \brief True when this class has at least one user-declared constexpr
417    /// constructor which is neither the copy nor move constructor.
418    bool HasConstexprNonCopyMoveConstructor : 1;
419
420    /// \brief True if a defaulted default constructor for this class would
421    /// be constexpr.
422    bool DefaultedDefaultConstructorIsConstexpr : 1;
423
424    /// \brief True if this class has a constexpr default constructor.
425    ///
426    /// This is true for either a user-declared constexpr default constructor
427    /// or an implicitly declared constexpr default constructor.
428    bool HasConstexprDefaultConstructor : 1;
429
430    /// \brief True when this class contains at least one non-static data
431    /// member or base class of non-literal or volatile type.
432    bool HasNonLiteralTypeFieldsOrBases : 1;
433
434    /// \brief True when visible conversion functions are already computed
435    /// and are available.
436    bool ComputedVisibleConversions : 1;
437
438    /// \brief Whether we have a C++11 user-provided default constructor (not
439    /// explicitly deleted or defaulted).
440    bool UserProvidedDefaultConstructor : 1;
441
442    /// \brief The special members which have been declared for this class,
443    /// either by the user or implicitly.
444    unsigned DeclaredSpecialMembers : 6;
445
446    /// \brief Whether an implicit copy constructor would have a const-qualified
447    /// parameter.
448    bool ImplicitCopyConstructorHasConstParam : 1;
449
450    /// \brief Whether an implicit copy assignment operator would have a
451    /// const-qualified parameter.
452    bool ImplicitCopyAssignmentHasConstParam : 1;
453
454    /// \brief Whether any declared copy constructor has a const-qualified
455    /// parameter.
456    bool HasDeclaredCopyConstructorWithConstParam : 1;
457
458    /// \brief Whether any declared copy assignment operator has either a
459    /// const-qualified reference parameter or a non-reference parameter.
460    bool HasDeclaredCopyAssignmentWithConstParam : 1;
461
462    /// \brief Whether this class describes a C++ lambda.
463    bool IsLambda : 1;
464
465    /// \brief Whether we are currently parsing base specifiers.
466    bool IsParsingBaseSpecifiers : 1;
467
468    /// \brief The number of base class specifiers in Bases.
469    unsigned NumBases;
470
471    /// \brief The number of virtual base class specifiers in VBases.
472    unsigned NumVBases;
473
474    /// \brief Base classes of this class.
475    ///
476    /// FIXME: This is wasted space for a union.
477    LazyCXXBaseSpecifiersPtr Bases;
478
479    /// \brief direct and indirect virtual base classes of this class.
480    LazyCXXBaseSpecifiersPtr VBases;
481
482    /// \brief The conversion functions of this C++ class (but not its
483    /// inherited conversion functions).
484    ///
485    /// Each of the entries in this overload set is a CXXConversionDecl.
486    LazyASTUnresolvedSet Conversions;
487
488    /// \brief The conversion functions of this C++ class and all those
489    /// inherited conversion functions that are visible in this class.
490    ///
491    /// Each of the entries in this overload set is a CXXConversionDecl or a
492    /// FunctionTemplateDecl.
493    LazyASTUnresolvedSet VisibleConversions;
494
495    /// \brief The declaration which defines this record.
496    CXXRecordDecl *Definition;
497
498    /// \brief The first friend declaration in this class, or null if there
499    /// aren't any.
500    ///
501    /// This is actually currently stored in reverse order.
502    LazyDeclPtr FirstFriend;
503
504    /// \brief Retrieve the set of direct base classes.
505    CXXBaseSpecifier *getBases() const {
506      if (!Bases.isOffset())
507        return Bases.get(nullptr);
508      return getBasesSlowCase();
509    }
510
511    /// \brief Retrieve the set of virtual base classes.
512    CXXBaseSpecifier *getVBases() const {
513      if (!VBases.isOffset())
514        return VBases.get(nullptr);
515      return getVBasesSlowCase();
516    }
517
518  private:
519    CXXBaseSpecifier *getBasesSlowCase() const;
520    CXXBaseSpecifier *getVBasesSlowCase() const;
521  };
522
523  typedef LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>
524      DefinitionDataPtr;
525  friend class LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>;
526
527  mutable DefinitionDataPtr DefinitionData;
528
529  /// \brief Describes a C++ closure type (generated by a lambda expression).
530  struct LambdaDefinitionData : public DefinitionData {
531    typedef LambdaCapture Capture;
532
533    LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info,
534                         bool Dependent, bool IsGeneric,
535                         LambdaCaptureDefault CaptureDefault)
536      : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
537        CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0),
538        ManglingNumber(0), ContextDecl(nullptr), Captures(nullptr),
539        MethodTyInfo(Info) {
540      IsLambda = true;
541    }
542
543    /// \brief Whether this lambda is known to be dependent, even if its
544    /// context isn't dependent.
545    ///
546    /// A lambda with a non-dependent context can be dependent if it occurs
547    /// within the default argument of a function template, because the
548    /// lambda will have been created with the enclosing context as its
549    /// declaration context, rather than function. This is an unfortunate
550    /// artifact of having to parse the default arguments before.
551    unsigned Dependent : 1;
552
553    /// \brief Whether this lambda is a generic lambda.
554    unsigned IsGenericLambda : 1;
555
556    /// \brief The Default Capture.
557    unsigned CaptureDefault : 2;
558
559    /// \brief The number of captures in this lambda is limited 2^NumCaptures.
560    unsigned NumCaptures : 15;
561
562    /// \brief The number of explicit captures in this lambda.
563    unsigned NumExplicitCaptures : 13;
564
565    /// \brief The number used to indicate this lambda expression for name
566    /// mangling in the Itanium C++ ABI.
567    unsigned ManglingNumber;
568
569    /// \brief The declaration that provides context for this lambda, if the
570    /// actual DeclContext does not suffice. This is used for lambdas that
571    /// occur within default arguments of function parameters within the class
572    /// or within a data member initializer.
573    Decl *ContextDecl;
574
575    /// \brief The list of captures, both explicit and implicit, for this
576    /// lambda.
577    Capture *Captures;
578
579    /// \brief The type of the call method.
580    TypeSourceInfo *MethodTyInfo;
581
582  };
583
584  struct DefinitionData &data() const {
585    auto *DD = DefinitionData.get();
586    assert(DD && "queried property of class with no definition");
587    return *DD;
588  }
589
590  struct LambdaDefinitionData &getLambdaData() const {
591    // No update required: a merged definition cannot change any lambda
592    // properties.
593    auto *DD = DefinitionData.getNotUpdated();
594    assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
595    return static_cast<LambdaDefinitionData&>(*DD);
596  }
597
598  /// \brief The template or declaration that this declaration
599  /// describes or was instantiated from, respectively.
600  ///
601  /// For non-templates, this value will be null. For record
602  /// declarations that describe a class template, this will be a
603  /// pointer to a ClassTemplateDecl. For member
604  /// classes of class template specializations, this will be the
605  /// MemberSpecializationInfo referring to the member class that was
606  /// instantiated or specialized.
607  llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
608    TemplateOrInstantiation;
609
610  friend class DeclContext;
611  friend class LambdaExpr;
612
613  /// \brief Called from setBases and addedMember to notify the class that a
614  /// direct or virtual base class or a member of class type has been added.
615  void addedClassSubobject(CXXRecordDecl *Base);
616
617  /// \brief Notify the class that member has been added.
618  ///
619  /// This routine helps maintain information about the class based on which
620  /// members have been added. It will be invoked by DeclContext::addDecl()
621  /// whenever a member is added to this record.
622  void addedMember(Decl *D);
623
624  void markedVirtualFunctionPure();
625  friend void FunctionDecl::setPure(bool);
626
627  friend class ASTNodeImporter;
628
629  /// \brief Get the head of our list of friend declarations, possibly
630  /// deserializing the friends from an external AST source.
631  FriendDecl *getFirstFriend() const;
632
633protected:
634  CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
635                SourceLocation StartLoc, SourceLocation IdLoc,
636                IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
637
638public:
639  /// \brief Iterator that traverses the base classes of a class.
640  typedef CXXBaseSpecifier*       base_class_iterator;
641
642  /// \brief Iterator that traverses the base classes of a class.
643  typedef const CXXBaseSpecifier* base_class_const_iterator;
644
645  CXXRecordDecl *getCanonicalDecl() override {
646    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
647  }
648  virtual const CXXRecordDecl *getCanonicalDecl() const {
649    return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
650  }
651
652  CXXRecordDecl *getPreviousDecl() {
653    return cast_or_null<CXXRecordDecl>(
654            static_cast<RecordDecl *>(this)->getPreviousDecl());
655  }
656  const CXXRecordDecl *getPreviousDecl() const {
657    return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
658  }
659
660  CXXRecordDecl *getMostRecentDecl() {
661    return cast<CXXRecordDecl>(
662            static_cast<RecordDecl *>(this)->getMostRecentDecl());
663  }
664
665  const CXXRecordDecl *getMostRecentDecl() const {
666    return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
667  }
668
669  CXXRecordDecl *getDefinition() const {
670    auto *DD = DefinitionData.get();
671    return DD ? DD->Definition : nullptr;
672  }
673
674  bool hasDefinition() const { return DefinitionData.get(); }
675
676  static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
677                               SourceLocation StartLoc, SourceLocation IdLoc,
678                               IdentifierInfo *Id,
679                               CXXRecordDecl *PrevDecl = nullptr,
680                               bool DelayTypeCreation = false);
681  static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
682                                     TypeSourceInfo *Info, SourceLocation Loc,
683                                     bool DependentLambda, bool IsGeneric,
684                                     LambdaCaptureDefault CaptureDefault);
685  static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
686
687  bool isDynamicClass() const {
688    return data().Polymorphic || data().NumVBases != 0;
689  }
690
691  void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
692
693  bool isParsingBaseSpecifiers() const {
694    return data().IsParsingBaseSpecifiers;
695  }
696
697  /// \brief Sets the base classes of this struct or class.
698  void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
699
700  /// \brief Retrieves the number of base classes of this class.
701  unsigned getNumBases() const { return data().NumBases; }
702
703  typedef llvm::iterator_range<base_class_iterator> base_class_range;
704  typedef llvm::iterator_range<base_class_const_iterator>
705    base_class_const_range;
706
707  base_class_range bases() {
708    return base_class_range(bases_begin(), bases_end());
709  }
710  base_class_const_range bases() const {
711    return base_class_const_range(bases_begin(), bases_end());
712  }
713
714  base_class_iterator bases_begin() { return data().getBases(); }
715  base_class_const_iterator bases_begin() const { return data().getBases(); }
716  base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
717  base_class_const_iterator bases_end() const {
718    return bases_begin() + data().NumBases;
719  }
720
721  /// \brief Retrieves the number of virtual base classes of this class.
722  unsigned getNumVBases() const { return data().NumVBases; }
723
724  base_class_range vbases() {
725    return base_class_range(vbases_begin(), vbases_end());
726  }
727  base_class_const_range vbases() const {
728    return base_class_const_range(vbases_begin(), vbases_end());
729  }
730
731  base_class_iterator vbases_begin() { return data().getVBases(); }
732  base_class_const_iterator vbases_begin() const { return data().getVBases(); }
733  base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
734  base_class_const_iterator vbases_end() const {
735    return vbases_begin() + data().NumVBases;
736  }
737
738  /// \brief Determine whether this class has any dependent base classes which
739  /// are not the current instantiation.
740  bool hasAnyDependentBases() const;
741
742  /// Iterator access to method members.  The method iterator visits
743  /// all method members of the class, including non-instance methods,
744  /// special methods, etc.
745  typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
746  typedef llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>
747    method_range;
748
749  method_range methods() const {
750    return method_range(method_begin(), method_end());
751  }
752
753  /// \brief Method begin iterator.  Iterates in the order the methods
754  /// were declared.
755  method_iterator method_begin() const {
756    return method_iterator(decls_begin());
757  }
758  /// \brief Method past-the-end iterator.
759  method_iterator method_end() const {
760    return method_iterator(decls_end());
761  }
762
763  /// Iterator access to constructor members.
764  typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
765  typedef llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>
766    ctor_range;
767
768  ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
769
770  ctor_iterator ctor_begin() const {
771    return ctor_iterator(decls_begin());
772  }
773  ctor_iterator ctor_end() const {
774    return ctor_iterator(decls_end());
775  }
776
777  /// An iterator over friend declarations.  All of these are defined
778  /// in DeclFriend.h.
779  class friend_iterator;
780  typedef llvm::iterator_range<friend_iterator> friend_range;
781
782  friend_range friends() const;
783  friend_iterator friend_begin() const;
784  friend_iterator friend_end() const;
785  void pushFriendDecl(FriendDecl *FD);
786
787  /// Determines whether this record has any friends.
788  bool hasFriends() const {
789    return data().FirstFriend.isValid();
790  }
791
792  /// \brief \c true if we know for sure that this class has a single,
793  /// accessible, unambiguous move constructor that is not deleted.
794  bool hasSimpleMoveConstructor() const {
795    return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
796           !data().DefaultedMoveConstructorIsDeleted;
797  }
798  /// \brief \c true if we know for sure that this class has a single,
799  /// accessible, unambiguous move assignment operator that is not deleted.
800  bool hasSimpleMoveAssignment() const {
801    return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
802           !data().DefaultedMoveAssignmentIsDeleted;
803  }
804  /// \brief \c true if we know for sure that this class has an accessible
805  /// destructor that is not deleted.
806  bool hasSimpleDestructor() const {
807    return !hasUserDeclaredDestructor() &&
808           !data().DefaultedDestructorIsDeleted;
809  }
810
811  /// \brief Determine whether this class has any default constructors.
812  bool hasDefaultConstructor() const {
813    return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
814           needsImplicitDefaultConstructor();
815  }
816
817  /// \brief Determine if we need to declare a default constructor for
818  /// this class.
819  ///
820  /// This value is used for lazy creation of default constructors.
821  bool needsImplicitDefaultConstructor() const {
822    return !data().UserDeclaredConstructor &&
823           !(data().DeclaredSpecialMembers & SMF_DefaultConstructor);
824  }
825
826  /// \brief Determine whether this class has any user-declared constructors.
827  ///
828  /// When true, a default constructor will not be implicitly declared.
829  bool hasUserDeclaredConstructor() const {
830    return data().UserDeclaredConstructor;
831  }
832
833  /// \brief Whether this class has a user-provided default constructor
834  /// per C++11.
835  bool hasUserProvidedDefaultConstructor() const {
836    return data().UserProvidedDefaultConstructor;
837  }
838
839  /// \brief Determine whether this class has a user-declared copy constructor.
840  ///
841  /// When false, a copy constructor will be implicitly declared.
842  bool hasUserDeclaredCopyConstructor() const {
843    return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
844  }
845
846  /// \brief Determine whether this class needs an implicit copy
847  /// constructor to be lazily declared.
848  bool needsImplicitCopyConstructor() const {
849    return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
850  }
851
852  /// \brief Determine whether we need to eagerly declare a defaulted copy
853  /// constructor for this class.
854  bool needsOverloadResolutionForCopyConstructor() const {
855    return data().HasMutableFields;
856  }
857
858  /// \brief Determine whether an implicit copy constructor for this type
859  /// would have a parameter with a const-qualified reference type.
860  bool implicitCopyConstructorHasConstParam() const {
861    return data().ImplicitCopyConstructorHasConstParam;
862  }
863
864  /// \brief Determine whether this class has a copy constructor with
865  /// a parameter type which is a reference to a const-qualified type.
866  bool hasCopyConstructorWithConstParam() const {
867    return data().HasDeclaredCopyConstructorWithConstParam ||
868           (needsImplicitCopyConstructor() &&
869            implicitCopyConstructorHasConstParam());
870  }
871
872  /// \brief Whether this class has a user-declared move constructor or
873  /// assignment operator.
874  ///
875  /// When false, a move constructor and assignment operator may be
876  /// implicitly declared.
877  bool hasUserDeclaredMoveOperation() const {
878    return data().UserDeclaredSpecialMembers &
879             (SMF_MoveConstructor | SMF_MoveAssignment);
880  }
881
882  /// \brief Determine whether this class has had a move constructor
883  /// declared by the user.
884  bool hasUserDeclaredMoveConstructor() const {
885    return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
886  }
887
888  /// \brief Determine whether this class has a move constructor.
889  bool hasMoveConstructor() const {
890    return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
891           needsImplicitMoveConstructor();
892  }
893
894  /// \brief Set that we attempted to declare an implicitly move
895  /// constructor, but overload resolution failed so we deleted it.
896  void setImplicitMoveConstructorIsDeleted() {
897    assert((data().DefaultedMoveConstructorIsDeleted ||
898            needsOverloadResolutionForMoveConstructor()) &&
899           "move constructor should not be deleted");
900    data().DefaultedMoveConstructorIsDeleted = true;
901  }
902
903  /// \brief Determine whether this class should get an implicit move
904  /// constructor or if any existing special member function inhibits this.
905  bool needsImplicitMoveConstructor() const {
906    return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
907           !hasUserDeclaredCopyConstructor() &&
908           !hasUserDeclaredCopyAssignment() &&
909           !hasUserDeclaredMoveAssignment() &&
910           !hasUserDeclaredDestructor();
911  }
912
913  /// \brief Determine whether we need to eagerly declare a defaulted move
914  /// constructor for this class.
915  bool needsOverloadResolutionForMoveConstructor() const {
916    return data().NeedOverloadResolutionForMoveConstructor;
917  }
918
919  /// \brief Determine whether this class has a user-declared copy assignment
920  /// operator.
921  ///
922  /// When false, a copy assigment operator will be implicitly declared.
923  bool hasUserDeclaredCopyAssignment() const {
924    return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
925  }
926
927  /// \brief Determine whether this class needs an implicit copy
928  /// assignment operator to be lazily declared.
929  bool needsImplicitCopyAssignment() const {
930    return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
931  }
932
933  /// \brief Determine whether we need to eagerly declare a defaulted copy
934  /// assignment operator for this class.
935  bool needsOverloadResolutionForCopyAssignment() const {
936    return data().HasMutableFields;
937  }
938
939  /// \brief Determine whether an implicit copy assignment operator for this
940  /// type would have a parameter with a const-qualified reference type.
941  bool implicitCopyAssignmentHasConstParam() const {
942    return data().ImplicitCopyAssignmentHasConstParam;
943  }
944
945  /// \brief Determine whether this class has a copy assignment operator with
946  /// a parameter type which is a reference to a const-qualified type or is not
947  /// a reference.
948  bool hasCopyAssignmentWithConstParam() const {
949    return data().HasDeclaredCopyAssignmentWithConstParam ||
950           (needsImplicitCopyAssignment() &&
951            implicitCopyAssignmentHasConstParam());
952  }
953
954  /// \brief Determine whether this class has had a move assignment
955  /// declared by the user.
956  bool hasUserDeclaredMoveAssignment() const {
957    return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
958  }
959
960  /// \brief Determine whether this class has a move assignment operator.
961  bool hasMoveAssignment() const {
962    return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
963           needsImplicitMoveAssignment();
964  }
965
966  /// \brief Set that we attempted to declare an implicit move assignment
967  /// operator, but overload resolution failed so we deleted it.
968  void setImplicitMoveAssignmentIsDeleted() {
969    assert((data().DefaultedMoveAssignmentIsDeleted ||
970            needsOverloadResolutionForMoveAssignment()) &&
971           "move assignment should not be deleted");
972    data().DefaultedMoveAssignmentIsDeleted = true;
973  }
974
975  /// \brief Determine whether this class should get an implicit move
976  /// assignment operator or if any existing special member function inhibits
977  /// this.
978  bool needsImplicitMoveAssignment() const {
979    return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
980           !hasUserDeclaredCopyConstructor() &&
981           !hasUserDeclaredCopyAssignment() &&
982           !hasUserDeclaredMoveConstructor() &&
983           !hasUserDeclaredDestructor();
984  }
985
986  /// \brief Determine whether we need to eagerly declare a move assignment
987  /// operator for this class.
988  bool needsOverloadResolutionForMoveAssignment() const {
989    return data().NeedOverloadResolutionForMoveAssignment;
990  }
991
992  /// \brief Determine whether this class has a user-declared destructor.
993  ///
994  /// When false, a destructor will be implicitly declared.
995  bool hasUserDeclaredDestructor() const {
996    return data().UserDeclaredSpecialMembers & SMF_Destructor;
997  }
998
999  /// \brief Determine whether this class needs an implicit destructor to
1000  /// be lazily declared.
1001  bool needsImplicitDestructor() const {
1002    return !(data().DeclaredSpecialMembers & SMF_Destructor);
1003  }
1004
1005  /// \brief Determine whether we need to eagerly declare a destructor for this
1006  /// class.
1007  bool needsOverloadResolutionForDestructor() const {
1008    return data().NeedOverloadResolutionForDestructor;
1009  }
1010
1011  /// \brief Determine whether this class describes a lambda function object.
1012  bool isLambda() const {
1013    // An update record can't turn a non-lambda into a lambda.
1014    auto *DD = DefinitionData.getNotUpdated();
1015    return DD && DD->IsLambda;
1016  }
1017
1018  /// \brief Determine whether this class describes a generic
1019  /// lambda function object (i.e. function call operator is
1020  /// a template).
1021  bool isGenericLambda() const;
1022
1023  /// \brief Retrieve the lambda call operator of the closure type
1024  /// if this is a closure type.
1025  CXXMethodDecl *getLambdaCallOperator() const;
1026
1027  /// \brief Retrieve the lambda static invoker, the address of which
1028  /// is returned by the conversion operator, and the body of which
1029  /// is forwarded to the lambda call operator.
1030  CXXMethodDecl *getLambdaStaticInvoker() const;
1031
1032  /// \brief Retrieve the generic lambda's template parameter list.
1033  /// Returns null if the class does not represent a lambda or a generic
1034  /// lambda.
1035  TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1036
1037  LambdaCaptureDefault getLambdaCaptureDefault() const {
1038    assert(isLambda());
1039    return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1040  }
1041
1042  /// \brief For a closure type, retrieve the mapping from captured
1043  /// variables and \c this to the non-static data members that store the
1044  /// values or references of the captures.
1045  ///
1046  /// \param Captures Will be populated with the mapping from captured
1047  /// variables to the corresponding fields.
1048  ///
1049  /// \param ThisCapture Will be set to the field declaration for the
1050  /// \c this capture.
1051  ///
1052  /// \note No entries will be added for init-captures, as they do not capture
1053  /// variables.
1054  void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1055                        FieldDecl *&ThisCapture) const;
1056
1057  typedef const LambdaCapture *capture_const_iterator;
1058  typedef llvm::iterator_range<capture_const_iterator> capture_const_range;
1059
1060  capture_const_range captures() const {
1061    return capture_const_range(captures_begin(), captures_end());
1062  }
1063  capture_const_iterator captures_begin() const {
1064    return isLambda() ? getLambdaData().Captures : nullptr;
1065  }
1066  capture_const_iterator captures_end() const {
1067    return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1068                      : nullptr;
1069  }
1070
1071  typedef UnresolvedSetIterator conversion_iterator;
1072  conversion_iterator conversion_begin() const {
1073    return data().Conversions.get(getASTContext()).begin();
1074  }
1075  conversion_iterator conversion_end() const {
1076    return data().Conversions.get(getASTContext()).end();
1077  }
1078
1079  /// Removes a conversion function from this class.  The conversion
1080  /// function must currently be a member of this class.  Furthermore,
1081  /// this class must currently be in the process of being defined.
1082  void removeConversion(const NamedDecl *Old);
1083
1084  /// \brief Get all conversion functions visible in current class,
1085  /// including conversion function templates.
1086  std::pair<conversion_iterator, conversion_iterator>
1087    getVisibleConversionFunctions();
1088
1089  /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1090  /// which is a class with no user-declared constructors, no private
1091  /// or protected non-static data members, no base classes, and no virtual
1092  /// functions (C++ [dcl.init.aggr]p1).
1093  bool isAggregate() const { return data().Aggregate; }
1094
1095  /// \brief Whether this class has any in-class initializers
1096  /// for non-static data members (including those in anonymous unions or
1097  /// structs).
1098  bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1099
1100  /// \brief Whether this class or any of its subobjects has any members of
1101  /// reference type which would make value-initialization ill-formed.
1102  ///
1103  /// Per C++03 [dcl.init]p5:
1104  ///  - if T is a non-union class type without a user-declared constructor,
1105  ///    then every non-static data member and base-class component of T is
1106  ///    value-initialized [...] A program that calls for [...]
1107  ///    value-initialization of an entity of reference type is ill-formed.
1108  bool hasUninitializedReferenceMember() const {
1109    return !isUnion() && !hasUserDeclaredConstructor() &&
1110           data().HasUninitializedReferenceMember;
1111  }
1112
1113  /// \brief Whether this class is a POD-type (C++ [class]p4)
1114  ///
1115  /// For purposes of this function a class is POD if it is an aggregate
1116  /// that has no non-static non-POD data members, no reference data
1117  /// members, no user-defined copy assignment operator and no
1118  /// user-defined destructor.
1119  ///
1120  /// Note that this is the C++ TR1 definition of POD.
1121  bool isPOD() const { return data().PlainOldData; }
1122
1123  /// \brief True if this class is C-like, without C++-specific features, e.g.
1124  /// it contains only public fields, no bases, tag kind is not 'class', etc.
1125  bool isCLike() const;
1126
1127  /// \brief Determine whether this is an empty class in the sense of
1128  /// (C++11 [meta.unary.prop]).
1129  ///
1130  /// A non-union class is empty iff it has a virtual function, virtual base,
1131  /// data member (other than 0-width bit-field) or inherits from a non-empty
1132  /// class.
1133  ///
1134  /// \note This does NOT include a check for union-ness.
1135  bool isEmpty() const { return data().Empty; }
1136
1137  /// Whether this class is polymorphic (C++ [class.virtual]),
1138  /// which means that the class contains or inherits a virtual function.
1139  bool isPolymorphic() const { return data().Polymorphic; }
1140
1141  /// \brief Determine whether this class has a pure virtual function.
1142  ///
1143  /// The class is is abstract per (C++ [class.abstract]p2) if it declares
1144  /// a pure virtual function or inherits a pure virtual function that is
1145  /// not overridden.
1146  bool isAbstract() const { return data().Abstract; }
1147
1148  /// \brief Determine whether this class has standard layout per
1149  /// (C++ [class]p7)
1150  bool isStandardLayout() const { return data().IsStandardLayout; }
1151
1152  /// \brief Determine whether this class, or any of its class subobjects,
1153  /// contains a mutable field.
1154  bool hasMutableFields() const { return data().HasMutableFields; }
1155
1156  /// \brief Determine whether this class has any variant members.
1157  bool hasVariantMembers() const { return data().HasVariantMembers; }
1158
1159  /// \brief Determine whether this class has a trivial default constructor
1160  /// (C++11 [class.ctor]p5).
1161  bool hasTrivialDefaultConstructor() const {
1162    return hasDefaultConstructor() &&
1163           (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1164  }
1165
1166  /// \brief Determine whether this class has a non-trivial default constructor
1167  /// (C++11 [class.ctor]p5).
1168  bool hasNonTrivialDefaultConstructor() const {
1169    return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1170           (needsImplicitDefaultConstructor() &&
1171            !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1172  }
1173
1174  /// \brief Determine whether this class has at least one constexpr constructor
1175  /// other than the copy or move constructors.
1176  bool hasConstexprNonCopyMoveConstructor() const {
1177    return data().HasConstexprNonCopyMoveConstructor ||
1178           (needsImplicitDefaultConstructor() &&
1179            defaultedDefaultConstructorIsConstexpr());
1180  }
1181
1182  /// \brief Determine whether a defaulted default constructor for this class
1183  /// would be constexpr.
1184  bool defaultedDefaultConstructorIsConstexpr() const {
1185    return data().DefaultedDefaultConstructorIsConstexpr &&
1186           (!isUnion() || hasInClassInitializer() || !hasVariantMembers());
1187  }
1188
1189  /// \brief Determine whether this class has a constexpr default constructor.
1190  bool hasConstexprDefaultConstructor() const {
1191    return data().HasConstexprDefaultConstructor ||
1192           (needsImplicitDefaultConstructor() &&
1193            defaultedDefaultConstructorIsConstexpr());
1194  }
1195
1196  /// \brief Determine whether this class has a trivial copy constructor
1197  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1198  bool hasTrivialCopyConstructor() const {
1199    return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1200  }
1201
1202  /// \brief Determine whether this class has a non-trivial copy constructor
1203  /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1204  bool hasNonTrivialCopyConstructor() const {
1205    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1206           !hasTrivialCopyConstructor();
1207  }
1208
1209  /// \brief Determine whether this class has a trivial move constructor
1210  /// (C++11 [class.copy]p12)
1211  bool hasTrivialMoveConstructor() const {
1212    return hasMoveConstructor() &&
1213           (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1214  }
1215
1216  /// \brief Determine whether this class has a non-trivial move constructor
1217  /// (C++11 [class.copy]p12)
1218  bool hasNonTrivialMoveConstructor() const {
1219    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1220           (needsImplicitMoveConstructor() &&
1221            !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1222  }
1223
1224  /// \brief Determine whether this class has a trivial copy assignment operator
1225  /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1226  bool hasTrivialCopyAssignment() const {
1227    return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1228  }
1229
1230  /// \brief Determine whether this class has a non-trivial copy assignment
1231  /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1232  bool hasNonTrivialCopyAssignment() const {
1233    return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1234           !hasTrivialCopyAssignment();
1235  }
1236
1237  /// \brief Determine whether this class has a trivial move assignment operator
1238  /// (C++11 [class.copy]p25)
1239  bool hasTrivialMoveAssignment() const {
1240    return hasMoveAssignment() &&
1241           (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1242  }
1243
1244  /// \brief Determine whether this class has a non-trivial move assignment
1245  /// operator (C++11 [class.copy]p25)
1246  bool hasNonTrivialMoveAssignment() const {
1247    return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1248           (needsImplicitMoveAssignment() &&
1249            !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1250  }
1251
1252  /// \brief Determine whether this class has a trivial destructor
1253  /// (C++ [class.dtor]p3)
1254  bool hasTrivialDestructor() const {
1255    return data().HasTrivialSpecialMembers & SMF_Destructor;
1256  }
1257
1258  /// \brief Determine whether this class has a non-trivial destructor
1259  /// (C++ [class.dtor]p3)
1260  bool hasNonTrivialDestructor() const {
1261    return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1262  }
1263
1264  /// \brief Determine whether this class has a destructor which has no
1265  /// semantic effect.
1266  ///
1267  /// Any such destructor will be trivial, public, defaulted and not deleted,
1268  /// and will call only irrelevant destructors.
1269  bool hasIrrelevantDestructor() const {
1270    return data().HasIrrelevantDestructor;
1271  }
1272
1273  /// \brief Determine whether this class has a non-literal or/ volatile type
1274  /// non-static data member or base class.
1275  bool hasNonLiteralTypeFieldsOrBases() const {
1276    return data().HasNonLiteralTypeFieldsOrBases;
1277  }
1278
1279  /// \brief Determine whether this class is considered trivially copyable per
1280  /// (C++11 [class]p6).
1281  bool isTriviallyCopyable() const;
1282
1283  /// \brief Determine whether this class is considered trivial.
1284  ///
1285  /// C++11 [class]p6:
1286  ///    "A trivial class is a class that has a trivial default constructor and
1287  ///    is trivially copiable."
1288  bool isTrivial() const {
1289    return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1290  }
1291
1292  /// \brief Determine whether this class is a literal type.
1293  ///
1294  /// C++11 [basic.types]p10:
1295  ///   A class type that has all the following properties:
1296  ///     - it has a trivial destructor
1297  ///     - every constructor call and full-expression in the
1298  ///       brace-or-equal-intializers for non-static data members (if any) is
1299  ///       a constant expression.
1300  ///     - it is an aggregate type or has at least one constexpr constructor
1301  ///       or constructor template that is not a copy or move constructor, and
1302  ///     - all of its non-static data members and base classes are of literal
1303  ///       types
1304  ///
1305  /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1306  /// treating types with trivial default constructors as literal types.
1307  bool isLiteral() const {
1308    return hasTrivialDestructor() &&
1309           (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
1310            hasTrivialDefaultConstructor()) &&
1311           !hasNonLiteralTypeFieldsOrBases();
1312  }
1313
1314  /// \brief If this record is an instantiation of a member class,
1315  /// retrieves the member class from which it was instantiated.
1316  ///
1317  /// This routine will return non-null for (non-templated) member
1318  /// classes of class templates. For example, given:
1319  ///
1320  /// \code
1321  /// template<typename T>
1322  /// struct X {
1323  ///   struct A { };
1324  /// };
1325  /// \endcode
1326  ///
1327  /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1328  /// whose parent is the class template specialization X<int>. For
1329  /// this declaration, getInstantiatedFromMemberClass() will return
1330  /// the CXXRecordDecl X<T>::A. When a complete definition of
1331  /// X<int>::A is required, it will be instantiated from the
1332  /// declaration returned by getInstantiatedFromMemberClass().
1333  CXXRecordDecl *getInstantiatedFromMemberClass() const;
1334
1335  /// \brief If this class is an instantiation of a member class of a
1336  /// class template specialization, retrieves the member specialization
1337  /// information.
1338  MemberSpecializationInfo *getMemberSpecializationInfo() const {
1339    return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1340  }
1341
1342  /// \brief Specify that this record is an instantiation of the
1343  /// member class \p RD.
1344  void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1345                                     TemplateSpecializationKind TSK);
1346
1347  /// \brief Retrieves the class template that is described by this
1348  /// class declaration.
1349  ///
1350  /// Every class template is represented as a ClassTemplateDecl and a
1351  /// CXXRecordDecl. The former contains template properties (such as
1352  /// the template parameter lists) while the latter contains the
1353  /// actual description of the template's
1354  /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1355  /// CXXRecordDecl that from a ClassTemplateDecl, while
1356  /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1357  /// a CXXRecordDecl.
1358  ClassTemplateDecl *getDescribedClassTemplate() const {
1359    return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
1360  }
1361
1362  void setDescribedClassTemplate(ClassTemplateDecl *Template) {
1363    TemplateOrInstantiation = Template;
1364  }
1365
1366  /// \brief Determine whether this particular class is a specialization or
1367  /// instantiation of a class template or member class of a class template,
1368  /// and how it was instantiated or specialized.
1369  TemplateSpecializationKind getTemplateSpecializationKind() const;
1370
1371  /// \brief Set the kind of specialization or template instantiation this is.
1372  void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1373
1374  /// \brief Returns the destructor decl for this class.
1375  CXXDestructorDecl *getDestructor() const;
1376
1377  /// \brief If the class is a local class [class.local], returns
1378  /// the enclosing function declaration.
1379  const FunctionDecl *isLocalClass() const {
1380    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1381      return RD->isLocalClass();
1382
1383    return dyn_cast<FunctionDecl>(getDeclContext());
1384  }
1385
1386  FunctionDecl *isLocalClass() {
1387    return const_cast<FunctionDecl*>(
1388        const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1389  }
1390
1391  /// \brief Determine whether this dependent class is a current instantiation,
1392  /// when viewed from within the given context.
1393  bool isCurrentInstantiation(const DeclContext *CurContext) const;
1394
1395  /// \brief Determine whether this class is derived from the class \p Base.
1396  ///
1397  /// This routine only determines whether this class is derived from \p Base,
1398  /// but does not account for factors that may make a Derived -> Base class
1399  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1400  /// base class subobjects.
1401  ///
1402  /// \param Base the base class we are searching for.
1403  ///
1404  /// \returns true if this class is derived from Base, false otherwise.
1405  bool isDerivedFrom(const CXXRecordDecl *Base) const;
1406
1407  /// \brief Determine whether this class is derived from the type \p Base.
1408  ///
1409  /// This routine only determines whether this class is derived from \p Base,
1410  /// but does not account for factors that may make a Derived -> Base class
1411  /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1412  /// base class subobjects.
1413  ///
1414  /// \param Base the base class we are searching for.
1415  ///
1416  /// \param Paths will contain the paths taken from the current class to the
1417  /// given \p Base class.
1418  ///
1419  /// \returns true if this class is derived from \p Base, false otherwise.
1420  ///
1421  /// \todo add a separate paramaeter to configure IsDerivedFrom, rather than
1422  /// tangling input and output in \p Paths
1423  bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1424
1425  /// \brief Determine whether this class is virtually derived from
1426  /// the class \p Base.
1427  ///
1428  /// This routine only determines whether this class is virtually
1429  /// derived from \p Base, but does not account for factors that may
1430  /// make a Derived -> Base class ill-formed, such as
1431  /// private/protected inheritance or multiple, ambiguous base class
1432  /// subobjects.
1433  ///
1434  /// \param Base the base class we are searching for.
1435  ///
1436  /// \returns true if this class is virtually derived from Base,
1437  /// false otherwise.
1438  bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1439
1440  /// \brief Determine whether this class is provably not derived from
1441  /// the type \p Base.
1442  bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1443
1444  /// \brief Function type used by forallBases() as a callback.
1445  ///
1446  /// \param BaseDefinition the definition of the base class
1447  ///
1448  /// \returns true if this base matched the search criteria
1449  typedef bool ForallBasesCallback(const CXXRecordDecl *BaseDefinition,
1450                                   void *UserData);
1451
1452  /// \brief Determines if the given callback holds for all the direct
1453  /// or indirect base classes of this type.
1454  ///
1455  /// The class itself does not count as a base class.  This routine
1456  /// returns false if the class has non-computable base classes.
1457  ///
1458  /// \param BaseMatches Callback invoked for each (direct or indirect) base
1459  /// class of this type, or if \p AllowShortCircuit is true then until a call
1460  /// returns false.
1461  ///
1462  /// \param UserData Passed as the second argument of every call to
1463  /// \p BaseMatches.
1464  ///
1465  /// \param AllowShortCircuit if false, forces the callback to be called
1466  /// for every base class, even if a dependent or non-matching base was
1467  /// found.
1468  bool forallBases(ForallBasesCallback *BaseMatches, void *UserData,
1469                   bool AllowShortCircuit = true) const;
1470
1471  /// \brief Function type used by lookupInBases() to determine whether a
1472  /// specific base class subobject matches the lookup criteria.
1473  ///
1474  /// \param Specifier the base-class specifier that describes the inheritance
1475  /// from the base class we are trying to match.
1476  ///
1477  /// \param Path the current path, from the most-derived class down to the
1478  /// base named by the \p Specifier.
1479  ///
1480  /// \param UserData a single pointer to user-specified data, provided to
1481  /// lookupInBases().
1482  ///
1483  /// \returns true if this base matched the search criteria, false otherwise.
1484  typedef bool BaseMatchesCallback(const CXXBaseSpecifier *Specifier,
1485                                   CXXBasePath &Path,
1486                                   void *UserData);
1487
1488  /// \brief Look for entities within the base classes of this C++ class,
1489  /// transitively searching all base class subobjects.
1490  ///
1491  /// This routine uses the callback function \p BaseMatches to find base
1492  /// classes meeting some search criteria, walking all base class subobjects
1493  /// and populating the given \p Paths structure with the paths through the
1494  /// inheritance hierarchy that resulted in a match. On a successful search,
1495  /// the \p Paths structure can be queried to retrieve the matching paths and
1496  /// to determine if there were any ambiguities.
1497  ///
1498  /// \param BaseMatches callback function used to determine whether a given
1499  /// base matches the user-defined search criteria.
1500  ///
1501  /// \param UserData user data pointer that will be provided to \p BaseMatches.
1502  ///
1503  /// \param Paths used to record the paths from this class to its base class
1504  /// subobjects that match the search criteria.
1505  ///
1506  /// \returns true if there exists any path from this class to a base class
1507  /// subobject that matches the search criteria.
1508  bool lookupInBases(BaseMatchesCallback *BaseMatches, void *UserData,
1509                     CXXBasePaths &Paths) const;
1510
1511  /// \brief Base-class lookup callback that determines whether the given
1512  /// base class specifier refers to a specific class declaration.
1513  ///
1514  /// This callback can be used with \c lookupInBases() to determine whether
1515  /// a given derived class has is a base class subobject of a particular type.
1516  /// The user data pointer should refer to the canonical CXXRecordDecl of the
1517  /// base class that we are searching for.
1518  static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1519                            CXXBasePath &Path, void *BaseRecord);
1520
1521  /// \brief Base-class lookup callback that determines whether the
1522  /// given base class specifier refers to a specific class
1523  /// declaration and describes virtual derivation.
1524  ///
1525  /// This callback can be used with \c lookupInBases() to determine
1526  /// whether a given derived class has is a virtual base class
1527  /// subobject of a particular type.  The user data pointer should
1528  /// refer to the canonical CXXRecordDecl of the base class that we
1529  /// are searching for.
1530  static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1531                                   CXXBasePath &Path, void *BaseRecord);
1532
1533  /// \brief Base-class lookup callback that determines whether there exists
1534  /// a tag with the given name.
1535  ///
1536  /// This callback can be used with \c lookupInBases() to find tag members
1537  /// of the given name within a C++ class hierarchy. The user data pointer
1538  /// is an opaque \c DeclarationName pointer.
1539  static bool FindTagMember(const CXXBaseSpecifier *Specifier,
1540                            CXXBasePath &Path, void *Name);
1541
1542  /// \brief Base-class lookup callback that determines whether there exists
1543  /// a member with the given name.
1544  ///
1545  /// This callback can be used with \c lookupInBases() to find members
1546  /// of the given name within a C++ class hierarchy. The user data pointer
1547  /// is an opaque \c DeclarationName pointer.
1548  static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
1549                                 CXXBasePath &Path, void *Name);
1550
1551  /// \brief Base-class lookup callback that determines whether there exists
1552  /// a member with the given name that can be used in a nested-name-specifier.
1553  ///
1554  /// This callback can be used with \c lookupInBases() to find membes of
1555  /// the given name within a C++ class hierarchy that can occur within
1556  /// nested-name-specifiers.
1557  static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
1558                                            CXXBasePath &Path,
1559                                            void *UserData);
1560
1561  /// \brief Retrieve the final overriders for each virtual member
1562  /// function in the class hierarchy where this class is the
1563  /// most-derived class in the class hierarchy.
1564  void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1565
1566  /// \brief Get the indirect primary bases for this class.
1567  void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1568
1569  /// Renders and displays an inheritance diagram
1570  /// for this C++ class and all of its base classes (transitively) using
1571  /// GraphViz.
1572  void viewInheritance(ASTContext& Context) const;
1573
1574  /// \brief Calculates the access of a decl that is reached
1575  /// along a path.
1576  static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1577                                     AccessSpecifier DeclAccess) {
1578    assert(DeclAccess != AS_none);
1579    if (DeclAccess == AS_private) return AS_none;
1580    return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1581  }
1582
1583  /// \brief Indicates that the declaration of a defaulted or deleted special
1584  /// member function is now complete.
1585  void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1586
1587  /// \brief Indicates that the definition of this class is now complete.
1588  void completeDefinition() override;
1589
1590  /// \brief Indicates that the definition of this class is now complete,
1591  /// and provides a final overrider map to help determine
1592  ///
1593  /// \param FinalOverriders The final overrider map for this class, which can
1594  /// be provided as an optimization for abstract-class checking. If NULL,
1595  /// final overriders will be computed if they are needed to complete the
1596  /// definition.
1597  void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1598
1599  /// \brief Determine whether this class may end up being abstract, even though
1600  /// it is not yet known to be abstract.
1601  ///
1602  /// \returns true if this class is not known to be abstract but has any
1603  /// base classes that are abstract. In this case, \c completeDefinition()
1604  /// will need to compute final overriders to determine whether the class is
1605  /// actually abstract.
1606  bool mayBeAbstract() const;
1607
1608  /// \brief If this is the closure type of a lambda expression, retrieve the
1609  /// number to be used for name mangling in the Itanium C++ ABI.
1610  ///
1611  /// Zero indicates that this closure type has internal linkage, so the
1612  /// mangling number does not matter, while a non-zero value indicates which
1613  /// lambda expression this is in this particular context.
1614  unsigned getLambdaManglingNumber() const {
1615    assert(isLambda() && "Not a lambda closure type!");
1616    return getLambdaData().ManglingNumber;
1617  }
1618
1619  /// \brief Retrieve the declaration that provides additional context for a
1620  /// lambda, when the normal declaration context is not specific enough.
1621  ///
1622  /// Certain contexts (default arguments of in-class function parameters and
1623  /// the initializers of data members) have separate name mangling rules for
1624  /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1625  /// the declaration in which the lambda occurs, e.g., the function parameter
1626  /// or the non-static data member. Otherwise, it returns NULL to imply that
1627  /// the declaration context suffices.
1628  Decl *getLambdaContextDecl() const {
1629    assert(isLambda() && "Not a lambda closure type!");
1630    return getLambdaData().ContextDecl;
1631  }
1632
1633  /// \brief Set the mangling number and context declaration for a lambda
1634  /// class.
1635  void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
1636    getLambdaData().ManglingNumber = ManglingNumber;
1637    getLambdaData().ContextDecl = ContextDecl;
1638  }
1639
1640  /// \brief Returns the inheritance model used for this record.
1641  MSInheritanceAttr::Spelling getMSInheritanceModel() const;
1642  /// \brief Calculate what the inheritance model would be for this class.
1643  MSInheritanceAttr::Spelling calculateInheritanceModel() const;
1644
1645  /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1646  /// member pointer if we can guarantee that zero is not a valid field offset,
1647  /// or if the member pointer has multiple fields.  Polymorphic classes have a
1648  /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1649  /// fields, we can use zero even if it is a valid field offset because
1650  /// null-ness testing will check the other fields.
1651  bool nullFieldOffsetIsZero() const {
1652    return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false,
1653                                               getMSInheritanceModel()) ||
1654           (hasDefinition() && isPolymorphic());
1655  }
1656
1657  /// \brief Controls when vtordisps will be emitted if this record is used as a
1658  /// virtual base.
1659  MSVtorDispAttr::Mode getMSVtorDispMode() const;
1660
1661  /// \brief Determine whether this lambda expression was known to be dependent
1662  /// at the time it was created, even if its context does not appear to be
1663  /// dependent.
1664  ///
1665  /// This flag is a workaround for an issue with parsing, where default
1666  /// arguments are parsed before their enclosing function declarations have
1667  /// been created. This means that any lambda expressions within those
1668  /// default arguments will have as their DeclContext the context enclosing
1669  /// the function declaration, which may be non-dependent even when the
1670  /// function declaration itself is dependent. This flag indicates when we
1671  /// know that the lambda is dependent despite that.
1672  bool isDependentLambda() const {
1673    return isLambda() && getLambdaData().Dependent;
1674  }
1675
1676  TypeSourceInfo *getLambdaTypeInfo() const {
1677    return getLambdaData().MethodTyInfo;
1678  }
1679
1680  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1681  static bool classofKind(Kind K) {
1682    return K >= firstCXXRecord && K <= lastCXXRecord;
1683  }
1684
1685  friend class ASTDeclReader;
1686  friend class ASTDeclWriter;
1687  friend class ASTReader;
1688  friend class ASTWriter;
1689};
1690
1691/// \brief Represents a static or instance method of a struct/union/class.
1692///
1693/// In the terminology of the C++ Standard, these are the (static and
1694/// non-static) member functions, whether virtual or not.
1695class CXXMethodDecl : public FunctionDecl {
1696  void anchor() override;
1697protected:
1698  CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
1699                SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
1700                QualType T, TypeSourceInfo *TInfo,
1701                StorageClass SC, bool isInline,
1702                bool isConstexpr, SourceLocation EndLocation)
1703    : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo,
1704                   SC, isInline, isConstexpr) {
1705    if (EndLocation.isValid())
1706      setRangeEnd(EndLocation);
1707  }
1708
1709public:
1710  static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
1711                               SourceLocation StartLoc,
1712                               const DeclarationNameInfo &NameInfo,
1713                               QualType T, TypeSourceInfo *TInfo,
1714                               StorageClass SC,
1715                               bool isInline,
1716                               bool isConstexpr,
1717                               SourceLocation EndLocation);
1718
1719  static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1720
1721  bool isStatic() const;
1722  bool isInstance() const { return !isStatic(); }
1723
1724  /// Returns true if the given operator is implicitly static in a record
1725  /// context.
1726  static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
1727    // [class.free]p1:
1728    // Any allocation function for a class T is a static member
1729    // (even if not explicitly declared static).
1730    // [class.free]p6 Any deallocation function for a class X is a static member
1731    // (even if not explicitly declared static).
1732    return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
1733           OOK == OO_Array_Delete;
1734  }
1735
1736  bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
1737  bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
1738
1739  bool isVirtual() const {
1740    CXXMethodDecl *CD =
1741      cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
1742
1743    // Member function is virtual if it is marked explicitly so, or if it is
1744    // declared in __interface -- then it is automatically pure virtual.
1745    if (CD->isVirtualAsWritten() || CD->isPure())
1746      return true;
1747
1748    return (CD->begin_overridden_methods() != CD->end_overridden_methods());
1749  }
1750
1751  /// \brief Determine whether this is a usual deallocation function
1752  /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
1753  /// delete or delete[] operator with a particular signature.
1754  bool isUsualDeallocationFunction() const;
1755
1756  /// \brief Determine whether this is a copy-assignment operator, regardless
1757  /// of whether it was declared implicitly or explicitly.
1758  bool isCopyAssignmentOperator() const;
1759
1760  /// \brief Determine whether this is a move assignment operator.
1761  bool isMoveAssignmentOperator() const;
1762
1763  CXXMethodDecl *getCanonicalDecl() override {
1764    return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
1765  }
1766  const CXXMethodDecl *getCanonicalDecl() const override {
1767    return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
1768  }
1769
1770  CXXMethodDecl *getMostRecentDecl() {
1771    return cast<CXXMethodDecl>(
1772            static_cast<FunctionDecl *>(this)->getMostRecentDecl());
1773  }
1774  const CXXMethodDecl *getMostRecentDecl() const {
1775    return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
1776  }
1777
1778  /// True if this method is user-declared and was not
1779  /// deleted or defaulted on its first declaration.
1780  bool isUserProvided() const {
1781    return !(isDeleted() || getCanonicalDecl()->isDefaulted());
1782  }
1783
1784  ///
1785  void addOverriddenMethod(const CXXMethodDecl *MD);
1786
1787  typedef const CXXMethodDecl *const* method_iterator;
1788
1789  method_iterator begin_overridden_methods() const;
1790  method_iterator end_overridden_methods() const;
1791  unsigned size_overridden_methods() const;
1792
1793  /// Returns the parent of this method declaration, which
1794  /// is the class in which this method is defined.
1795  const CXXRecordDecl *getParent() const {
1796    return cast<CXXRecordDecl>(FunctionDecl::getParent());
1797  }
1798
1799  /// Returns the parent of this method declaration, which
1800  /// is the class in which this method is defined.
1801  CXXRecordDecl *getParent() {
1802    return const_cast<CXXRecordDecl *>(
1803             cast<CXXRecordDecl>(FunctionDecl::getParent()));
1804  }
1805
1806  /// \brief Returns the type of the \c this pointer.
1807  ///
1808  /// Should only be called for instance (i.e., non-static) methods.
1809  QualType getThisType(ASTContext &C) const;
1810
1811  unsigned getTypeQualifiers() const {
1812    return getType()->getAs<FunctionProtoType>()->getTypeQuals();
1813  }
1814
1815  /// \brief Retrieve the ref-qualifier associated with this method.
1816  ///
1817  /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
1818  /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
1819  /// @code
1820  /// struct X {
1821  ///   void f() &;
1822  ///   void g() &&;
1823  ///   void h();
1824  /// };
1825  /// @endcode
1826  RefQualifierKind getRefQualifier() const {
1827    return getType()->getAs<FunctionProtoType>()->getRefQualifier();
1828  }
1829
1830  bool hasInlineBody() const;
1831
1832  /// \brief Determine whether this is a lambda closure type's static member
1833  /// function that is used for the result of the lambda's conversion to
1834  /// function pointer (for a lambda with no captures).
1835  ///
1836  /// The function itself, if used, will have a placeholder body that will be
1837  /// supplied by IR generation to either forward to the function call operator
1838  /// or clone the function call operator.
1839  bool isLambdaStaticInvoker() const;
1840
1841  /// \brief Find the method in \p RD that corresponds to this one.
1842  ///
1843  /// Find if \p RD or one of the classes it inherits from override this method.
1844  /// If so, return it. \p RD is assumed to be a subclass of the class defining
1845  /// this method (or be the class itself), unless \p MayBeBase is set to true.
1846  CXXMethodDecl *
1847  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1848                                bool MayBeBase = false);
1849
1850  const CXXMethodDecl *
1851  getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1852                                bool MayBeBase = false) const {
1853    return const_cast<CXXMethodDecl *>(this)
1854              ->getCorrespondingMethodInClass(RD, MayBeBase);
1855  }
1856
1857  // Implement isa/cast/dyncast/etc.
1858  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1859  static bool classofKind(Kind K) {
1860    return K >= firstCXXMethod && K <= lastCXXMethod;
1861  }
1862};
1863
1864/// \brief Represents a C++ base or member initializer.
1865///
1866/// This is part of a constructor initializer that
1867/// initializes one non-static member variable or one base class. For
1868/// example, in the following, both 'A(a)' and 'f(3.14159)' are member
1869/// initializers:
1870///
1871/// \code
1872/// class A { };
1873/// class B : public A {
1874///   float f;
1875/// public:
1876///   B(A& a) : A(a), f(3.14159) { }
1877/// };
1878/// \endcode
1879class CXXCtorInitializer {
1880  /// \brief Either the base class name/delegating constructor type (stored as
1881  /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
1882  /// (IndirectFieldDecl*) being initialized.
1883  llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
1884    Initializee;
1885
1886  /// \brief The source location for the field name or, for a base initializer
1887  /// pack expansion, the location of the ellipsis.
1888  ///
1889  /// In the case of a delegating
1890  /// constructor, it will still include the type's source location as the
1891  /// Initializee points to the CXXConstructorDecl (to allow loop detection).
1892  SourceLocation MemberOrEllipsisLocation;
1893
1894  /// \brief The argument used to initialize the base or member, which may
1895  /// end up constructing an object (when multiple arguments are involved).
1896  Stmt *Init;
1897
1898  /// \brief Location of the left paren of the ctor-initializer.
1899  SourceLocation LParenLoc;
1900
1901  /// \brief Location of the right paren of the ctor-initializer.
1902  SourceLocation RParenLoc;
1903
1904  /// \brief If the initializee is a type, whether that type makes this
1905  /// a delegating initialization.
1906  bool IsDelegating : 1;
1907
1908  /// \brief If the initializer is a base initializer, this keeps track
1909  /// of whether the base is virtual or not.
1910  bool IsVirtual : 1;
1911
1912  /// \brief Whether or not the initializer is explicitly written
1913  /// in the sources.
1914  bool IsWritten : 1;
1915
1916  /// If IsWritten is true, then this number keeps track of the textual order
1917  /// of this initializer in the original sources, counting from 0; otherwise,
1918  /// it stores the number of array index variables stored after this object
1919  /// in memory.
1920  unsigned SourceOrderOrNumArrayIndices : 13;
1921
1922  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1923                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1924                     SourceLocation R, VarDecl **Indices, unsigned NumIndices);
1925
1926public:
1927  /// \brief Creates a new base-class initializer.
1928  explicit
1929  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
1930                     SourceLocation L, Expr *Init, SourceLocation R,
1931                     SourceLocation EllipsisLoc);
1932
1933  /// \brief Creates a new member initializer.
1934  explicit
1935  CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
1936                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1937                     SourceLocation R);
1938
1939  /// \brief Creates a new anonymous field initializer.
1940  explicit
1941  CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
1942                     SourceLocation MemberLoc, SourceLocation L, Expr *Init,
1943                     SourceLocation R);
1944
1945  /// \brief Creates a new delegating initializer.
1946  explicit
1947  CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
1948                     SourceLocation L, Expr *Init, SourceLocation R);
1949
1950  /// \brief Creates a new member initializer that optionally contains
1951  /// array indices used to describe an elementwise initialization.
1952  static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
1953                                    SourceLocation MemberLoc, SourceLocation L,
1954                                    Expr *Init, SourceLocation R,
1955                                    VarDecl **Indices, unsigned NumIndices);
1956
1957  /// \brief Determine whether this initializer is initializing a base class.
1958  bool isBaseInitializer() const {
1959    return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
1960  }
1961
1962  /// \brief Determine whether this initializer is initializing a non-static
1963  /// data member.
1964  bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
1965
1966  bool isAnyMemberInitializer() const {
1967    return isMemberInitializer() || isIndirectMemberInitializer();
1968  }
1969
1970  bool isIndirectMemberInitializer() const {
1971    return Initializee.is<IndirectFieldDecl*>();
1972  }
1973
1974  /// \brief Determine whether this initializer is an implicit initializer
1975  /// generated for a field with an initializer defined on the member
1976  /// declaration.
1977  ///
1978  /// In-class member initializers (also known as "non-static data member
1979  /// initializations", NSDMIs) were introduced in C++11.
1980  bool isInClassMemberInitializer() const {
1981    return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
1982  }
1983
1984  /// \brief Determine whether this initializer is creating a delegating
1985  /// constructor.
1986  bool isDelegatingInitializer() const {
1987    return Initializee.is<TypeSourceInfo*>() && IsDelegating;
1988  }
1989
1990  /// \brief Determine whether this initializer is a pack expansion.
1991  bool isPackExpansion() const {
1992    return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
1993  }
1994
1995  // \brief For a pack expansion, returns the location of the ellipsis.
1996  SourceLocation getEllipsisLoc() const {
1997    assert(isPackExpansion() && "Initializer is not a pack expansion");
1998    return MemberOrEllipsisLocation;
1999  }
2000
2001  /// If this is a base class initializer, returns the type of the
2002  /// base class with location information. Otherwise, returns an NULL
2003  /// type location.
2004  TypeLoc getBaseClassLoc() const;
2005
2006  /// If this is a base class initializer, returns the type of the base class.
2007  /// Otherwise, returns null.
2008  const Type *getBaseClass() const;
2009
2010  /// Returns whether the base is virtual or not.
2011  bool isBaseVirtual() const {
2012    assert(isBaseInitializer() && "Must call this on base initializer!");
2013
2014    return IsVirtual;
2015  }
2016
2017  /// \brief Returns the declarator information for a base class or delegating
2018  /// initializer.
2019  TypeSourceInfo *getTypeSourceInfo() const {
2020    return Initializee.dyn_cast<TypeSourceInfo *>();
2021  }
2022
2023  /// \brief If this is a member initializer, returns the declaration of the
2024  /// non-static data member being initialized. Otherwise, returns null.
2025  FieldDecl *getMember() const {
2026    if (isMemberInitializer())
2027      return Initializee.get<FieldDecl*>();
2028    return nullptr;
2029  }
2030  FieldDecl *getAnyMember() const {
2031    if (isMemberInitializer())
2032      return Initializee.get<FieldDecl*>();
2033    if (isIndirectMemberInitializer())
2034      return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2035    return nullptr;
2036  }
2037
2038  IndirectFieldDecl *getIndirectMember() const {
2039    if (isIndirectMemberInitializer())
2040      return Initializee.get<IndirectFieldDecl*>();
2041    return nullptr;
2042  }
2043
2044  SourceLocation getMemberLocation() const {
2045    return MemberOrEllipsisLocation;
2046  }
2047
2048  /// \brief Determine the source location of the initializer.
2049  SourceLocation getSourceLocation() const;
2050
2051  /// \brief Determine the source range covering the entire initializer.
2052  SourceRange getSourceRange() const LLVM_READONLY;
2053
2054  /// \brief Determine whether this initializer is explicitly written
2055  /// in the source code.
2056  bool isWritten() const { return IsWritten; }
2057
2058  /// \brief Return the source position of the initializer, counting from 0.
2059  /// If the initializer was implicit, -1 is returned.
2060  int getSourceOrder() const {
2061    return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
2062  }
2063
2064  /// \brief Set the source order of this initializer.
2065  ///
2066  /// This can only be called once for each initializer; it cannot be called
2067  /// on an initializer having a positive number of (implicit) array indices.
2068  ///
2069  /// This assumes that the initialzier was written in the source code, and
2070  /// ensures that isWritten() returns true.
2071  void setSourceOrder(int pos) {
2072    assert(!IsWritten &&
2073           "calling twice setSourceOrder() on the same initializer");
2074    assert(SourceOrderOrNumArrayIndices == 0 &&
2075           "setSourceOrder() used when there are implicit array indices");
2076    assert(pos >= 0 &&
2077           "setSourceOrder() used to make an initializer implicit");
2078    IsWritten = true;
2079    SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
2080  }
2081
2082  SourceLocation getLParenLoc() const { return LParenLoc; }
2083  SourceLocation getRParenLoc() const { return RParenLoc; }
2084
2085  /// \brief Determine the number of implicit array indices used while
2086  /// described an array member initialization.
2087  unsigned getNumArrayIndices() const {
2088    return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
2089  }
2090
2091  /// \brief Retrieve a particular array index variable used to
2092  /// describe an array member initialization.
2093  VarDecl *getArrayIndex(unsigned I) {
2094    assert(I < getNumArrayIndices() && "Out of bounds member array index");
2095    return reinterpret_cast<VarDecl **>(this + 1)[I];
2096  }
2097  const VarDecl *getArrayIndex(unsigned I) const {
2098    assert(I < getNumArrayIndices() && "Out of bounds member array index");
2099    return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
2100  }
2101  void setArrayIndex(unsigned I, VarDecl *Index) {
2102    assert(I < getNumArrayIndices() && "Out of bounds member array index");
2103    reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
2104  }
2105  ArrayRef<VarDecl *> getArrayIndexes() {
2106    assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
2107    return ArrayRef<VarDecl *>(reinterpret_cast<VarDecl **>(this + 1),
2108                               getNumArrayIndices());
2109  }
2110
2111  /// \brief Get the initializer.
2112  Expr *getInit() const { return static_cast<Expr*>(Init); }
2113};
2114
2115/// \brief Represents a C++ constructor within a class.
2116///
2117/// For example:
2118///
2119/// \code
2120/// class X {
2121/// public:
2122///   explicit X(int); // represented by a CXXConstructorDecl.
2123/// };
2124/// \endcode
2125class CXXConstructorDecl : public CXXMethodDecl {
2126  void anchor() override;
2127  /// \brief Whether this constructor declaration has the \c explicit keyword
2128  /// specified.
2129  bool IsExplicitSpecified : 1;
2130
2131  /// \name Support for base and member initializers.
2132  /// \{
2133  /// \brief The arguments used to initialize the base or member.
2134  CXXCtorInitializer **CtorInitializers;
2135  unsigned NumCtorInitializers;
2136  /// \}
2137
2138  CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2139                     const DeclarationNameInfo &NameInfo,
2140                     QualType T, TypeSourceInfo *TInfo,
2141                     bool isExplicitSpecified, bool isInline,
2142                     bool isImplicitlyDeclared, bool isConstexpr)
2143    : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2144                    SC_None, isInline, isConstexpr, SourceLocation()),
2145      IsExplicitSpecified(isExplicitSpecified), CtorInitializers(nullptr),
2146      NumCtorInitializers(0) {
2147    setImplicit(isImplicitlyDeclared);
2148  }
2149
2150public:
2151  static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2152  static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2153                                    SourceLocation StartLoc,
2154                                    const DeclarationNameInfo &NameInfo,
2155                                    QualType T, TypeSourceInfo *TInfo,
2156                                    bool isExplicit,
2157                                    bool isInline, bool isImplicitlyDeclared,
2158                                    bool isConstexpr);
2159
2160  /// \brief Determine whether this constructor declaration has the
2161  /// \c explicit keyword specified.
2162  bool isExplicitSpecified() const { return IsExplicitSpecified; }
2163
2164  /// \brief Determine whether this constructor was marked "explicit" or not.
2165  bool isExplicit() const {
2166    return cast<CXXConstructorDecl>(getFirstDecl())->isExplicitSpecified();
2167  }
2168
2169  /// \brief Iterates through the member/base initializer list.
2170  typedef CXXCtorInitializer **init_iterator;
2171
2172  /// \brief Iterates through the member/base initializer list.
2173  typedef CXXCtorInitializer * const * init_const_iterator;
2174
2175  typedef llvm::iterator_range<init_iterator> init_range;
2176  typedef llvm::iterator_range<init_const_iterator> init_const_range;
2177
2178  init_range inits() { return init_range(init_begin(), init_end()); }
2179  init_const_range inits() const {
2180    return init_const_range(init_begin(), init_end());
2181  }
2182
2183  /// \brief Retrieve an iterator to the first initializer.
2184  init_iterator       init_begin()       { return CtorInitializers; }
2185  /// \brief Retrieve an iterator to the first initializer.
2186  init_const_iterator init_begin() const { return CtorInitializers; }
2187
2188  /// \brief Retrieve an iterator past the last initializer.
2189  init_iterator       init_end()       {
2190    return CtorInitializers + NumCtorInitializers;
2191  }
2192  /// \brief Retrieve an iterator past the last initializer.
2193  init_const_iterator init_end() const {
2194    return CtorInitializers + NumCtorInitializers;
2195  }
2196
2197  typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
2198  typedef std::reverse_iterator<init_const_iterator>
2199          init_const_reverse_iterator;
2200
2201  init_reverse_iterator init_rbegin() {
2202    return init_reverse_iterator(init_end());
2203  }
2204  init_const_reverse_iterator init_rbegin() const {
2205    return init_const_reverse_iterator(init_end());
2206  }
2207
2208  init_reverse_iterator init_rend() {
2209    return init_reverse_iterator(init_begin());
2210  }
2211  init_const_reverse_iterator init_rend() const {
2212    return init_const_reverse_iterator(init_begin());
2213  }
2214
2215  /// \brief Determine the number of arguments used to initialize the member
2216  /// or base.
2217  unsigned getNumCtorInitializers() const {
2218      return NumCtorInitializers;
2219  }
2220
2221  void setNumCtorInitializers(unsigned numCtorInitializers) {
2222    NumCtorInitializers = numCtorInitializers;
2223  }
2224
2225  void setCtorInitializers(CXXCtorInitializer ** initializers) {
2226    CtorInitializers = initializers;
2227  }
2228
2229  /// \brief Determine whether this constructor is a delegating constructor.
2230  bool isDelegatingConstructor() const {
2231    return (getNumCtorInitializers() == 1) &&
2232      CtorInitializers[0]->isDelegatingInitializer();
2233  }
2234
2235  /// \brief When this constructor delegates to another, retrieve the target.
2236  CXXConstructorDecl *getTargetConstructor() const;
2237
2238  /// Whether this constructor is a default
2239  /// constructor (C++ [class.ctor]p5), which can be used to
2240  /// default-initialize a class of this type.
2241  bool isDefaultConstructor() const;
2242
2243  /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
2244  /// which can be used to copy the class.
2245  ///
2246  /// \p TypeQuals will be set to the qualifiers on the
2247  /// argument type. For example, \p TypeQuals would be set to \c
2248  /// Qualifiers::Const for the following copy constructor:
2249  ///
2250  /// \code
2251  /// class X {
2252  /// public:
2253  ///   X(const X&);
2254  /// };
2255  /// \endcode
2256  bool isCopyConstructor(unsigned &TypeQuals) const;
2257
2258  /// Whether this constructor is a copy
2259  /// constructor (C++ [class.copy]p2, which can be used to copy the
2260  /// class.
2261  bool isCopyConstructor() const {
2262    unsigned TypeQuals = 0;
2263    return isCopyConstructor(TypeQuals);
2264  }
2265
2266  /// \brief Determine whether this constructor is a move constructor
2267  /// (C++0x [class.copy]p3), which can be used to move values of the class.
2268  ///
2269  /// \param TypeQuals If this constructor is a move constructor, will be set
2270  /// to the type qualifiers on the referent of the first parameter's type.
2271  bool isMoveConstructor(unsigned &TypeQuals) const;
2272
2273  /// \brief Determine whether this constructor is a move constructor
2274  /// (C++0x [class.copy]p3), which can be used to move values of the class.
2275  bool isMoveConstructor() const {
2276    unsigned TypeQuals = 0;
2277    return isMoveConstructor(TypeQuals);
2278  }
2279
2280  /// \brief Determine whether this is a copy or move constructor.
2281  ///
2282  /// \param TypeQuals Will be set to the type qualifiers on the reference
2283  /// parameter, if in fact this is a copy or move constructor.
2284  bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2285
2286  /// \brief Determine whether this a copy or move constructor.
2287  bool isCopyOrMoveConstructor() const {
2288    unsigned Quals;
2289    return isCopyOrMoveConstructor(Quals);
2290  }
2291
2292  /// Whether this constructor is a
2293  /// converting constructor (C++ [class.conv.ctor]), which can be
2294  /// used for user-defined conversions.
2295  bool isConvertingConstructor(bool AllowExplicit) const;
2296
2297  /// \brief Determine whether this is a member template specialization that
2298  /// would copy the object to itself. Such constructors are never used to copy
2299  /// an object.
2300  bool isSpecializationCopyingObject() const;
2301
2302  /// \brief Get the constructor that this inheriting constructor is based on.
2303  const CXXConstructorDecl *getInheritedConstructor() const;
2304
2305  /// \brief Set the constructor that this inheriting constructor is based on.
2306  void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
2307
2308  const CXXConstructorDecl *getCanonicalDecl() const override {
2309    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2310  }
2311  CXXConstructorDecl *getCanonicalDecl() override {
2312    return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2313  }
2314
2315  // Implement isa/cast/dyncast/etc.
2316  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2317  static bool classofKind(Kind K) { return K == CXXConstructor; }
2318
2319  friend class ASTDeclReader;
2320  friend class ASTDeclWriter;
2321};
2322
2323/// \brief Represents a C++ destructor within a class.
2324///
2325/// For example:
2326///
2327/// \code
2328/// class X {
2329/// public:
2330///   ~X(); // represented by a CXXDestructorDecl.
2331/// };
2332/// \endcode
2333class CXXDestructorDecl : public CXXMethodDecl {
2334  void anchor() override;
2335
2336  FunctionDecl *OperatorDelete;
2337
2338  CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2339                    const DeclarationNameInfo &NameInfo,
2340                    QualType T, TypeSourceInfo *TInfo,
2341                    bool isInline, bool isImplicitlyDeclared)
2342    : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2343                    SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
2344      OperatorDelete(nullptr) {
2345    setImplicit(isImplicitlyDeclared);
2346  }
2347
2348public:
2349  static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2350                                   SourceLocation StartLoc,
2351                                   const DeclarationNameInfo &NameInfo,
2352                                   QualType T, TypeSourceInfo* TInfo,
2353                                   bool isInline,
2354                                   bool isImplicitlyDeclared);
2355  static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2356
2357  void setOperatorDelete(FunctionDecl *OD) {
2358    cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete = OD;
2359  }
2360  const FunctionDecl *getOperatorDelete() const {
2361    return cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete;
2362  }
2363
2364  // Implement isa/cast/dyncast/etc.
2365  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2366  static bool classofKind(Kind K) { return K == CXXDestructor; }
2367
2368  friend class ASTDeclReader;
2369  friend class ASTDeclWriter;
2370};
2371
2372/// \brief Represents a C++ conversion function within a class.
2373///
2374/// For example:
2375///
2376/// \code
2377/// class X {
2378/// public:
2379///   operator bool();
2380/// };
2381/// \endcode
2382class CXXConversionDecl : public CXXMethodDecl {
2383  void anchor() override;
2384  /// Whether this conversion function declaration is marked
2385  /// "explicit", meaning that it can only be applied when the user
2386  /// explicitly wrote a cast. This is a C++0x feature.
2387  bool IsExplicitSpecified : 1;
2388
2389  CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2390                    const DeclarationNameInfo &NameInfo,
2391                    QualType T, TypeSourceInfo *TInfo,
2392                    bool isInline, bool isExplicitSpecified,
2393                    bool isConstexpr, SourceLocation EndLocation)
2394    : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2395                    SC_None, isInline, isConstexpr, EndLocation),
2396      IsExplicitSpecified(isExplicitSpecified) { }
2397
2398public:
2399  static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
2400                                   SourceLocation StartLoc,
2401                                   const DeclarationNameInfo &NameInfo,
2402                                   QualType T, TypeSourceInfo *TInfo,
2403                                   bool isInline, bool isExplicit,
2404                                   bool isConstexpr,
2405                                   SourceLocation EndLocation);
2406  static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2407
2408  /// Whether this conversion function declaration is marked
2409  /// "explicit", meaning that it can only be used for direct initialization
2410  /// (including explitly written casts).  This is a C++11 feature.
2411  bool isExplicitSpecified() const { return IsExplicitSpecified; }
2412
2413  /// \brief Whether this is an explicit conversion operator (C++11 and later).
2414  ///
2415  /// Explicit conversion operators are only considered for direct
2416  /// initialization, e.g., when the user has explicitly written a cast.
2417  bool isExplicit() const {
2418    return cast<CXXConversionDecl>(getFirstDecl())->isExplicitSpecified();
2419  }
2420
2421  /// \brief Returns the type that this conversion function is converting to.
2422  QualType getConversionType() const {
2423    return getType()->getAs<FunctionType>()->getReturnType();
2424  }
2425
2426  /// \brief Determine whether this conversion function is a conversion from
2427  /// a lambda closure type to a block pointer.
2428  bool isLambdaToBlockPointerConversion() const;
2429
2430  // Implement isa/cast/dyncast/etc.
2431  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2432  static bool classofKind(Kind K) { return K == CXXConversion; }
2433
2434  friend class ASTDeclReader;
2435  friend class ASTDeclWriter;
2436};
2437
2438/// \brief Represents a linkage specification.
2439///
2440/// For example:
2441/// \code
2442///   extern "C" void foo();
2443/// \endcode
2444class LinkageSpecDecl : public Decl, public DeclContext {
2445  virtual void anchor();
2446public:
2447  /// \brief Represents the language in a linkage specification.
2448  ///
2449  /// The values are part of the serialization ABI for
2450  /// ASTs and cannot be changed without altering that ABI.  To help
2451  /// ensure a stable ABI for this, we choose the DW_LANG_ encodings
2452  /// from the dwarf standard.
2453  enum LanguageIDs {
2454    lang_c = /* DW_LANG_C */ 0x0002,
2455    lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
2456  };
2457private:
2458  /// \brief The language for this linkage specification.
2459  unsigned Language : 3;
2460  /// \brief True if this linkage spec has braces.
2461  ///
2462  /// This is needed so that hasBraces() returns the correct result while the
2463  /// linkage spec body is being parsed.  Once RBraceLoc has been set this is
2464  /// not used, so it doesn't need to be serialized.
2465  unsigned HasBraces : 1;
2466  /// \brief The source location for the extern keyword.
2467  SourceLocation ExternLoc;
2468  /// \brief The source location for the right brace (if valid).
2469  SourceLocation RBraceLoc;
2470
2471  LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2472                  SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
2473    : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2474      Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
2475      RBraceLoc(SourceLocation()) { }
2476
2477public:
2478  static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2479                                 SourceLocation ExternLoc,
2480                                 SourceLocation LangLoc, LanguageIDs Lang,
2481                                 bool HasBraces);
2482  static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2483
2484  /// \brief Return the language specified by this linkage specification.
2485  LanguageIDs getLanguage() const { return LanguageIDs(Language); }
2486  /// \brief Set the language specified by this linkage specification.
2487  void setLanguage(LanguageIDs L) { Language = L; }
2488
2489  /// \brief Determines whether this linkage specification had braces in
2490  /// its syntactic form.
2491  bool hasBraces() const {
2492    assert(!RBraceLoc.isValid() || HasBraces);
2493    return HasBraces;
2494  }
2495
2496  SourceLocation getExternLoc() const { return ExternLoc; }
2497  SourceLocation getRBraceLoc() const { return RBraceLoc; }
2498  void setExternLoc(SourceLocation L) { ExternLoc = L; }
2499  void setRBraceLoc(SourceLocation L) {
2500    RBraceLoc = L;
2501    HasBraces = RBraceLoc.isValid();
2502  }
2503
2504  SourceLocation getLocEnd() const LLVM_READONLY {
2505    if (hasBraces())
2506      return getRBraceLoc();
2507    // No braces: get the end location of the (only) declaration in context
2508    // (if present).
2509    return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
2510  }
2511
2512  SourceRange getSourceRange() const override LLVM_READONLY {
2513    return SourceRange(ExternLoc, getLocEnd());
2514  }
2515
2516  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2517  static bool classofKind(Kind K) { return K == LinkageSpec; }
2518  static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2519    return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2520  }
2521  static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2522    return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2523  }
2524};
2525
2526/// \brief Represents C++ using-directive.
2527///
2528/// For example:
2529/// \code
2530///    using namespace std;
2531/// \endcode
2532///
2533/// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2534/// artificial names for all using-directives in order to store
2535/// them in DeclContext effectively.
2536class UsingDirectiveDecl : public NamedDecl {
2537  void anchor() override;
2538  /// \brief The location of the \c using keyword.
2539  SourceLocation UsingLoc;
2540
2541  /// \brief The location of the \c namespace keyword.
2542  SourceLocation NamespaceLoc;
2543
2544  /// \brief The nested-name-specifier that precedes the namespace.
2545  NestedNameSpecifierLoc QualifierLoc;
2546
2547  /// \brief The namespace nominated by this using-directive.
2548  NamedDecl *NominatedNamespace;
2549
2550  /// Enclosing context containing both using-directive and nominated
2551  /// namespace.
2552  DeclContext *CommonAncestor;
2553
2554  /// \brief Returns special DeclarationName used by using-directives.
2555  ///
2556  /// This is only used by DeclContext for storing UsingDirectiveDecls in
2557  /// its lookup structure.
2558  static DeclarationName getName() {
2559    return DeclarationName::getUsingDirectiveName();
2560  }
2561
2562  UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2563                     SourceLocation NamespcLoc,
2564                     NestedNameSpecifierLoc QualifierLoc,
2565                     SourceLocation IdentLoc,
2566                     NamedDecl *Nominated,
2567                     DeclContext *CommonAncestor)
2568    : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2569      NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2570      NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
2571
2572public:
2573  /// \brief Retrieve the nested-name-specifier that qualifies the
2574  /// name of the namespace, with source-location information.
2575  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2576
2577  /// \brief Retrieve the nested-name-specifier that qualifies the
2578  /// name of the namespace.
2579  NestedNameSpecifier *getQualifier() const {
2580    return QualifierLoc.getNestedNameSpecifier();
2581  }
2582
2583  NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
2584  const NamedDecl *getNominatedNamespaceAsWritten() const {
2585    return NominatedNamespace;
2586  }
2587
2588  /// \brief Returns the namespace nominated by this using-directive.
2589  NamespaceDecl *getNominatedNamespace();
2590
2591  const NamespaceDecl *getNominatedNamespace() const {
2592    return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
2593  }
2594
2595  /// \brief Returns the common ancestor context of this using-directive and
2596  /// its nominated namespace.
2597  DeclContext *getCommonAncestor() { return CommonAncestor; }
2598  const DeclContext *getCommonAncestor() const { return CommonAncestor; }
2599
2600  /// \brief Return the location of the \c using keyword.
2601  SourceLocation getUsingLoc() const { return UsingLoc; }
2602
2603  // FIXME: Could omit 'Key' in name.
2604  /// \brief Returns the location of the \c namespace keyword.
2605  SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
2606
2607  /// \brief Returns the location of this using declaration's identifier.
2608  SourceLocation getIdentLocation() const { return getLocation(); }
2609
2610  static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
2611                                    SourceLocation UsingLoc,
2612                                    SourceLocation NamespaceLoc,
2613                                    NestedNameSpecifierLoc QualifierLoc,
2614                                    SourceLocation IdentLoc,
2615                                    NamedDecl *Nominated,
2616                                    DeclContext *CommonAncestor);
2617  static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2618
2619  SourceRange getSourceRange() const override LLVM_READONLY {
2620    return SourceRange(UsingLoc, getLocation());
2621  }
2622
2623  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2624  static bool classofKind(Kind K) { return K == UsingDirective; }
2625
2626  // Friend for getUsingDirectiveName.
2627  friend class DeclContext;
2628
2629  friend class ASTDeclReader;
2630};
2631
2632/// \brief Represents a C++ namespace alias.
2633///
2634/// For example:
2635///
2636/// \code
2637/// namespace Foo = Bar;
2638/// \endcode
2639class NamespaceAliasDecl : public NamedDecl {
2640  void anchor() override;
2641
2642  /// \brief The location of the \c namespace keyword.
2643  SourceLocation NamespaceLoc;
2644
2645  /// \brief The location of the namespace's identifier.
2646  ///
2647  /// This is accessed by TargetNameLoc.
2648  SourceLocation IdentLoc;
2649
2650  /// \brief The nested-name-specifier that precedes the namespace.
2651  NestedNameSpecifierLoc QualifierLoc;
2652
2653  /// \brief The Decl that this alias points to, either a NamespaceDecl or
2654  /// a NamespaceAliasDecl.
2655  NamedDecl *Namespace;
2656
2657  NamespaceAliasDecl(DeclContext *DC, SourceLocation NamespaceLoc,
2658                     SourceLocation AliasLoc, IdentifierInfo *Alias,
2659                     NestedNameSpecifierLoc QualifierLoc,
2660                     SourceLocation IdentLoc, NamedDecl *Namespace)
2661    : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias),
2662      NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
2663      QualifierLoc(QualifierLoc), Namespace(Namespace) { }
2664
2665  friend class ASTDeclReader;
2666
2667public:
2668  /// \brief Retrieve the nested-name-specifier that qualifies the
2669  /// name of the namespace, with source-location information.
2670  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2671
2672  /// \brief Retrieve the nested-name-specifier that qualifies the
2673  /// name of the namespace.
2674  NestedNameSpecifier *getQualifier() const {
2675    return QualifierLoc.getNestedNameSpecifier();
2676  }
2677
2678  /// \brief Retrieve the namespace declaration aliased by this directive.
2679  NamespaceDecl *getNamespace() {
2680    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
2681      return AD->getNamespace();
2682
2683    return cast<NamespaceDecl>(Namespace);
2684  }
2685
2686  const NamespaceDecl *getNamespace() const {
2687    return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
2688  }
2689
2690  /// Returns the location of the alias name, i.e. 'foo' in
2691  /// "namespace foo = ns::bar;".
2692  SourceLocation getAliasLoc() const { return getLocation(); }
2693
2694  /// Returns the location of the \c namespace keyword.
2695  SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
2696
2697  /// Returns the location of the identifier in the named namespace.
2698  SourceLocation getTargetNameLoc() const { return IdentLoc; }
2699
2700  /// \brief Retrieve the namespace that this alias refers to, which
2701  /// may either be a NamespaceDecl or a NamespaceAliasDecl.
2702  NamedDecl *getAliasedNamespace() const { return Namespace; }
2703
2704  static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
2705                                    SourceLocation NamespaceLoc,
2706                                    SourceLocation AliasLoc,
2707                                    IdentifierInfo *Alias,
2708                                    NestedNameSpecifierLoc QualifierLoc,
2709                                    SourceLocation IdentLoc,
2710                                    NamedDecl *Namespace);
2711
2712  static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2713
2714  SourceRange getSourceRange() const override LLVM_READONLY {
2715    return SourceRange(NamespaceLoc, IdentLoc);
2716  }
2717
2718  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2719  static bool classofKind(Kind K) { return K == NamespaceAlias; }
2720};
2721
2722/// \brief Represents a shadow declaration introduced into a scope by a
2723/// (resolved) using declaration.
2724///
2725/// For example,
2726/// \code
2727/// namespace A {
2728///   void foo();
2729/// }
2730/// namespace B {
2731///   using A::foo; // <- a UsingDecl
2732///                 // Also creates a UsingShadowDecl for A::foo() in B
2733/// }
2734/// \endcode
2735class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
2736  void anchor() override;
2737
2738  /// The referenced declaration.
2739  NamedDecl *Underlying;
2740
2741  /// \brief The using declaration which introduced this decl or the next using
2742  /// shadow declaration contained in the aforementioned using declaration.
2743  NamedDecl *UsingOrNextShadow;
2744  friend class UsingDecl;
2745
2746  UsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
2747                  UsingDecl *Using, NamedDecl *Target)
2748    : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
2749      redeclarable_base(C), Underlying(Target),
2750      UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
2751    if (Target) {
2752      setDeclName(Target->getDeclName());
2753      IdentifierNamespace = Target->getIdentifierNamespace();
2754    }
2755    setImplicit();
2756  }
2757
2758  typedef Redeclarable<UsingShadowDecl> redeclarable_base;
2759  UsingShadowDecl *getNextRedeclarationImpl() override {
2760    return getNextRedeclaration();
2761  }
2762  UsingShadowDecl *getPreviousDeclImpl() override {
2763    return getPreviousDecl();
2764  }
2765  UsingShadowDecl *getMostRecentDeclImpl() override {
2766    return getMostRecentDecl();
2767  }
2768
2769public:
2770  static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
2771                                 SourceLocation Loc, UsingDecl *Using,
2772                                 NamedDecl *Target) {
2773    return new (C, DC) UsingShadowDecl(C, DC, Loc, Using, Target);
2774  }
2775
2776  static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2777
2778  typedef redeclarable_base::redecl_range redecl_range;
2779  typedef redeclarable_base::redecl_iterator redecl_iterator;
2780  using redeclarable_base::redecls_begin;
2781  using redeclarable_base::redecls_end;
2782  using redeclarable_base::redecls;
2783  using redeclarable_base::getPreviousDecl;
2784  using redeclarable_base::getMostRecentDecl;
2785
2786  UsingShadowDecl *getCanonicalDecl() override {
2787    return getFirstDecl();
2788  }
2789  const UsingShadowDecl *getCanonicalDecl() const {
2790    return getFirstDecl();
2791  }
2792
2793  /// \brief Gets the underlying declaration which has been brought into the
2794  /// local scope.
2795  NamedDecl *getTargetDecl() const { return Underlying; }
2796
2797  /// \brief Sets the underlying declaration which has been brought into the
2798  /// local scope.
2799  void setTargetDecl(NamedDecl* ND) {
2800    assert(ND && "Target decl is null!");
2801    Underlying = ND;
2802    IdentifierNamespace = ND->getIdentifierNamespace();
2803  }
2804
2805  /// \brief Gets the using declaration to which this declaration is tied.
2806  UsingDecl *getUsingDecl() const;
2807
2808  /// \brief The next using shadow declaration contained in the shadow decl
2809  /// chain of the using declaration which introduced this decl.
2810  UsingShadowDecl *getNextUsingShadowDecl() const {
2811    return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
2812  }
2813
2814  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2815  static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
2816
2817  friend class ASTDeclReader;
2818  friend class ASTDeclWriter;
2819};
2820
2821/// \brief Represents a C++ using-declaration.
2822///
2823/// For example:
2824/// \code
2825///    using someNameSpace::someIdentifier;
2826/// \endcode
2827class UsingDecl : public NamedDecl {
2828  void anchor() override;
2829
2830  /// \brief The source location of the 'using' keyword itself.
2831  SourceLocation UsingLocation;
2832
2833  /// \brief The nested-name-specifier that precedes the name.
2834  NestedNameSpecifierLoc QualifierLoc;
2835
2836  /// \brief Provides source/type location info for the declaration name
2837  /// embedded in the ValueDecl base class.
2838  DeclarationNameLoc DNLoc;
2839
2840  /// \brief The first shadow declaration of the shadow decl chain associated
2841  /// with this using declaration.
2842  ///
2843  /// The bool member of the pair store whether this decl has the \c typename
2844  /// keyword.
2845  llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
2846
2847  UsingDecl(DeclContext *DC, SourceLocation UL,
2848            NestedNameSpecifierLoc QualifierLoc,
2849            const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
2850    : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
2851      UsingLocation(UL), QualifierLoc(QualifierLoc),
2852      DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
2853  }
2854
2855public:
2856  /// \brief Return the source location of the 'using' keyword.
2857  SourceLocation getUsingLoc() const { return UsingLocation; }
2858
2859  /// \brief Set the source location of the 'using' keyword.
2860  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2861
2862  /// \brief Retrieve the nested-name-specifier that qualifies the name,
2863  /// with source-location information.
2864  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2865
2866  /// \brief Retrieve the nested-name-specifier that qualifies the name.
2867  NestedNameSpecifier *getQualifier() const {
2868    return QualifierLoc.getNestedNameSpecifier();
2869  }
2870
2871  DeclarationNameInfo getNameInfo() const {
2872    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2873  }
2874
2875  /// \brief Return true if it is a C++03 access declaration (no 'using').
2876  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
2877
2878  /// \brief Return true if the using declaration has 'typename'.
2879  bool hasTypename() const { return FirstUsingShadow.getInt(); }
2880
2881  /// \brief Sets whether the using declaration has 'typename'.
2882  void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
2883
2884  /// \brief Iterates through the using shadow declarations associated with
2885  /// this using declaration.
2886  class shadow_iterator {
2887    /// \brief The current using shadow declaration.
2888    UsingShadowDecl *Current;
2889
2890  public:
2891    typedef UsingShadowDecl*          value_type;
2892    typedef UsingShadowDecl*          reference;
2893    typedef UsingShadowDecl*          pointer;
2894    typedef std::forward_iterator_tag iterator_category;
2895    typedef std::ptrdiff_t            difference_type;
2896
2897    shadow_iterator() : Current(nullptr) { }
2898    explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
2899
2900    reference operator*() const { return Current; }
2901    pointer operator->() const { return Current; }
2902
2903    shadow_iterator& operator++() {
2904      Current = Current->getNextUsingShadowDecl();
2905      return *this;
2906    }
2907
2908    shadow_iterator operator++(int) {
2909      shadow_iterator tmp(*this);
2910      ++(*this);
2911      return tmp;
2912    }
2913
2914    friend bool operator==(shadow_iterator x, shadow_iterator y) {
2915      return x.Current == y.Current;
2916    }
2917    friend bool operator!=(shadow_iterator x, shadow_iterator y) {
2918      return x.Current != y.Current;
2919    }
2920  };
2921
2922  typedef llvm::iterator_range<shadow_iterator> shadow_range;
2923
2924  shadow_range shadows() const {
2925    return shadow_range(shadow_begin(), shadow_end());
2926  }
2927  shadow_iterator shadow_begin() const {
2928    return shadow_iterator(FirstUsingShadow.getPointer());
2929  }
2930  shadow_iterator shadow_end() const { return shadow_iterator(); }
2931
2932  /// \brief Return the number of shadowed declarations associated with this
2933  /// using declaration.
2934  unsigned shadow_size() const {
2935    return std::distance(shadow_begin(), shadow_end());
2936  }
2937
2938  void addShadowDecl(UsingShadowDecl *S);
2939  void removeShadowDecl(UsingShadowDecl *S);
2940
2941  static UsingDecl *Create(ASTContext &C, DeclContext *DC,
2942                           SourceLocation UsingL,
2943                           NestedNameSpecifierLoc QualifierLoc,
2944                           const DeclarationNameInfo &NameInfo,
2945                           bool HasTypenameKeyword);
2946
2947  static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2948
2949  SourceRange getSourceRange() const override LLVM_READONLY;
2950
2951  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2952  static bool classofKind(Kind K) { return K == Using; }
2953
2954  friend class ASTDeclReader;
2955  friend class ASTDeclWriter;
2956};
2957
2958/// \brief Represents a dependent using declaration which was not marked with
2959/// \c typename.
2960///
2961/// Unlike non-dependent using declarations, these *only* bring through
2962/// non-types; otherwise they would break two-phase lookup.
2963///
2964/// \code
2965/// template \<class T> class A : public Base<T> {
2966///   using Base<T>::foo;
2967/// };
2968/// \endcode
2969class UnresolvedUsingValueDecl : public ValueDecl {
2970  void anchor() override;
2971
2972  /// \brief The source location of the 'using' keyword
2973  SourceLocation UsingLocation;
2974
2975  /// \brief The nested-name-specifier that precedes the name.
2976  NestedNameSpecifierLoc QualifierLoc;
2977
2978  /// \brief Provides source/type location info for the declaration name
2979  /// embedded in the ValueDecl base class.
2980  DeclarationNameLoc DNLoc;
2981
2982  UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
2983                           SourceLocation UsingLoc,
2984                           NestedNameSpecifierLoc QualifierLoc,
2985                           const DeclarationNameInfo &NameInfo)
2986    : ValueDecl(UnresolvedUsingValue, DC,
2987                NameInfo.getLoc(), NameInfo.getName(), Ty),
2988      UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
2989      DNLoc(NameInfo.getInfo())
2990  { }
2991
2992public:
2993  /// \brief Returns the source location of the 'using' keyword.
2994  SourceLocation getUsingLoc() const { return UsingLocation; }
2995
2996  /// \brief Set the source location of the 'using' keyword.
2997  void setUsingLoc(SourceLocation L) { UsingLocation = L; }
2998
2999  /// \brief Return true if it is a C++03 access declaration (no 'using').
3000  bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3001
3002  /// \brief Retrieve the nested-name-specifier that qualifies the name,
3003  /// with source-location information.
3004  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3005
3006  /// \brief Retrieve the nested-name-specifier that qualifies the name.
3007  NestedNameSpecifier *getQualifier() const {
3008    return QualifierLoc.getNestedNameSpecifier();
3009  }
3010
3011  DeclarationNameInfo getNameInfo() const {
3012    return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3013  }
3014
3015  static UnresolvedUsingValueDecl *
3016    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3017           NestedNameSpecifierLoc QualifierLoc,
3018           const DeclarationNameInfo &NameInfo);
3019
3020  static UnresolvedUsingValueDecl *
3021  CreateDeserialized(ASTContext &C, unsigned ID);
3022
3023  SourceRange getSourceRange() const override LLVM_READONLY;
3024
3025  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3026  static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3027
3028  friend class ASTDeclReader;
3029  friend class ASTDeclWriter;
3030};
3031
3032/// \brief Represents a dependent using declaration which was marked with
3033/// \c typename.
3034///
3035/// \code
3036/// template \<class T> class A : public Base<T> {
3037///   using typename Base<T>::foo;
3038/// };
3039/// \endcode
3040///
3041/// The type associated with an unresolved using typename decl is
3042/// currently always a typename type.
3043class UnresolvedUsingTypenameDecl : public TypeDecl {
3044  void anchor() override;
3045
3046  /// \brief The source location of the 'typename' keyword
3047  SourceLocation TypenameLocation;
3048
3049  /// \brief The nested-name-specifier that precedes the name.
3050  NestedNameSpecifierLoc QualifierLoc;
3051
3052  UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3053                              SourceLocation TypenameLoc,
3054                              NestedNameSpecifierLoc QualifierLoc,
3055                              SourceLocation TargetNameLoc,
3056                              IdentifierInfo *TargetName)
3057    : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3058               UsingLoc),
3059      TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
3060
3061  friend class ASTDeclReader;
3062
3063public:
3064  /// \brief Returns the source location of the 'using' keyword.
3065  SourceLocation getUsingLoc() const { return getLocStart(); }
3066
3067  /// \brief Returns the source location of the 'typename' keyword.
3068  SourceLocation getTypenameLoc() const { return TypenameLocation; }
3069
3070  /// \brief Retrieve the nested-name-specifier that qualifies the name,
3071  /// with source-location information.
3072  NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3073
3074  /// \brief Retrieve the nested-name-specifier that qualifies the name.
3075  NestedNameSpecifier *getQualifier() const {
3076    return QualifierLoc.getNestedNameSpecifier();
3077  }
3078
3079  static UnresolvedUsingTypenameDecl *
3080    Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3081           SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3082           SourceLocation TargetNameLoc, DeclarationName TargetName);
3083
3084  static UnresolvedUsingTypenameDecl *
3085  CreateDeserialized(ASTContext &C, unsigned ID);
3086
3087  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3088  static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3089};
3090
3091/// \brief Represents a C++11 static_assert declaration.
3092class StaticAssertDecl : public Decl {
3093  virtual void anchor();
3094  llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
3095  StringLiteral *Message;
3096  SourceLocation RParenLoc;
3097
3098  StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
3099                   Expr *AssertExpr, StringLiteral *Message,
3100                   SourceLocation RParenLoc, bool Failed)
3101    : Decl(StaticAssert, DC, StaticAssertLoc),
3102      AssertExprAndFailed(AssertExpr, Failed), Message(Message),
3103      RParenLoc(RParenLoc) { }
3104
3105public:
3106  static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
3107                                  SourceLocation StaticAssertLoc,
3108                                  Expr *AssertExpr, StringLiteral *Message,
3109                                  SourceLocation RParenLoc, bool Failed);
3110  static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3111
3112  Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
3113  const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
3114
3115  StringLiteral *getMessage() { return Message; }
3116  const StringLiteral *getMessage() const { return Message; }
3117
3118  bool isFailed() const { return AssertExprAndFailed.getInt(); }
3119
3120  SourceLocation getRParenLoc() const { return RParenLoc; }
3121
3122  SourceRange getSourceRange() const override LLVM_READONLY {
3123    return SourceRange(getLocation(), getRParenLoc());
3124  }
3125
3126  static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3127  static bool classofKind(Kind K) { return K == StaticAssert; }
3128
3129  friend class ASTDeclReader;
3130};
3131
3132/// An instance of this class represents the declaration of a property
3133/// member.  This is a Microsoft extension to C++, first introduced in
3134/// Visual Studio .NET 2003 as a parallel to similar features in C#
3135/// and Managed C++.
3136///
3137/// A property must always be a non-static class member.
3138///
3139/// A property member superficially resembles a non-static data
3140/// member, except preceded by a property attribute:
3141///   __declspec(property(get=GetX, put=PutX)) int x;
3142/// Either (but not both) of the 'get' and 'put' names may be omitted.
3143///
3144/// A reference to a property is always an lvalue.  If the lvalue
3145/// undergoes lvalue-to-rvalue conversion, then a getter name is
3146/// required, and that member is called with no arguments.
3147/// If the lvalue is assigned into, then a setter name is required,
3148/// and that member is called with one argument, the value assigned.
3149/// Both operations are potentially overloaded.  Compound assignments
3150/// are permitted, as are the increment and decrement operators.
3151///
3152/// The getter and putter methods are permitted to be overloaded,
3153/// although their return and parameter types are subject to certain
3154/// restrictions according to the type of the property.
3155///
3156/// A property declared using an incomplete array type may
3157/// additionally be subscripted, adding extra parameters to the getter
3158/// and putter methods.
3159class MSPropertyDecl : public DeclaratorDecl {
3160  IdentifierInfo *GetterId, *SetterId;
3161
3162  MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
3163                 QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
3164                 IdentifierInfo *Getter, IdentifierInfo *Setter)
3165      : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
3166        GetterId(Getter), SetterId(Setter) {}
3167
3168public:
3169  static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
3170                                SourceLocation L, DeclarationName N, QualType T,
3171                                TypeSourceInfo *TInfo, SourceLocation StartL,
3172                                IdentifierInfo *Getter, IdentifierInfo *Setter);
3173  static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3174
3175  static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
3176
3177  bool hasGetter() const { return GetterId != nullptr; }
3178  IdentifierInfo* getGetterId() const { return GetterId; }
3179  bool hasSetter() const { return SetterId != nullptr; }
3180  IdentifierInfo* getSetterId() const { return SetterId; }
3181
3182  friend class ASTDeclReader;
3183};
3184
3185/// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
3186/// into a diagnostic with <<.
3187const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
3188                                    AccessSpecifier AS);
3189
3190const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
3191                                    AccessSpecifier AS);
3192
3193} // end namespace clang
3194
3195#endif
3196